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Abstract

Previous work on concept learning has focused on how con-
cepts are acquired without addressing metacognitive aspects
of this process. An important part of concept learning from
a learner’s perspective is subjectively knowing when a new
concept has been effectively learned. Here, we investigate
learners’ certainty in a classic Boolean concept-learning task.
We collected certainty judgements during the concept-learning
task from 552 participants on Amazon Mechanical Turk. We
compare different models of certainty in order to determine
exactly what learners’ subjective certainty judgments encode.
Our results suggest that learners’ certainty is best explained by
local accuracy rather than plausible alternatives such as total
entropy or the maximum a posteriori hypothesis of an idealized
Bayesian learner. This result suggests that certainty predomi-
nately reflects learners’ performance and feedback, rather than
any metacognition about the inferential task they are solving.

Keywords: Concepts; metacognition; learning; human exper-
imentation; symbolic computational modeling; certainty; ideal
learning model

Introduction
Most of us are certain that we landed on the moon, but many
of us are far less certain about who will win this year’s pres-
idential election. Ideally, our certainty would be a direct
reflection of the evidence we observe, but is our sense of
certainty actually calibrated to reality? Several studies have
demonstrated that individuals presented with disconfirming
evidence can become even more entrenched in their original
beliefs. Tormala and Petty (2004, 2011) found that when in-
dividuals were confronted with messages that they perceived
to be strong (e.g., from a expert source) but went against
their existing beliefs, their certainty regarding those beliefs
increased instead of decreased. In contrast, within the vi-
sual domain, there is evidence that individuals not only cal-
culate their own subjective measure of visual uncertainty, but
that their subjective uncertainty is predictive of objective un-
certainty (Barthelme & Mamassian, 2009). In other words,
individuals’ certainty of visual stimuli reflects veridical prob-
abilities.

The Dunning-Kruger effect provides further evidence of
a miscalibration between reality and certainty (Dunning
& Kruger, 1999). Dunning and Kruger demonstrated a
metacognitive inability of unskilled individuals to recognize
their own incompetence. This results in an inflated sense of
certainty regarding their own performance and aptitude. The
inverse was also found, in which highly competent individu-
als would be less certain regarding their own abilities in rela-
tion to others.

Here, we test whether individuals’ subjective certainty
while acquiring novel concepts is driven by objective prob-
abilities. Are learners as certain as they should be given the
data, or is their subjective sense of certainty driven by other
factors (e.g., accuracy, quantity of observed data)? This ques-
tion has implications for understanding the subjective experi-
ences that accompany concept discovery, which may them-
selves interact with future learning.

Boolean concept learning as a prototypical domain
Historically, Boolean concept-learning tasks have been used
to study concept acquisition because they allowed researchers
to study the mechanisms of the learning process in a sim-
plified domain with a known, limited hypothesis space (e.g.,
Bruner, Goodnow, & Austin, 1967; Feldman, 2000; Good-
man et al., 2008; Shepard, Hovland, & Jenkins, 1961).

As an example, consider a classic Boolean concept-
learning paradigm. In this task, participants are asked to re-
spond yes or no to a series of images and are given feedback
after each response. Each image has a shape, size, and color
that has one of two values, resulting in a total of eight differ-
ent images. The accuracies of the participants’ yes or no re-
sponses are determined by an unstated concept such as “large
black square” or “triangle” that subjects must discover. This
latent concept is a Boolean rule which can easily be stated in
logic, meaning that it is straightforward to quantify represen-
tations that learners are likely to be using. Feldman (2000)
tested participants on 41 different concepts spread across six
families corresponding to the number of positive examples
and feature dimensions used in each stimulus. His results
showed that performance in learning decreased as Boolean
complexity increased, indicating that concept difficulty was
directly proportional to the number of Boolean operators in
the shortest logically equivalent expression. For example, the
concept “large red triangle” should be more difficult than ”red
triangle” since the former incorporates an additional feature.
The idea of simplicity-driven concept learning was put into
a probabilistic setting by Goodman et al. (2008), who con-
structed a Bayesian learner that tried to acquire concepts h
from data d according to an idealized model of P(h | d). The
prior in this model favored simplicity, and the likelihood fa-
vored hypotheses that explained the observed labels. In this
way, it was able to combine a formalization of a simplicity
preference with Bayesian inference from the observed data,
providing a close fit to empirical learning.

These tasks provide an ideal domain for us to study cer-
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tainty since there exist well-tested models and theories of the
processes that guide learning in such simple domains. We
collect subjective measurements of learners’ certainty or con-
fidence throughout a novel concept-learning task. We then
compare learners’ self-reported certainty throughout the task
to a set of models we constructed to represent several a pri-
ori plausible, formal theories about what quantitative mea-
sure subjective certainty might reflect. We constructed a rule
learning model similar to Goodman et al. (2008) in order to
provide an idealized quantification of formal measures of cer-
tainty, which we then compare to human judgements.

Methods
We tested participants in a novel concept-learning task during
which we measured their knowledge of the concept (via yes
or no responses) and their certainty throughout the learning
process.

We recruited 552 participants on Amazon Mechanical
Turk. Participants clicked to consent to the study before view-
ing the task instructions. The instructions explained that the
participant’s task was to figure out the meaning of a word that
represented a certain concept. Participants practiced on eight
practice trials to ensure that they understood the task before
proceeding to the actual study. During the practice trials, par-
ticipants saw either a cat or a dog, and had to guess whether
each item fit the undisclosed concept for a novel word or not
by responding yes or no. In addition to guessing, participants
had to report whether or not they were certain about the con-
cept for the novel word. After each guess, participants re-
ceived feedback about whether or not their guess was correct.
For the practice trials, the novel word always referred to the
concept of “cat”.

For the experimental trials (see Figure 1), participants saw
one of ten conditions, each composed of of 24 trials. Each
condition represented one unique concept, such that each par-
ticipant made judgements for only one concept. In a partial
replication of the Shepard et al. study (1961), the observa-
tions spanned three binary dimensions: shape (square or tri-
angle), color (red or green), and size (large or small). A total
of eight images were used across all conditions which exhaus-
tively spanned the space. Across all conditions participants
would see these eight images in blocks of three with the or-
dering of the images assigned randomly per condition. Each
condition tested for a different concept with varying complex-
ity (see Table 1).

Concepts 1, 5, 6, 7, 8 and 9 (Table 1) were identical to con-
cepts used in both the Shepard et al. (1961) and Feldman
(2000) experiments. These concepts exhaustively spanned
across the concept family consisting of three features and
four positive examples. Additional conditions were added
to test for potential differences between operators. Concept
9—“(green and large and triangle) or (green and small and
square) or (red and large and square) or (red and small and
triangle)”—is predicted to be the most difficult as it essen-
tially transforms that condition into a rote memorization task.

Figure 1: Participants saw 24 trials (as above) in sequen-
tial order, randomized between-conditions. After responding,
feedback was displayed for one second (if correct) or two sec-
onds (if incorrect) before the next stimuli was shown. Previ-
ous feedback was not displayed at any time.

Like the practice trials, each participant gave a “yes” or “no”
answer as to whether the current image was part of the con-
cept. On each trial, each participant also indicated whether
they were certain regarding their answer, providing a binary
forced choice judgment. After their responses, participants
received feedback on their responses. Correct responses re-
ceived one second of feedback before the next trial com-
menced. Incorrect responses were penalized with a slower
two seconds of feedback before the next trial to incentivize
attention to the task.

Ideal learning model
We aim to address the question of whether learners’ subjec-
tive sense of certainty reflects veridical probabilities. In other
words, do learners feel as certain as is justified by the ob-
served data? Addressing this question requires us to use an
ideal learning model in order to determine how confident an
ideal learner should be (given the uncertainty of the model).
Here we use an ideal learning model that has already been
used to formalize concept learning in a probabilistic setting
in which notions of certainty and uncertainty (e.g., Shannon,
1948) are well defined. Though ideal learning models of this
type have been used before to understand novel concept ac-
quisition, they have not previously been applied towards un-
derstanding learners’ subjective sense of certainty.

The ideal learning model was developed using Python

699



Concept
1 RED red
2 AND red and small
3 OR red or small
4 XOR red xor small
5 AND OR AND (red and small) or (green and large)
6 Complex 1 (green and large and triangle) or (green and large and square) or (green and small and triangle) or (red and large and square)

7 Complex 2 (green and large and triangle) or (green and large and square) or (green and small and triangle) or (red and large and triangle)

8 Complex 3 (green and large and triangle) or (green and large and square) or (green and small and triangle) or (red and small and square)

9 Memorization (green and large and triangle) or (green and small and square) or (red and large and square) or (red and small and triangle)

10 XOR XOR red xor small xor square

Table 1: Concepts presented to subjects in the experiment.

Rule
START→ PREDICATE
START→ TRUE
START→ FALSE
PREDICATE→ and(PREDICATE, PREDICATE)
PREDICATE→ or(PREDICATE, PREDICATE)
PREDICATE→ not(PREDICATE)
PREDICATE→ red(x)
PREDICATE→ green(x)
PREDICATE→ triangle(x)
PREDICATE→ square(x)
PREDICATE→ large(x)
PREDICATE→ small(x)

Table 2: Grammar used to generate logical rules in the ideal-
ized learning model. The variable x is the current object.

and the Language Of Thought library, LOTlib (Piantadosi,
2014). This model defines a probabilistic context-free gram-
mar (PCFG) with a set of primitives: red, green, triangle,
square, large, and small, and logical operations (shown in
Table 2). The PCFG serves as a prior over hypotheses and
specifies an infinite hypothesis space.

To establish a tractable hypothesis space, the model drew
1,000,000 samples from the posterior distribution of hypothe-
ses (i.e., hypotheses scored by simplicity and fit to the data)
using tree-regeneration Metropolis-Hastings (Goodman et al.,
2008) and stored the best 1,000 hypotheses at each data
amount that subjects saw. The model incorporated parame-
ters for the noise in the data (alpha) and a power law memory
decay on the likelihood of previous data1 (beta), best fit as
0.64 and 0 respectively.

Analysis
We considered and compared several different models of
what might drive uncertainty. Perhaps the most natural is
that learners might use the uncertainty of an idealized learn-
ing model, as quantified by the posterior entropy (Shannon
1948). This provides a measure of the number of bits of infor-

1Weighting the log likelihood of an example n back by (n+1)−β.

mation learners have yet to discover about which hypothesis
is the true generator of the data. However, it also may be
the case that learners tend to pick probable hypotheses, and
their uncertainty reflects only the probability of the best hy-
pothesis. We refer to this as the MAP model. We may also
consider maximum likelihood in which the prior is ignored,
corresponding to a maximum likelihood model over the struc-
tured, compositional hypothesis space. Beyond these ideal-
ized model-based theories, it is critical to include a variety of
trial-level alternatives. It could be for instance that partici-
pants just become more confident as they complete more of
the experiment, a model we refer to as Trial. Alternatively,
certainty may just reflect a measure of their performance so
far, reflecting a lack of objective self-awareness of how much
certainty they should have. Total Accuracy quantifies per-
formance on all previous trials of the experiment. We also
include Local Accuracy measures of how well subjects have
done on the previous N trials (N = 2,3,4,5), potentially in-
corporating their performance on the current trial (e.g. the
one they are responding to), called Local Accuracy Cur-
rent. If this predictor beat out the others, it would indicate
that learners are only certain when they anticipate being able
to guess accurately on the current trial. The Current Accu-
racy model is a baseline that simply quantifies whether par-
ticipants were right on the next trial. Its performance as a pre-
dictor shows whether subjective certainty is well-calibrated to
true accuracy on the next item, regardless of the underlying
computational processes.

Logarithmic transformations are common in psy-
chophysics (Stevens, 1957). Therefore, each of these
predictors was considered in its standard form, as well
as under a logarithmic transformation, yielding a total of
32 models. The accuracy predictors used a log(1 + x)
transformation to avoid problems with zeroes.

Results
Certainty and accuracy by concept
We composed and evaluated plots of participants’ certainty
and accuracy over the course of the experiment for each con-
cept in order to determine (1) whether certainty and accuracy
improved over the course of the experiment, (2) whether the-
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Figure 2: Mean certainty (blue) and mean accuracy (red)
across concept conditions

oretically harder concepts (according to Feldman 2000) were,
in fact, more difficult for participants, and (3) whether partic-
ipants’ certainty correlated with their accuracy in general.

Figure 2 shows participants’ certainty and accuracy (y-
axis) over trials of the experiment (x-axis). The increasing
trend of the accuracy curves reaches ceiling for some con-
cepts, indicating that participants successfully acquired them.
In other conditions, participants did not reach ceiling, indi-
cating that they did not acquire the target concept. This is
actually beneficial to our analysis as it allows us to analyze
conditions and trials in which participants should have high
uncertainty. The certainty curves follow a generally increas-
ing trajectory, but only reach high values (ceiling probabil-
ity of a participant reporting being certain) in conditions in
which participants also achieved high accuracy. The increas-
ing trend of certainty in conditions for which accuracy does
not go above 50% may be reflective of overconfidence.

Predictors of certainty
Figure 3 shows certainty (y-axis) over several different key
predictors of certainty (x-axis). Local accuracy models have
low dispersion, meaning that individuals with low local ac-
curacy have low certainty and individuals with high local ac-
curacy are highly certain. There are no cases where an indi-
vidual is highly accurate and highly uncertain and no cases
where an individual has low accuracy and is highly certain.
On the other hand, total correct and log trial are highly lin-
ear but have high dispersion. This is likely due to condition
effects. In conditions where the concept is extremely simple
(e.g. ”red”) participants might reach high certainty extremely
quickly and, due to a low level of negative feedback (incor-
rect responses), remain highly confident. Current accuracy
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Figure 3: Visualizations of several key model fits, giving the
participant response means for each concept and trial (gray)
and binned model means in each of five quantiles (blue)
for certainty rating (y-axis) as a function of model (x-axis).
Straight lines with low variance correspond to models which
accurately capture human performance.

has a similar shape and dispersion but is not a good predictor
due to situations in which the participant is very uncertain but
happens to get the trial correct by chance. Finally, log model
entropy and the MAP plots perform very poorly. Data points
are completely scattered and the predictors perform poorly
because of this. For example, although there are many likely
MAP hypotheses for which participant certainty is high, there
are just as many for which certainty is low. This could be due
to complicated concepts for which the ideal learner model
does well but participants do not.

Model comparison results
Before examining how well the certainty models predict hu-
man certainty, it is important to verify that the ideal learning
model predicts human accuracy during the task. A logistic re-
gression predicting behavioral accuracy from model accuracy
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Model AIC Pseudo R2 Log Likelihood Beta Standard Error
A3 Local Accuracy 3 Back Current 14753.0 0.11 -7374.5 1.11 0.03
A4 Local Accuracy 4 Back Current 14778.8 0.11 -7387.4 0.85 0.02
B3 Local Accuracy 3 Back 14786.6 0.11 -7391.3 1.33 0.04
B4 Local Accuracy 4 Back 14803.0 0.11 -7399.5 0.99 0.03
A5 Local Accuracy 5 Back Current 14816.3 0.11 -7406.1 0.68 0.02
B5 Local Accuracy 5 Back 14838.8 0.11 -7417.4 0.76 0.02
A2 Local Accuracy 2 Back Current 14872.6 0.11 -7434.3 1.44 0.04
B2 Local Accuracy 2 Back 14892.2 0.11 -7444.1 1.91 0.05
C3 Log Local Accuracy 3 Back Current 14948.6 0.10 -7472.3 3.40 0.10
D3 Log Local Accuracy 3 Back 14990.2 0.10 -7493.1 3.24 0.10
C4 Log Local Accuracy 4 Back Current 15010.9 0.10 -7503.5 2.92 0.09
C2 Log Local Accuracy 2 Back Current 15018.9 0.10 -7507.4 3.78 0.11
D2 Log Local Accuracy 2 Back 15037.6 0.10 -7516.8 3.83 0.11
D4 Log Local Accuracy 4 Back 15051.6 0.10 -7523.8 2.73 0.08
C5 Log Local Accuracy 5 Back Current 15078.1 0.09 -7537.0 2.53 0.08
D5 Log Local Accuracy 5 Back 15121.0 0.09 -7558.5 2.32 0.07
A1 Local Accuracy 1 Back Current 15215.5 0.09 -7605.8 1.88 0.05
C1 Log Local Accuracy 1 Back Current 15338.3 0.08 -7667.1 3.94 0.12
B1 Local Accuracy 1 Back 15346.5 0.08 -7671.3 2.92 0.09

E Total Correct 15389.5 0.08 -7692.7 0.14 0.00
D1 Log Local Accuracy 1 Back 15430.1 0.07 -7713.1 4.32 0.14

F Log Total Correct 15525.0 0.07 -7760.5 0.77 0.03
G Log Trial 15911.6 0.04 -7953.8 0.70 0.03
H Trial 16014.1 0.04 -8005.1 0.07 0.00
I Log Entropy 16205.5 0.03 -8100.8 -1.05 0.05
J Log Maximum likelihood 16207.4 0.03 -8101.7 0.30 0.02

K Current Accuracy 16339.6 0.02 -8167.8 0.69 0.04
L Log Current Accuracy 16339.6 0.02 -8167.8 1.00 0.06

M Entropy 16389.6 0.02 -8192.8 -0.49 0.03
N MAP 16545.0 0.01 -8270.5 0.93 0.10
O Log MAP 16593.9 0.00 -8295.0 0.29 0.04
P Maximum likelihood 16609.7 0.00 -8302.8 5.02 0.90

Table 3: Performance of predictors in determining subjective certainty. All were significant at p <.001.

results in a significant relationship, B = 3.206, p <.001.
Table 3 shows the full model results, giving the perfor-

mance of each model in predicting certainty ratings. These
have been sorted by the primary measure of performance,
AIC, which quantifies the fit of each model penalizing its
number of free parameters (closer to −∞ is better). In this
case, the AIC is simply the AIC score of a logistic regression
including the variable of interest. This table also provides a
pseudo R2 measure, giving a rough measure of the “amount
of variance” accounted for by each model (this is not literally
an R2 since amount of variance does not have a clear ana-
log in logistic models). The reported numbers also include
a β giving the regression coefficient, its standard error, and a
two-tailed p-value comparing it to zero.

As this table makes clear, the Local accuracy models out-
perform any of the alternatives, a pattern which is robust to
the way in which local accuracy is quantified (e.g. the number
back that are counted or whether the current trial is included).
The quantitatively best model A3 tracks accuracy over the
past three trials and includes the future accuracy on the next
trial. One possible explanation for this is that individuals are
simply deciding their own certainty based on recent perfor-
mance and whether or not they think they know the answer to
the current item.

Interestingly, model E, the Total Correct count of re-
sponses, is the second best predictor of certainty outside of
the local accuracy models. The high performance of this

and local accuracy models implies that people’s certainty is
largely influenced by their own perception of how well they
are doing on the task. It is important to note that all the mod-
els which use either local accuracy or total correct outperform
all other models.

The relative poor performance of the number of Trials in
predicting performance (model G) indicates that participants
are not simply becoming more certain over time regardless of
performance. It also excludes the possibility that learners are
waiting for exhaustive data before becoming certain. If they
were, a sudden spike of certainty would be visible at trial 8,
when in our experimental design they have seen all possible
feature dimensions and outcomes.

Strikingly, the poor performance of of the Entropy and
MAP models rules out that subjective certainty is calibrated
with an ideal learner. The poor performance of these models
is consistent with the theory that learners are likely not main-
taining more than one hypothesis in mind—perhaps they store
a sample from the posterior, but do not have access to the full
posterior distribution. Such a failure of metacognition is con-
sistent with the poor performance of Current accuracy, a
measure of whether or not the participant got the next trial
correct. Subjective certainty does not accurately predict ac-
curacy on the current example, or vice versa.

While entropy is not a major predictor of certainty, a gen-
eralized linear mixed model fit by maximum likelihood pro-
vides evidence that it is a significant factor when controlling
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for the most predictive model (Local Accuracy 3 Back Cur-
rent), B = 0.097, p = .005. However, despite being signif-
icant, the effect of entropy is small, especially when com-
pared to the effect of local accuracy, B = 1.264, p <.001.
This evidence does not rule out the possibility of unknown
factors fully mediating the relationship between entropy and
certainty.

Conclusions and Discussion
Our analyses revealed that local accuracy is the best predictor
of certainty in our simple concept-learning task. Further, this
effect is robust to exactly how accuracy is computed. This
means that participants seem to be basing their certainty on
their immediate performance—inferring certainty from their
own behavior and feedback. Specifically, participants seem to
be assessing their performance on the past several items along
with a guess on whether or not they know the current item.
This general pattern is consistent with metacognitive studies
showing that often subjects do not understand—or perhaps
even remember—the causes of their own behavior (Johansson
et al., 2005; Nisbett & Wilson, 1977). Subjects don’t directly
observe their own cognitive processes and are often blind to
their internal dynamics. This appears to be true in the case of
subjective certainty reports. They do not appear to reflect an
awareness of how much certainty subjects should have.

The analyses also help inform us about which factors do
not drive certainty, and several of these results are surpris-
ing. For example, one reasonable theory of certainty posits
that participants could be basing their certainty off of their
confidence in the MAP hypothesis under consideration (as in
hypothesis-testing accounts of learning). Our analyses do not
support this account. If participants were basing their cer-
tainty off of the MAP hypothesis that they were considering,
the MAP predictors would perform much better. Since the
MAP predictors do not form well, it is unlikely that learners’
certainty relies on internal estimates of the probabilities that
most Bayesian learning accounts assume.

Our analyses also reveal that there is still a lot that we do
not understand about human certainty. We tested many major,
reasonable hypotheses about the factors that drive human cer-
tainty, yet the proportion of variance explained by the highest
performing predictor here is only 11%. Thus, although local
accuracy performs better than other predictors, it cannot be
the whole story. The low performance of the proposed pre-
dictors here is surprising given that our hypotheses spanned
major hypotheses involving metacognitive awareness of both
uncertainty and task performance—factors that most people
have previously assumed are major drivers of certainty in
learners. Further, these results hint that non-metacognitive
factors may play a surprisingly substantial role in influencing
human certainty. As an example, neurochemical changes in
the brain induced by stimulants such as Adderall and Ritalin
are known to robustly influence self-reported confidence on
performance in cognitive tasks without actually boosting ob-
jective measures of task performance (Smith & Farah, 2011).

It is possible that a large component of certainty could reflect
factors that are almost entirely removed from the veridical
probabilities, such as the context of the judgement or differ-
ences in individual learners’ overall self-confidence or mood.
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