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Using more realistic data models to evaluate sensor network data processing algorithms

Yan Yu, Deborah Estrin, Ramesh Govindan, Mohammad Rahimi
Email: yanyu/destrin@cs.ucla.edu, govindan@usc.edu, mhr@cens.ucla.edu

ABSTRACT

Sensor network research is still in its infancy. Few real systems
are deployed and little experimental data from sensor networks is
available to test proposed protocol designs. Due to lack of experi-
mental data and sophisticated models derived from such data, most
data processing algorithms from the sensor network literature are
evaluated with data generated from simple parametric models.

We identify a few widely-studied classes of problems that are
potentially sensitive to data input: Statistics estimation of the field
data; Data compression; and Field estimation. We use them as
examples to investigate the dependency of algorithm performance
on data.

For each class of problem, given the selected problem and al-
gorithm instance, we systematically study how the algorithm per-
formance varies across a range of data input. We also demon-
strate how different data input can change the algorithm perfor-
mance dramatically, the performance comparison between two al-
gorithms may even change depending on the different data inputs.

In the end, we propose our synthetic data generation framework
and recommend evaluating algorithms across a wide range of data
input.

1 Introduction

Sensor network research is still in its infancy. Few real systems
are deployed and little experimental data from sensor networks is
available to test proposed protocol designs. Due to lack of experi-
mental data and sophisticated models derived from such data, most
data processing algorithms from the sensor network literature are
evaluated with data generated from simple parametric models. For
example, it is common that data collection and estimation algo-
rithms are evaluated with uniform or Gaussian data input [3,11].
Similarly, a random Gaussian field model is typically used inthe
analytical and simulation studies to evaluate the compression and
source coding algorithms [5].

Many of these data processing algorithms are sensitive to data
input. If this sensitivity only produces small perturbations on the
algorithm performance, simple parametric models used in the sim-
ulation helps to clarify the algorithm behavior without thedistrac-
tion from the details of data input. Unfortunately, the typeof the
data input used in the evaluation often significantly affectthe algo-
rithm evaluation results, as elaborated by the following examples:

In the first example, we demonstrate that for a given perfor-
mance accuracy requirement, the performance of one algorithm

may appear to be acceptable for certain data set, but unacceptable
for another input data set.

We evaluate a uniform sampling based median computation al-
gorithm [10] (Section 3.1) against 4 data sets: data generated from
uniform, Gaussian, and Bimodal distribution; and a one-daysnap-
shot from the S-Pol radar data set1. Our performance metric here
is communication cost, which is proportional to the sampling rate.
To achieve the same precision, the particular experimentaldata
set we used and the bimodal distributed data require an orderof
magnitude more samples than Gaussian and uniformly distributed
data. Specifically, in order to obtain similar precision as uniformly
distributed data at the cost of 1% sampling rate, it requires8 - 10%
sampling rate in the case of the experimental data. Furthermore,
to obtain similar precision as a normal distributed data setat the
cost of 1% sampling rate, the experimental data requires 30%
sampling rate.

The significantly higher cost in the case of experimental data
set and bi-modal distributed data may suggest that uniform sam-
pling based median computation approach is not feasible forthese
two data distributions. The results from using our experimental
data suggest that the median is under-represented, therebythe me-
dian estimated from uniform sampling will not work well in prac-
tice.

In the second example, we will show that the performance com-
parison between two algorithms may change depending on the dif-
ferent data inputs.

As reported in Section 5.1, we compared two field estimation
algorithms, Adaptive Sampling vs. Raster Scan against two types
of data: (1) data generated from simple parametric models and (2)
data collected from a lab environment. For each data distribution,
we compare the reconstruction accuracy of Adaptive Sample vs.
Raster Scan under the same cost budget,i.e., the same number of
samples. In terms of Mean Squared Error (MSE) in the reconstruc-
tion results, for data generated from linear and quadratic models,
Adaptive Sampling is orders of magnitude better than rasterscan;
whereas for a data set collected from the lab environment, Adap-
tive Sampling is worse than raster scan.

Given that different data inputs can change algorithm perfor-
mance dramatically, evaluating the system with data representing
a diverse range of real-world scenarios is essential. Most available

1S-Pol (S band polar metric radar) data were collected during the International
H 2O Project (IHOP; Principal Investigators: D. Parsons, T.Weckwerth, et al.).
S-Pol is fielded by the Atmospheric Technology Division of theNational Center
for Atmospheric Research. We acknowledge NCAR and its sponsor, the National
Science Foundation, for provision of the S-Pol data set.
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experimental data from remote sensing or in-situ instrumentation
are collected from a regular grid. Therefore, they cannot bedi-
rectly used to evaluate the sensor network algorithms sincethe
deployed sensor networks are most likely in an irregular topology.
In the end, we propose to generate synthetic data from models
derived from the experimental data.

Organization of the paper. We identify a few widely-studied
classes of problems that are potentially sensitive to data input:
Statistics estimation of the field data; Data compression; and Field
estimation. We use them as examples of how to systematically
study the dependency of algorithm performance on data. We
present our evaluation results on statistics estimation and field es-
timation in Section 3, and 5 respectively, and refer readersto [16]
for results on data compression algorithms. In the end, we propose
our synthetic data generation framework and recommend evaluat-
ing algorithms across a wide range of data input.

2 Data distributions and algorithm performance

In this section, we identify a few widely-studied classes of
problems that are potentially sensitive to data input:

• Statistics estimation of the field data,e.g., median, percentile,
or density estimation, among which we studied median and
percentile estimation in this paper.

• Data compression,e.g., distributed source coding, entropy
coding, or coding schemes that exploit the spatial and tempo-
ral correlation in the data. We studied an instance of wavelet
compression, and joint entropy coding algorithm.

• Field estimation. There has been extensive interest in sam-
pling and reconstruction of a physical field [12, 15, 2, 9] in re-
cent sensor network literature. We investigated fidelity driven
sampling in our case study.

We would like to clarify that providing a complete taxonomy
of sensor network algorithms that are potentially sensitive to data
input is not our intention. Instead, we investigate a few widely
studied algorithms and use them as examples of how to systemati-
cally study the dependency of algorithm performance on data. We
use the above three classes of problems as our case studies for the
following reasons:

1. Many sensor network systems are deployed to monitor and
understand the physical environment. Due to energy con-
straints, most of the time, sensor network applications cannot
afford to transmit every bit of sensed information back to the
base station. Therefore, statistics summary, data compres-
sion, and efficient field estimation algorithms are essential to
building a long-lived system.

2. The algorithms in the above three categories all need to ex-
ploit the statistics and redundancy in the data in some manner
and therefore are potentially sensitive to data input.

For the first two classes of problems, given the selected prob-
lem and algorithm instance, we studied how the algorithm per-
formance varies across a wide range of data input. In the third
category of problems, we studied the Fidelity Driven Sampling al-
gorithm. Given its complexity, instead of a systematic study, we
use a few data sets to demonstrate its sensitivity to data input and
how it may even change its performance comparison results rela-
tive to a simple alternative, namely, raster scan.

Due to the space limitations, in the next two sections, we
present results on the first and third class of problems, and refer
readers to [16] for results on the second class of problem.

3 Statistics estimation problem
We start with a definition of the statistics estimation problem

we consider here. A random process,Z, which consists of a set
of random variablesZ(u), one for each sensor locationu in the
deployment areaA, denoted as{Z(u),∀u ∈ A}. AssumingZ is a
stationary process, the problem is to estimate some statistics (e.g.,
the median) ofZ(u) (u ∈ A) given a realization of{Z(u)} (i.e.,
a time snapshot of sensor readings) at locationsui, i = 1, ..., n,
ui ∈ A.

In this section, we consider the median and percentile es-
timation problems; and two order-statistics estimation algo-
rithms, namely, uniform sampling based approach, and Power-
Conserving Computation of Order-Statistics proposed in [7]. We
investigated how the performance of these algorithms is affected
by data characteristics across a wide range of parameters.

3.1 Uniform sampling-based median computation
For simplicity of illustration, here we consider an instantiation

(a snapshot) of random processZ(u) as deterministic. Thus, given
a snapshot of sensor readings at each node,z(i), i = 1, ...,n, the
real medianM(Z) is defined asz(n+1

2
), if n is even, or(z(n

2
) +

z(n
2
+1))/2 if n is odd. The estimated median is written asM̂(Z).

There are variations of uniform-sampling based approach toes-
timateM(Z). Without loss of generality, in this paper we consider
a specific uniform sampling based median computation algorithm
as follows: Suppose there is a single sink in the deployed sensor
network, and each sensor node has the same probability (e.g., 1%)
of sending its reading back to the sink. The sensor value is for-
warded along the shortest path tree from the sensor source tothe
sink. An intermediate node on the shortest path tree will notprune
samples, instead it simply relays these packets back to the sink.
Suppose p samples are transmitted back to the sink, s(1),..., s(p),
we compute the median, M(S) of s(1),..., s(p) as an estimate of
M(Z).

Before systematically evaluating how the algorithm perfor-
mance are affected by different data input, we use four example
data sets to demonstrate that different data input can dramatically
affect the algorithm performance. Specifically, we consider data
sets generated from uniform, Gaussian, Bi-modal distribution, and
S-Pol radar data set. The S-Pol radar data provided by NCAR
records the intensity of reflectivity in dBZ, where Z is proportional
to the returned power for a particular radar and a particularrange.
We selected 259 time snapshots across 2 days in May 2002 in our
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study. Each snapshot of data in our study is a 60 x 60 spatial grid
data with 1 km spacing.
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(a) Results on data of normal distribution
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(b) Results on data of uniform distribution

Figure 1: Histogram of estimation error on data of normal or uni-
form data distribution is close to the normal bell shape (x-axis:
normalized estimated median error; y-axis: number of occurence)

We define the performance metric of the median computation
algorithm to benormalized estimated median error, which is
the difference between the estimated median,M̂(Z), and the real
median,M(Z), normalized bythe range of entire sample values.
Normalization was introduced to make comparing results across
different data sets meaningful. Median is often used as a robust
estimator instead of mean. Therefore, we defined the error metric
in terms of value, as opposed to position.2

The histogram of normalized estimation errors against the four
data sets mentioned above was presented in Figures 1 and 2. For
normal data (Figure 1(a)) and uniform data input (Figure 1(b)),
the estimation error is close to the normal bell shape; whereas, for
bimodal data (Figure 2(b)) and the radar data (Figure 2(a)),Both
the mean and variance of error are higher than for the other distri-
butions. Above we use four data sets as an example to illustrate
to what extent the uniform sampling-based median computation
algorithm can be sensitive to data distribution. Next, we systemat-

2If the estimation error metric is defined in terms of order (i.e., let p denote
the real position of the estimated median̂M(Z) in the original data set,n/2 is
the position of the real median, the estimation error is then defined asp − n/2),
we can prove (Appendix A) that uniform-sampling based median computation is
not sensitive to data distribution. Intuitively, uniform sampling was applied in the
spatial dimension, when the error metric is defined in the same dimension,i.e.,
position in an ordered list or space, the estimation error will not be sensitive to the
underlying data distribution.
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(a) Results on experimental radar data
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(b) Results on data of bimodal distribution

Figure 2: Histogram of estimation error for radar data and bi-
modal distribution is wide spread out or bi-modal, and the average
estimation error is also larger than that in Gaussian and uniform
distribution. (x-axis: normalized estimated median error; y-axis:
number of occurence)

ically (using statistics tools) investigate how the algorithm perfor-
mance varies across a wide range of data distribution.

Our statistical analysis consists of three key steps. First, we
define our performance metric to benormalized estimated median
error. Second, we identify the data characteristic that is most rel-
evant to the median computation algorithm to benormalized me-
dian bin size. We bin the entire sample set into a fixed number
(e.g., 10) of equally spaced containers.Median binis defined as
the container that includes the median. Letn denote the total num-
ber of samples, andm denote the number of samples in themedian
bin, thenormalized median bin size is defined asm/n, i.e., the
ratio of the size of the median bin relative to the size of the entire
data set.

As a final step, we study how the algorithm performance
changes with data input across a wide range of parameters. We
evaluate the algorithm against two types of data: simulateddata
generated from Gaussian, Exponential, and Weibull distributions;
and 259 snapshots of the experimental radar data. Note that data
generated from simple parametric models have been widely used
in previous algorithm evaluations. We vary the parameters in the
above model in a wide range: in Gaussian distribution, we fix the
mean, vary the standard deviation from 1 to 100; in Weibull distri-
bution, we fix the scale parameter, vary the shape parameter from
1 to 100; and in Exponential distribution, we vary the exponential
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changing rateλ from 0.1 to 10.
Figure 3 shows the scatter plot ofnormalized estimated me-

dian error vs. normalized median size. Each point in the graph
corresponds to one data set. The x-axis is thenormalized median
bin size of the data, the y-axis is thenormalized estimation error
averaged from 100 runs of algorithm on the corresponding data
set.
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(a) Results on experimental data, Correlation Coefficient=-0.8239

(b) Results on data generated from Gaussian, uniform,
Weibull and exponential distributions, Correlation Coefficient=-0.7818

Figure 3: the scatter plot of normalized estimated median error
vs. normalized median size: the normalized median error is well
correlated with the normalized median bin size; with increasing
normalized median bin size, the estimation error decreases. Fur-
ther, the experimental data covers a super set of all 4 families of
data distributions and more.

As shown in Figure 3, for both experimental data and data gen-
erated from parametric models, the algorithm performance (i.e.,
the normalized median error) is well correlated with our defined
data characteristic, namely,the normalized median bin size. With
increasing normalized median bin size, the estimation error de-
creases. Intuitively, under uniform sampling, with increasing nor-
malized median bin size, more samples from the median bin will
appear in the final sample set at the sink; therefore, there isa
higher chance that a sample from themedian bin, will be selected
as the estimated median at the sink, as oppose to samples from
other bins. Because samples from the same bin are close in value,
theestimated medianwill be close to the real median in value.

We also compute the correlation coefficient ofthe normalized

median errorand the normalized median bin size. It is −0.8239
and−0.7818 for the data in Figure 3(a) and 3(b) respectively. The
fact that the correlation coefficients being close to−1 also indi-
cates the strong correlation between them.

We would like to point out another interesting observation from
Figure 3: In terms of normalized median bin size, experimental
data encompasses a super set of all four families of data distribu-
tions (as mentioned above, for each distribution family, wevary
the parameter across a wide range). This may suggest that, it
would be difficult to cover a wide range of data characteristics
if we only use data generated from simple parametric models in
our algorithm evaluation. The experimental data sets covera wide
range of data characteristics not covered by any single distribu-
tion. We believe this result strongly suggest the importance of
experimental data in algorithm evaluations.

3.2 Uniform sampling-based percentile computation
Without loss of generality, we define percentile as follows:for

an ordered data set,z(i), i = 1, ..., n, its p percentile is defined
asz(bp ∗ nc). Similar to median computation, in uniform sam-
pling based percentile computation, each sensor node has the same
probability of sending its reading back to the sink. An intermedi-
ate node simply relay the sample along the shortest path treeback
to the sink. If eventuallyt samples are transmitted back to the
sink,s(1),...,s(t), we compute thep percentile ofs(1),...,s(t) as
an estimate of thep percentile of the original sample set,z(1), ...,
z(n).

Similarly we identify the data characteristics asnormalized p-
percentile bin size: the entire sample set is divided into a fixed
number of equally spaced containers. Thep-percentile binis de-
fined as the container that includes thep-percentile. Let n denote
the total number of sensor readings, andp denote the number of
samples in thep-percentile bin; then thenormalized p-percentile
bin sizeis defined asp/n.

Here we presented results on1st-quartile(i.e., 25-percentile).
We evaluate the algorithm against the same data used in the me-
dian computation. Figure 4 shows the scatter plot of normalized
estimation error vs. normalized 1st-quartile bin size. We observe
the same algorithm performance behavior as in the case of me-
dian computation (Figure 3), i.e., the estimation error increases
when the size of the bin that includes the corresponding quartile
decreases, which indicates that the corresponding quartile is less
represented. We also studied the third quartile estimation, and ob-
tained similar results as in Figure 4. We leave out the details here
due to the limit of space.

3.3 Summary
Given median estimationandpercentile estimationproblems,

and theuniform sampling-based approachwith different parame-
ters corresponding to these two problems, we above demonstrated
the key steps to systematically study how the algorithm perfor-
mance changes with various data input:

• Define a performance metric for the particular problems and
algorithms analyzed.
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(a) Results on experimental radar data: Correlation Coefficient=-0.6796

(b) Results on data generated from Gaussian, uniform,
Weibull and exponential distributions, Correlation Coefficient=-0.8729

Figure 4: First quartile computation results: the scatter plot of
normalized estimation error vs. normalized 1st-quartile bin size.
The estimation error increases when the size of the 1st-quartile bin
decreases. Again, experimental data covers a super set of all four
families of data distributions.

• Identify the set of data characteristics most relevant to the
algorithm in the study,e.g., normalized estimation error in
the above case study.

• Statistically study how the algorithm performance varies with
changing data characteristics. Scatter plots and correlation
coefficients were used to identify the correlation between the
performance metric and data characteristics in the study.

To demonstrate that it is applicable to the scope beyond the uni-
form sampling-based median computation, we applied the above
proposed statistical analysis to Power-Conserving Computation of
Order-Statistics proposed in [7]. We used the same problem def-
inition, performance metric, and data characteristics as defined in
Section 3.1, and evaluated PCCOS with the radar data set. Similar
to the case of the uniform sampling-based approach, we observed
similar correlation between the estimation accuracy and the nor-
malized median bin size (Figure 5). It is evident that the variance
of estimation error is larger when the normalized median binsize
is small (in the range between0.1 and0.3).
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Figure 5: Median computation results from PCCOS algorithm on
radar data: scatter plot of estimation error vs. normalizedmedian
bin size indicates strong correlation between them. correlation
coefficient = -0.58

4 Data compression problem
Since it is prohibitively expensive to transfer raw sensor data

in sensor networks, compression is often performed in the tempo-
ral domain or in the spatial domain to reduce the communication
cost. In this paper, we consider spatial compression. Givena snap-
shot of sensor readings,{Z(u)} (i.e., at locationsui, i = 1, ..., n,
ui ∈ A, a compressed representation of{Z(ui)}, instead of
{Z(ui)} itself, were transfered to the sink. Depending on whether
we can reconstruct the original sensor readings{Z(ui)} without
error, compression algorithms can be classified into lossless and
lossy compression. In this section, we consider two compres-
sion algorithms that are intuitively sensitive to data, an instance
of wavelet compression algorithm and joint entropy coding algo-
rithm. They fall into lossy compression and lossless compression
algorithms category respectively. We quantitatively demonstrate
how the algorithm performance changes with data of various spa-
tial correlations.

4.1 Wavelet Compression Algorithm
In this section, we study an instance of wavelet compression

algorithms. As illustrated in Figure 6, it is composed of three
steps: (1) we apply wavelet decomposition to the 2D spatial sig-
nal. Details on how to implement this in a distributed fashion
is out of the scope of this paper. For example, [13] provide a
distributed algorithm of wavelet decomposition in the spatial di-
mension. The results presented here are acquired from applying
the Matlab built-in wavelet decomposition function to a 2D spa-
tial data set. Without loss of generality, we use the ”sym2” filter.
(2) After wavelet decomposition, most of the energy concentrates
on small percentage of coefficients; therefore, we use threshold
cutting to discard insignificant coefficents. In the reconstruction
phase, these insignificant coefficients were set to0. (3) We ap-
ply run-length coding to the wavelet coefficients that are above a
certain threshold.

Among these three steps, wavelet coefficients thresholdingare
lossy compression, the other two steps are loseless transforma-
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tion. The diagrams on the bottom of Figure 6 illustrate the de-
compression steps. In the reconstruction phase, the discarded
wavelet coefficients are set to a default value,0; therefore, the
reconstructed wavelet coefficients won’t be exactly the same as
the original wavelet coefficients. We define theMSE to be the
mean squared difference between the reconstructed data set and
the original data set.

Compression 

(Lossless compression) 

Wavelet 
Decomposition 

Wavelet 
coefficient 

thresholding

Run length 
encoder

Lossy compression (Lossless transformation) 

Run length 
decoder

Reconstruction of 
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Figure 6: Illustration of wavelet compression and decompression
procedure

In step (2), the threshold used to select the wavelet coeffi-
cients is proportional to the reconstruction mean squared error;
this threshold can be used to adjust the reconstruction fidelity (i.e.,
mean squared error) requirement. Assuming that uniform quan-
tization is applied to the output of the run-length encoding, the
amount of data output of the run-length encoding is proportional
to the communication cost measured in bit-hops count. Sincethe
communication cost in transfering the compressed data depends
on the distance from the sensor source to the sink, our communi-
cation cost metric, the amount of the data output of the run-length
encoding, is in terms of spatial bit rate. In our study, we fix the
threshold used in selecting the wavelet coefficients, and examine
the amount of output data of the run-length encoding.

Following the statistical analysis described in Section 3.3, we
first define the performance metric of the wavelet compression al-
gorithm to be thecommunication cost that is measured bythe
number of elements in the output from the run-length encoding.

Second, we identify the relevant data characteristic to be the
spatiall correlation. In geostatistics,Variogramhas been used to
characterise the spatial correlation in the data. Briefly, the vari-
ogram (also called semivariance) of a pair of pointsxi andxj is
defined asγ(xi, xj) = 1

2
{Z(xi) − Z(xj)}

2. To characterise the
spatial correlation between data points separated by various dis-
tances, for an isotropical data set,variogramcan be defined as a
function ofseparation distancebetween two points. To simplify
our analysis, we use the variogram value at unit separation dis-
tance to represent the spatial correlation in the data. The radar data
set under study is from a grid topology, thus, the variogram value
at unit separation distance is equivalent to the expected difference
between neighboring nodes. This variogram value is identified as
the relevant data characteristic in our study.

As a final step, we study how the algorithm performance
changes with data input across a wide range of parameters. We

evaluate the wavelet comrepssion algorithm against 259 snapshots
of the radar data.

In the scatter plot ofcommunication costvs. spatial correla-
tion(Figure 7), each point in the graph corresponds to one snapshot
of the radar data. The x-axis is itsvariogram value at unit separa-
tion distance, which is used to characterize spatial correlation of
the data. A small variogram value indicates a strong spatialcor-
relation in the data, or vice versa. The y-axis is the number of
elements in the data output from the run-length encoding, which
is directly proportional to the communication cost in transfering
the compressed data to the sink.
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Figure 7: Scatter plot of the communication cost in wavelet com-
pression versus spatial correlation, which is measured in terms
of variogram value at unit distance. Communication cost in-
creases with increassing variogram values. Correlation coefficient
= 0.9069

As shown in Figure 7, the communication cost increases with
the increasing variogram value (i.e., less spatial correlation). In
wavelet compression, the wavelet decomposition basicallyre-
moves the spatial redundancy. Stronger spatial correlation will
lead to more spatial redundancy, thereby, wavelet compression
will have a better chance to compress the data, as a result, the
communication cost will decrease. We also compute the corre-
lation coefficient of thecommunication costand the variogram
values. Again, the correlation coefficient, 0.9069, being close to1
indicates the strong correlation between them.

4.2 Joint entropy coding algorithm
Compared to coding each data point separately, joint entropy

coding improves the coding efficiency by exploiting the correla-
tion between sensor readings at neighboring nodes, and coding
data from a local neighborhood together. In our case study, we
compare two coding policies: (1) apply joint entropy codingto
two neighboring nodes; (2) apply entropy coding at each node
separately. To evaluate the gain of the joint entropy codingover
independently entropy coding at each node, we define the perfor-
mance metric of the joint entropy coding algorithm to bethe joint
entropy of sensor readings at two neighboring nodesnormalized
by Sum of the corresponding marginal entropy. This normalized
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communication cost metric is inverse to theefficiency of the joint
entropy coding.

Since joint entropy = marginal entropy - mutual information
(i.e., H(X,Y ) = H(X) + H(Y ) − I(X;Y ) [14]), and mutual
information can be captured by the spatial correlation in the data,
we identify the relevant data characteristic to be the spatial cor-
relation in the data. Similar to adding normalization to theper-
formance metric, we introduce a normalization factor to thevar-
iogram value defined in Section 4.1. We define thenormalized
spatial correlationto be thevariogram value at unit separation
distance normalized by the variance of the data. The normaliza-
tion introduced here removes the effect of data being measured in
different units, and makes data of different magnitudes compara-
ble.

Given the performance metric and relevant data characteris-
tic identified above, we study how the algorithm performance
changes with different data input. Again, we use 259 snapshots
of radar data in our evaluation. In the scatter plot ofnormalized
communication costvs. normalized spatial correlation(Figure 7),
the x-axis is itsvariogram value at unit separation distance nor-
malized by the variance of the data, which is used to characterize
the spatial correlation in the data. The y-axis is thejoint entropy
normalized by the sum of the marginal entropies, which is directly
proportional to the spatial bit rate in sending the compressed data
to the sink.
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Joint Entropy vs. Spatial Correlation Coefficient for 150 snapshots of radar data

Figure 8: Scatter plot of the normalized communication cost
versus normalized spatial correlation. Communication cost in-
creases with increassing variogram values. Correlation coefficient
= 0.9355

As shown in Figure 8, the communication cost of joint entropy
coding increases with the increasing normalized spatial correla-
tion (i.e., less spatial correlation). Both the scatter plot and the
correlation coefficient (0.9355) indicates that the efficiency of the
joint entropy coding algorithm is well correlated with the spatial
correlation in the data.

5 Field estimation
Densely deployed sensor networks provide unprecedented ca-

pability for environmental monitoring. The objective of the field

estimationis to reconstruct a map of the physical field at the sink.
Due to the energy constraints in sensor networks, field estima-
tion algorithms resort to efficient sampling and data transportation
techniques to reduce the communication cost and provide a high-
fidelity reconstruction of the field at the same time.

5.1 Adaptive sampling
Fidelity Driven Sampling (proposed in [12, 1]) exploits mobile

sampling to first stratify the environment into regions requiring
varying degrees of sample density, then samples in these regions.
Fidelity Driven Sampling (FDS) maintains an estimate of thefield
being observed. Using this estimate, the FDS identifies regions
or strata exhibiting a high degree of misfit. At each step in the
sampling process, FDS adds points to that stratum with the largest
error. In so doing, FDS attempts to reduce the mean squared error
at each sampling point by adjusting point density and location.
The algorithm continues adding points to poor fitting stratauntil
either an overall sample budget is exhausted or a desired fidelity
limit is achieved. A simple alternative to Adaptive Sampling is to
raster scan the field with the fixed resolution.

Following the Fidelity Driven Sampling operation (or raster
scanning data acquisition), the returned variable field with its dis-
tribution of sample points is then supplied to a local polynomial in-
terpolation algorithm and returns a reconstruction of the environ-
mental field. We define the performance evaluation metric as the
Mean Squared Error (MSE) between this reconstructed field map
and the ground truth. We plot the Mean Squared Error achieved
in Adaptive Sampling or Raster Scan against the total numberof
samples collected by the Adaptive sampling or Raster scan (Fig-
ures 10 and 11). The MSE represents the quality of the recon-
structed field map, and the cost or delay to achieve this recon-
struction is proportional to the number of samples. Thus theper-
formance curves in Figures 10 and 11 reflect the quality vs. delay
or cost trade-offs. The lower the curve, the more desirable the
performance is.

The Adaptive Sampling algorithm can be evaluated using simu-
lated data generated from linear, quadratic, and cubic models [12].
As shown in Figure 10, when evaluated with data simulated from
simple models, both Adaptive Sampling and Raster Scan deliver
a very small MSE. Further, in most cases, the Adaptive Sampling
performs several magnitudes better than Raster Scan in terms of
MSE for the same budget ( which is measured in thenumber of
samples). However, this conclusion does not hold when evaluated
with experimental data collected from a lab environment.

As discussed in [1], Adaptive Sampling is evaluated by sub-
jecting the algorithm to environmental variable fields having two
extremes in their “curvature” characteristics. For one limit, the en-
vironmental variable field was created by placing many obstacles
in the illumination field (Figure 9(a)) to emulate the most com-
plex patterns observed in the natural environment. In addition,
we created a low curvature field by casting only diffuse shadow-
ing on the transect (Figure 9(b)). This latter case is character-
istically similar to the least complex fields observed underclear
forest canopy structure. In both cases, the “ground truth” was ob-
tained by measurements from exhaustively moving the node atits

7



highest resolution through the variable field. As shown in Fig-
ure 11, when evaluated with the experimental data, the MSE ob-
tained from Adaptive Sampling is very close to or worse than the
MSE obtained from Raster Scan.

(a) experimental data with rough curvature

(b) experimental data with smooth curvature

Figure 9: Experimental data collected from a lab environment

5.2 Summary
In summary, compared with using data simulated from sim-

ple models, evaluating the Adaptive Sampling algorithm with ex-
perimental data changes its performance comparison results rela-
tive to Raster Scan. This may suggest that the evaluation results
from data input based solely on simple parametric models maybe
misleading. Evaluating algorithms using experimental data with
various features helps identify the regime of the parameterspace
where the algorithm may perform well compared to other alter-
natives. Due to the complexity of the physical phenomena, itis
impossible to represent all possible data input using only paramet-
ric models. Experimental data guides our efforts to the portion of
the parameter space that matters in practice.

The dramatically different performance caused by different
data inputs may not be unique to the Adaptive Sampling algorithm
alone. For example, the Backcasting algorithm proposed in [15]
shares a similar spirit as the Adaptive Sampling in that theyboth
adjust the sampling density based on the initial coarse reconstruc-
tion of the field map. Therefore, the Backcasting algorithm might
be subject to the same problem,i.e., sensitivity to the environmen-
tal field being sensed. In [15], the algorithm was evaluated using
a simulated piecewise smooth field with a single edge. Evaluat-
ing the algorithm using experimental data with different features

as in Figure 9 may help us understand the algorithm’s different
performance under various types of environmental fields.

6 Proposed algorithm evaluation with more real-
istic data input

6.1 Synthetic data generation
The huge parameter space of data input makes exhaustive ex-

ploration of parametric models impractical. By driving simula-
tions from previously collected experimental data, we focus our
testing on the part of parameter space that matters in reality. Un-
fortunately, collecting new experimental data sets is expensive,
time-consuming, and often presents technical challenges in itself.
Thus, it is advantageous to develop methods of applying previ-
ously collected data sets in the development of new algorithms.

This application of old data to new problems presents several
challenges. First, existing experimental data is often collected
from regular grids, whereas real deployments may have an irreg-
ular topology. Second, the important features of the data are ap-
plication dependent. Leveraging the existing experimental data
we propose to generate synthetic data of irregular topologyfrom
modeling the experimental data. Our proposed synthetic data gen-
eration techniques attempt to approximate the experimental data
in terms of distribution, spatial correlation, or other features of
interest.

We first sketch out some principles in our proposed synthetic
data generation approach:

1. Our approach is experimentally oriented. Due to reasons
stated above, we recommend generating synthetic data from
models driven by the experimental data, rather than from
purely parametric models.

2. The selection of data features to model should be driven by
the relevant applications. Since the underlying physical phe-
nomena it represents are inherently different, data from dif-
ferent application domains, or data from different modalities
may dramatically differ from each other in terms of distribu-
tion, spatial correlation, frequency spectrum,etc. For exam-
ple, environmental weather data could be very different from
seismic data in many characteristics that are relevant to the
algorithm in the study.

3. The specific synthetic data generation technique used should
adapt to the application and algorithm in the study. Here
we propose a methodology to generate synthetic data, as op-
posed to recommending a single synthetic data generation
algorithm or a single synthetic data set. Our synthetic data
generation tool-box introduced in [17] includes eight spatial
interpolation algorithms, which in turn will generate eight
different data sets based on one single experimental data set.
Which synthetic data set is more desirable depends on the
specific application and algorithm in the study. For example,
in evaluating a wavelet compression algorithm [17],spatial
correlationwas identified as the data characteristics essential
to wavelet compression. We then select the synthetic data
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(a) Result on linear data
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(b) Result on quadratic data
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(c) Result on cubic data

Figure 10: comparison of Adaptive Sampling vs. Raster Scan on data generated from linear, quadratic, cubic models. BothAdaptive
Sampling and Raster Scan deliver very small MSE; however, Adaptive Sampling performs several magnitudes better than Raster Scan for
the same cost, as measured in the number of samples.
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(a) Result on data with smooth curvature
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(b) Result on data with rough curvature

Figure 11: Comparison of Adaptive Sampling vs. Raster Scan.Results on data collected from a lab environment. The MSE achieved by
Adaptive Sampling is very close to or worse than Raster Scan.

set that can best match the experimental data in terms of the
spatial correlation. Identifying relevant data characteristics
(or in other words, the evaluation metric for synthetic data
generation techniques) requires knowledge of the algorithm
being evaluated.

Next we briefly describe the procedure to generate irregular
topology data based on the experimental data (please refer to [17]
for details).

1. Generate ultra fine-grained data using the spatial modeling
and interpolation techniques discussed in [17]. The objec-
tive in this step is to create a grid topology at a much finer
granularity than our target topology.

2. Overlay the target topology on top of the ultra fine-grained
data obtained from above. Each node in the target topology
is assigned a value from the nearest grid.

Among synthetic data sets generated from different spatialin-
terpolation techniques in step 1, we select the one that can best

match the original experimental data in terms of whatever data
characteristics are of interest.

We evaluated the median computation algorithm discussed in
Section 3.1 using our synthetic data, which is generated based on
the radar data. Figure 12(a) verifies that the median computation
algorithm evaluated with our synthetic data exhibits similar behav-
ior as that evaluated with the experimental data, and our synthetic
data covered a similar range of data distribution as that of the ex-
perimental data. In addition, we also applied the same synthetic
data set to the Adaptive Sampling algorithm. The evaluationre-
sults (Figure 12(b)) provide similar insight as the evaluation using
the data collected from the lab environment (Figure 11(b)):the
MSE achieved by Adaptive Sampling is slightly worse than Raster
Scan.

6.2 Algorithm evaluation across a wide range of pa-
rameters

Whenever possible, it is desirable to reduce the dependency of
algorithm performance on data. As demonstrated in Section 3.1,
the uniform sampling-based median computation algorithm is sen-
sitive to data inputs. Next, we introduceselective sampling based
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(a) Median computation results, similar to Fig-
ure 3(a), estimation error decreases with increasing
normalized median bin size
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(b) Adaptive Sampling results: similar to Fig-
ure 11(b), MSE achieved by Adaptive Sampling is
worse than Raster Scan

Figure 12: Evaluation results using synthetic data generated from the radar data: the algorithm exhibits similar behavior as the evaluation
results using the experimental data.

median computation. We arenot trying to propose the best avail-
able median computation algorithm. Instead, it serves as anexam-
ple algorithm that explicitly takes data distribution intoconsider-
ation, and reduces the dependency of the algorithm performance
on data distribution.

We first describe a primitive (calledselective sampling) used
in the algorithm. Basically, it selectsm samples from a sample
setS, wherem ≤ |S|. The procedure is as follows: (1) Sort the
samples inS; (2) Divide S into m equal-ranged containers,i.e.,
S is divided intoS1, S2, ..., Sm; (3) from each binSi, select the
median ofSi (denoted asMi) to representSi, with weight Wi

equal to the number of elements inSi. After this step, we havem
pairs (W1, M1), (W2, M2), ..., (Wm, Mm).

Next we briefly describe theselective samplingbased median
computation algorithm:

• At the leaf node, each node reports its sensor reading,s. This
sensor reading is sent along the shortest path tree back to the
sink.

• At an intermediate nodeA, supposeA hask children. Each
child reports a list of (Wi, Mi). Each list has at mostk tu-
ples, wherek is determined by the communication budget.
Combine the inputs from all child nodes together, treat each
(Wi, Mi) as Wi copies ofMi, Use the primitiveselective
samplingdescribed above to output a new list of (W ′

i , M ′

i ).
Note that thesort operation inselective samplingis not com-
putationally intensive since it ismerge sortfrom k sorted list,
as opposed to sort from scratch, wherek is the number of
children at an intermediate node.

• At the sink, combine inputs from all its children. Suppose
that there arem tuples in total, (W1, M1), (W2, M2), ....
(Wm, Mm). When computing the median from thesem tu-
ples, we treat each (Wi, Mi) asWi copies ofMi.
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Figure 13: Results from Selective Sampling algorithm evaluated
with the radar data set: normalized estimation error vs. normalized
median bin size indicates no correlation between them

We evaluate theselective sampling based median computation
algorithm using the radar data set. The scatter plot of the nor-
malized estimation error vs. the normalized median bin size(Fig-
ure 13) indicates no correlation between them. This may suggest
that the algorithm is not sensitive to data distribution.

Even though we demonstrated that a simple improvement to the
uniform sampling based approach reduces the algorithm’s sensi-
tivity to data distribution, it may be difficult or impossible to de-
sign such an improvement for other types of problems. Compared
to field estimation or other problems in data processing, median
computation is relatively simple. However, when it is difficult to
design an algorithm that can explicitly remove its sensitivity to
data input, we recommend evaluating algorithms with data across
a range of parameters, and investigate how the algorithm’s perfor-
mance changes with different data characteristics. The parameter
of interest could be data distribution, spatial correlation, or other

10



data characteristics. The synthetic data generation approach dis-
cussed in Section 6.1 can be used to generate realistic data sets
with a wide range of parameters.

The statistical approach introduced in Section 3.1 can be used
to systematically study how the algorithm behaves in different
parts of the parameter space. The challenge of the systematic
study is to identify what characteristic of the data set bestdefines
the data dependency for a given algorithm. For example, in the
median or percentile computation, we identifiedthe size of the bin
that includes the median or the corresponding percentileto be the
data characteristic of interest. In the case of wavelet compression,
spatial correlation is identified to be of major interest; injoint en-
tropy coding, we identify the interesting characteristic to be the
normalized spatial correlation coefficient. Identifying the relevant
set of data characteristics usually requires fair understanding of
the algorithm under evaluation.

7 Related work
In the context of the Internet research, Floydet al. [4] use ex-

amples drawn from Active Queue Management and TCP variants
to illustrate the problems caused by inappropriate models.It iden-
tifies the need of a richer understanding of the range of realistic
models, and the relevance of different model parameters to net-
work performance. It proposes to build models based on the ex-
isting measurement results, and to generate new empirical results
when needed.

In [17], we propose synthetic data generation techniques to
support irregular topology sampling in sensor networks, Inthis
paper, we expanded the previous work in the following aspects:

• In [17], we pointed out the problem, without elaboration, that
sensor network algorithms are potentially sensitive to data in-
puts. In this paper, we use the case studies drawn from statis-
tic estimation and field estimation problem to systematically
investigate how the algorithm performance varies across a
wide range of data input.

• In addition to recommend generating synthetic data based on
modeling the experimental data, we introduce another prin-
ciple in our synthetic data generation framework, an appli-
cation and algorithm dependent approach: the initial experi-
mental data should be drawn from relevant applications; The
specific synthetic data generation technique and correspond-
ing evaluation metric used should tailor to the applicationand
algorithm under study;

The work in [8] propose a mathematical model to capture the
spatial correlation in sensor network data, and to generatelarge
synthetic traces from a small experimental trace. This synthetic
data generation technique can be easily incorporated into our
proposed synthetic data generation framework. As pointed out
in [17], we do not recommend using it to generate traces of finer
granularity due to the fact that we lack ground truth data to verify
that the synthetic data match the statistics of the experimental data
at that fine scale.

8 Conclusion and future work
In this paper, we identified a few widely-studied classes of

problems that are potentially sensitive to data input: Statistics es-
timation of the field data; Data compression; and Field estima-
tion. We use them as examples of how to systematically study the
dependency of algorithm performance on data. We also demon-
strated how different data input can change the algorithm perfor-
mance dramatically, the performance comparison between two al-
gorithms may even change depending on the different data inputs.
As a result, we recommend evaluating algorithms across a range
of data input. We propose to generate realistic data sets with a
wide range of parameters. In our proposed synthetic data genera-
tion framework, we recommend generating data based on models
derived from the experimental data, and the specific synthetic data
generation technique used depends on the application and algo-
rithm under evaluation.

In order to encourage algorithm evaluation with realistic data,
we are providing a set of synthetic data generation tools andin-
tegrate them with Emstar [6] to facilitate emulation with more re-
alistic data input. In addition, we are going to provide a suite of
readily usable test data sets to the community.
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A Appendix: the error statistics of median com-
putation based on uniform sampling

Evaluation metric: Let Z denote the poputation of interest,|Z| =
n, a sample setS is uniformly drawn fromZ, |S| = l. The median
computated fromS, x, is returned as an estimate of median ofZ. Suppose
the position ofx in the original populationZ is xp, the estimation error is
here defined as:xp − n/2.

Next, we consider theprobability distribution of this error: P ((Xp −
n/2) = εn), whereε is a small number.

Let random variableXp denotes the position of the median returned
by the algorithm usingl samples

Without loss of generality, assumel is odd, and elements in the origi-
nal population are distinct. The event that “(Xp − n/2) = εn” is equiv-
alent toexactlyl/2 of the samples have positions less thann/2 + εn,
i.e.,

P ((Xp − n/2) = εn) = P (Sl = l/2) (1)

whereSl denotes the total number of samples having positions less
thann/2 + εn.

Supposepi denotes the position fori − th sample,
Yi(i = 1, ..., l) denotes a random variable,Yi = 1 if pi < (n/2+εn);

otherwise,Yi = 0.
From uniform sampling, we have:
P (Yi = 1) = 1/2 + ε
P (Yi = 0) = 1/2 − ε
Independently takingl uniform samples is an Bernoulli trials with

success probabilityp = 1/2 + ε.

P (Sl = l/2) = (l
l/2) ∗ (1/2 + ε)l/2 ∗ (1/2 − ε)l−l/2 (2)

From Equation 2, we have:

P ((Xp − n/2) = εn) = (l
l/2) ∗ (1/2 + ε)l/2 ∗ (1/2 − ε)l−l/2 (3)

Note that equation 3 only depends onl andε, not on the original pop-
ulation distribution.

This proves that the error statistics (assuming the evaluation metric is
in terms of order difference as defined in the beginning) of median com-
putation based on uniform sampling does not depend on the underlying
data distribution, but only on the proportions of samples taken.
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