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Using more realistic data modelsto evaluate sensor network data processing algorithms
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ABSTRACT

Sensor network research is still in its infancy. Few reateys
are deployed and little experimental data from sensor s
available to test proposed protocol designs. Due to lackpée-
mental data and sophisticated models derived from suchrdats
data processing algorithms from the sensor network liteesdre
evaluated with data generated from simple parametric rsodel

We identify a few widely-studied classes of problems that ar
potentially sensitive to data input: Statistics estimatéthe field
data; Data compression; and Field estimation. We use them a
examples to investigate the dependency of algorithm pedace
on data.

For each class of problem, given the selected problem and aI—t

gorithm instance, we systematically study how the algoritfer-
formance varies across a range of data input.
strate how different data input can change the algorithnfioper
mance dramatically, the performance comparison betweemlw
gorithms may even change depending on the different datasnp

In the end, we propose our synthetic data generation framkewo
and recommend evaluating algorithms across a wide rangstaf d
input.

1 Introduction

Sensor network research is still in its infancy. Few reateys
are deployed and little experimental data from sensor s
available to test proposed protocol designs. Due to lackpée-
mental data and sophisticated models derived from suchrdats
data processing algorithms from the sensor network liteesdre
evaluated with data generated from simple parametric nsoéelr
example, it is common that data collection and estimatigo-al
rithms are evaluated with uniform or Gaussian data inpul 3,
Similarly, a random Gaussian field model is typically usethia
analytical and simulation studies to evaluate the comesnd
source coding algorithms [5].

Many of these data processing algorithms are sensitivetto da
input. If this sensitivity only produces small perturbatsoon the
algorithm performance, simple parametric models usedasitin-
ulation helps to clarify the algorithm behavior without tlistrac-
tion from the details of data input. Unfortunately, the tygfehe
data input used in the evaluation often significantly affeetalgo-
rithm evaluation results, as elaborated by the followingregles:

In the first example, we demonstrate that for a given perfor-
mance accuracy requirement, the performance of one digorit

1

We also demony,

may appear to be acceptable for certain data set, but urtabbep
for another input data set.

We evaluate a uniform sampling based median computation al-
gorithm [10] (Section 3.1) against 4 data sets: data gesefedm
uniform, Gaussian, and Bimodal distribution; and a onestep-
shot from the S-Pol radar data se©ur performance metric here
is communication cost, which is proportional to the samptiate.

To achieve the same precision, the particular experimetat
set we used and the bimodal distributed data require an ofder
magnitude more samples than Gaussian and uniformly disécb

Yata. Specifically, in order to obtain similar precision agarmly

distributed data at the cost of 1% sampling rate, it requre$0%
sampling rate in the case of the experimental data. Furibrerm

0 obtain similar precision as a normal distributed dataaséhe
cost of 1% sampling rate, the experimental data requires 30%
sampling rate.

The significantly higher cost in the case of experimentahdat
set and bi-modal distributed data may suggest that unif@m- s
pling based median computation approach is not feasibliése
two data distributions. The results from using our expentak
data suggest that the median is under-represented, thibiehye-
dian estimated from uniform sampling will not work well ingm-
tice.

In the second example, we will show that the performance com-
parison between two algorithms may change depending orifthe d
ferent data inputs.

As reported in Section 5.1, we compared two field estimation
algorithms, Adaptive Sampling vs. Raster Scan against ypes
of data: (1) data generated from simple parametric model¢23n
data collected from a lab environment. For each data digtab,
we compare the reconstruction accuracy of Adaptive Sanmgle v
Raster Scan under the same cost budgetthe same number of
samples. Interms of Mean Squared Error (MSE) in the reconstr
tion results, for data generated from linear and quadratidets,
Adaptive Sampling is orders of magnitude better than rastan;
whereas for a data set collected from the lab environmerdapAd
tive Sampling is worse than raster scan.

Given that different data inputs can change algorithm perfo
mance dramatically, evaluating the system with data repteyy
a diverse range of real-world scenarios is essential. Maslizdole

1s-Pol (S band polar metric radar) data were collected dufiadriternational
H 20 Project (IHOP; Principal Investigators: D. ParsonsWeckwerth, et al.).
S-Pol is fielded by the Atmospheric Technology Division of tt&tional Center
for Atmospheric Research. We acknowledge NCAR and its spptisoNational
Science Foundation, for provision of the S-Pol data set.



experimental data from remote sensing or in-situ instruatem For the first two classes of problems, given the selected-prob
are collected from a regular grid. Therefore, they cannotlibe  lem and algorithm instance, we studied how the algorithm per
rectly used to evaluate the sensor network algorithms dinee  formance varies across a wide range of data input. In thd thir

deployed sensor networks are most likely in an irregulaolagy. category of problems, we studied the Fidelity Driven Sampél-
In the end, we propose to generate synthetic data from modelgyorithm. Given its complexity, instead of a systematic gtwade
derived from the experimental data. use a few data sets to demonstrate its sensitivity to data anm

how it may even change its performance comparison resudts re
tive to a simple alternative, namely, raster scan.

Due to the space limitations, in the next two sections, we
present results on the first and third class of problems, afed r
readers to [16] for results on the second class of problem.

Organization of the paper. We identify a few widely-studied
classes of problems that are potentially sensitive to dgtati
Statistics estimation of the field data; Data compressiod;Feld
estimation. We use them as examples of how to systematically
study the depende_ncy of algorithm _pe_rformgnce_ on data. We3 Statistics estimation problem
present our evaluation results on statistics estimatioifiaid es-

timation in Section 3, and 5 respectively, and refer reatiefs6] We start with a definition of the statistics estimation pesbl
for results on data compression algorithms. Inthe end, wpqee ~ We consider here. A random procegs, which consists of a set
our synthetic data generation framework and recommendatal ~ Of random variablesZ(u), one for each sensor locatianin the

ing algorithms across a wide range of data input. deployment area, denoted a$Z (u), Vu € A}. AssumingZ is a
stationary process, the problem is to estimate some stat{stg,
2 Datadistributionsand algorithm performance the median) o7 (u) (v € A) given a realization of Z(u)} (i.e,

a time snapshot of sensor readings) at locations = 1, ..., n,
In this section, we identify a few widely-studied classes of . < 4,

problems that are potentially sensitive to data input: In this section, we consider the median and percentile es-
timation problems; and two order-statistics estimatiogoal
rithms, namely, uniform sampling based approach, and Rower
Conserving Computation of Order-Statistics proposed jn\\Ve
investigated how the performance of these algorithms ectfl

by data characteristics across a wide range of parameters.

e Statistics estimation of the field datag, median, percentile,
or density estimation, among which we studied median and
percentile estimation in this paper.

e Data compressiore.g, distributed source coding, entropy
coding, or coding schemes that exploit the spatial and tempo 3.1  Uniform sampling-based median computation
ral correlation in the data. We studied an instance of wavele  For simplicity of illustration, here we consider an insfatibn
compression, and joint entropy coding algorithm. (a snapshot) of random proceséu) as deterministic. Thus, given

) o o ) a snapshot of sensor readings at each nede,: = 1, ..., the
» Field estimation. There has been extensive interest in samM-ea| median}/(Z) is defined ag (L), if n is even, or(z(2) +

ling and reconstruction of a physical field [12, 15, 2, 9lga r n e . . . %)
(F:)en?sensor network Iiteraturg \)//Ve investig[ated fidelity\]sdr 25 +1)/20 n 'S qu' The e§t|mated me_d|an IS writtenids 7).
sampling in our case study ' There are variations of uniform-sampling based approaebk-to

timateM (Z). Without loss of generality, in this paper we consider
a specific uniform sampling based median computation ahyuari
as follows: Suppose there is a single sink in the deployedasen
network, and each sensor node has the same probability1%o)
of sending its reading back to the sink. The sensor valueris fo
warded along the shortest path tree from the sensor soutbe to
sink. An intermediate node on the shortest path tree wilpnohe
samples, instead it simply relays these packets back toirtke s
Suppose p samples are transmitted back to the sink, s(&{p),
1. Many sensor network systems are deployed to monitor andwe compute the median, M(S) of s(1),..., s(p) as an estimiate o
understand the physical environment. Due to energy con-M(Z2).
straints, most of the time, sensor network applicationswcan Before systematically evaluating how the algorithm perfor
afford to transmit every bit of sensed information back ® th mance are affected by different data input, we use four el@mp
base station. Therefore, statistics summary, data compresdata sets to demonstrate that different data input can dicatin

sion, and efficient field estimation algorithms are esskmtia ~ affect the algorithm performance. Specifically, we consitta
building a long-lived system. sets generated from uniform, Gaussian, Bi-modal distiobytnd

S-Pol radar data set. The S-Pol radar data provided by NCAR
2. The algorithms in the above three categories all need-to ex records the intensity of reflectivity in dBZ, where Z is profianal
ploit the statistics and redundancy in the data in some nranne to the returned power for a particular radar and a particalage.
and therefore are potentially sensitive to data input. We selected 259 time snapshots across 2 days in May 2002 in our

We would like to clarify that providing a complete taxonomy
of sensor network algorithms that are potentially sersitivdata
input is not our intention. Instead, we investigate a fewekjd
studied algorithms and use them as examples of how to systema
cally study the dependency of algorithm performance on. d&fea
use the above three classes of problems as our case studies fo
following reasons:



study. Each snapshot of data in our study is a 60 x 60 spatdl gr
data with 1 km spacing.

Histogram of error in median estimation for normal dat

o
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(a) Results on data of normal distribution

Histogram of error in median estimation for uniform data

(b) Results on data of uniform distribution

Figure 1: Histogram of estimation error on data of normalmr u
form data distribution is close to the normal bell shape Xis:a
normalized estimated median error; y-axis: number of cauce)
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(a) Results on experimental radar data

Histogram of error in median estimation for bimodel data

(b) Results on data of bimodal distribution

Figure 2. Histogram of estimation error for radar data and bi
modal distribution is wide spread out or bi-modal, and therage
estimation error is also larger than that in Gaussian anfbumi
distribution. (x-axis: normalized estimated median eryoaxis:
number of occurence)

We define the performance metric of the median computationically (using statistics tools) investigate how the algfom perfor-

algorithm to benormalized estimated median error, which is
the difference between the estimated medidiiZ), and the real
median,M (Z), normalized bythe range of entire sample values
Normalization was introduced to make comparing resultessr
different data sets meaningful. Median is often used as astob
estimator instead of mean. Therefore, we defined the errbiane
in terms of value, as opposed to positién.
The histogram of normalized estimation errors againstdhbe f

mance varies across a wide range of data distribution.

Our statistical analysis consists of three key steps. ,Rivet
define our performance metric to hermalized estimated median
error. Second, we identify the data characteristic that is mdst re
evant to the median computation algorithm tortmemalized me-
dian bin size We bin the entire sample set into a fixed number
(e.g, 10) of equally spaced containersledian binis defined as
the container that includes the median. hetenote the total num-

data sets mentioned above was presented in Figures 1 and 2. Fder of samples, ane denote the number of samples in thedian

normal data (Figure 1(a)) and uniform data input (Figure))1(b
the estimation error is close to the normal bell shape; vagrfer
bimodal data (Figure 2(b)) and the radar data (Figure 2B0ih
the mean and variance of error are higher than for the otls&i-di
butions. Above we use four data sets as an example to iltastra
to what extent the uniform sampling-based median compmutati
algorithm can be sensitive to data distribution. Next, weeayat-

2|f the estimation error metric is defined in terms of ordiee.(let p denote
the real position of the estimated mediafn(Z) in the original data sety /2 is
the position of the real median, the estimation error is théimele asp — n/2),
we can prove (Appendix A) that uniform-sampling based medianpedation is
not sensitive to data distribution. Intuitively, uniforrarapling was applied in the
spatial dimension, when the error metric is defined in the samemsion,i.e.,
position in an ordered list or space, the estimation errdmail be sensitive to the
underlying data distribution.

bin, thenormalized median bin size is defined asn/n, i.e, the
ratio of the size of the median bin relative to the size of thire
data set.

As a final step, we study how the algorithm performance
changes with data input across a wide range of parameters. We
evaluate the algorithm against two types of data: simuldeged
generated from Gaussian, Exponential, and Weibull distidbs;
and 259 snapshots of the experimental radar data. Note akeat d
generated from simple parametric models have been widelg us
in previous algorithm evaluations. We vary the parametetbé
above model in a wide range: in Gaussian distribution, wehix t
mean, vary the standard deviation from 1 to 100; in Weibirdi
bution, we fix the scale parameter, vary the shape parametear f
1 to 100; and in Exponential distribution, we vary the expura



changing rate\ from 0.1 to 10. median errorandthe normalized median bin sizé is —0.8239
Figure 3 shows the scatter plot nbrmalized estimated me- and—0.7818 for the data in Figure 3(a) and 3(b) respectively. The
dian error vs. normalized median sizeEach point in the graph  fact that the correlation coefficients being close-tb also indi-
corresponds to one data set. The x-axis isnbienalized median  cates the strong correlation between them.
bin size of the datathe y-axis is thenormalized estimation error We would like to point out another interesting observatimmf
averaged from 100 runs of algorithm on the corresponding dat Figure 3: In terms of normalized median bin size, experiment
set. data encompasses a super set of all four families of databdist
tions (as mentioned above, for each distribution family, waey
- . the parameter across a wide range). This may suggest that, it
Sy would be difficult to cover a wide range of data characterssti
ol o if we only use data generated from simple parametric models i
°, our algorithm evaluation. The experimental data sets cavede
3, range of data characteristics not covered by any singleillist
oo %% ° tion. We believe this result strongly suggest the impontaot
% experimental data in algorithm evaluations.

error (normalized by the entire value range)

Normalized median
=4
°
®
o
o
o

3.2 Uniform sampling-based percentile computation
R Without loss of generality, we define percentile as follofes:

0 01 0.2 0.3 0.4 05 0.6 0.7 0.8

Normalized median bin size an ordered data set(i), i = 1, ..., n, its p percentile is defined
(a) Results on experimental data, Correlation Coefficiedt8239  asz(|p + n|). Similar to median computation, in uniform sam-
X ; pling based percentile computation, each sensor node éaaihe
uniform | j probability of sending its reading back to the sink. An intedi-
& \' | ate node simply relay the sample along the shortest patihaee
v | ! to the sink. If eventually samples are transmitted back to the
|
/

=4
9
S

o

=

(sbuel anjea a1jus sy A pazifewlou) JolIe uonewisy

o,
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| sink, s(1),..., s(t), we compute the percentile ofs(1),..., s(¢) as

AV 1 an estimate of thg percentile of the original sample setl), ...,

" Similarly we identify the data characteristicsramalized p-

percentile bin sizethe entire sample set is divided into a fixed

| number of equally spaced containers. hpercentile bins de-

" Normalized meden bingize | fined as the container that includes fhpercentile Let n denote
the total number of sensor readings, gndenote the number of

samples in thg@-percentile binthen thenormalized p-percentile

bin sizeis defined ap/n.

Here we presented results @at-quartile(i.e., 25-percentile).
Figure 3: the scatter plot of normalized estimated mediaorer We evaluate the algorithm against the same data used in the me
vs. normalized median size: the normalized median erroreit w  dian computation. Figure 4 shows the scatter plot of nozadli
correlated with the normalized median bin size; with insieg estimation error vs. normalized 1st-quartile bin size. \Weeove

(b) Results on data generated from Gaussian, uniform,
Weibull and exponential distributions, Correlation Cazéint=-0.7818

normalized median bin size, the estimation error decredsas the same algorithm performance behavior as in the case of me-
ther, the experimental data covers a super set of all 4 fesndf dian computation (Figure 3), i.e., the estimation erroréases
data distributions and more. when the size of the bin that includes the correspondingtitpiar

o . decreases, which indicates that the corresponding quistiess
As shown in Figure 3, for both experimental data and data gen-represented. We also studied the third quartile estimadiod ob-

erated from parametric models, the algorithm performaneg (  tained similar results as in Figure 4. We leave out the detaite
the normalized median error) is well correlated with our raedi due to the limit of space.

data characteristic, nametie normalized median bin siz&Vith

increasing normalized median bin size, the estimationr etes 3.3 Summary

creases. Intuitively, under uniform sampling, with in@ieg nor- Given median estimatiormnd percentile estimatioproblems,

malized median bin size, more samples from the median bin wil and theuniform sampling-based approatith different parame-

appear in the final sample set at the sink; therefore, theee is ters corresponding to these two problems, we above denatextr

higher chance that a sample from thedian binwill be selected  the key steps to systematically study how the algorithmqperf

as the estimated median at the sink, as oppose to samples fromance changes with various data input:

other bins. Because samples from the same bin are closelie, val

the estimated mediawill be close to the real median in value. ¢ Define a performance metric for the particular problems and
We also compute the correlation coefficienttioé normalized algorithms analyzed.
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(a) Results on experimental radar data: Correlation Caexfiis-0.6796
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Normalized 1st quantile bin size

(b) Results on data generated from Gaussian, uniform,
Weibull and exponential distributions, Correlation Cozéint=-0.8729

Figure 4: First quartile computation results: the scatiet pf

normalized estimation error vs. normalized 1st-quartitedize.

The estimation error increases when the size of the 1stitguain

decreases. Again, experimental data covers a super séfadial
families of data distributions.

¢ Identify the set of data characteristics most relevant & th
algorithm in the studyge.g, normalized estimation error in
the above case study.

e Statistically study how the algorithm performance varigbw
changing data characteristics. Scatter plots and caoelat
coefficients were used to identify the correlation betwdsen t
performance metric and data characteristics in the study.

To demonstrate that it is applicable to the scope beyondrthe u
form sampling-based median computation, we applied thgeabo
proposed statistical analysis to Power-Conserving Coatiout of
Order-Statistics proposed in [7]. We used the same probkfim d
inition, performance metric, and data characteristicsedimed in
Section 3.1, and evaluated PCCOS with the radar data seitaBim
to the case of the uniform sampling-based approach, we wdxser
similar correlation between the estimation accuracy aedntbr-
malized median bin size (Figure 5). It is evident that thearare
of estimation error is larger when the normalized mediansibie
is small (in the range betweénl and0.3).

Estimation error normalized by the entire sample value range
o

Figure 5: Median computation results from PCCOS algorittrm o
radar data: scatter plot of estimation error vs. normalinedian
bin size indicates strong correlation between them. catioel
coefficient =-0.58

4 Data compression problem

Since it is prohibitively expensive to transfer raw sensatad
in sensor networks, compression is often performed in tmpte
ral domain or in the spatial domain to reduce the commurtnati
cost. In this paper, we consider spatial compression. Givarap-
shot of sensor reading§Z(u)} (i.e, at locationsu;, i = 1, ..., n,
u; € A, a compressed representation {df (u;)}, instead of
{Z(u;)} itself, were transfered to the sink. Depending on whether
we can reconstruct the original sensor readifgéu,)} without
error, compression algorithms can be classified into lessiad
lossy compression. In this section, we consider two compres
sion algorithms that are intuitively sensitive to data, astance
of wavelet compression algorithm and joint entropy codilgpa
rithm. They fall into lossy compression and lossless cosgon
algorithms category respectively. We quantitatively dasimte
how the algorithm performance changes with data of varipas s
tial correlations.

4.1 Wavelet Compression Algorithm

In this section, we study an instance of wavelet compression
algorithms. As illustrated in Figure 6, it is composed ofetar
steps: (1) we apply wavelet decomposition to the 2D spaitial s
nal. Details on how to implement this in a distributed fashio
is out of the scope of this paper. For example, [13] provide a
distributed algorithm of wavelet decomposition in the gdati-
mension. The results presented here are acquired fromiagply
the Matlab built-in wavelet decomposition function to a 2ias
tial data set. Without loss of generality, we use the "symz&rfi
(2) After wavelet decomposition, most of the energy coneaeas
on small percentage of coefficients; therefore, we use libtds
cutting to discard insignificant coefficents. In the recamnsion
phase, these insignificant coefficients were sei.tq3) We ap-
ply run-length coding to the wavelet coefficients that arevaba
certain threshold.

Among these three steps, wavelet coefficients threshokliag
lossy compression, the other two steps are loseless tramsfo



tion. The diagrams on the bottom of Figure 6 illustrate the de
compression steps. In the reconstruction phase, the destar
wavelet coefficients are set to a default valQe therefore, the
reconstructed wavelet coefficients won't be exactly the esas
the original wavelet coefficients. We define thESE to be the
mean squared difference between the reconstructed data set and
the original data set.

Compression

A
r )
Original
- Wavele_l_ Wave_let Run length
data D encoder
thresholding
(Lossless Lossy co (Lossless
reconsll:l_ct.eti Wavelet Reconstruction of Run length
data Reconstruction Wavelet decoder
coefficient
- _/
~

Reconstruction

Figure 6: lllustration of wavelet compression and decorsgian
procedure

In step (2), the threshold used to select the wavelet coeffi-
cients is proportional to the reconstruction mean squareat;e
this threshold can be used to adjust the reconstructioritfidek.,
mean squared error) requirement. Assuming that unifornm-qua
tization is applied to the output of the run-length encoditige
amount of data output of the run-length encoding is propoéi
to the communication cost measured in bit-hops count. Simee
communication cost in transfering the compressed datandispe
on the distance from the sensor source to the sink, our comrmmun
cation cost metric, the amount of the data output of the emngth
encoding, is in terms of spatial bit rate. In our study, we ffig t
threshold used in selecting the wavelet coefficients, aathéxe
the amount of output data of the run-length encoding.

Following the statistical analysis described in Sectid 8e
first define the performance metric of the wavelet compresaio
gorithm to be thecommunication cost that is measured bthe
number of elements in the output from the run-length engpdin

Second, we identify the relevant data characteristic tohlee t
spatiall correlation In geostatisticsyariogramhas been used to
characterise the spatial correlation in the data. Briefflg, \ari-
ogram (also called semivariance) of a pair of pointsindx; is
defined asy(z;, z;) = 3{Z(z;) — Z(x;)}”. To characterise the
spatial correlation between data points separated byusuds-
tances, for an isotropical data sesriogramcan be defined as a
function of separation distancéetween two points. To simplify
our analysis, we use the variogram value at unit separai®n d
tance to represent the spatial correlation in the data. dderdata
set under study is from a grid topology, thus, the variograie/
at unit separation distance is equivalent to the expecftésteince
between neighboring nodes. This variogram value is idextiis
the relevant data characteristic in our study.

As a final step, we study how the algorithm performance

evaluate the wavelet comrepssion algorithm against 25%%s$ids
of the radar data.

In the scatter plot oEommunication costs. spatial correla-
tion(Figure 7), each point in the graph corresponds to one sonapsh
of the radar data. The x-axis is itariogram value at unit separa-
tion distance which is used to characterize spatial correlation of
the data. A small variogram value indicates a strong spatial
relation in the data, or vice versa. The y-axis is the numlfer o
elements in the data output from the run-length encodingghvh
is directly proportional to the communication cost in tr@nigg
the compressed data to the sink.

140
120

100

a predefined threshold

80

60

40,

Number of wavelet coefficient above

20f

0

Figure 7: Scatter plot of the communication cost in wavetehe
pression versus spatial correlation, which is measure@nmd
of variogram value at unit distance. Communication cost in-
creases with increassing variogram values. Correlatiefficeent

=0.9069

As shown in Figure 7, the communication cost increases with
the increasing variogram valued(, less spatial correlation). In
wavelet compression, the wavelet decomposition basiaally
moves the spatial redundancy. Stronger spatial correlatid
lead to more spatial redundancy, thereby, wavelet comipress
will have a better chance to compress the data, as a resailt, th
communication cost will decrease. We also compute the €orre
lation coefficient of thecommunication cosand the variogram
values Again, the correlation coefficient, 0.9069, being closé to
indicates the strong correlation between them.

4.2 Joint entropy coding algorithm

Compared to coding each data point separately, joint eptrop
coding improves the coding efficiency by exploiting the etar
tion between sensor readings at neighboring nodes, andgodi
data from a local neighborhood together. In our case study, w
compare two coding policies: (1) apply joint entropy coding
two neighboring nodes; (2) apply entropy coding at each node
separately. To evaluate the gain of the joint entropy codwey
independently entropy coding at each node, we define therperf
mance metric of the joint entropy coding algorithm totbe joint
entropy of sensor readings at two neighboring nodesmalized

changes with data input across a wide range of parameters. Wdy Sum of the corresponding marginal entrophhis normalized

6



communication cost metric is inverse to thificiency of the joint
entropy coding

Since joint entropy = marginal entropy - mutual information
(e, HX,Y) = HX)+ HY) — I(X;Y) [14]), and mutual
information can be captured by the spatial correlation endhta,
we identify the relevant data characteristic to be the apatr-
relation in the data. Similar to adding normalization to pes-
formance metric, we introduce a normalization factor tohe
iogram value defined in Section 4.1. We define timemalized
spatial correlationto be thevariogram value at unit separation
distance normalized by the variance of the datde normaliza-
tion introduced here removes the effect of data being medsar
different units, and makes data of different magnitudes pamar-
ble.

Given the performance metric and relevant data characteris
tic identified above, we study how the algorithm performance
changes with different data input. Again, we use 259 snapsho
of radar data in our evaluation. In the scatter plonofmalized
communication costs. normalized spatial correlatio(Figure 7),
the x-axis is itsvariogram value at unit separation distance nor-
malized by the variance of the datahich is used to characterize
the spatial correlation in the data. The y-axis is jihiat entropy
normalized by the sum of the marginal entropigkich is directly
proportional to the spatial bit rate in sending the comméstata
to the sink.

Joint Entropy vs. Spatial Correlation Coefficient for 150 snapshots of radar data

A
° 00@§é%
8oy 9 %,

o © o &P

ormalized by marginal entropy

eighboring nodes n

Joint entropy of n

L L L L L ,
0.15 0.2 0.25 03 0.35 0.4

spatial correlation coefficient
Figure 8: Scatter plot of the normalized communication cost
versus normalized spatial correlation. Communicatiorn dos

creases with increassing variogram values. Correlatiefficant
=0.9355

As shown in Figure 8, the communication cost of joint entropy
coding increases with the increasing normalized spatiaktan
tion (i.e, less spatial correlation). Both the scatter plot and the
correlation coefficient (0.9355) indicates that the efficieof the
joint entropy coding algorithm is well correlated with theasial
correlation in the data.

5 Field estimation

estimationis to reconstruct a map of the physical field at the sink.
Due to the energy constraints in sensor networks, field astim
tion algorithms resort to efficient sampling and data trantsgion
techniques to reduce the communication cost and providgha hi
fidelity reconstruction of the field at the same time.

5.1 Adaptive sampling

Fidelity Driven Sampling (proposed in [12, 1]) exploits nileb
sampling to first stratify the environment into regions rieigg
varying degrees of sample density, then samples in thegemeeg
Fidelity Driven Sampling (FDS) maintains an estimate offiatl
being observed. Using this estimate, the FDS identifieoregi
or strata exhibiting a high degree of misfit. At each step m th
sampling process, FDS adds points to that stratum with thesa
error. In so doing, FDS attempts to reduce the mean squarad er
at each sampling point by adjusting point density and locati
The algorithm continues adding points to poor fitting stiatéil
either an overall sample budget is exhausted or a desirdiyfide
limit is achieved. A simple alternative to Adaptive Samglis to
raster scan the field with the fixed resolution.

Following the Fidelity Driven Sampling operation (or raste
scanning data acquisition), the returned variable fieldh vtét dis-
tribution of sample points is then supplied to a local polya in-
terpolation algorithm and returns a reconstruction of tdren-
mental field. We define the performance evaluation metritias t
Mean Squared Error (MSE) between this reconstructed field ma
and the ground truth. We plot the Mean Squared Error achieved
in Adaptive Sampling or Raster Scan against the total nuraber
samples collected by the Adaptive sampling or Raster scign (F
ures 10 and 11). The MSE represents the quality of the recon-
structed field map, and the cost or delay to achieve this recon
struction is proportional to the number of samples. Thugtre
formance curves in Figures 10 and 11 reflect the quality vieyde
or cost trade-offs. The lower the curve, the more desiraide t
performance is.

The Adaptive Sampling algorithm can be evaluated using-simu
lated data generated from linear, quadratic, and cubic edti2].

As shown in Figure 10, when evaluated with data simulateghfro
simple models, both Adaptive Sampling and Raster Scanateliv
a very small MSE. Further, in most cases, the Adaptive Sargpli
performs several magnitudes better than Raster Scan irs t&fm
MSE for the same budget ( which is measured in thenber of
sample}. However, this conclusion does not hold when evaluated
with experimental data collected from a lab environment.

As discussed in [1], Adaptive Sampling is evaluated by sub-
jecting the algorithm to environmental variable fields maviwo
extremes in their “curvature” characteristics. For onatlithe en-
vironmental variable field was created by placing many atbeta
in the illumination field (Figure 9(a)) to emulate the mostrzo
plex patterns observed in the natural environment. In amgit
we created a low curvature field by casting only diffuse shado
ing on the transect (Figure 9(b)). This latter case is chiarac
istically similar to the least complex fields observed unclear

Densely deployed sensor networks provide unprecedented caforest canopy structure. In both cases, the “ground truis ab-

pability for environmental monitoring. The objective oktfield

tained by measurements from exhaustively moving the nois at



highest resolution through the variable field. As shown ig-Fi

as in Figure 9 may help us understand the algorithm’s diffiere

ure 11, when evaluated with the experimental data, the MSE ob performance under various types of environmental fields.

tained from Adaptive Sampling is very close to or worse then t
MSE obtained from Raster Scan.
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Figure 9: Experimental data collected from a lab environtmen

52 Summary

In summary, compared with using data simulated from sim-
ple models, evaluating the Adaptive Sampling algorithrmhveix-
perimental data changes its performance comparison sa®ldt-
tive to Raster Scan. This may suggest that the evaluatiartses
from data input based solely on simple parametric modelsheay
misleading. Evaluating algorithms using experimentahdaith
various features helps identify the regime of the paransgiace
where the algorithm may perform well compared to other alter
natives. Due to the complexity of the physical phenomenis, it
impossible to represent all possible data input using catpmet-
ric models. Experimental data guides our efforts to theiporf
the parameter space that matters in practice.

The dramatically different performance caused by differen
data inputs may not be unique to the Adaptive Sampling alyori
alone. For example, the Backcasting algorithm proposed5h [
shares a similar spirit as the Adaptive Sampling in that thath
adjust the sampling density based on the initial coarsenstoac-
tion of the field map. Therefore, the Backcasting algorithight
be subject to the same problene,, sensitivity to the environmen-
tal field being sensed. In [15], the algorithm was evaluatadgu
a simulated piecewise smooth field with a single edge. Etalua
ing the algorithm using experimental data with differerdttees

6 Proposed algorithm evaluation with more real-
istic data input

6.1 Synthetic data generation

The huge parameter space of data input makes exhaustive ex-
ploration of parametric models impractical. By driving sila-
tions from previously collected experimental data, we foour
testing on the part of parameter space that matters inyeblit-
fortunately, collecting new experimental data sets is aspe,
time-consuming, and often presents technical challeng#sailf.
Thus, it is advantageous to develop methods of applyingiprev
ously collected data sets in the development of new alguosth

This application of old data to new problems presents sévera
challenges. First, existing experimental data is oftedectéd
from regular grids, whereas real deployments may have ag-irr
ular topology. Second, the important features of the dateapr
plication dependent. Leveraging the existing experinietdta
we propose to generate synthetic data of irregular topolamy
modeling the experimental data. Our proposed synthetaglat-
eration techniques attempt to approximate the experirhdata
in terms of distribution, spatial correlation, or othertigas of
interest.

We first sketch out some principles in our proposed synthetic
data generation approach:

1. Our approach is experimentally oriented. Due to reasons
stated above, we recommend generating synthetic data from
models driven by the experimental data, rather than from
purely parametric models.

2. The selection of data features to model should be driven by
the relevant applications. Since the underlying physibatp
nomena it represents are inherently different, data fram di
ferent application domains, or data from different modksit
may dramatically differ from each other in terms of distribu
tion, spatial correlation, frequency spectruetc For exam-

ple, environmental weather data could be very differenfro
seismic data in many characteristics that are relevanteto th
algorithm in the study.

. The specific synthetic data generation technique usaddho
adapt to the application and algorithm in the study. Here
we propose a methodology to generate synthetic data, as op-
posed to recommending a single synthetic data generation
algorithm or a single synthetic data set. Our synthetic data
generation tool-box introduced in [17] includes eight &pat
interpolation algorithms, which in turn will generate eigh
different data sets based on one single experimental data se
Which synthetic data set is more desirable depends on the
specific application and algorithm in the study. For example
in evaluating a wavelet compression algorithm [1sfjatial
correlationwas identified as the data characteristics essential
to wavelet compression. We then select the synthetic data
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Adaptive Sampling is very close to or worse than Raster Scan.

set that can best match the experimental data in terms of thematch the original experimental data in terms of whateveéa da
spatial correlation Identifying relevant data characteristics characteristics are of interest.
(or in other words, the evaluation metric for synthetic data
generation techniques) requires knowledge of the alguarith Section 3.1 using our synthetic data, which is generateedchas
the radar data. Figure 12(a) verifies that the median cortipata
algorithm evaluated with our synthetic data exhibits samilehav-
Next we briefly describe the procedure to generate irregularior as that evaluated with the experimental data, and outhsyio

being evaluated.

topology data based on the experimental data (please ogfferjt

for details).

1. Generate ultra fine-grained data using the spatial mugleli

We evaluated the median computation algorithm discussed in

data covered a similar range of data distribution as that®eix-

perimental data. In addition, we also applied the same s¥igth
data set to the Adaptive Sampling algorithm. The evaluat&én

sults (Figure 12(b)) provide similar insight as the evahratising

and interpolation techniques discussed in [17]. The objec- the data collected from the lab environment (Figure 11(tHk

tive in this step is to create a grid topology at a much finer \jsg achieved by Adaptive Sampling is slightly worse thant&as
granularity than our target topology.

Scan.

data obtained from above. Each node in the target topology
is assigned a value from the nearest grid.

Among synthetic data sets generated from different spiatial

rameters

Overlay the target topology on top of the ultra fine-grdine 6.2 Algorithm evaluation across a wide range of pa-

Whenever possible, it is desirable to reduce the dependdncy o
algorithm performance on data. As demonstrated in Sectibn 3

the uniform sampling-based median computation algorithsen-

terpolation techniques in step 1, we select the one that eah b sitive to data inputs. Next, we introduselective sampling based

9



o
o
? osar B 11000 T - T T
o o o MSE in Raster Scan =
3 10000 F MSE in Adaptive Sampling --e-- |
o 012f %
g %o % 9000 - °
b o 2 i
2 oar ° S 8000 | |
° o 2 &
; 0.08 ° o g 7000 %
° @ ; \
g g ® £ 6000 . 5
? 008 @Q? : 5000 | \"m
3 o g e, R
5 O B o \. ,
€ oou ° £ 4000 | s el T o
5 2 ® g
g ° 2 3000 & ¥,
£ oo} ] o :)
i o = 2000 a7 d
@ o
‘ ‘ ‘ ‘ ‘ ‘ ‘ 1000 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 0.1 02 03 04 05 0.6 o7 0 50 100 150 200 250 300 350 400 450
Normalized median bin size Number of samples

(@) Median computation results, similar to Fig- (b) Adaptive Sampling results: similar to Fig-

ure 3(a), estimation error decreases with increasing ure 11(b), MSE achieved by Adaptive Sampling is

normalized median bin size worse than Raster Scan

Figure 12: Evaluation results using synthetic data geadrfiom the radar data: the algorithm exhibits similar bévaas the evaluation
results using the experimental data.

median computatianWe arenottrying to propose the best avail-
able median computation algorithm. Instead, it serves axam-
ple algorithm that explicitly takes data distribution irdonsider-

ation, and reduces the dependency of the algorithm perfuwena ° o B,
003 @ o fBoo %W

on data distribution.
We first describe a primitive (callesklective samplingused

normalized median error (normalized by the entire value range)
S
]
8
Q,
[e]
@
o
8

. . . - & o
in the algorithm. Basically, it selects samples from a sample e o o Sy &%
. o ° 0000 @ ) o
setS, wherem < |S|. The procedure is as follows: (1) Sort the ®° ° o0 R, o °
. .. . . . o o 0 &
samples inS; (2) Divide S into m equal-ranged containerise., e ;‘%;@o ?@g&
S is divided intoSy, So, ..., Sm; (3) from each binS;, select the oasl o o oo WEE L
. . . o Oo o o o

median ofS; (denoted as\/;) to representS;, with weight WW; & fPoge o, © o

[ 0.1 0.2 03 0.4 05 06 0.7 0.8

equal to the number of elements$h. After this step, we have: Normalized bin size

pairs (W1, M), (W2, Ma), ..., Wi, Myy,). . _ . . .
Next we briefly describe theelective samplingased median ~ Figure 13: Results from Selective Sampling algorithm eared
computation algorithm: with the radar data set: normalized estimation error vamadized

median bin size indicates no correlation between them
e Atthe leaf node, each node reports its sensor readinthis
sensor reading is sent along the shortest path tree back to th
sink.

e At an intermediate nodd, supposed hask children. Each algorithm using the radar data set. The scatter plot of the nor-
child reports a list of {V;, M;). Each list has at most tu- malized estimation error vs. the normalized median bin Gtig
ples, wherek is determined by the communication budget. U'e 13) indicates no correlation between them. This mayestgg

Combine the inputs from all child nodes together, treat each that the algorithmiis not sensitive to data distribution.

(W;, M;) asW; copies ofM;, Use the primitiveselective Even though we demonstrated that a simple improvement to the
samplingdescribed above to output a new list 8F, M)). uniform sampling based approach reduces the algorithm'sise
Note that thesort operation irselective samplinig notcom- tivity to data distribution, it may be difficult or impossibto de-

putationally intensive since it imerge sorfrom k sorted list, ~ Sign such animprovement for other types of problems. Coetpar

as opposed to sort from scratch, whérés the number of to field estimation or other problems in data processing,iamed
children at an intermediate node. computation is relatively simple. However, when it is difficto

design an algorithm that can explicitly remove its senijtito
e At the sink, combine inputs from all its children. Suppose data input, we recommend evaluating algorithms with datassc

that there aren tuples in total, Wy, M;), (Wa, M), .... a range of parameters, and investigate how the algorithenfep
(W, M,,). When computing the median from thesetu- mance changes with different data characteristics. Thanpeter
ples, we treat eachi(;, M;) asW; copies of}M;. of interest could be data distribution, spatial correlatior other

10

We evaluate theelective sampling based median computation



data characteristics. The synthetic data generation apprdis- 8 Conclusion and future work
cussed in Section 6.1 can be used to generate realistic efata s

: . In this paper, we identified a few widely-studied classes of
with a wide range of parameters.

- . : . problems that are potentially sensitive to data input:istes es-

The stausycal approach introduced in Section 3.1 can .bd US  timation of the field data; Data compression; and Field estim
o systematically study how the algorithm behaves in dsfér .tion. We use them as examples of how to systematically stuely t
parts .Of th? par.ameter space. Thg challenge of the SYStem"’mdependency of algorithm performance on data. We also demon-
study is to identify what Char"’.lCte”St'C O.f the data set Ueﬁne_s strated how different data input can change the algorithrfope
the data dependency for a given algorithm. For example,en th mance dramatically, the performance comparison betweemkw

nrwled!anl 0(; perrc]entnedc_omputr?non, we |der(1jt_|fted size of“g;e E'n gorithms may even change depending on the different datasnp
thatincludes the median or the corresponding percetiiee the As a result, we recommend evaluating algorithms acrossgeran

data characteristic of interest. In the case of wavelet cesgion, of data input. We propose to generate realistic data sets avit

spatial correlation is identified to be of major interestjdimt en- wide range of parameters. In our proposed synthetic datergen

tropy cpding, we identify the interejsfcing chara_ctgristicb’e the tion framework, we recommend generating data based on sodel
normalized spatial correlation coefficient. Identifyirgetrelevant derived from the experimental data, and the specific syitHata

shet olf dap’; chargcterlstllcs ysually requires fair undadstgy of generation technique used depends on the application god al
the algorithm under evaluation. fithm under evaluation.

In order to encourage algorithm evaluation with realistitag

7 Related work we are providing a set of synthetic data generation toolsiand

In the context of the Internet research, Flatdal. [4] use ex- tegrate them with Emstar [6] to facilitate emulation with raoe-
amples drawn from Active Queue Management and TCP variantsalistic data input. In addition, we are going to provide deswif
to illustrate the problems caused by inappropriate modigiten- readily usable test data sets to the community.

tifies the need of a richer understanding of the range ofgstali

models, and the relevance of different model parametereto n 9 ACKNOWLEDGEMENTS
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A Appendix: the error statistics of median com-

putation based on uniform sampling

Evaluation metric: Let Z denote the poputation of intere$f/| =
n, a sample sef is uniformly drawn fromZ, |S| = [. The median
computated fron%, x, is returned as an estimate of mediarofSuppose
the position ofk in the original populatior is x,, the estimation error is
here defined ast, — n/2.

Next, we consider thprobability distribution of this error P((X, —
n/2) = en), wheree is a small number.

Let random variableX,, denotes the position of the median returned
by the algorithm using samples

Without loss of generality, assuniés odd, and elements in the origi-
nal population are distinct. The event thél’, — n/2) = en” is equiv-
alent toexactlyl/2 of the samples have positions less thgf2 + en,
ie.,

P((X, —n/2) = en) = P(S, = 1/2) ()

where.S; denotes the total number of samples having positions less
thann/2 + en.

12

Suppose; denotes the position far— th sample,

Y;(i =1, ...,1) denotes arandom variablg, = 1if p; < (n/2+en);
otherwise)Y; = 0.

From uniform sampling, we have:

PY;=1)=1/2+¢

PY;=0=1/2—¢

Independently taking uniform samples is @ Bernoulli trials with
success probability = 1/2 + e.

P(S =1/2)= (ﬁ/Q)*(1/2+€)l/2*(1/2_6)l4/2 @
From Equation 2, we have:
P((Xp —n/2) =en) = (5/2) « (1/2 4 6)1/2 *(1/2 - 6)1—1/2 3)

Note that equation 3 only dependsioande, not on the original pop-
ulation distribution.

This proves that the error statistics (assuming the evaluation metric is
in terms of order difference as defined in the beginning) of median com-
putation based on uniform sampling does not depend on the underlying
data distribution, but only on the proportions of samples taken.





