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1. Introduction

The non-fluent/agrammatic variant of primary progressive aphasia (nfvPPA) is a 

neurological syndrome that falls under the umbrella of frontotemporal dementia (FTD) 

(Mesulam 1982). In particular, this variant is characterized by isolated and progressive 
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motor speech and/or grammatical impairments with anatomical damage in regions 

associated with speech production functions (Gorno-Tempini et al., 2004; Grossman 2012). 

Several neuroimaging studies of nfvPPA have shown gray matter atrophy and 

hypometabolism in left fronto-insular cortical and subcortical regions, particularly the 

inferior frontal gyrus (IFG), precentral gyrus, supplementary motor cortex (SMC), anterior 

dorsal insula, and striatum (Grossman et al., 1996; Nestor et al., 2003; Gorno-Tempini et al., 

2006). Other studies have described structural damage to dorsal white matter pathways 

connecting these regions and associated speech and language deficits (Galantucci et al., 

2011; Wilson et al., 2011; Catani et al., 2013; Mandelli et al., 2014). More recent researches 

suggest that functional changes precede structural alterations (Taubert et al., 2011, 

Bonakdarpour et al., 2017).

Resting state functional MRI (rsfMRI) studies have shown how distant brain regions interact 

with each other to form large-scale intrinsic connectivity networks (ICNs) (Biswal et al., 

1995; Greicius et al., 2003; Damoiseaux et al., 2006). Recent studies demonstrated that 

anatomical damage caused by various neurodegenerative disorders targets specific ICNs 

identified in healthy subjects (Zhou et al., 2012; Mandelli et al., 2016; Collins et al., 2017). 

This supports a network degeneration hypothesis in which neurodegeneration begins in 

particular regions and spreads along disease-specific pathways to other regions within and 

outside the network as the disease progresses (Frost & Diamond, 2010; de Calignon et al., 

2012; Liu et al., 2012).

In nfvPPA, we have previously hypothesized that focal atrophy occurs first in the left 

inferior frontal gyrus and then progresses to areas most structurally and functionally 

connected within a network that has been described as the speech production network (SPN) 

(Mandelli et al., 2016).

Within the various analytical approaches to investigate network connectivity, graph 

theoretical methods model the brain as a complex network and provide metrics that reflect 

global or local organization, such as global efficiency, characteristic path length, modularity, 

and clustering coefficient (Strogatz 2001; Sporns et al., 2004; Watts 2004; Boccaletti et al., 

2006; Bullmore & Sporns, 2009; Stam & Reijneveld, 2007, Minati et al., 2013, Tijms et al, 

2013). Multicenter and longitudinal studies comparing different connectivity methods 

showed that graph theory provides reliable, replicable and robust measures of network 

abnormalities in patients with frontotemporal dementia (FTD) (Sedeño et al., 2017) as well 

as the best unit-wise reliability (Guo et al., 2012). This evidence suggests that graph theory 

is uniquely suited to studying network dynamics in focal neurodegenerative diseases 

(Horwitz & Rowe, 2011).

Several studies have attempted to investigate alterations of functional network connectivity 

and network topology in neurodegenerative disorders such as Alzheimer’s disease or FTD 

using rsfMRI and graph theory (Stam et al., 2007; Supekar et al., 2008; Sanz-Arigita et al., 

2010; Zhao et al., 2012; Agosta et al., 2013; Agosta et al., 2014; Sedeño et al., 2016). 

However, no published studies have assessed network properties in nfvPPA using graph 

theory.
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In this study, we applied graph theoretical analysis to describe alterations within the 

organization of the SPN in nfvPPA. NfvPPA provides a good model to study network 

alterations because the anatomical damage is initially confined to a network that is 

anatomically and functionally welldescribed. We investigated functional specialization 

(segregation), information flow (integration), resilience (assortativity), and centrality 

(hubness) within the SPN and a reference network, the default mode network (DMN). We 

hypothesized the topological architecture of the SPN and not the DMN would be 

preferentially disrupted in nfvPPA due to the focal damage in the left fronto-insular regions.

2. Material and Methods

2.1 Subjects

We identified 20 patients with a diagnosis of nfvPPA seen at the Memory and Aging Center 

(MAC) of the University of California, San Francisco (UCSF). These twenty patients 

underwent a comprehensive research evaluation, including a neurological examination with 

a behavioral neurologist, neuropsychological testing, speech and language testing with a 

speech pathologist, and a high-resolution structural T1-weighted and rsfMRI. The attending 

behavioral neurologist determined a diagnosis based on behavioral performance, patient and 

family history, neuroimaging, and a second neurological examination. The patients were 

diagnosed in accordance with the international consensus criteria for the nfvPPA developed 

by Gorno-Tempini et al. (2011). The criteria include one of the following: 1) agrammatism 

in language production (oral or written); 2) effortful, halting speech with inconsistent speech 

sound errors and distortions (apraxia of speech), and at least two of the following criteria: 1) 

impaired comprehension of syntactically complex sentences; 2) spared single-word 

knowledge; 3) spared object knowledge.

A group of 20 healthy controls without cognitive or neurological deficits were selected from 

the MAC database and matched to the patient group according to age, gender, handedness, 

and education.

Informed consent was obtained from all participants in accordance with the Declaration of 

Helsinki and approval was obtained from the UCSF Committee on Human Research.

2.2 General Cognitive Evaluation

Patients underwent neuropsychological assessment as previously described in Kramer et al., 

2003, Rosen et al., 2002 and Gorno-Tempini et al., 2004. Global cognitive functioning was 

assessed with the mini-mental state examination (MMSE) (Folstein et al., 1975). 

Visuospatial skills were assessed by the Benson figure copy, and memory was assessed by 

the California Verbal Learning Test – Short Form (CVLT-SF) as well as a 10-minute free 

recall of the Benson complex figure. Executive function, including attention, working 

memory, and processing speed were assessed via forward and backward digit span, 

phonemic fluency (D words generated in 1 minute), and a modified version of the Trails B 

test.
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2.3 Speech and Language Evaluation

NfvPPA patients completed a linguistic evaluation with a speech-language pathologist 

(Gorno-Tempini et al., 2004; Wilson et al., 2010). A motor speech evaluation (Wertz et al. 

1984) described the presence of apraxia of speech and/or dysarthria. Syntax comprehension 

was tested using a two-alternative forced choice auditory sentence-to-picture matching task 

(Wilson et al., 2010). We tested naming via the 15-item Boston Naming Test (Kramer et al., 

2003). Subtests from the Western Aphasia Battery (WAB) (Kertesz, 1980) included 

Spontaneous Speech (Information content and Fluency), Auditory Word Recognition, 

Sequential Commands, and Repetition. Semantics were evaluated using the Pyramids and 

Palm Trees Picture Test (Howard & Patterson, 1992).

2.4 MRI Sequences

All subjects underwent an MRI on a 3T Siemens scanner TrioTim syngo, equipped with an 

eight-channel transmit-and-receive head coil, using a magnetization prepared rapid gradient 

echo (MPRAGE) sequence (160 sagittal slices; slice thickness = 1 mm; field of view =  256 

mm2; matrix  =  256 × 240; voxel size 1.0 × 1.0 × 1.0 mm3; repetition time = 2300 ms; echo 

time  =  2.98 ms; inversion time  =  900 ms; flip angle  =  9°). RsfMRI data used a T2*-

weighted echo-planar sequence including 240 volumes with 36 AC/PC-aligned axial slices 

in interleaved order (slice thickness = 3 mm with 0.6 mm gap; field of view = 230 × 230 

mm; matrix = 92 × 92; TR = 2000 ms; TE = 27 ms; flip angle = 80°). During task-free 

resting state sequences, the subjects were asked to lie still and close their eyes without 

falling asleep.

2.5 Data Analysis

2.5.1 Structural imaging analysis—Voxel-based morphometry (VBM) analysis of the 

structural images was conducted using Statistical Parametric Mapping (SPM12) (Wellcome 

Trust Center for Neuroimaging, London, UK; http://www.fil.ion.ucl.ac.uk/spm/software/

spm12/) running on Matlab R2013a (MathWorks). The preprocessing has been previously 

described (see Mandelli et al., 2016 for more details). Structural images were segmented into 

gray matter (GM), white matter, (WM) and cerebrospinal fluid (CSF) using an adaptive 

maximum a posteriori technique (Rajapakse et al., 1997), which were then registered to a 

standard space (MNI) and modulated by the Jacobian determinant to preserve the relative 

GM volume. Images were smoothed for statistical analysis (8 mm full-width at half-

maximum [FWHM] Gaussian kernel mm). A general linear model of the GM maps was 

performed using age, sex, and total intracranial volume (TIV) as covariates to confirm the 

pattern of gray matter atrophy in this group of patients.

2.5.2 Resting state functional MRI analysis—Pre-processing of the functional 

images was performed as previously described (Mandelli et al., 2016). After discarding the 

first eight volumes of each run, functional data sets were slice-time corrected, spatially 

realigned, skull-stripped, co-registered to the structural T1-weighted image, normalized, and 

smoothed with a 6 mm full-width at half-maximum Gaussian kernel. Normalization was 

achieved by calculating the transformation parameters between the subject’s T1 anatomical 

image and the MNI T1-weighted image template and applying those parameters to the 
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functional dataset. The functional datasets were band-pass filtered (0.008 Hz < f < 0.15 Hz), 

and the nuisance variables were regressed out from the data, which included six motion 

parameters, CSF, and WM time-series as well as the first derivative and quadratic terms 

(Satterthwaite et al., 2013).

Intrinsic connectivity networks (ICNs) defined by seed ROIs in healthy 
controls: Intrinsic connectivity networks (ICNs) of interest were extracted by using a seed-

based ROI approach in 20 patients and 20 matched control subjects. The seed ROI of the 

SPN was a sphere of 4 mm radius located in the pars opercularis of the left inferior frontal 

gyrus (MNI: × = -48, y = 15, z = 23), an area identified by a previous VBM study of a group 

of mild nvfPPA patients (Clinical Dementia Rating CDR=0) as the earliest locus of atrophy 

(Mandelli et al., 2016). The patient group from this 2016 article was independent from the 

patient group in this study. The DMN seed ROI was a sphere of 4 mm radius centered in the 

precuneus (MNI: × = 2, y = -51, z = 27) (Greicius et al., 2004; Damoiseaux et al., 2006). 

The DMN was considered a reference network for this analysis.

For each subject, seed ROIs were reverse-normalized to the subject’s fMRI native space. 

Then, the average time-series was extracted from the fully processed rsfMRI images and 

used to compute the temporal correlation against all other voxels in the brain to create an r-

Pearson correlation map of each voxel’s connectivity strength to the seed ROI. The r-

Pearson correlation maps were transformed into Z-scores using Fisher’s r to Z 

transformation and then normalized to MNI space.

The ICNs were obtained at group level for both controls and patients by performing one-

sample t-tests of the Z score maps in SPM12. Age, gender, and TIV were used as covariates. 

The statistical threshold was set at P < 0.001, corrected for family wise error (FWE). The 

resulting two ICN maps (one each for the SPN and DMN) were used as masks to define the 

areas of interest for the following analysis.

2.5.3 Graph theory analysis—Graph theory analysis has recently been applied to 

neuroscientific research to describe and quantify the topology of brain network architecture. 

In graph theory, a network is modeled as a graph that is defined by nodes and edges and 

mathematically represented by adjacency matrices. Nodes are defined as cortical regions or 

signal recording sites, and edges represent the connectivity between nodes, extracted from a 

structural or functional dataset (Rubinov & Sporns 2010). In this study, we aim to represent 

the architecture of the SPN using graph theory based on functional connectivity data. This 

network is of particular interest because it is anatomically and functionally well-described 

and selectively affected in nfvPPA patients. The procedure for graph theoretical analysis of 

the functional connectivity data is described below.

2.5.3 A Graph construction: definition of nodes and edges.: Nodes were defined by 

subdividing cortical and subcortical regions of the healthy controls’ ICN maps into non-

overlapping cubes with 7 mm sides that were separated from each other by 1 mm. Edges 

were defined for each subject from the functional connectivity data represented by the Z 

score of r-Pearson correlation maps between each pair of nodes. The graphs are represented 

as adjacency matrices whose dimensions are equal to the total number of nodes. Each 
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position in the matrix corresponds to the strength of the functional connectivity between a 

pair of nodes. In order to create adjacency matrices, a thresholding method was employed. 

Different methods have been proposed in the literature: one option was to choose a relative 

threshold that identifies a certain percentage of the total number of connections for each 

subject (Tian et al., 2011; de Haan et al., 2009). This would produce the same number of 

connections for each subject, whether a patient or control. However, relative thresholds may 

obscure the differences in functional connectivity between patients and controls caused by 

disease (van Wijk et al, 2010; van den Heuvel et al., 2017). Therefore, to take into account 

this difference, we used an absolute threshold, as done in previous studies (Salvador et al., 

2005; Meunier et al., 2009; van den Heuvel et al., 2010; Agosta et al., 2013; Agosta et al., 

2014). To avoid bias toward a specific threshold, we selected a range of thresholds able to 

create a non-fragmented network with a minimum number of connections.

Once the brain graph was determined, its properties were quantified by using several 

topological measures at nodal or global level (Rubinov & Sporns 2010) over the entire range 

of chosen thresholds.

2.5.3.B Nodal measures: definition of hubs.: Some nodes in the graph have a particularly 

important role in the structural integrity or functional performance of the network. These 

nodes are called hubs. A hub’s location in a network is critical for the efficiency of 

communications between nodes, and may facilitate connections between distant brain 

regions or, more locally, within a cluster that shares the same function (van de Heuvel & 

Sporns 2013). There is no single way to define the hubs in a network. Rather, multiple 

different measures, called measures of influence, are employed (Sporns et al., 2007). The 

most common measure to define the hubs is called the nodal degree, calculated as the 

number of edges that are connected to that node. This measure is an index of connectivity of 

a node with the rest of the nodes in a network. Another measure used to define hubs is 

betweenness centrality, which calculates the fraction of all shortest paths in the network that 

pass through a given node. This measure is an index of how centrally important a particular 

node is in the network pathways (Freeman 1977). In this study, nodal degree and 

betweenness centrality were calculated for each node and then integrated with the chosen 

range of thresholds for the statistical analysis. A node was therefore defined as hub when 

any of the two nodal parameters were at least one standard deviation higher than the average 

of the corresponding measure (degree or centrality) over the entire network for either 

patients or controls (Tian et al., 2011).

2.5.3.C Global measures.: Several metrics are available to describe the global properties 

of the network. They can be divided into two main categories: measures of integration and 

segregation. These measures describe how linked nodes allow information to flow from one 

region to another and how they organize themselves in communities for specialized 

functions. Measures of integration are based on path and indicate how efficiently brain 

regions can communicate with each other. For example, the shorter the path connecting two 

nodes, the faster and more efficient the flow of information between those nodes will be. 

The average of the shortest path length between all pairs of nodes is called the characteristic 
path length of the network while the inverse average of the shortest path is known as global 
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efficiency and represents the measure of overall information transfer efficiency across the 

network. Conversely, measures of segregation are based on communities or modules (groups 

of nodes that are more densely connected to each other than to other communities). These 

metrics indicate how the network is organized into subnetworks specialized in specific tasks 

while communicating with the rest of the network. The two most common measures of 

functional segregation are modularity and cluster coefficient. Modularity is calculated by 

dividing the network into groups of nodes that are maximally intraconnected and minimally 

interconnected with the other modules (Newman 2006; Blondel et al., 2008) by using 

algorithms of optimization. High modularity implies multiple segregated communities of 

nodes within the network. Cluster coefficient is calculated as the average fraction in which 

pairs of neighboring nodes are also neighbors of each other. Essentially, it is a normalized 

measure of loops with a path length of three, or nodes that form triangles (triangular 

connectivity relationships). It quantifies cliquishness and is related to local network 

efficiency (Latora & Marchori, 2001). While modularity looks at edge densities in given 

clusters compared to edge densities between clusters, cluster coefficient measures the 

density of triangles. Another interesting global metric is assortativity. In an assortative 

network, high-degree nodes (nodes that have the highest number of connections in the 

network) tend to connect to other high-degree nodes. In a dissortative network, they are 

more likely to be connected to low degree nodes. Assortativity is a measure of robustness 

and resilience: the removal of one high-degree node can be overcome by the 

interconnectedness of the others (Newman, 2002; Newman 2003).

Global metrics can be influenced by the network’s density (the proportion of all possible 

connections present in the network), particularly when the absolute threshold is used (van 

Wijk et al., 2010). To correct for the possibility of different network densities between 

patients and controls, global metrics were normalized by dividing each metric by the mean 

across 20 random networks generated with the equivalent number of nodes, edges and 

degree distribution.

Graph analyses were conducted with GraphVar toolbox (Kruschwitz et al. 2015) on Matlab 

2013a, which includes software packages such as Brain Connectivity Toolbox (Rubinov & 

Sporns 2010). BrainNet Viewer (http://www.nitrc.org/projects/bnv/) was used for network 

visualization (Xia et al., 2013).

2.5.3.D Statistical analysis of graph measures.: Global and nodal network parameters 

were compared between the two groups for each threshold with independent t-tests. Global 

results were corrected for multiple comparisons according to the number of connectivity 

metrics tested. The threshold for significance was set at P = 0.01. Nodal metric differences 

were investigated after computing the integrated global network parameters as the 

summation over the range of thresholds chosen. Nodal metrics were also adjusted for GM 

volume at each node as a confound in the analysis. Volume intensities were extracted from 

the normalized structural T1 images. Nodal metric results were also corrected for multiple 

comparisons (False Discovery Rate or FDR).
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3. Results

3.1 Demographic and Clinical Data of nfvPPA

Demographic and clinical data of the subjects in the study are reported in Table 1. A pattern 

of speech and language deficits typical of nfvPPA was seen and all patients met nfvPPA 

criteria according to that set out in Gorno-Tempini 2011. Patients in this study had difficulty 

with syntax in a task designed to test comprehension of a range of syntactical structures, 

such as passive and active sentences. Patients also demonstrated motor speech patterns 

consistent with apraxia of speech and/or dysarthria, according to a speech pathologist 

performing a motor speech evaluation. Single word comprehension and object knowledge 

were spared, as tested in the Pyramids and Palm Trees Picture Test and oral picture 

descriptions. This group of patients was in the milder range of symptom progression, with a 

CDR of 0–1. Nevertheless, nineteen of the twenty patients had motor speech difficulties, 

mostly with mild to moderate apraxia of speech. All of the patients displayed simplified 

syntax in syntax production tasks or impaired comprehension of complex syntactical 

structures.

The pattern of atrophy was present in the left IFG, SMC, supramarginal gyrus, insula, and 

striatum and also in the right IFG, at a threshold of P < 0.05 corrected for FWE, in nfvPPA 

compared to controls in line with previous studies (Supplementary Figure 1). These are the 

regions of the SPN known to be atrophic in nfvPPA (Grossman et al., 1996; Nestor et al., 

2003; Gorno-Tempini et al., 2006).

3.2 Intrinsic Connectivity Networks in healthy controls

ICN maps of the SPN and DMN were obtained from the group of healthy subjects and 

patients. As in our previous paper (Mandelli et al., 2016), the SPN involved brain regions of 

the left hemisphere including the IFG (opercularis and triangularis), the middle and superior 

frontal gyri, the precentral cortex, the SMC, the inferior parietal regions (supramarginal and 

angular gyri), superior parietal areas, the middle/inferior temporal gyrus, the anterior dorsal 

insula, and the striatum. Regions in the right hemisphere were also involved: IFG, SMC, 

inferior parietal lobe, caudate and the inferior temporal gyrus (Figure 1). According to the 

literature and our previous publication, the DMN involves the medial prefrontal and orbital 

cortices, the posterior cingulate cortex, the angular gyrus, and the medial temporal lobe 

(Greicius et al., 2004; Damoiseaux et al., 2006).

3.3 Graph Theory Analysis and Network Parameters

The spatial parcellation of the SPN resulted in 110 cortical and sub-cortical non-overlapping 

nodes, while the parcellation of the DMN produced 146 nodes. Adjacency matrices were 

obtained from the Z score maps of functional connectivity for each pair of nodes within the 

network and for each subject in both groups. For the patient group, the chosen thresholds 

varied over a range from 40% to 70% of connections in order to make the SPN and DMN 

comparable. This resulted in a range of thresholds from 0.1 to 0.3 for the SPN and from 0.2 

to 0.4 for the DMN.
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3.3.1 Hub organization within the speech production network.—SPN hubs in 

healthy controls were mainly left lateralized, and localized in the posterior and superior 

portion of the IFG opercularis, the precentral gyrus, the inferior and superior parietal lobe, 

the SMC, and posterior temporal regions (Supplementary Figure 2A). SPN hubs in nfvPPA 

were distributed more anteriorly in the left IFG and MFG and in the right IFG and MFG 

with greater loss of hubs in the parietal regions and SMC (Supplementary Figure 2B). 

Differences in the distribution of hubs in nfvPPA compared to controls are shown in Figure 

2. For each of these hubs that were lost or new in nfvPPA, we calculated the Z score of GM 

volume and nodal metrics in the patient group. We then performed a two-sample t-test (one 

for each metric) between the average Z-scored metric in the lost hubs vs. the new ones. This 

analysis has been performed to understand if the different distribution of hubs was driven by 

the loss of volume. We found a significant decrease of the nodal degree in the lost hubs 

(P<0.000, Effect size = 1.6) and an increase of betweenness centrality (P<0.000, Effect size 

= 3.4) in the new hubs. No difference was observed in GM volume (P=0.5, Effect size = 0.2) 

(Figure 3).

Additional t-test statistical analyses of nodal degree and BC were performed for each hub 

between controls and patients and reported in Supplementary Table 1. We observed a 

significant decrease of nodal degree in the hubs lost in nfvPPA and a trend of increase of 

betweenness centrality in the new hubs. Significances survived after multiple comparisons 

correction (FDR) and after controlling for local gray matter volume (gray matter volume of 

the cube for each node was added as a covariate).

Unlike the SPN, the DMN hubs were distributed in a similar architecture for patients and 

controls: they were located bilaterally in the frontal pole, precuneus, posterior cingulate and 

paracingulate, lateral occipital lobe, and the right angular gyrus. No significant differences 

were found in local metrics (Supplementary Figure 3).

3.3.2 Post-hoc analysis: Recalculation of hubs in healthy controls.—To test 

whether there was an underlying topological difference unique to nfvPPA, we simulated the 

damaged SPN of patients in controls. To this end, we subtracted the damaged hubs in the 

patients’ SPN from the SPN of the healthy controls and recalculated the distribution of hubs. 

We assumed that hubs lost by nfvPPA patients would create similar disruption when 

subtracted from the healthy SPN network. We found that the recalculated location of hubs in 

the control group resembled those found in the diseased brain, with hubs located in the more 

anterior left IFG and the right pars opercularis of IFG, right MFG and the right SPL 

(Supplementary Figure 4).

3.3.3 Post-hoc analysis: Correlation analysis in the right hemisphere with 
Rule Violation errors.—As a post-hoc analysis, we sought to better understand the 

impact of the right hemisphere nodes that became hubs in the altered network of nfvPPA. 

We analyzed Rule Violation (RV) errors from the Delis-Kaplan Executive Function System 

(Delis et al., 2001). Rule Violation errors represent responses that violated the explicit rules 

of each paradigm and they have been previously shown to be associated with frontal regions 

in the right hemisphere (Possin et al., 2009). These errors included failure to shift errors in 

Trail Making Number-Letter Switching, set-loss errors in Letter Fluency (FAS) or set-loss 
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errors in Design Fluency Filled, Empty, and Switching conditions. The average number of 

errors across the subtests available was used to define the number of RV errors for each 

subject. This RV scale was available in 18 patients out of 20. We performed correlation 

analyses between the nodal metrics in the hubs of the right hemisphere and the functional 

connectivity (FC) within the SPN’s hubs and the Rule Violation errors in the patients’ 

executive function testing. We found a significant negative correlation (r = - 0.47, p<0.05) 

between the average number of RV errors and the FC of the newly recruited hub in the right 

opIFG with the left opIFG (Figure 4). Although the results were not corrected for multiple 

comparisons, this was the only significant correlation found among all hubs. No significant 

correlation was found with volume loss, or nodal metrics within these nodes. We then 

created a composite speech production (SP) score, including the weighted average of the 

WAB Spontaneous Speech rating and severity scores for Apraxia of Speech and Dysarthria 

from the Motor Speech Evaluation (Wertz et al. 1984) as described in Mandelli et al., 2014. 

We correlated the SP score with the FC of the left IFG (epicenter) that was lost in nfvPPA 

with the other SPN hubs. We found a significant positive correlation within the left 

hemisphere (r = 0.6, P<0.001) (Figure 4). No significance was found in the right 

hemisphere.

3.3.4 Global measures of the networks.—Within the chosen range of thresholds, the 

patients’ SPN network density was significantly decreased compared to controls. In fact, all 

the normalized global measures were altered in the nfvPPA SPN compared to controls 

(Supplementary Table 2). Global efficiency and assortativity were significantly decreased, 

characteristic path length, cluster coefficient, and modularity increased, although the latter 

didn’t survive after multiple comparisons correction across the entire range of thresholds. 

Due to the significantly different density metrics in patients compared to controls, we 

investigated whether there was a two-way interaction between group and density by using an 

analysis of variance (R packages, https://cran.r-project.org/). This interaction was not 

significant between group and density, which indicates that the group effect on the 

connectivity metrics is not influenced by differences in network density between the two 

cohorts. Supplementary Table 2 lists the statistical significance of the main effects for each 

of the thresholds and connectivity metrics.

Most global metrics of the DMN did not show any significant differences between controls 

and patients, whether for density or normalized metrics (Supplementary Table 3). One 

exception was the characteristic path length, which showed a trend toward significance that 

did not survive correction for multiple comparisons.

Network density and selected normalized global metrics are displayed in Figure 5, with 

different thresholds for each network in the two cohorts.

4. Discussion

This study provides new evidence for altered organization within the speech production 

network in nfvPPA using graph theoretical analysis. Hubs were lost in left-hemisphere 

regions most affected by the disease, and additional hubs were recruited more anteriorly 

within the left frontal regions and in the right hemisphere. Behaviorally, speech production 
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and rule violation errors correlated with functional connectivity strength in the left and right 

hemisphere respectively. Global network metrics characterized the SPN as more segregated 

and less efficiently wired in nfvPPA than in the healthy brain. These changes were specific 

to the SPN and did not occur in the DMN used as reference network.

Distribution of hubs and nodal metrics within the speech production network

In this study, we showed that the nfvPPA group presented a different configuration of hubs 

in the SPN compared to controls. The SPN of nfvPPA patients lost some critical nodes in the 

left parietal regions and in the SMC but also presented alternative hubs that were located 

more anteriorly to the IFG pars opercularis, in the MFG and in the right side of the brain 

(Figure 2). These differences were specific to the SPN and did not occur in the DMN. We 

also simulated the hub damage in healthy subjects. We found that the set of nodes that were 

designated as hubs had a similar configuration between controls and patients 

(Supplementary Figure 3).

Together, these graph theory analyses highlight the importance of understanding the specific 

drivers of hub loss and gain, in addition to measuring structural or functional changes in the 

context of neurodegenerative disease. In this study, the hub alterations were best explained 

by decreases in nodal degree for the lost hubs, and increases in betweenness centrality for 

the gained hubs (Figure 3). This change in hub configuration was not consistent with 

decreases in gray matter volume in the site where hubs were lost or gained. In other words, 

the graph theoretical alterations in the network were better accounted for by functional 

rather than structural changes.

Indeed, the loss of functional connectivity in left frontal regions was associated with 

impairments in speech production, while higher functional connectivity to right frontal 

regions was associated with better behavioral monitoring (fewer Rule Violation errors) 

(Figure 4). These behaviors were not correlated with volume changes in the corresponding 

hubs. This is consistent with previous literature suggesting that damage to hubs causes 

particularly severe functional impairment due to their critical role in integrative brain 

processing (Buckner et al., 2009; Brier et al., 2014; Mattson et al., 2016). For example, in 

Alzheimer’s disease, the aggregation of Aβ seems to be driven by the level of neuronal 

activity of the cortical hubs, suggesting that the connectivity properties of neuronal 

subpopulations may play a role in determining their intrinsic sensitivity to stress (Mattson et 

al., 2016).

The pathogenesis underlying neurodegenerative disease is accompanied by a series of 

pathophysiological events such as axonal degeneration, synapse loss, dendritic retraction 

(Sweeney, et al., 2018; Yates, 2012) and the propagation of misfolded proteins (Raj et al., 

2012; Yates, 2012). These events impact structural and functional properties to different 

extents in different regions. Indeed, focal atrophy can be accompanied by hypo- or hyper-

connectivity within and across networks, depending on the organization of global and local 

connections (Dickerson & Sperling, 2009, Pasquini et al., 2015, García-Cordero et al., 

2015). Pathogenesis might disrupt network integrity in many ways, such as reducing 

network efficiency, altering the balance between damaged and spared networks and/or 

activating compensatory mechanisms (Pievani, et al., 2014; Tahmasian et al., 2016).
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Our findings suggest that focal atrophy in nfvPPA has an impact at the network level by 

altering the functional connectivity within the regions.

In a recent study from our group, we showed that damage in nfvPPA originated from a 

vulnerable region of the brain, called the epicenter. In nfvPPA, the epicenter is the pars 

opercularis of the IFG. The damage then spreads in a predictable pattern to functionally and 

structurally connected regions, according to the strength of connectivity in the healthy brain 

network (Mandelli et al., 2016). The findings in the current study are consistent with this 

previous data: regions most connected to the disease epicenter experienced the greatest loss 

of connections in the diseased brain and, therefore, lost their critical role in information 

processing and their status as hubs. Specifically, the disease epicenter of the IFG pars 

opercularis is functionally and structurally connected to the SMC through the aslant tract 

and to the SMG through the superior longitudinal fasciculus, and disease spreads through 

these pathways (Whitwell et al., 2010; Galantucci et al., 2011; Grossman, 2012; Grossman 

et al., 2013; Mahoney et al., 2013; Schwindt et al., 2013; Mandelli et al., 2014). These 

regions (SMC and SMG) consistently experienced the greatest hub loss in this study. When 

epicenter regions and their connections are targeted by disease, other functionally connected 

regions that are less compromised within the same network may become critical sites, at 

least relatively. Overall, these findings suggest that in nfvPPA, the damaged network tends 

towards a more modular organization.

Increased functional segregation in the speech production network

In the SPN of nfvPPA, we found a significant increase of cluster coefficient and a trend 

towards increased modularity, after normalization with random networks. Cluster coefficient 

computes how strongly inter-connected neighboring nodes are to one another, thus reflecting 

the local efficiency with which information is transferred within a network (Bullmore & 

Sporns 2009). Modularity implies a set of nodes whose connections with each other are 

much stronger than their connections to nodes in different modules, thus quantifying the 

degree to which a network may be subdivided into different modules. Our results suggest 

that within this network, communities of nodes experienced an abnormal increase in local 

connectivity, with an inclination to segregate into sparsely organized, smaller communities. 

However, in this study, an increase in modularity did not achieve statistical significance, and 

we speculate that this could be related to the focality of this disease at an early stage. In the 

healthy brain, network modularity could allow regions to specialize in specific functions but 

may also be protective in the neurodegenerative brain by preventing early propagation of 

perturbation through the system and inhibiting cascading failure (Buldyrev et al., 2010; 

Fornito et al., 2015). Indeed, this appears to be the case for nfvPPA. We showed that in the 

early stages of the disease damage was initially relatively specific to the SPN network. This 

same disease process spared the DMN.

Decreased functional integration and resilience in the speech production network

In the nfvPPA-affected SPN, we found a significant increase in the characteristic path length 

and a consequent decrease in global efficiency. We also found a decrease in assortativity. 

These results suggest that the flow of information was compromised and that global 

integration across distant regions and modules became less efficient. Because some 
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pathways in the network were disrupted, the neuronal signal needed to rely on longer routes, 

with a consequent efficiency cost. Moreover, the decrease of assortativity suggests that in the 

degenerating SPN, nodes of high degree tend to connect with nodes of low degree, instead of 

linking with nodes of similar degree. This could be interpreted as an attempt to recruit 

lower-degree nodes when higher-degree nodes start to be affected by the disease.

Limitations of the study

The application of graph theory to describe neurobiological processes is a new field with 

limited methodological consensus, in particular on optimal network construction and graph 

theoretical parameters (Zalesky et al. 2010, Fornito et al., 2010; Wig et al., 2011; Smith et 

al., 2011; Craddock et al., 2012; Van Essen et al., 2012; Garrison et al., 2015). Additionally, 

our analysis was limited to only two networks known to be involved in specific 

neurodegenerative diseases, and they were studied independently. Further studies, especially 

longitudinal ones, are needed to model the spatial and temporal dimension of the functional 

networks. Very few studies have attempted to approach this phenomenon (Hutchison et al., 

2013; Hansen et al., 2015).

Conclusion

We used graph theory analysis of resting-state fMRI data to demonstrate altered topology in 

the SPN in nfvPPA. The nfvPPA network became more segregated and less efficient, 

globally and locally. These changes were network-specific and did not occur in the DMN, 

supporting the hypothesis of selective network vulnerability. Graph theoretical analyses are 

particularly valuable in studying neurodegenerative diseases because functional and 

structural connections may react differently to pathogenesis at a network level. Global and 

local metrics can also provide specific characterizations of disease progression (Bullmore & 

Sporns 2009; Fornito et al., 2015) and may offer viable biomarkers for future behavioral and 

pharmaceutical interventions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Statistical parametric maps of functional connectivity of the SPN in a group of healthy 

controls with seed-ROI in the left pars opercularis of IFG (P<0.001 FWE)

Mandelli et al. Page 19

Cortex. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
Difference in the distribution of hubs in the SPN for the group of nfvPPA patients. The lost 

hubs (light blue) and new hubs (dark red) are displayed respect the distribution of the 

healthy control group.
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Figure 3: 
The Z scores of the structural (GM volume) and nodal metrics (nodal degree and 

betweenness centrality) of the lost and new hubs in nfvPPA were calculated and displayed. 

The size of the sphere is proportional to: A) gray matter volume loss (bigger spheres = 

greater volume loss; B) decrease in nodal degree (bigger spheres = greater loss in number of 

connections); C) increase in betweenness (bigger spheres = higher value of betweenness 

centrality). As the figure suggests, the blue spheres (lost hubs in nfvPPA) have greater loss 

of degree while the red ones (new hubs in nfvPPA) have an increase of betweenness 

centrality. These differences were statistically significant between the group of lost and new 

hubs in patients. On the contrary there were not differences in volume between lost and 

gained hubs in nfvPPA.
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Figure 4: 
Pair-wise correlations between hubs functional connectivity (FC) and cognitive measures in 

nfvPPA. A) The correlation between the FC with the left IFG and all the lost and new hubs 

in nfvPPA showed a significant positive association with the composite speech production 

(SP) score that indicates higher FC associated with better speech production performance. 

B) The correlation between the FC with the right IFG and all the lost and new hubs in 

nfvPPA showed a significant negative association with the number of RV errors that 

indicates higher FC associated with fewer numbers of errors.
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Figure 5: 
Error bar plots of normalized global network parameters for the healthy controls (blue) and 

nfvPPA patients (red) for both speech production and default mode networks across the 

range of chosen thresholds. The red star indicated significant different between the two 

groups over the entire range of thresholds.
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Table 1.

Demographic and cognitive evaluation

NfvPPA
(n=20)

Cognitive Controls (n=20)

Age 68.8 (7.3) 68.6 (6.0)

Gender (F/M) 9/11 9/11

Handedness (R/Other) 17/3 15/4^

Education 18.2 (3.6) 16.9 (2.4)

Disease duration 3.57 (1.43) N/A

MMSE (30) 26.2 (3.7)* 29.1 (1.5)

CDR Total 0.55 (0.2) N/A

Visuospatial function

Benson copy (17) 14.7 (1.7)* 15.9 (1.2)

Memory

Benson delay (17) 10.2 (2.9)* 12.9 (2.0)

CVLT-SF 10 min (9) 4.55 (2.8) * 7.3 (1.9)

CVLT-SF recognition 7.5 (2.6) 8.5 (0.8)

Executive function

Digit span backwards 3.6 (1.4)* 5.4 (1.5)

Modified Trails (lines /sec) 0.25 (0.2)* 0.6 (0.2)

Language

Boston Naming Test (15) 10.5 (2.9)* 14.5 (0.8)

Phonemic Fluency 5.7 (3.0)* 15.2 (4.7)

Semantic Fluency 9.8 (4.8)* 23.0 (4.6)

Speech Fluency (WAB, 10) 6.9 (2.1)* 10 (0)

Repetition (WAB, 100) 84.6 (15.6)* 100 (0)

Word recognition (WAB, 60) 59.3 (1.7) 60 (0)

Sequential Commands (WAB, 80) 71.9 (9.2)* 80 (0)

AOS (MSE, 7 max) 2.5 (1.5)* 0 (0)

Dysarthria (MSE, 7) 1.7 (1.9)* 0 (0)

Syntax Comprehension (100) 94.6(5.8)* 100(0)

PPTP (52) 47.4 (6.3) 51 (0.8)

*
p <.05 patients vs controls.

^
Handedness was unknown for one participant.

MMSE = mini-mental state examination, CDR = clinical dementia rating, CVLT-MS = California Verbal Learning Test – Short Form, WAB = 
Western Aphasia Battery, MSE = Motor Speech Evaluation; AOS = apraxia of speech, PPTP = pyramids and palm trees test pictures. ^ 3 missing
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