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Effects of translation inhibitors and compromised guide RNAs in 

eukaryotic cells: indirectly and directly impinging on transcription 

Daniel A. Santos 

Abstract 

The flow of genetic information through transcription and translation—known as the 

central dogma of biology—enables all aspects of life, from the response of a solitary yeast cell to an 

environmental stimulus, to the intricate choreography guiding development of a single-celled zygote 

into a complex organism with functionally distinct tissues. Recent technological advances have 

provided tools to observe and/or perturb molecular processes underlying the central dogma with 

unprecedented resolution and precision. In this dissertation, I describe two cases where such tools 

were used to study and manipulate gene expression in eukaryotic cells.  

First, I show that in budding yeast, under nutrient limiting conditions, the commonly used 

translation inhibitor cycloheximide induces rapid transcriptional upregulation of hundreds of genes 

involved in ribosome biogenesis. This generates a large pool of mRNAs that cannot be translated due 

to the presence of the inhibitor, leading to the appearance of strong translational regulation. This 

work provides a novel mechanistic interpretation for perplexing reports in the translation field, and 

hopefully serves to guide experimental design moving forward. 

Second, I describe the development of allelic series of systematically compromised sgRNAs to 

titrate expression of human genes with CRISPR interference. Large-scale measurements of 

compromised sgRNA activities enable identification of empirically validated intermediate-activity 

sgRNAs and determination of the factors governing sgRNA activity using deep learning, facilitating 
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construction of a compact sgRNA library to titrate expression of ~2,400 essential genes and a 

genome-wide in silico library. Staging cells along a continuum of essential gene expression levels 

using sgRNA series combined with rich single-cell RNA-seq readout reveals expression threshold-

specific responses and gene-specific expression-to-phenotype relationships, thus highlighting such 

reagents as a general tool to titrate the expression of human genes, with potential applications 

ranging from tuning of biochemical pathways to identification of suppressors for diseases of 

dysregulated gene expression. 
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Introduction 
 

  



 2 

During my time in graduate school, when someone would ask me what our lab works on, it 

was always difficult to offer a succinct response. While this partly stemmed from my tendency 

toward long-windedness, the reality is that the Weissman lab is continually evolving and expanding 

into new scientific frontiers. I like the way Jonathan framed this once: we are both explorers and 

engineers; we can see that there are interesting canyons in the distance, but in order to get there we 

first need to figure out how to build a suspension bridge. Although the lab has never strayed too far 

from a core interest in protein homeostasis, this explorer philosophy has taken the lab through 

various stages, shining spotlights in different corners of biology. I joined the lab during a transition 

of sorts, a few years after the development of ribosome profiling for monitoring translation in cells 

(1, 2), and right as the potential for CRISPR-based systems to precisely edit and perturb mammalian 

genomes was more fully being realized (3). This timing turned out to be fortuitous, ultimately 

allowing me to work on two distinct projects in areas spanning a decade of the lab’s interests. 

The first project was spawned from my rotation, when I attempted to leverage the principles 

uncovered by Gene-Wei Li et al. around proportional synthesis of multi-subunit complexes (4) to 

discover novel protein-protein interactions, and perhaps more interestingly, novel “moonlighting” 

functions of super-stoichiometric proteins. This effort entailed a great deal of ribosome profiling to 

determine protein synthesis rates, and for a subset of those samples we included RNA-seq to enable 

calculation of translation efficiencies (or, the mean number of ribosomes per mRNA molecule for a 

given gene, in a given condition). We were surprised to discover that for hundreds of functionally 

related genes, translation efficiencies appeared to be dynamically changing by 10-fold or more 

throughout several growth conditions including the yeast metabolic cycle (5), representing a 

potentially pervasive and unusual regulatory strategy. After spending much time attempting to build 
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a complicated translation reporter system to uncover the mechanism of this regulation, I realized that 

the degree to which translation appeared to be repressed was a function of the translation inhibitor 

concentration used to treat yeast cells, and follow-up experiments clearly showed how the apparent 

translational repression was merely a transcriptional artifact of using this particular drug. The 

disappointment of losing the trail of this illusory regulatory mechanism, however, quickly gave way 

to the realization that I now had an opportunity to write a cautionary tale that would be important 

for the translation community (6), as well as freedom to work on new things. 

As it happens, while my translation project was winding down, Marco Jost had a new project 

(or two) ramping up, and consequently less time to devote to his ongoing exploration of the effects 

of systematically compromised single guide RNAs (sgRNAs) in CRISPRi (7) systems.  Our lab and 

others previously established that mismatches in sgRNAs have differential effects on Cas9 (or its 

nuclease-dead counterpart, dCas9) activity (8–11), and Marco had set out both to learn the 

relationships between specific mismatches and their resulting activities, and to utilize this knowledge 

to build a tool enabling precise tuning of gene expression levels. When I came on board, Marco had 

laid the groundwork for using computational approaches to predict how much a given mutation 

would compromise sgRNA function, and this served as my first foray into the worlds of machine 

learning and mammalian cell biology. The CRISPR screening approaches we used in this project had 

already become bread-and-butter methodologies for Weissman lab, and I was lucky to learn them in-

house. Beyond providing an opportunity to gain technical know-how, the collaborative and 

intellectual aspects of this project were immensely gratifying, especially considering the potential 

applications this tool has for basic biological as well as biomedical studies. I look forward to seeing 

where this bridge takes us. 
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Cycloheximide can distort measurements of mRNA levels 
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Introduction 

The development of ribosome profiling has broadly enabled genome-wide analyses of active 

translation in vivo (1). The technique is based on deep sequencing of ribosome-protected mRNA 

fragments, or ribosome footprints, providing a quantitative snapshot of ribosome positions along 

mRNAs at single nucleotide resolution. When combined with traditional RNA-seq, it is possible to 

determine the ratio of ribosome footprints to the number of mRNA molecules for a given gene, 

thereby providing a measure of translation efficiency (TE) for that gene. In contrast to absolute 

measures of translation rates provided by ribosome profiling, TE measurements require accurate 

quantitation of both translation rates and mRNA abundances. TE is partially governed by intrinsic 

features of an mRNA such as its sequence and structure (2), but TE can also vary dynamically as a 

regulatory strategy. Two notable examples in budding yeast are the transcription factors Hac1 and 

Gcn4, whose mRNAs rapidly transition from low to high TE states when cells encounter specific 

stresses. Interestingly, the mechanisms driving the TE switch for these factors are completely distinct: 

HAC1 mRNA is spliced by the ER-resident protein Ire1 to remove inhibitory secondary structures 

during the unfolded protein response (3), and GCN4 utilizes a series of short upstream open reading 

frames (uORFs) in its 5′ untranslated region (UTR) that sequester ribosomes away from the main 

ORF in the absence of stress-induced eIF2α phosphorylation (4). 

While these well-studied examples highlight the complexities of translational regulation, 

other instances of dynamic TE switching remain poorly understood. We initially set out to identify 

and characterize TE regulation during the yeast metabolic cycle (YMC), a process involving 

synchronized growth with well-established, coordinated gene expression changes. The YMC is 

initiated by culturing Saccharomyces cerevisiae in a chemostat with limiting glucose to control growth 
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rate and maintain constant culture density. Under these conditions, cells grow and divide in sync, 

and a redox cycle is established with periodic bursts of respiration resulting in abrupt decreases in 

dissolved oxygen (5). Gene expression profiling has identified three distinct phases of gene expression 

as part of this cycle—termed the Reductive Building (RB), Reductive Charging (RC), and Oxidative 

(OX) phases—with greater than 50% of the overall transcriptome exhibiting variable expression (6). 

Using ribosome profiling and RNA-seq, we observed that the majority of genes involved in 

ribosome biogenesis (commonly referred to as ribi genes (7)) appear to dynamically shift their TE 

state between the RC and OX phases of the metabolic cycle. Moreover, analysis of previous 

ribosome profiling studies suggests similarly large TE changes for ribi genes during amino acid 

starvation (8) and meiosis (9), initially suggesting a shared mechanism. However, these experiments 

were all conducted by treating cells with the translation elongation inhibitor cycloheximide (CHX) 

prior to harvesting, and upon repeating the amino acid starvation experiment without CHX, we 

show that TEs of ribi genes remain unchanged. We additionally demonstrate that CHX causes rapid 

accumulation of ribi transcripts in a TORC1-dependent manner, and the magnitude of the response 

to CHX depends on strain genotype and the choice of drug vehicle. Thus, CHX distorts measures of 

TE by causing rapid transcriptional changes which creates a new pool of untranslated mRNAs. 

These results underscore the caution that needs to be taken when using CHX as an experimental 

tool. 
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Materials and Methods 

Yeast strains and media 

For the Yeast Metabolic Cycle, cells were continuously cultured in a minimal medium 

consisting of 5 g/l (NH4)2SO4, 2 g/l KH2PO4, 0.5 g/l MgSO4·7H2O, 0.1 g/l CaCl2·2H2O, 0.02 g/l 

FeSO4·7H2O, 0.01 g/l ZnSO4·7H2O, 0.005 g/l CuSO4·5H2O, 0.001 g/l MnCl2·4H2O, 1 g/l yeast 

extract, 10 g/l glucose, 0.5 ml/l 70% (vol/vol) H2SO4, and 0.5 ml/l Antifoam 204 (Sigma). For 

batch growth experiments, cells were grown in Synthetic Defined (SD) medium (Difco yeast 

nitrogen base and 2% glucose supplemented with amino acids [RDHILKMFTWYV], uracil, and 

adenine; or without supplementation for starvation experiments). The prototrophic S. cerevisiae 

strain CEN.PK was used for the YMC experiment. Unless otherwise stated, all other experiments 

utilized the strain BY4741, or derivatives thereof. Genomic knock-ins and knock-outs were 

generated using standard techniques (10). The NOP2 coding sequence was replaced with the 

homologous sequence from Kluyveromyces lactis using the URA3 pop-in/pop-out method, resulting 

in a marker-less strain with endogenous NOP2 regulatory sequences. Plasmids carrying the 

promoter-gene hybrid reporters were generated using Gibson assembly (11), and the resulting 

expression cassettes were PCR-amplified and inserted at the dispensable YHRCdelta14 LTR locus 

(12). Ribi transcription factors were C-terminally tagged with EGFP, and histone H2B was C-

terminally tagged with mRuby2 (13). Strains, plasmids, and oligonucleotides used in this study are 

listed in Supplementary Tables S2.1-S2.3. 
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Yeast Metabolic Cycle 

A continuous culture of CEN.PK was established in a chemostat as previously described 

(14). Metabolic cycles were monitored using a dO2 probe, and 16 time points were chosen spanning 

a single cycle. At each time point, 20 ml of culture was mixed with 40 µl of a 50 mg/ml 

cycloheximide stock (in 100% ethanol), for a 100 µg/ml final concentration. The culture was shaken 

for 2 min, then centrifuged for 2 min at 4,000 ´ g. The cell pellet was then re-suspended in ice-cold 

lysis buffer (20 mM Tris pH 8, 140 mM KCl, 5 mM MgCl2, 1 mM DTT, 100 µg/ml 

cycloheximide, 1% Triton X-100, and 0.025 U/µl Turbo DNase) and dripped into liquid nitrogen 

(ℓN2). Frozen droplets were stored at -80 °C until further processing  

 

Amino acid starvation 

Cells were grown overnight at 30 °C to saturation in SD, and then diluted to OD600 < 0.1 in 

fresh SD medium. Cultures were incubated with vigorous shaking until the OD reached 0.4-0.6, 

and then half of the culture was centrifuged for 3 min at 3200 ´ g. The pellet was re-suspended in 

prewarmed SD medium lacking amino acids, and cells were shaken for an additional 20 min. CHX 

was then added at a final concentration of 100 µg/ml (for the matched replete sample, CHX was 

added to the remaining half of the culture that was not starved), and cultures were shaken for an 

additional 2 min before centrifuging for 3 min at 3200 ´ g. Pellets were re-suspended in ice-cold 

lysis buffer and frozen drop-wise in ℓN2 as described for the YMC.  

For experiments without CHX pretreatment, 20 min-starved (or replete) cultures were 

transferred to a vacuum filtration apparatus and cells were collected on a 0.45 µm cellulose nitrate 
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membrane (Whatman). Cells were then quickly scraped from the membrane with a metal spatula 

and immediately plunged into ℓN2. Frozen cells were stored at -80 °C until further processing. 

 

Ribosome profiling and RNA-seq 

Cells plus lysis buffer were cryogenically pulverized in a SPEX 6870 Freezer/Mill for 1 min 

at 15 cycles per min (for vacuum-filtered samples, frozen droplets of lysis buffer were added to the 

cells). The lysate powder was thawed and immediately clarified by two sequential centrifugation 

steps at 4 °C: first for 5 min at 3,000 ´ g, and then for 10 min at 20,000 ´ g.  

Ribosome footprinting and library generation were carried out essentially as described in 

(15). RNA fragments from ~26-34 nt were selected following RNase I digestion and PAGE 

separation. Barcode sequences were included on 3′ cloning linkers, and samples with unique 

barcodes were pooled together post-ligation when possible. A dual rRNA depletion strategy was 

employed, first with Ribo-Zero Gold for Yeast (Illumina), and then with biotinylated antisense 

oligos against rRNA species that co-migrate with ribosome footprints as described in (9).  

For RNA-seq, RNA was first purified from clarified lysates using TRIzol (Invitrogen) and 

then rRNA was removed using Ribo-Zero Gold for Yeast. rRNA-depleted RNA was used to generate 

TruSeq Stranded libraries (Illumina) per the manufacturer’s protocol. Ribosome profiling and RNA-

seq libraries were sequenced on an Illumina HiSeq 4000 in single read 50-base mode. Each set of 

matched ribosome profiling and RNA-seq data is derived from a single biological sample. 
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Sequencing Data Analysis 

For ribosome profiling libraries generated in this study, linker sequences were removed from 

sequencing reads and samples were de-multiplexed using FASTX-clipper and -barcode splitter, 

respectively (http://hannonlab.cshl.edu/fastx_toolkit/). Unique molecular identifiers and sample 

barcodes were then removed from reads using a custom Python script. Bowtie v1.1.2 (http://bowtie-

bio.sourceforge.net/) was used to filter out reads aligning to rRNAs and tRNAs, and all surviving 

reads were aligned to the S. cerevisiae genome using tophat v2.1.1 

(https://ccb.jhu.edu/software/tophat/). Counts per gene and normalized counts per gene (in reads 

per kilobase per million mapped reads, or RPKM) were calculated using the plastid cs program (16), 

with counts assigned to ribosomal P-sites determined by plastid’s psite program. Regions of the yeast 

genome that could not be uniquely mapped from a 26-base read with 2 mismatches were identified 

using plastid’s crossmap program, and these regions, along with the first 30 and last 5 codons of each 

coding sequence (CDS), were masked from RPKM calculations (for some analyses, cytoplasmic 

ribosomal protein abundances were separately quantified without crossmap masks, since most of 

these genes have nearly identical paralogs in S. cerevisiae). RNA-seq data were processed in the same 

manner, except reads first had to be reverse-complemented due to the TruSeq Stranded chemistry, 

and counts were assigned to the 5′-most aligned base. For viewing alignments, wiggle files were 

generated from genome alignments using plastid’s make_wiggle program, and data were visualized in 

the IGV browser (http://software.broadinstitute.org/software/igv/). 

For genes to be included in downstream analyses, they were required to have at least 128 

mRNA counts (or 32 mRNA counts for the meiosis data from (9)) and at least 1 footprint count in 

the CDS. Genes listed as dubious ORFs in the Saccharomyces Genome Database (SGD, 
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https://www.yeastgenome.org/) were not considered for analysis. Translation efficiencies were 

calculated for each gene by dividing the CDS footprint RPKM by the CDS mRNA RPKM, and fold 

changes in mRNA abundance and TE were normalized to set the median fold change of all genes to 

1. Ribosome biogenesis factors were defined as non-ribosomal proteins annotated as “ribosomal 

small subunit biogenesis” or “ribosomal large subunit biogenesis” in the SGD Go Slim database. 

Data were analyzed and plotted using Pandas, Matplotlib, and Seaborn python libraries. 

 

RT-qPCR 

Amino acid starvation was carried out as described for ribosome profiling libraries, except 

cells were mock-treated with vehicle (ethanol or DMSO) in the no-CHX samples. Cells were 

harvested prior to adding CHX, and then 3, 6, and 9 min post-CHX by centrifuging 1 ml for 20 s at 

11,000 ´ g. After aspirating the supernatant, cell pellets were immediately frozen in ℓN2, and RNA 

was purified by phenol-chloroform extraction and ethanol precipitation (17). Residual genomic 

DNA was degraded using a TURBO DNA-free kit (Ambion). Oligo(dT) primers were annealed to 

mRNA, and cDNA was generated using AMV reverse transcriptase (Promega). NOP2 and ACT1 

(nucleolar protein 2, ribi gene; actin, housekeeping reference) cDNAs were quantified on a Roche 

LightCycler 480 instrument using GoTaq (Promega) PCR reactions containing SYBR Green (Life 

Technologies), and relative abundances were calculated using the 2-ΔΔCT method (18). The starvation 

plus rapamycin experiment was conducted as described above, except cells were incubated for 20 

min in starvation medium containing 200 nM rapamycin (Sigma) or vehicle (DMSO) prior to 

adding CHX. All qPCR experiments were conducted with technical triplicates. 
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Time Lapse Fluorescence Microscopy 

Cells containing RFP-tagged histones and GFP-tagged ribi transcription factors were grown 

to OD600 0.5-0.7 in SD medium and loaded into a CellASIC ONYX multi-chamber microfluidic 

plate for haploid yeast (Millipore). The growth chamber was perfused with SD medium at 10.8 kPa 

for 15 min, and then the media source was switched to SD lacking amino acids. Following 15 min 

of starvation the media was again switched to SD lacking amino acids plus 100 µg/ml CHX. 

Variations of the above scheme were also used to assess (i) the response to 200 nM rapamycin in the 

starvation medium, (ii) the response when CHX is not added after 20 min of starvation, and (iii) the 

baseline response to switching between replete media sources. For each strain/condition, two fields 

of view were imaged every 5 min on an inverted Nikon Ti microscope with a 40x objective 

(brightfield, GFP, and mCherry channels). The plate was maintained at 30 °C during image 

acquisition. For rapamycin experiments without microfluidics, cells were transferred to glass-

bottomed wells coated with Concanavalin A and allowed to settle for 5 min. Wells were then washed 

twice with the appropriate medium to remove non-adhered cells, and images were acquired as 

described above. 

 

Image Analysis 

The ratio of nuclear to cytoplasmic GFP-tagged transcription factors was determined using 

CellProfiler 3.1.5 (http://cellprofiler.org/). Nuclei were initially detected based on HTB2-mRuby2 

signal, and then cell boundaries surrounding nuclei were defined based on GFP signal using the 

Propagation method with Robust Background thresholding. Cytoplasm was defined as the region of 

the cell not occupied by the nucleus. For each cell, the mean GFP intensities in the nucleus and 
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cytoplasm were normalized to the mean GFP intensity of the entire cell. Nuclear localization was 

calculated as the normalized nuclear intensity divided by the normalized cytoplasmic intensity. A 

minimum of 200 cells were analyzed per strain/condition in the microfluidic experiments; 28-112 

cells in glass-bottom wells. 

 

Results 

Ribi transcripts are under apparent dynamic translational regulation during the YMC, meiosis, and 

amino acid starvation 

To obtain a global view of translational regulation during the different phases of the YMC, 

we performed ribosome profiling and RNA-seq at multiple YMC time points. Cells were grown in a 

chemostat, removed at defined time points, immediately treated with CHX to arrest translation, and 

subsequently processed to generate ribosome profiling and mRNA libraries suitable for analysis by 

next generation sequencing (Figure 2.1A). In total, 16 time points spanning a single ~4.5-hour cycle 

were analyzed (Figure 2.1B, Supplementary Figure S2.1A). At each time point, TEs were calculated 

for each protein-coding gene by dividing the gene’s normalized ribosome profiling counts by its 

normalized RNA-seq counts (footprint RPKM / mRNA RPKM). We then quantified the range of 

TEs exhibited over the span of the YMC for each gene by dividing its minimum TE in the time 

course by its maximum TE. By this metric the median TE change for all genes during the YMC is 

2.2-fold, with genes in the 99th percentile changing TE by at least 20-fold (Figure 2.1C, darker 

shade). 
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The same analysis was applied to previously published ribosome profiling and RNA-seq data 

acquired along a meiosis time course in yeast (9). In this context the median change in TE is 3.9-fold 

(Figure 2.1C, lighter shade); however, both distributions have long tails extending into the range of 

100-fold or more. To investigate whether any of the strongly translationally regulated genes are 

shared between these distinct biological processes, we selected genes with TE change of 8-fold or 

greater from each experiment and analyzed the overlap of these gene sets. Remarkably, nearly half of 

the genes under strong translational regulation in the YMC are also strongly regulated in meiosis 

(Supplementary Figure S2.1B). Moreover, the overlapping gene set is highly enriched for ribi factors 

(p=6´10-24) supporting the possibility of a common regulatory mechanism.  

In addition to displaying a wide range of TEs in the YMC and meiotic time courses, the TEs 

of individual ribi genes are also highly correlated throughout each time course (Supplementary 

Figures S2.1C-D). By comparing TE and mRNA levels between high and low ribi gene translation 

states, a similar pattern emerges for both time courses in which decreased TE coincides with 

decreased mRNA content for the ribi genes (Figure 2.1D-E). Moreover, a previously published 

ribosome profiling study showed similar decreases in TEs and mRNA levels of ribi genes during 

amino acid starvation (8). Taken at face value, these observations suggest that a large group of genes 

involved in the energetically demanding ribi pathways are coordinately regulated in their mRNA 

abundances and translation efficiencies. 

 

Observed decrease in ribi TE during amino acid starvation is CHX-dependent 

To understand the mechanistic basis of this effect we chose to focus on the amino acid 

starvation because, of the three transitions where we observed coordinated changes in the measured 
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TE of ribi genes, this is the most experimentally facile.  We were able to replicate the apparent 

change in TE during amino acid starvation using a slightly modified protocol in order to maintain 

consistency with the YMC harvesting scheme (Figure 2.2A, top). Cells were switched from minimal 

glucose medium with amino acids to minimal glucose medium without amino acids, and after 20 

minutes of amino acid starvation we observed marked reductions in TEs and mRNA abundances of 

ribi genes as well as a pronounced increase in GCN4 TE (Figure 2.2B), which is a hallmark of 

starvation-induced eIF2α phosphorylation.  

Up to this point all of the experiments showing changes in ribi gene TEs were conducted 

with CHX pretreatment, which has been well documented to impact ribosome profiling 

measurements by causing accumulation of ribosomes near translation start sites (8, 19), and skewing 

the distribution of ribosome positions in a codon-dependent manner (20, 21). However, since we 

took appropriate precautions such as masking footprint reads from the beginning of ORFs, such 

effects should have a minimal impact on the measure of the average ribosome density used to 

determine the overall rate of translation of a message; a key component of TE measurements. 

Nonetheless, we wanted to ensure that the TE measurements were not affected by CHX. We 

therefore used an alternative harvesting protocol that does not require CHX treatment, but instead 

relies on rapid filtration and freezing to arrest translation (Figure 2.2A, bottom). Ribosome profiling 

and RNA-seq were then carried out using the standard protocol. 

Remarkably, we found that the change in TEs was essentially abolished when cells were not 

treated with CHX (Figure 2.2C). Only two ribi genes, JIP5 and RIO1, still exhibited large decreases 

in TE. JIP5’s proximity to an upstream gene makes it difficult to assess whether the transcript 

architecture changes in response to starvation; on the other hand, it is clear that the RIO1 transcript 
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is significantly extended on the 5′ end in starved cells, which incorporates a uORF that appears to 

sequester ribosomes away from the canonical ORF (Supplementary Figure S2.2A). This “long 

undecoded transcript isoform”, or LUTI, represents a pervasive regulatory mechanism that was 

recently described in meiosis (22–24).  

In order to determine how CHX pretreatment might lead to an apparent low TE for the ribi 

genes, we first compared normalized counts per gene in starvation experiments with and without 

CHX (Figure 2.2D, Supplementary Figure S2.2B). For the vast majority of non-ribi genes, CHX 

treatment did not have a substantial effect on measured gene expression in any condition. However, 

the ribi genes experienced significant CHX-dependent changes in both footprint and mRNA 

abundances, and this effect was greatly exaggerated in starved cells. Somewhat paradoxically, 

pretreatment with CHX leads to increased mRNA and decreased footprint counts for ribi 

transcripts, which conspire to make TE measurements much lower in starvation experiments that 

include a CHX pretreatment step. 

 

CHX causes rapid induction of ribi transcripts in starved cells 

A simple explanation for the difference in mRNA abundances with and without CHX 

pretreatment would be that CHX induces transcription of ribi genes. To test this possibility, we 

treated starved cultures with CHX or vehicle and measured the mRNA abundance of a typical ribi 

gene, NOP2, using RT-qPCR over a 9-minute time course. Surprisingly, NOP2 mRNA abundance 

increased in both the CHX- and vehicle-treated samples, although the magnitude of the increase was 

much larger with CHX (Figure 2.3A, orange lines). In this case the vehicle was ethanol, which is the 

drug manufacturer’s recommended solvent. The working solution was made at a 500X 
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concentration, therefore the quantity of added ethanol in the culture after treatment was 0.2% by 

volume. We next tested whether the response could be replicated with larger or smaller amounts of 

ethanol alone. Indeed, treatments of 0.4% and 0.1% ethanol proportionally scaled the NOP2 

mRNA increase relative to 0.2% ethanol (Supplementary Figure S2.3A). 

Since CHX is also routinely dissolved in dimethyl sulfoxide (DMSO), we repeated the same 

experiment with CHX in DMSO or with DMSO alone. While NOP2 mRNA abundance did 

increase following several minutes of drug treatment, the magnitude of the increase was 3- to 4-fold 

smaller compared to treatment with CHX in ethanol (Figure 2.3A, purple lines). This discrepancy 

does not appear to be due to gross differences in the activity of CHX in each solvent, since both 

formulations arrested growth with equal potency (Supplementary Figure S2.3B). Interestingly, the 

response to ethanol is strain-specific, as a prototrophic strain treated with CHX in ethanol exhibits a 

similar NOP2 mRNA increase as our auxotrophic lab strain treated with CHX in DMSO 

(Supplementary Figure S2.3C). Therefore, in yeast starvation experiments that include CHX 

pretreatment—especially if the strain is auxotrophic and CHX is dissolved in ethanol—cells 

accumulate ribi transcripts from the time CHX is added to the culture until cells are frozen in liquid 

nitrogen.  

We reasoned that if the apparent TE decrease in starved cells is due to transcription of new 

ribi messages following CHX treatment, then a ribi promoter should be necessary and sufficient for 

the effect. Since most ribi genes are essential in yeast, we started by replacing the endogenous NOP2 

coding sequence with a homologous sequence from K. lactis which contains enough nucleotide 

differences to be readily distinguished from the S. cerevisiae sequence using deep sequencing. We 

then introduced different NOP2 reporter constructs elsewhere in the genome, allowing us to 
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unambiguously quantify their expression via ribosome profiling and RNA-seq, and thus determine 

the influence of promoters, UTRs, and coding sequences on TE (Figure 2.3B, Supplementary Figure 

S2.3D). As expected, with CHX pretreatment, a fully wild-type NOP2 gene exhibited decreases in 

TE and mRNA levels following amino acid starvation (Figure 2.3C). However, when NOP2 was 

instead transcribed from the non-ribi CCW12 promoter, the decrease in mRNA abundance was 

severely attenuated and the change in TE was eliminated entirely. Finally, an exogenous GFP 

sequence flanked by non-ribi ADH1 UTRs transcribed from the NOP2 promoter exhibited 

decreases in mRNA and TE similar to those observed for wild-type NOP2. Collectively, these 

reporter experiments demonstrate that a ribi promoter is both necessary and sufficient to recapitulate 

the low TEs observed in amino acid-starved cells when CHX pretreatment is used. 

 

CHX-induced ribi transcription requires TORC1 signaling 

We next sought to identify the factors mediating the transcriptional response of ribi genes to 

CHX. The Target Of Rapamycin (TOR) protein kinase emerged as a candidate given its central role 

in regulating ribosome biogenesis in response to nutrient availability (25). In budding yeast TOR is 

a member of two protein complexes, TORC1 and TORC2, the former of which promotes growth 

when conditions are favorable, and is inactivated by the macrolide antibiotic rapamycin (26). Upon 

nutrient starvation or rapamycin treatment, reduced TORC1 signaling leads to inhibition of rRNA 

and ribosomal protein gene transcription, as well as global attenuation of translation initiation (27). 

Since ribi gene transcription was reactivated in the presence of CHX despite poor nutrient 

conditions, we speculated that the TORC1 pathway might be involved. To test this possibility, we 

measured changes in NOP2 mRNA abundance induced by CHX in the presence and absence of 
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rapamycin. After shifting cells to starvation medium containing rapamycin or vehicle and incubating 

for 20 minutes, CHX was added and NOP2 mRNA abundance was monitored over time by qPCR. 

NOP2 transcript levels increased by nearly 8-fold in vehicle-treated cells but remained unchanged in 

rapamycin-treated cells (Figure 2.4A), demonstrating that TORC1 signaling is required for CHX-

mediated ribi transcription. 

Expression of ribi genes is specifically regulated by at least three transcription factors—Dot6, 

Tod6, and Stb3—which bind two conserved sequence motifs in ribi promoters to repress 

transcription (28). These factors are phosphorylated by the kinase Sch9, itself a direct target of 

TORC1 (29), which is thought to mediate their nuclear localization and/or chromatin binding 

affinity (30). To assess whether CHX treatment affects the sub-cellular localization of these factors, 

we C-terminally tagged each with EGFP and monitored their localization in live cells. Using a 

microfluidic device, we were able to rapidly switch between different media and image the same cells 

over time. In replete medium, all three transcription factors are evenly distributed throughout cells, 

and within 5 minutes of amino acid starvation they accumulate in the nucleus. Strikingly, within 5 

minutes of treating starved cells with CHX, all three transcription factors begin to exit the nucleus 

(Figure 2.4B-C), and after 15 minutes nuclear localization is reversed by 35-50% (Tod6, Dot6) or 

up to 90% (Stb3). Rapamycin did not prevent these factors from leaving the nucleus upon CHX 

exposure using this experimental setup (Supplementary Figure S2.4A), however it is well-

documented that small molecules can be absorbed by the polymer that constitutes the channels of 

this microfluidic device (31–33). After repeating the rapamycin/CHX treatment regimen in a flask 

and imaging in glass-bottom wells, we observed significantly more nuclear localization post-CHX for 

all three transcription factors in rapamycin-treated cells (Supplementary Figure S2.4B). Taken 
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together, these data suggest that CHX works through TORC1 and Sch9 to relieve transcriptional 

repression of ribi genes, despite poor nutrient availability. 

Discussion 

Ribosome profiling provides an unprecedented view into the absolute rate of translation, and 

paired with mRNA measurements, translation efficiency. However, such measurements depend on 

the ability to accurately freeze the translational state of a cell which can be challenging due to the 

rapid kinetics of translation initiation and elongation. To overcome this challenge, translation 

elongation inhibitors such as CHX are often used to “lock” ribosomes in place prior to harvesting. 

Such treatment comes with well-described caveats such as accumulation of ribosome density near 

translation start sites, and “smearing” of ribosome density in gene bodies. However, with proper 

precautions, these effects typically have minimal impact on the overall rate of translation as measured 

by the average ribosome density across the body of an mRNA. The present work adds the prospect 

of rapid CHX-induced transcription as a distinct and potentially more pervasive artifact when one is 

attempting to measure TE. 

  Here we show that what appears to be strong translational regulation of a large group of ribi 

genes during amino acid starvation is in fact an experimental artifact caused by CHX pretreatment. 

Even brief drug exposure (5-6 min) leads to a substantial increase in ribi mRNAs, and due to the 

presence of CHX, these new messages cannot be translated. This together with a decrease in 

ribosome-protected footprints of ribi genes leads to artificially low measured translation efficiencies. 

Using NOP2 as a representative ribi gene, we find that the increased ribi mRNA content in CHX-

treated samples is due to rapid accumulation of transcripts upon drug exposure. Remarkably, the 
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solvent used to make a CHX working solution has a large effect on the response to the drug: while 

CHX dissolved in DMSO leads to a slight increase in mRNA after 9 minutes, CHX dissolved in 

ethanol multiplies the increase by as much as 4-fold. Even more surprising is the observation that as 

little as 0.1% ethanol by itself is enough to transiently increase NOP2 levels, but only in an 

auxotrophic lab strain. This heightened sensitivity to ethanol could be the result of abnormal 

utilization of glucose by auxotrophs, which may respond more readily to otherwise unfavorable 

carbon sources such as ethanol and increase expression of pro-growth genes (34). Since the NOP2 

increase from CHX in ethanol is much greater than the sum of the individual increases induced by 

CHX in DMSO or ethanol alone, CHX and ethanol may influence ribi mRNA abundance through 

separate pathways. 

The CHX-dependent decrease in ribi gene ribosome-protected footprints is surprising in 

light of prior observations that CHX inhibits mRNA decay (35), therefore one might assume a priori 

that CHX treatment would actually increase relative footprint abundances in cases when 

transcription is shut off (e.g. ribi genes during starvation) and old mRNAs are turned over. Notably, 

ribi transcripts are highly enriched in certain codons for aspartate, glutamate, and lysine 

(Supplementary Figure S2.2C), and all genes enriched in these codons—ribi or otherwise—tend to 

have fewer footprint counts in CHX-treated samples (Supplementary Figure S2.2D). Although this 

effect of CHX on footprint counts remains enigmatic, it is possible that when charged tRNA pools 

are depleted (as is the case during amino acid starvation), in the presence of CHX, ribosomes 

engaged in translating these codons are more likely to encounter collisions that trigger ribosome 

quality control pathways, resulting in clearance of these ribosomes from the mRNA (36). 
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When conditions are unfavorable for growth, ribi gene expression is shut off by at least three 

transcriptional repressors. Using time-lapse fluorescent microscopy, we show that adding CHX to 

starved cells causes these factors to exit the nucleus within 5 minutes. These factors are 

phosphorylated by the TORC1 substrate Sch9 to regulate their activity, and Sch9 phosphorylation is 

known to increase in response to CHX (29). Our observations are consistent with a model in which 

CHX activates TORC1 signaling in starved cells, overriding the starvation response and causing 

nuclear export of the ribi gene transcriptional repressors. Transcription of the ribi genes thus 

resumes, but in the presence of CHX the new mRNAs are not translated, leading to what appears to 

be strong translational repression (Figure 2.5). Although we cannot formally rule out a CHX-driven 

change in ribi mRNA stability, the most parsimonious explanation given our observations is that the 

accumulation of mRNAs is due to increased transcription. In support of this hypothesis, we show 

that when CHX pretreatment is used to harvest cells, a ribi promoter sequence is necessary and 

sufficient to impart “low” TE on a reporter gene following amino acid starvation, independent of 

UTR sequences. We also show that CHX causes rapid re-partitioning of ribi transcription factors 

within the cell, but blocking TORC1 signaling with rapamycin prior to adding CHX suppresses ribi 

transcriptional repressor egress from the nucleus and abolishes accumulation of a ribi transcript in 

starved cells. It is worth noting that ribi mRNA abundances still decrease following amino acid 

starvation in a strain with all three transcriptional repressor genes deleted, so additional factors are 

likely involved (Supplementary Figure S2.4C). It is also important to note that genes encoding 

ribosomal protein (RP) subunits are not subject to these effects, as their overall TE fold changes in 

the YMC and meiosis are comparatively low (Supplementary Figure S2.1B), and CHX pretreatment 

did not lead to increases in their measured mRNA abundances or decreases in measured ribosome 
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footprints (data not shown). Interestingly, studies in the fission yeast Schizosaccharomyces pombe have 

shown CHX-dependent changes in RP gene TEs during nitrogen starvation and histidine 

biosynthesis inhibition, suggesting a similar CHX-induced mechanism operating on a distinct 

regulon (37, 38). Ribi and RP genes are regulated by different sets of transcription factors in S. 

cerevisiae (39–41), and ribi gene expression peaks just before that of the RPs during the YMC, 

supporting the idea that decoupling ribi from RP gene regulation allows ribosome assembly 

machinery to accumulate before subunits are produced (42). 

Although the precise mechanism of CHX-induced Sch9 phosphorylation remains unknown, 

a plausible explanation is that an increase in cytoplasmic concentrations of free amino acids 

following global translation arrest mimics a shift to nutrient-rich conditions, leading to TORC1 

activation (43, 44). Therefore, it is possible that other stress conditions resulting in Sch9 

dephosphorylation could be subject to translation inhibitor artifacts. These conditions include 

carbon/nitrogen/phosphate starvation, osmotic stress, redox stress, and heat shock (29); and 

potentially affected genes in the TOR regulon are numerous. Indeed, cells in two distinct growth 

conditions—the YMC and meiosis, both involving carbon and/or nitrogen limitation—had similarly 

low TE of ribi genes when CHX pretreatment was used in the ribosome profiling protocol. CHX is 

an invaluable tool, but it is important to be aware of the complex interplay between drug 

formulation, culture conditions, and cell genotype that can lead to unexpected results. We hope that 

this work will aid future ribosome profiling experimental design by highlighting additional pitfalls 

one might encounter as a result of treating cells with CHX, as well as ways to mitigate them. 

  



 26 

Data Availability 

The raw and processed sequencing data from this study have been submitted to the NCBI 

Gene Expression Omnibus under accession number GSE125038. 
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Figure 2.1. Apparent translational control of ribi genes in the Yeast Metabolic Cycle and meiosis. 
(A) Harvesting scheme from the YMC chemostat for ribosome profiling and RNA-seq. (B) Periodic 
fluctuations in dissolved oxygen for the span of the YMC during which samples were taken. Samples 
are numbered 1 through 16; samples 4 and 11 (red) were used to compare TE fold changes in panel 
D. RB, reductive building; RC, reductive charging; OX, oxidative phase. (C) Histograms of TE fold 
change (min/max) for all genes in the YMC and meiosis (9). Venn diagram shows the number of 
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genes in each experiment exceeding 8-fold TE change, with the intersection highly enriched for 
ribosome biogenesis genes (SGD GO Process finder). (D) TE fold change vs mRNA fold change for 
all ribi (black) and non-ribi (grey) genes between the RC and OX phases (YMC time points 4 and 
11, respectively). Kernel density estimates of the distributions are plotted in the margins. (E) TE fold 
change vs mRNA fold change, as in panel D, between the cycling vegetative and DNA replication 
time points of meiosis (9). 
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Figure 2.2. Effect of CHX on ribi gene TEs during amino acid starvation. (A) Amino acid starvation 
harvesting scheme with CHX (top) or without CHX (bottom). (B) TE fold change vs mRNA fold 
change in starved vs replete cells, with CHX pretreatment. As in the YMC and meiosis, ribi genes 
decrease along both dimensions. GCN4 translational activation is a hallmark of eIF2a 
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phosphorylation in starved cells. (C) Without CHX pretreatment, ribi TEs are unchanged except for 
RIO1 and JIP5. (D) Violin plot of normalized count ratios with and without CHX pretreatment. 
The plot is separated by treatment (replete vs. starved), measured quantity (footprints vs. mRNA), 
and gene set (ribi vs. non-ribi). In starved cells, CHX pretreatment causes a decrease in footprints of 
ribi genes and an increase in mRNA levels of ribi genes, whereas non-ribi genes are relatively 
unaffected. This is also observed in replete cells but to a lesser degree. * p<10-2, **** p<10-25, NS not 
significant; two-sided t-test. 
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Figure 2.3. CHX influences the TE of a ribi gene via transcription. (A) CHX or vehicle was added 
to starved cells at t=0 and relative abundance of a ribi mRNA (NOP2) was monitored over time. 
NOP2 transcripts accumulate faster and to a greater degree when CHX is dissolved in ethanol as 
opposed to DMSO. The shaded area indicates the typical amount of elapsed time between CHX 
pretreatment and freezing of cells for ribosome profiling experiments in this study. Error bars 
represent the standard deviation of 3 technical replicates from a single biological sample. (B) 
Reporter constructs with various promoter, coding sequence, and UTR elements were integrated 
into the dispensable YHRCdelta14 locus. Sequences from the ribi gene NOP2 are shaded blue. (C) 
TE fold change vs. mRNA fold change for reporter strains in panel B following amino acid 
starvation. TE and mRNA only decrease when the NOP2 promoter is driving expression. Fold 
changes for endogenous genes (NOP2, CCW12, ADH1) are represented as mean ± standard 
deviation across 2-4 independent experiments.  
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Figure 2.4. CHX-induced ribi gene transcription requires TORC1 signaling. (A) Cells were 
transferred to starvation medium and simultaneously treated with rapamycin or vehicle (DMSO). 
After 20 min CHX was added and NOP2 mRNA abundance was monitored over time. Rapamycin 
treatment abolishes transcriptional activation. Error bars represent the standard deviation of 3 
technical replicates from a single biological sample. (B) Dot6 and histone H2B were tagged with 
EGFP and mRuby2, respectively, and cells were immobilized in a CellASIC microfluidic device. 
Images were acquired as replete medium was flowed over the cells for 15 min, followed by 15 min of 
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starvation medium, and finally 15 min of starvation medium plus CHX. Dot6 rapidly localizes to 
the nucleus upon starvation and exits the nucleus after CHX treatment. Nuclei are false-colored 
magenta in the merged image. BF, brightfield with 2 µm scale bar. (C) The experiment in panel B 
was conducted with EGFP-tagged Dot6, Tod6, and Stb3; cells were also kept in replete medium 
(blue) or not treated with CHX (orange) as controls. Nuclear localization was defined as the fraction 
of GFP signal in the nucleus relative to the signal in the cytoplasm. All three transcription factors 
exit the nucleus upon CHX treatment; Stb3 responds most robustly. Localization data is plotted as 
the mean of all cells observed (n = 213-310) with 95% confidence interval. 
 

 

  



 34 

 

Figure 2.5. Proposed model of the influence of CHX on ribi gene TEs. In replete conditions 
TORC1 signaling is active, leading to inhibitory phosphorylation of ribi gene transcriptional 
repressors and active transcription/translation of ribi genes. In starved cells, TORC1 signaling 
decreases, thereby allowing ribi transcriptional repression. Upon adding CHX to starved cells, 
TORC1 signaling resumes and new ribi transcripts are produced. In the presence of CHX, however, 
these mRNAs cannot be translated and apparent TE is low. 
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Supplementary Figure S2.1. (A) Overview of metabolic cycles observed over ~40 hours. Decreases in 
dissolved oxygen correspond to the OX phase of the YMC. Time points 1-16 are highlighted; detail 
shown in Figure 2.1B. (B) Scatter plot of the TE range (min/max) exhibited by each gene in meiosis 
vs the YMC. The set of genes with 8-fold or more TE change in both time courses (red box) is 
highly enriched for ribi factors, but not protein subunits of the cytoplasmic ribosome. (C) TEs of 
ribi genes over the YMC time course. Each gene is shown as a thin grey line; the median of all ribi 
genes is shown as a thick black line. In general, TEs appear to be low during the RB to RC 
transition, and high at the end of OX. (D) TEs of ribi genes through meiosis, from (9). TEs appear 
to be low during DNA replication and in spores. 
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Supplementary Figure S2.2. (A) mRNA and footprint counts mapped to the RIO1 and JIP5 loci. In 
starved cells the RIO1 transcript is extended on the 5′ end (minus strand; 5′ end is to the right). The 
longer isoform incorporates a short ORF consisting of a start codon immediately followed by a stop 
codon, and a large peak of ribosome density is observed here in starved cells. Footprint density is 
greatly reduced at JIP5 in starved cells, however the proximity of NUT2 makes it difficult to assess 
whether the transcript architecture changes. Y-axis scales are consistent for mRNA and footprint 
tracks, respectively, at each locus. Footprint counts are mapped to ribosomal P-sites; RNA-seq 
counts are evenly apportioned across the length of each sequencing read. (B) Scatter plots of 
normalized counts (RPKM) in amino acid starvation experiments with- vs. without-CHX 
pretreatment. Ribi gene counts fall off-diagonal in starved cells. (C) Average codon composition of 
ribi vs non-ribi genes. Certain Asp, Lys, and Glu codons are enriched in ribi genes. (D) Genes 
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enriched in GAA, AAA, GAU, and AAG codons have lower footprint counts in CHX-treated vs -
untreated cells. While ribi genes (black) are enriched in these codons, the correlation holds for all 
genes. 
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Supplementary Figure S2.3. (A) Ethanol was added to starved cells at t=0 and NOP2 mRNA 
abundance was monitored over time. Percentages reflect the final concentration (vol/vol) of added 
ethanol in the culture. Error bars represent the standard deviation of 3 technical replicates from a 
single biological sample. (B) BY4741 was grown in SD in a 30 °C shaking incubator and OD was 
monitored over time. CHX dissolved in ethanol or DMSO was added immediately following the 6-
hour time point. CHX inhibits growth regardless of the solvent. Error bars represent the standard 
deviation of 3 biological replicates. (C) The prototrophic strain CEN.PK has an attenuated response 
to CHX in ethanol compared to the same treatment in the auxotrophic strain BY4741 (compare to 
Figure 2.3A, solid orange line). The change in NOP2 mRNA is of similar magnitude to BY4741 
treated with CHX in DMSO. Both strains have nearly identical responses to the respective vehicle 
treatments, which resemble an untreated control. Error bars represent the standard deviation of 3 
technical replicates from a single biological sample. (D) The NOP2 promoter was defined as the 285 
bp region from the boundary of the upstream gene (GCD10) to the consensus NOP2 transcript start 
site (45-47). Blue box, NOP2 promoter; thin black box, 5′ UTR from (48); thick black box, coding 
sequence. 
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Supplementary Figure S2.4. The experiment in Figure 2.4C was repeated with rapamycin added to 
the starvation medium. In a microfluidic plate, rapamycin does not alter the localization of these 
transcription factors following CHX treatment. (B) Repeat of the above experiment in a flask. Cells 
were pelleted and re-suspended in starvation medium with (pink) or without (black) 200 nM 
rapamycin. After 15 min CHX was added, and after an additional 15 min cells were imaged in glass-
bottom wells. All three transcription factors show increased nuclear localization in the presence of 
rapamycin. P-values were calculated using a two-sided t-test. (C) Ribi mRNAs still decrease 
following 20 min of amino acid starvation in a dot6 tod6 stb3 triple deletion strain, though to a lesser 
degree than the WT strain (compare to Figure 2.2B) 
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Table S2.1. Strains used in this study. 

NAME DESCRIPTION MAT GENOTYPE PARENT SOURCE 

yJW1201 BY4741 a his3-Δ1 leu2-Δ0 met15-Δ0 
ura3-Δ0 S288C 

Brachmann et al. 
(1998). PMID: 
9483801 

yJW1857 CEN.PKa a WT 
sporulated 
from 
CEN.PK122 

van Dijken et al. 
(2000). PMID: 
10862876 

yJW1860 K.lac NOP2 a nop2::klNOP2 his3-Δ1 
leu2-Δ0 met15-Δ0 ura3-Δ0  BY4741 this study 

yJW1861 K.lac NOP2; 
PCCW12-NOP2 a 

nop2::klNOP2 
yhrcdelta14::PCCW12-
NOP2::kanMX6 his3-Δ1 
leu2-Δ0 met15-Δ0 ura3-Δ0  

yJW1860 this study 

yJW1862 K.lac NOP2; 
PNOP2-NOP2 a 

nop2::klNOP2 
yhrcdelta14::PNOP2-
NOP2::kanMX6 his3-Δ1 
leu2-Δ0 met15-Δ0 ura3-Δ0 

yJW1860 this study 

yJW1863 PNOP2-5'UTRADH1-
EGFP-3'UTRADH1 

a 

yhrcdelta14::PNOP2-
5'UTRADH1-EGFP-
3'UTRADH1::kanMX6 his3-
Δ1 leu2-Δ0 met15-Δ0 ura3-
Δ0 

BY4741 this study 

yJW1864 Δ(dot6 tod6 stb3) a 
dot6::LEU2 tod6::URA3 
stb3::kanMX6 his3-Δ1 leu2-
Δ0 met15-Δ0 ura3-Δ0 

BY4741 this study 

yJW1865 Dot6-EGFP; 
H2B-mRuby2 a 

dot6::DOT6-
EGFP::kanMX6 
htb2::HTB2-
mRuby2::SpHIS5 his3-Δ1 
leu2-Δ0 met15-Δ0 ura3-Δ0 

BY4741 this study 

yJW1866 Tod6-EGFP; 
H2B-mRuby2 a 

tod6::TOD6-
EGFP::kanMX6 
htb2::HTB2-
mRuby2::SpHIS5 his3-Δ1 
leu2-Δ0 met15-Δ0 ura3-Δ0 

BY4741 this study 

yJW1867 Stb3-EGFP; 
H2B-mRuby2 a 

stb3::STB3-EGFP::kanMX6 
htb2::HTB2-
mRuby2::SpHIS5 his3-Δ1 
leu2-Δ0 met15-Δ0 ura3-Δ0 

BY4741 this study 
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Table S2.2. Plasmids used in this study. 

NAME DESCRIPTION PURPOSE SOURCE 

pFA6a-link-
yoEGFP-Kan EGFP-Kan 

Tag ribi 
transcription factors 
with EGFP 

Addgene 
44900 

pFA6a-link-
yomRuby2-
SpHis5 

mRuby2-His Tag H2B with 
mRuby2 

Addgene 
44858 

pJW1746 pRS306_YHRCdelta14UP-PCCW12-NOP2-KanR-
YHRCdelta14DOWN 

PCR template to 
generate yJW1861 this study 

pJW1747 pRS306_YHRCdelta14UP-PNOP2-NOP2-KanR-
YHRCdelta14DOWN 

PCR template to 
generate yJW1862 this study 

pJW1748 pRS306_YHRCdelta14UP-PNOP2-5'UTRADH1-
EGFP-3'UTRADH1-KanR-YHRCdelta14DOWN 

PCR template to 
generate yJW1863 this study 
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Table S2.3. Oligonucleotides used in this study. 

NAME SEQUENCE PURPOSE DESCRIPTION 

oAF66 /5rApp/NNNNNATCGAGATCGGAAGAGCAC
ACGTCTGAACTC/3ddC/ ribosome profiling 3' cloning linker 

(ATCG) 

oAF67 /5rApp/NNNNNTAGCAGATCGGAAGAGCAC
ACGTCTGAACTC/3ddC/ ribosome profiling 3' cloning linker 

(TAGC) 

oAF68 /5rApp/NNNNNCGATAGATCGGAAGAGCAC
ACGTCTGAACTC/3ddC/ ribosome profiling 3' cloning linker 

(CGAT) 

oAF69 /5rApp/NNNNNGCTAAGATCGGAAGAGCAC
ACGTCTGAACTC/3ddC/ ribosome profiling 3' cloning linker 

(GCTA) 

oAF70 /5rApp/NNNNNAGTCAGATCGGAAGAGCAC
ACGTCTGAACTC/3ddC/ ribosome profiling 3' cloning linker 

(AGTC) 

oAF71 /5rApp/NNNNNGACTAGATCGGAAGAGCAC
ACGTCTGAACTC/3ddC/ ribosome profiling 3' cloning linker 

(GACT) 

oAF72 /5rApp/NNNNNCTGAAGATCGGAAGAGCAC
ACGTCTGAACTC/3ddC/ ribosome profiling 3' cloning linker 

(CTGA) 

oAF73 /5rApp/NNNNNTCAGAGATCGGAAGAGCAC
ACGTCTGAACTC/3ddC/ ribosome profiling 3' cloning linker 

(TCAG) 

oAF74 /5Phos/AGATCGGAAGAGCGTCGTGTAGGG
AAAGAG/iSp18/CTGGAGTTCAGACGTGTG ribosome profiling RT 

oAF75 AATGATACGGCGACCACCGAGATCTACACT
CTTTCCCTACACGACGCTC ribosome profiling PCR (universal) 

oAF76 CAAGCAGAAGACGGCATACGAGATTACAAG
GTGACTGGAGTTCAGACGTGTGCTC ribosome profiling PCR (index 12) 

oAF77 CAAGCAGAAGACGGCATACGAGATATTGG
CGTGACTGGAGTTCAGACGTGTGCTC ribosome profiling PCR (index 6) 

oAF78 CAAGCAGAAGACGGCATACGAGATGGAAC
TGTGACTGGAGTTCAGACGTGTGCTC ribosome profiling PCR (index 14) 

oAF79 CAAGCAGAAGACGGCATACGAGATAAGCTA
GTGACTGGAGTTCAGACGTGTGCTC ribosome profiling PCR (index 10) 

oAF80 CAAGCAGAAGACGGCATACGAGATGCCTA
AGTGACTGGAGTTCAGACGTGTGCTC ribosome profiling PCR (index 3) 

oAF81 CAAGCAGAAGACGGCATACGAGATCGTGA
TGTGACTGGAGTTCAGACGTGTGCTC ribosome profiling PCR (index 1) 
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NAME SEQUENCE PURPOSE DESCRIPTION 

oAF82 CAAGCAGAAGACGGCATACGAGATCCACT
CGTGACTGGAGTTCAGACGTGTGCTC ribosome profiling PCR (index 23) 

oAF83 CAAGCAGAAGACGGCATACGAGATTTGAC
TGTGACTGGAGTTCAGACGTGTGCTC ribosome profiling PCR (index 13) 

oDAS 
220 CGTCTGGATTGGTGGTTCTATC qPCR ACT1 (For) 

oDAS 
221 GGACCACTTTCGTCGTATTCTT qPCR ACT1 (Rev) 

oDAS 
880 TCTATCCGCCATTGATTCTGTT qPCR NOP2 (For) 

oDAS 
881 CTATGACAGCTTCGTCCTCTTC qPCR NOP2 (Rev) 
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Introduction 

The complexity of biological processes, from stress responses to morphogenesis arises from 

not only the set of expressed genes but also quantitative differences in their expression levels. As a 

classical example, some genes are haploinsufficient and thus are sensitive to a 50% decrease in 

expression, whereas for other genes disease only occurs upon far stronger depletion. The ability to 

systematically control gene expression levels and explore their relationships to biological phenotypes 

would have immediate practical and conceptual implications. For example, rescue of disease-causing 

mutations by chemical treatment or gene therapy ultimately requires restoring gene expression to 

functionally sufficient levels, and a priori these sufficiency levels are unclear. Vice versa, a 

cornerstone of cancer drug development is to inhibit generally essential functions to sufficient 

magnitude to ensure toxicity to rapidly proliferating cancer cells while sparing healthy cells, however 

the location of each therapeutic window is target-specific. More fundamentally, gene expression 

levels are determined by opposing evolutionary forces including the cost of protein synthesis and the 

need for robustness against random fluctuations, but these tradeoffs have not been comprehensively 

explored. Tools to precisely control gene expression level would transform efforts in these and 

additional areas, but despite dramatic advances in functional genomics the current set of tools has 

been primarily optimized for complete knockout or knockdown or massive overexpression and does 

not afford such control. 

The discovery and development of artificial transcription factors, such as TALEs or the 

CRISPR-based effectors underlying CRISPR interference (CRISPRi) and activation (CRISPRa), has 

brought such tools within reach. CRISPR systems in particular have attracted considerable attention 

as the targeting to a locus of interest through sequence complementarity to an associated single guide 
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RNA (sgRNA) affords uniquely high programmability. Investigations of CRISPR targeting 

mechanisms have established that both activity and binding of Cas9 or its nuclease-dead variants 

(dCas9) can be modulated by introducing mismatches into the sgRNA targeting region, modifying 

the sgRNA constant region, and other approaches (1–5). Here, we report a systematic approach to 

control dCas9 effector binding through series of modified sgRNAs, or allelic series of sgRNAs, as a 

general method to titrate gene expression. We describe both a compact sgRNA library to titrate the 

expression of essential genes, empirically validated through pooled screens, and a genome-wide in 

silico library derived from deep learning analysis of the empirical data. Rich single-cell RNA-seq 

phenotypes recorded at different expression levels of essential genes reveal gene-specific expression-

to-phenotype relationships and expression level-dependent cell responses and highlight the utility of 

such modified sgRNAs in staging cells along a continuum of expression levels. 

 

Materials and Methods 

Reagents and cell lines 

K562 and Jurkat cells were grown in RPMI 1640 medium (Gibco) with 25 mM HEPES, 2 

mM L-glutamine, 2 g/L NaHCO3 supplemented with 10% (v/v) standard fetal bovine serum (FBS, 

HyClone or VWR), 100 units/mL penicillin, 100 µg/mL streptomycin, and 2 mM L-glutamine 

(Gibco). HEK293T and HeLa cells were grown in Dulbecco’s modified eagle medium (DMEM, 

Gibco) with 25 mM D-glucose, 3.7 g/L NaHCO3, 4 mM L-glutamine and supplemented with 10% 

(v/v) FBS, 100 units/mL penicillin, 100 µg/mL streptomycin, and 2 mM L-glutamine. K562 and 

HeLa cells are derived from female patients/donors. Jurkat cells are derived from a male patient. 

HEK293T are derived from a female fetus. All cell lines were grown at 37 °C in the presence of 5% 
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CO2. All cell lines were periodically tested for Mycoplasma contamination using the MycoAlert Plus 

Mycoplasma detection kit (Lonza). 

 

DNA transfections and virus production 

Lentivirus was generated by transfecting HEK239T cells with four packaging plasmids (for 

expression of VSV-G, Gag/Pol, Rev, and Tat, respectively) as well as the transfer plasmid using 

TransIT-LT1 Transfection Reagent (Mirus Bio). Viral supernatant was harvested two days after 

transfection and filtered through 0.44 µm PVDF filters and/or frozen prior to transduction.  

 

Cloning of individual guide RNAs 

Individual perfectly matched or mismatched sgRNAs were cloned essentially as described 

previously (4). Briefly, two complementary oligonucleotides (Integrated DNA Technologies), 

containing the targeting region as well as overhangs matching those left by restriction digest of the 

backbone with BstXI and BlpI, were annealed and ligated into a version of pU6-sgCXCR4-2 

(marked with a puromycin resistance cassette and mCherry, Addgene #46917 (6)), modified to 

include a BlpI site, digested with BstXI (NEB or Thermo Fisher Scientific) and BlpI (NEB) or 

Bpu1102I (Thermo Fisher Scientific). The ligation product was transformed into Stellar chemically 

competent E. coli cells (Takara Bio) and plasmid was prepared following standard protocols. 

 

Individual evaluation of sgRNA phenotypes for GFP knockdown 

For individual evaluation of GFP knockdown phenotypes, sgRNAs were individually cloned 

as described above. The sgRNA expression vectors were individually packaged into lentivirus and 
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transduced into target cells at MOI < 1 (15 – 40% infected cells) by centrifugation at 1,000 × g and 

33 °C for 0.5-2 h. To measure GFP knockdown, sgRNA expression vectors were transduced into 

GFP+ K562 CRISPRi cells (6) and GFP levels were recorded 10 d after transduction by flow 

cytometry using a FACSCelesta flow cytometer (BD Biosciences), gating for sgRNA-expressing cells 

(mCherry+). Experiments were performed in duplicate from the transduction step. 

 

Design of large-scale mismatched sgRNA library  

To generate the list of targeting sgRNAs for the large-scale mismatched sgRNA library, hit 

genes from a growth screen performed in K562 cells with the CRISPRi v2 library (7) were selected 

by calculating a discriminant score (phenotype z-score × –log10(Mann-Whitney P)). Discriminant 

scores for negative control genes (randomly sampled groups of 10 non-targeting sgRNAs) were 

calculated as well, and hit genes were selected above a threshold such that 5% of the hits would be 

negative control genes (i.e. an estimated empirical 5% FDR). This procedure resulted in the 

selection of 2,477 genes. Of these genes, 28 genes for which the second strongest sgRNA by absolute 

value had a positive growth phenotype were filtered out as these were likely to be scored as hits solely 

due to a single sgRNA. For the remaining 2,449 genes, the two sgRNAs with the strongest growth 

phenotype were selected, for a total of 4,898 perfectly matched sgRNAs.  

For each of these sgRNAs, a set of 23 variant sgRNAs with mismatches was designed: 5 with 

a single randomly chosen mismatch within 7 bases of the PAM, 5 with a single randomly chosen 

mismatch 8-12 bases from the PAM, and 3 with a single randomly chosen mismatch 13-19 bases 

from the PAM (the first base of the targeting region was never selected for this purpose as it is an 
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invariant G in all sgRNAs to enable transcription from the U6 promoter). The remaining 10 

variants had 2 randomly chosen mismatches selected from positions –1 to –19.  

To assess the off-target potential of mismatched sgRNAs, we extended our previous strategy 

to estimate sgRNA off-target effects (4, 7). Briefly, for each target in the genome, a FASTQ entry 

was created for the 23 bases of the target including the PAM, with the accompanying empirical 

Phred score indicating an estimate of the anticipated importance of a mismatch in that base position. 

Bowtie (http://bowtie-bio.sourceforge.net) was then used to align each designed sgRNA back to the 

genome, parameterized so that sgRNAs were considered to mutually align if and only if: (i) no more 

than 3 mismatches existed in the PAM-proximal 12 bases and the PAM, and (ii) the summed Phred 

score of all mismatched positions across the 23 bases was less than a threshold. This was done 

iteratively with decreasing thresholds, and any sgRNAs which aligned successfully to no other site in 

the genome at a particular threshold were then deemed to have a specificity at said threshold. The 

compiled sgRNA sequences were then filtered for sgRNAs containing BstXI, BlpI, and SbfI sites, 

which are used during library cloning and sequencing library preparation, and 2,500 negative 

controls (randomly generated to match the base composition of our hCRISPRi-v2 library) were 

added. Sequences of sgRNAs and descriptions of mismatches are listed in Table S3.1. 

 

Pooled cloning of mismatched sgRNA libraries 

Pooled sgRNA libraries were cloned largely as described previously (4, 8, 9). Briefly, 

oligonucleotide pools containing the desired elements with flanking restriction sites and PCR 

adapters were obtained from Agilent Technologies. The oligonucleotide pools were amplified by 15 

cycles of PCR using Phusion polymerase (NEB). The PCR product was digested with BstXI and 
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Bpu1102I (Thermo Fisher Scientific), purified, and ligated into BstXI/Bpu1102I-digested 

pCRISPRia-v2 at 16 °C for 16 h. The ligation product was purified by isopropanol precipitation and 

then transformed into MegaX DH10B electrocompetent cells (Thermo Fisher Scientific) by 

electroporation using the Gene Pulser Xcell system (Bio-Rad), transforming ~100 ng purified 

ligation product per 100 µL cells. The cells were allowed to recover in 3-6 mL SOC medium for 2 h. 

At that point, a small 1-5 µL aliquot was removed and plated in three serial dilutions on LB plates 

with selective antibiotic (carbenicillin). The remainder of the culture was inoculated into 0.5 to 1 L 

LB supplemented with 100 µg/mL carbenicillin, grown at 37 °C with shaking at 220 rpm for 16 h 

and harvested by centrifugation. Colonies on the plates were counted to confirm a transformation 

efficiency greater than 100-fold over the number of elements (>100x coverage). The pooled sgRNA 

plasmid library was extracted from the cells by GigaPrep (Qiagen or Zymo Research). Even coverage 

of library elements was confirmed by sequencing a small aliquot on a HiSeq 4000 (Illumina). 

 

Large-scale mismatched sgRNA screen and sequencing library preparation 

Large-scale screens were conducted similarly to previously described screens (4, 7). The large-

scale library was transduced in duplicate into K562 CRISPRi and Jurkat CRISPRi cells at MOI <1 

(percentage of transduced cells 2 days after transduction: 20-40%) by centrifugation at 1,000 × g and 

33 °C for 2 h. Replicates were maintained separately in 0.5 L to 1 L of RPMI-1640 in 1 L spinner 

flasks for the course of the screen. 2 days after transduction, the cells were selected with puromycin 

for 2 days (K562: 2 days of 1 µg/mL; Jurkat: 1 day of 1 µg/mL and 1 day of 0.5 µg/mL), at which 

point transduced cells accounted for 80-95% of the population, as measured by flow cytometry 

using an LSR-II flow cytometer (BD Biosciences). Cells were allowed to recover for 1 day in the 
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absence of puromycin. At this point, t0 samples with a 3,000x library coverage (400 × 106 cells) were 

harvested and the remaining cells were cultured further. The cells were maintained in spinner flasks 

by daily dilution to 0.5 × 106 cells mL−1 at an average coverage of greater than 2,000 cells per sgRNA 

with daily measurements of cell numbers and viability on an Accuri bench-top flow cytometer (BD 

BioSciences) for 11 days, at which point endpoint samples were harvested by centrifugation with 

3,000x library coverage.  

Genomic DNA was isolated from frozen cell samples and the sgRNA-encoding region was 

enriched, amplified, and processed for sequencing essentially as described previously (7). Briefly, 

genomic DNA was isolated using a NucleoSpin Blood XL kit (Macherey-Nagel), using 1 column per 

100 × 106 cells. The isolated genomic DNA was digested with 400 U SbfI-HF (NEB) per mg DNA 

at 37 °C for 16 h. To isolate the ~500 bp fragment containing the sgRNA expression cassette 

liberated by this digest, size separation was performed using large-scale gel electrophoresis with 0.8% 

agarose gels. The region containing DNA between 200 and 800 bp of size was excised and DNA was 

purified using the NucleoSpin Gel and PCR Clean-up kit (Macherey-Nagel). The isolated DNA was 

quantified using a QuBit Fluorometer (Thermo Fisher Scientific) and then amplified by 23 cycles of 

PCR using Phusion polymerase (NEB) and appending Illumina adapter and unique sample indices 

in the process. Each DNA sample was divided into 5-50 individual 100 µL reactions, each with 500 

ng DNA as input. To ensure base diversity during sequencing, the samples were divided into two 

sets, with all samples for a given replicate always being assigned to the same set. The two sets had the 

Illumina adapters appended in opposite orientations, such that samples in set A were sequenced from 

the 5′ end of the sgRNA sequence in the first 20 cycles of sequencing and samples in set B were 

sequenced from the 3′ end of the sgRNA sequence in the next 20 cycles of sequencing. With updates 
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to Illumina chemistry and software, this strategy is no longer required to ensure high sequencing 

quality, and all samples are amplified in the same orientation. Following the PCR, all reactions for a 

given DNA sample were combined and a small aliquot (100-300 µL) was purified using AMPure XP 

beads (Beckman-Coulter) with a two-sided selection (0.65x followed by 1x). Sequencing libraries 

from all samples were combined and sequencing was performed on a HiSeq 4000 (Illumina) using 

single-read 50 runs and with two custom sequencing primers (oCRISPRi_seq_V5 and 

oCRISPRi_seq_V4_3′, Table S3.11). For samples that were amplified in the same orientation, only 

a single custom sequencing primer was added (oCRISPRi_seq_V5), and the samples were 

supplemented with a 5% PhiX spike-in. 

Sequencing reads were aligned to the library sequences, counted, and quantified using the 

Python-based ScreenProcessing pipeline (https://github.com/mhorlbeck/ScreenProcessing). 

Calculation of phenotypes was performed as described previously (4). Untreated growth phenotypes 

(γ) were derived by calculating the log2 change in enrichment of an sgRNA in the endpoint and t0 

samples, subtracting the equivalent median value for all non-targeting sgRNAs, and dividing by the 

number of doublings of the population (4, 9). Read counts and phenotypes for individual sgRNAs 

are available in Table S3.2 and Table S3.3, respectively. To calculate relative activities, phenotypes of 

mismatched sgRNAs were divided by those for the corresponding perfectly matched sgRNA. 

Relative activities were filtered for series in which the perfectly matched sgRNA had a growth 

phenotype greater than 5 z-scores outside the distribution of negative control sgRNAs for all further 

analysis. Relative activities from both cell lines were averaged if the series passed the z-score filter in 

both. All analyses were performed in Python 2.7 using a combination of Numpy (v1.16.1), Pandas 

(v0.24.2), Scipy (v1.1.0), and Seaborn (v0.9.0). 
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Design and pooled cloning of constant region variants library 

The sequences in the library of modified constant regions were derived from the sgRNA 

(F+E) optimized sequence (10) modified to include a BlpI site (4). Each modified constant region 

was paired with 36 sgRNA targeting sequences (3 sgRNAs targeting each of 10 essential genes and 

six non-targeting negative control sgRNAs). The cloning strategy (described below) allowed the 

mutation of most positions in the sgRNA constant region. A variety of modifications were made, 

including substitutions of all single bases not in the BlpI restriction site (which is used for cloning), 

double substitutions including all substitutions at base-paired position pairs not in the BlpI site, and 

a variety of triple, quadruple, and sextuple substitutions, including base-pair-preserving substitutions 

at adjacent base-pairs. 

The library was ordered and cloned in two parts. One part consisted of ~100 modifications 

to the eight bases upstream of the BlpI restriction site. Constant region variants with mutations in 

this section were paired with each of the 36 targeting sequences, ordered as a pooled oligonucleotide 

library (Twist Biosciences), and cloned into pCRISPRia-v2 as described above. The second part 

consisted of ~900 modifications to the 71 bases downstream of the BlpI restriction site. This part 

was cloned in two steps. First, all 36 targeting sequences were individually cloned into pCRISPRia-

v2 as described above. The vectors were then pooled at an equimolar ratio and digested with BlpI 

(NEB) and XhoI (NEB). The modified constant region variants were ordered as a pooled 

oligonucleotide library (Twist Biosciences), PCR amplified with Phusion polymerase (NEB), 

digested with BlpI (NEB) and XhoI (NEB), and ligated into the digested vector pool, in a manner 

identical to previously published protocols and as described above, except for the different restriction 

enzymes. 
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Compact mismatched sgRNA library and constant region library screens 

Screens with the compact mismatched sgRNA library and the constant region library were 

conducted largely as described above, with smaller modifications during the screening procedure and 

an updated sequencing library preparation protocol. Briefly, the libraries were transduced in 

duplicate into K562 CRISPRi (both libraries) or HeLa CRISPRi cells (compact mismatched sgRNA 

library) as described above. K562 replicates were maintained separately in 0.15 to 0.3 L of RPMI-

1640 in 0.3 L spinner flasks for the course of the screen. HeLa replicates were maintained in sets of 

ten 15-cm plates. Cells were selected with puromycin as described above (K562: 1 day of 0.75 

µg/mL and 1 day of 0.85 µg/mL; HeLa: 2 days of 0.8 µg/mL and 1 day of 1 µg/mL). The remainder 

of the screen was carried out at >1,000x library coverage (K562 compact mismatched sgRNA library: 

>2,000x; HeLa compact mismatched sgRNA library: >1,000x; K562 constant region library: 

>2,000x). Multiple samples were harvested after 4 to 8 days of growth. 

Genomic DNA was isolated from frozen cell samples as described above. The subsequent 

sequencing library preparation was simplified to omit the enrichment step by gel extraction. In 

particular, following the genomic DNA extraction, DNA was quantified by absorbance at 260 nm 

using a NanoDrop One spectrophotometer (Thermo Fisher Scientific) and then directly amplified 

by 22-23 cycles of PCR using NEBNext Ultra II Q5 PCR MasterMix (NEB), appending Illumina 

adapter and unique sample indices in the process. Each DNA sample was divided into 50-200 

individual 200 µL reactions, each with 10 µg DNA as input. All samples were amplified using the 

same strategy and in the same orientation. The PCR products were purified as described above and 

sequencing libraries from all samples were combined. For the compact mismatched library screens, 

sequencing was performed on a HiSeq 4000 (Illumina) using single-read 50 runs with a 5% PhiX 
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spike-in and a custom sequencing primer (oCRISPRi_seq_V5, Table S3.11). For the constant region 

screens, the downstream PCR primer was adapted to allow for amplification of the entire constant 

region and to append a standard Illumina read 2 primer binding site. Sequencing was then 

performed in the same manner including oCRISPRi_seq_v5 primer and a 5% PhiX spike-in, but 

using paired-read 150 runs. 

Sequencing reads were processed as described above. Read counts and phenotypes for 

individual sgRNAs are available in Tables S3.5-S3.6 (constant region screen) and Tables S3.9-S3.10 

(compact mismatched sgRNA library screen). 

 

Generation and evaluation of individual constant region variants by RT-qPCR 

Constant region variants were evaluated in the background of a constant region with an 

additional base pair substitution in the first stem loop (fourth base pair changed from AT to GC 

(11)). Ten constant region variants with average relative activities between 0.2 and 0.8 from the 

screen and carrying substitutions after the BlpI site were selected (Table S3.11). Cloning of 

individual constant regions was performed essentially as the cloning of sgRNA targeting regions, 

described above, except that the BlpI and XhoI restriction sites were used for cloning (the XhoI site 

is immediately downstream of the constant region) and that cloning was performed with a variant of 

pCRISPRia-v2 (marked with a puromycin resistance cassette and BFP, Addgene #84832 (7)). For 

each of the ten constant region variants as well as the constant region carrying only the stem loop 

substitution, two different targeting regions against DPH2 were then cloned as described above 

(Table S3.13). These 22 vectors as well as a vector with a non-targeting negative control sgRNA 

(Table S3.13) were individually packaged into lentivirus and transduced into K562 CRISPRi cells at 
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MOI < 1 (10 – 50% infected cells) by centrifugation at 1000 × g and 33 °C for 2 h. Cells were 

allowed to recover for 2 days and then selected to purity with puromycin (1.5 – 3 µg/mL), as 

assessed by measuring the fraction of BFP+ cells by flow cytometry on an LSR-II (BD Biosciences), 

allowed to recover for 1 day, and harvested in aliquots of 0.5 – 2 × 106 cells for RNA extraction. 

RNA was extracted using the RNeasy Mini kit (Qiagen) with on-column DNase digestion (Qiagen) 

and reverse-transcribed using SuperScript II Reverse Transcriptase (Thermo Fisher Scientific) with 

oligo(dT) primers in the presence of RNaseOUT Recombinant Ribonuclease Inhibitor (Thermo 

Fisher Scientific). Quantitative PCR (qPCR) reactions were performed in 22 µL reactions by adding 

20 µL master mix containing 1.1X Colorless GoTaq Reaction Buffer (Promega), 0.7 mM MgCl2, 

dNTPs (0.2 mM each), primers (0.75 µM each), and 0.1X SYBR Green with GoTaq DNA 

polymerase (Promega) to 2 µL cDNA or water. Reactions were run on a LightCycler 480 Instrument 

(Roche). For each cDNA sample, reactions were set up with qPCR primers against DPH2 and 

ACTB (sequences listed in Table S3.11). Experiments were performed in technical triplicates. 

 

Machine learning 

In order to establish a subset of highly active sgRNAs with which to train a machine learning 

model, we filtered for perfectly matched guides with a growth phenotype greater than 10 z-scores 

outside the distribution of negative control sgRNAs in the K562 and/or Jurkat pooled screens (K562 

γ < –0.21; Jurkat γ < –0.35). All singly mismatched variants derived from sgRNAs passing the filter 

were then included, and relative activities were calculated as described previously, averaging the 

replicate measurements for each sgRNA. In cases where a perfectly matched sgRNA passed the filter 

in the K562 and Jurkat screen, the average relative activity across both cell types was calculated for 
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each mismatched variant; otherwise the relative activities for only one cell type were considered. This 

filtering scheme resulted in 26,248 mismatched sgRNAs comprising 2,034 series targeting 1,292 

genes, with approximately 40% of relative activity values averaged from K562 and Jurkat cells.  

 For each sgRNA, a set of features was defined based on the sequences of the genomic target 

and the mismatched guide. First, the genomic sequence extending from 22 bases 5′ of the beginning 

of the PAM to 1 base 3′ of the end of the PAM (26 bases in all) is binarized into a 2D array of shape 

(4, 26), with 0s and 1s indicating the absence or presence of a particular nucleotide at each position, 

respectively. Next, a similar array is constructed representing the mismatch imparted by the sgRNA, 

with an additional potential mismatch at the 5′ terminus of the sgRNA (position –20), which 

invariably begins with G in our libraries due to the mU6 promoter. Thus, the mismatched sequence 

array is identical to the genomic sequence array except for 1 or 2 positions. Finally, the arrays are 

stacked into a 3D volume of shape (4, 26, 2), which serves as the feature set for a particular sgRNA.  

 The training set of sgRNAs was established by randomly selecting 80% of guide series, with 

the remaining 20% set aside for model validation. A convolutional neural network (CNN) 

regression model was then designed using Keras (https://keras.io/) with a TensorFlow backend 

engine, consisting of two sequential convolution layers, a max pooling layer, a flattening layer, and 

finally a three-layer fully connected network terminating in a single neuron. Additional 

regularization was achieved by adding dropout layers after the pooling step and between each fully 

connected layer. To penalize the model for ignoring under-represented sgRNA classes (e.g. those 

with intermediate relative activity), training sgRNAs were binned according to relative activity, and 

sample weights inversely proportional to the population in each bin were assigned. Hyperparameters 

were optimized using a randomized grid search with 3-fold cross-validation with the training set as 
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input. Parameters included the size, shape, stride, and number of convolution filters, the pooling 

strategy, the number of neurons and layers in the dense network, the extent of dropout applied at 

each regularization step, the activation functions in each layer, the loss function, and the model 

optimizer. Ultimately, 20 CNN models with identical starting parameters were individually trained 

for 8 epochs in batches of 32 sgRNAs. Performance was assessed by computing the average 

prediction of the 20-model ensemble for each validation sgRNA and comparing it to the measured 

value. 

A linear regression model was trained on the same set of sgRNAs, albeit with modified 

features more suited for this approach. These features include the identities of bases in and around 

the PAM, whether the invariant G at the 5′ end of the sgRNA is base paired, the GC content of the 

sgRNA, the change in GC content due to the point mutation, the location of the protospacer 

relative to the annotated transcription start site, the identities of the 3 RNA bases on either side of 

the mismatch, and the location and type of each mismatch. All features were binarized except for 

GC and delta GC content. In total, each guide was represented by a vector of 270 features, 228 of 

which describe the mismatch position and type (19 possible positions by 12 possible types). Prior to 

training, feature vectors were z-normalized to set the mean to 0 and variance to 1. Finally, an elastic 

net linear regression model was created using the scikit-learn Python package (https://scikit-

learn.org), and key hyperparameters (alpha and L1 ratio) were optimized using a grid search with 3-

fold cross validation during training. 
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Design of compact library 

Genes targeted by the compact allelic series library were required to have at least one 

perfectly matched sgRNA with a growth phenotype greater than 2 z-scores outside the distribution 

of negative control sgRNAs (γ < –0.04) in a single replicate of a K562 pooled screen (this work or 

(7)). By this metric, 4,722 unique sgRNAs targeting 2,405 essential genes were included. Next, for 

each perfectly matched sgRNA, variants containing all 57 single mismatches in the targeting 

sequence (positions –19 to �1) were generated in silico, and sequences with off-target binding 

potential in the human genome were filtered out as described for the large-scale library. Remaining 

variant sgRNAs were whitelisted for potential selection in subsequent steps. 

 For each gene being targeted, if both of the perfectly matched sgRNAs imparted growth 

phenotypes greater than 3 z-scores outside the distribution of negative controls (γ < –0.06) in this 

work’s large-scale K562 screen, then one series of 4 variant guides was generated from each. 

Otherwise, one series of 8 variants was generated from the sgRNA with the stronger phenotype. 

Both perfectly matched sgRNAs were included regardless of their growth phenotype, for a total of 2 

perfectly matched and 8 mismatched sgRNAs per gene. 

 In order to select mismatched guides, we first divided the relative activity space into 6 bins 

with edges at 0.1, 0.3, 0.5, 0.7, and 0.9. For each series, we attempted to select sgRNAs from each of 

the middle 4 bins (centers at 0.2, 0.4, 0.6, and 0.8 relative activity) as measured in this work’s K562 

screen. If multiple sgRNAs were available in a particular bin, they were prioritized based on distance 

to the center of the bin and variance between replicate measurements. If no previously measured 

sgRNA was available in a given bin, then the CNN model was run on all whitelisted (novel) 

mismatched sgRNAs belonging to that series, and sgRNAs were selected based on predicted activity 
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as needed. In total, the compact library was composed of 4,722 unique perfectly matched sgRNAs, 

19,210 unique mismatched sgRNAs, and 1,202 non-targeting control sgRNAs. Approximately 68% 

of mismatched sgRNAs were evaluated in previous screens (72% single mismatches, 28% double 

mismatches), with the remaining 32% imputed from the CNN model (all single mismatches). 

Sequences of sgRNAs and descriptions of mismatches are listed in Table S3.8. 

 

Perturb-seq 

The perturb-seq experiment targeted 25 genes involved in a diverse range of essential 

functions (Table S3.12). For each target gene, the original sgRNAs and 4-5 mismatched sgRNAs 

covering the range from full relative activity to low relative activity were chosen from the large-scale 

screen. These 128 targeting sgRNAs as well as 10 non-targeting negative control sgRNAs were 

individually cloned into a modified variant of the CROP-seq vector (12, 13) as described above, 

except into the different vector. Lentivirus was individually packaged for each of the 138 sgRNAs 

and was harvested and frozen in array. To determine viral titers, each virus was individually 

transduced into K562 CRISPRi cells by centrifugation at 1,000 × g and 33 °C for 2 h, and the 

fraction of transduced cells was quantified as BFP+ cells using an LSR-II flow cytometer (BD 

Biosciences) 48 h after transduction. 

To generate transduced cells for single-cell RNA-seq analysis, virus for all 138 sgRNAs was 

pooled immediately before transduction and then transduced into K562 CRISPRi cells by 

centrifugation at 1,000 × g and 33 °C for 2 h. To achieve even representation at the intended time of 

single-cell analysis, the virus pooling was adjusted both for titer and expected growth-rate defects. 3 

d after transduction, transduced (BFP+) cells were selected using FACS on a FACSAria2 (BD 
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Biosciences) and then resuspended in conditioned media (RPMI formulated as described above 

except supplemented with 20% FBS and 20% supernatant of an exponentially growing K562 

culture). 2 d after sorting, the cells were loaded onto three lanes of a Chromium Single Cell 3′ V2 

chip (10x Genomics) at 1,000 cells/µL and processed according to the manufacturer’s instructions. 

The CROP-seq sgRNA barcode was PCR amplified from the final single cell RNA-seq libraries with 

a primer specific to the sgRNA expression cassette (oBA503, Table S3.11) and a standard P5 primer 

(Table S3.11), purified on a Blue Pippin 1.5% agarose cassette (Sage Science) with size selection 

range 436-534 bp, and pooled with the single cell RNA-seq libraries at a ratio of 1:100. The libraries 

were sequenced on a HiSeq 4000. 

To measure the growth rate defects conferred by each sgRNA for comparison with the 

transcriptional phenotypes, samples of ~500,000 transduced cells were taken from the same 

transduced cell population used in the perturb-seq experiment on days 2, 7, and 12 after 

transduction. Genomic DNA was extracted using the Nucleospin Blood kit (Macherey-Nagel) and 

sgRNA amplicons were prepared as described previously and above (7), albeit with no genomic 

DNA digestion or gel purification, and sequenced on HiSeq 4000 as described above. 

 

Perturb-seq analysis 

i. Cell barcode and UMI calling, assignment of perturbations 

UMI count tables with UMI counts for all genes in each individual cell were calculated from the 

raw sequencing data using CellRanger 2.1.1 (10x Genomics) with default settings. Perturbation 

calling was performed as in (14). Briefly, reads from the specifically amplified sgRNA barcode 

libraries were aligned to a list of expected sgRNA barcode sequences using bowtie (flags: -v3 -q -m1). 
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Reads with common UMI and barcode identity were then collapsed to counts for each cell barcode, 

producing a list of possible perturbation identities contained by that cell. A proposed perturbation 

identity was identified as “confident” if it met thresholds derived by examining the distributions of 

reads and UMIs across all cells and candidate identities: (i) reads > 50, (ii) UMIs > 3, and (iii) 

coverage (reads/UMI) in the upper mode of the observed distribution across all candidate identities. 

As described in (15), perturbation identities were called for any cell barcode with greater than 2,000 

UMIs to enable capture of cells with strong growth defects. Any cell barcode containing two or more 

confident identities was deemed a “multiplet”, and may arise from either multiple infection or 

simultaneous encapsulation of more than one cell in a droplet during single-cell RNA sequencing. 

Cell barcodes passing the 2,000 UMI threshold and bearing a single, unambiguous perturbation 

barcode were included in all subsequent analyses. 

ii. Expression normalization 

Some portions of analysis use normalized expression data. We used a relative normalization 

procedure based on comparison to the gene expression observed in control cells bearing non-

targeting sgRNAs, as in (14): 

1. Total UMI counts for each cell barcode are normalized to have the median number of UMIs 

observed in control cells. 

2. For each gene !, expression across all cell barcodes is z-normalized with respect to the mean 

("#) and standard deviation ($#) observed in control cells: 

!normalized =
! − "#
$#

 

Following this normalization, control cells have average expression 0 (and standard deviation 1) for 

all genes. Negative/positive values therefore represent under/overexpression relative to control.  
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iii. Target gene quantification 

Expression levels of genes targeted by a given sgRNA were quantified by normalizing UMI 

counts of the targeted gene to the total UMI count for each individual cell (Fig. S3.8). Considering 

raw UMI counts of the targeted gene (Fig. S3.9) or z-normalized target gene expression as described 

above yielded similar results. Note that the sgRNA targeting BCR is toxic due to knockdown of the 

BCR-ABL1 fusion present in K562 cells. Knockdown was apparent both in BCR and ABL1 

expression, but we used BCR expression for further analysis as there are likely additional copies of 

ABL1 that are not fused to BCR (and thus would not be affected by the BCR-targeting sgRNA) 

contributing to ABL1 expression. 

iv. Cell cycle analysis 

Calling of cell cycle stages was performed using a similar approach to (16) and largely as 

described in (14). Briefly, lists of marker genes showing specific expression in different cell cycle 

stages from the literature were first adapted to K562 cells by restricting to those that showed highly 

correlated expression within our experiment. The total (log2-normalized) expression of each set of 

marker genes was used to create scores for each cell cycle stage within each cell, and these scores were 

then z-normalized across all cells. Each cell was assigned to the cell cycle stage with the highest score. 

v. Differential gene expression analysis 

We took two approaches to differential expression, as described in (15). For both approaches, we 

only considered genes with expression greater than 0.25 UMIs per cell on average across all cells. 

First, for a given gene, we could assess the changes in the expression distribution of that gene 

induced by a given genetic perturbation by comparing to the expression distribution observed in 

control cells bearing non-targeting sgRNAs. We performed this comparison using a two-sample 
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Kolmogorov-Smirnov test and corrected for multiple hypothesis testing at an FDR of 0.001 using 

the Benjamini-Yekutieli procedure. 

We also exploited a machine learning approach that potentially allows correlated expression 

patterns to be detected and that scales beyond two sample comparisons. Perturbed cells and control 

cells bearing non-targeting sgRNAs were each used as training data for a random forest classifier that 

was trained to predict which sgRNA a cell contained from its transcriptional state. As part of the 

training process the classifier ranks which genes have the most prognostic power in predicting 

sgRNA identity, which by construction will tend to vary across condition. For most further analysis, 

the top 100-300 genes by prognostic power were then considered. 

vi. Constructing mean expression profiles 

For some analyses, expression profiles were averaged across all cells with the same perturbation. 

In general, this was done simply by calculating the mean z-normalized expression of all genes with 

mean expression level of 0.25 UMI or higher across all cells in the experiment or within the specific 

considered subpopulation (usually all cells with sgRNAs targeting a given gene as well as all control 

cells with non-targeting sgRNAs). 

vii. UMAP dimensionality reduction 

For UMAP dimensionality reduction of all cells, the 300 genes with the highest prognostic 

power in distinguishing cells by targeted gene as ranked by a random forest classifier were selected. 

Dimensionality reduction was then performed on the z-normalized single-cell expression profiles of 

these 300 genes using the following parameters: n_neighbors = 40, min_dist = 0.1, metric = 

‘euclidean’, spread = 1.0. UMAP dimensionality reduction of subpopulations containing only cells 
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with perturbation of a given gene or control cells was performed analogously but using the 

expression profiles of the 100 genes with the highest prognostic power and using n_neighbors = 15. 

viii. ISR scores 

Magnitude of ISR activation in individual cells was quantified as activation of the PERK 

(EIF2AK3) regulon from the gene set and activation coefficients determined in (14). 

Results 

Mismatched sgRNAs mediate diverse intermediate phenotypes 

To comprehensively characterize the activities of mismatched sgRNAs in CRISPRi-mediated 

knockdown, we introduced all 57 singly mismatched variants of a GFP-targeting sgRNA (6) into 

GFP+ K562 CRISPRi cells and measured GFP levels by flow cytometry (Fig. 3.1a). Cells harboring 

mismatched sgRNAs experienced knockdown levels between those of cells with the perfectly 

matched sgRNA (94%) and cells with a non-targeting control sgRNA (Fig. 3.1b, S3.1a, S3.1b). As 

expected, sgRNAs with mismatches in the PAM-proximal seed region had strongly compromised 

activity. By contrast, sgRNAs with mismatches in the PAM-distal region effected GFP knockdown 

to an extent similar to that of the unmodified sgRNA, albeit with substantial variability depending 

on the type of mismatch (Fig. 3.1b-c). The distributions of GFP levels with mismatched sgRNAs 

were largely unimodal, although the distributions were broader than with the perfectly matched 

sgRNA or the control sgRNA (Fig. 3.1b, S3.1b). These results suggest that series of mismatched 

sgRNAs can be used to titrate gene expression at the single-cell level, but that mismatched sgRNA 

activity is modulated by complex factors. 
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Rules of mismatched sgRNA activity derived from a large-scale screen 

We reasoned that by measuring growth phenotypes imparted by mismatched sgRNAs in a 

pooled screen, we could empirically derive the factors governing the influence of mismatches on 

sgRNA activity. To create a library of mismatched variants for this screen, we selected 2 sgRNAs 

each against 2,499 genes for with growth phenotypes in K562 cells (7). For each sgRNA, we 

generated series of 22-23 variant sgRNAs with one or two mismatches and cloned these sgRNAs, 

including the original, perfectly matched sgRNA, into a pooled library comprising ~120,000 

sgRNAs in 4,898 series (Fig. 3.2a, Table S3.1). We transduced K562 (chronic myelogenous 

leukemia) and Jurkat (acute T-cell lymphocytic leukemia) cells expressing dCas9-KRAB with the 

sgRNA library, harvested subpopulations at the outset of the experiment (t0) and after 11 days of 

growth, and then measured the difference in relative abundance of each sgRNA between the end 

point and t0 populations by next-generation sequencing to quantify how each sgRNA affects growth 

(γ), with a more negative value of γ indicating a stronger growth defect (4, 9) (Fig. 3.2b). Growth 

phenotypes of targeting sgRNAs were well-correlated in biological replicates (Fig. S3.2a-b, Tables 

S3.2-S3.3, Pearson r2 [K562] = 0.82; Pearson r2 [Jurkat] = 0.82), and growth phenotypes of perfectly 

matched sgRNAs in K562 cells were well-correlated with previously reported phenotypes (7) (Fig. 

S3.2c, Pearson r2 = 0.86). Growth phenotypes measured in K562 and Jurkat cells were more 

different (Pearson r2 = 0.37), likely reflecting cell-type specific gene essentiality (Fig. S3.2d). 

Examining the phenotype patterns within sgRNA series revealed that mismatched sgRNAs 

mediate a range of phenotypes, spanning from that of the corresponding perfectly matched sgRNA 

to those of negative control sgRNAs (Fig. 3.2c). To quantify the effects of mismatches, we 

normalized the phenotype of each mismatched sgRNA to that of its perfectly matched sgRNA 
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(relative activity, Fig. 3.2b) and filtered for series in which the perfectly matched sgRNA had a 

strong growth phenotype (see Methods, 3,147 sgRNA series for K562 cells, 2,029 sgRNA series for 

Jurkat cells). The resulting relative activities derived from phenotypes measured in K562 and Jurkat 

cells were well-correlated (Fig. 3.2d, Pearson r2 = 0.71), regardless of differences in absolute 

phenotype of the perfectly matched sgRNAs (Pearson r2 = 0.74 for |	γ[K562] – γ[Jurkat] | > 0.2; 

Pearson r2 = 0.70 for |	γ[K562] – γ[Jurkat] | < 0.2). We therefore averaged relative activities from 

both cell lines for further analysis (see Methods). The majority of mismatched sgRNAs were inactive 

(Fig. 3.2d), with a particularly high proportion of inactive sgRNAs among sgRNAs with two 

mismatches (Fig. S3.2e). Nonetheless, many mismatched sgRNAs exhibited intermediate activity 

(19,596 sgRNAs with 0.1 < relative activity < 0.9, 25.5% of sgRNAs in series passing filter). 

To further understand the rules governing the impact of mismatches on sgRNA activity, we 

focused on sgRNAs with a single mismatch and stratified the relative activities by various properties 

of the mismatched sgRNAs. As expected, mismatch position was a strong determinant of activity, 

with sgRNAs carrying mismatches closer to the PAM having lower relative activity (Fig. 3.2e). The 

exact nucleotide substitution also had a strong effect, with rG:dT mismatches (A to G mutations in 

the sgRNA) retaining substantial activity even for mismatches close to the PAM (Fig. 3.2f). Other 

factors were of lower magnitude or had more context dependence. For example, sgRNAs with higher 

GC content retained higher activity for mismatches located 9 or more bases upstream of the PAM 

(positions –9 to –19), and mismatched sgRNAs with G nucleotides surrounding the site of the 

mismatch retained marginally higher activity for some positions (Fig. S3.2f-g). Activity of 

mismatched sgRNAs thus appears to be determined by general biophysical rules; a premise further 

supported by the high correlation of relative activities obtained in two different cell lines (Fig. 3.2d) 
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and the high correlation of mismatched sgRNA activities with previous in vitro measurements of 

dCas9 binding on-rates in the presence of mismatches (17) (Fig. 3.2g).  

Finally, we evaluated how many sgRNA series provide access to multiple intermediate 

CRISPRi growth phenotypes and thereby likely enable titrating the expression of the targeted gene. 

With an intermediate phenotype defined as relative activity between 0.1 and 0.9, 76.1% of series 

contained at least 2 sgRNAs with intermediate phenotypes when only considering single 

mismatches, and 86.7% of series did so when also including double mismatches (Fig. S3.2h). Given 

that we explored ~20% of possible single mismatches and <1% of possible double mismatches, it is 

likely that intermediate-activity sgRNAs also exist for the remaining series. Altogether, these results 

suggest that systematically mismatched sgRNAs provide a general method to titrate CRISPRi activity 

and, consequently, target gene expression. 

 
Controlling sgRNA activity with modified constant regions 

We also explored the orthogonal approach of generating intermediate-activity sgRNAs 

through modifications to the sgRNA constant region, which is required for binding to Cas9. 

Previous work has established that such modifications have varied effects, including increases and 

decreases in Cas9 activity; or no measurable impact (5, 10, 11, 14, 18, 19). In these examples the 

mutational landscape of the constant region was only sparsely explored, and largely with the goal of 

preserving sgRNA activity. We therefore reasoned that saturation mutagenesis of the constant region 

could identify variants with intermediate activity. 

To comprehensively assess the activities of modified sgRNA constant regions, we designed a 

library of 995 constant region variants comprising all possible single nucleotide substitutions, 

substitutions of base pairs for other base pairs, and combinations of these changes (see Methods), 
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and then determined the growth phenotypes for each constant region variant paired with 30 

different targeting sequences against 10 essential genes in a pooled K562 screen (Fig. 3.3a, S3.3a; 

Tables S3.4-S3.6). We then calculated the relative activities for all targeting sequence:constant region 

pairs by normalizing phenotypes to those of the unmodified constant region, identifying 409 

constant region variants that on average conferred intermediate activity (0.1-0.9, Fig. 3.3b). Ten 

variants selected for individual evaluation also mediated intermediate mRNA knockdown (Fig. 

S3.3b). Mapping the activities of constant region variants with single base substitutions onto the 

structure recapitulated known relationships between constant region structure and function (Fig. 

3.3c). For example, mutation of bases known to mediate contacts with Cas9 (5) (e.g. the first stem 

loop or the nexus) generally reduced activity, whereas mutations in regions not contacted by Cas9 

(e.g. the hairpin region of stem loop 2) were well-tolerated (Fig. 3.3c). Notably, several variants 

carrying mutations in stem loop 2 had consistently increased activities and thus could be useful tools 

in future applications (Fig. 3.3b-c).  

We next evaluated the relative activities of constant region variants across different targeting 

sequences. Although the rank ordering of variant activities was largely consistent, the actual relative 

activities were more variable (Fig. 3.3d, S3.3c). For example, a targeting sequence against TUBB 

retained high activity with ~100 constant region variants that otherwise abolished activity, whereas a 

targeting sequence against SNRPD2 lost activity with ~50 constant region variants that otherwise 

conferred intermediate activity (Fig. 3.3d). This heterogeneity extended to different targeting 

sequences against the same gene in some cases, both at the level of growth phenotype (Fig. 3.3e-g, 

S3.3d-e) and mRNA knockdown (Fig. S3.3b). These differences between targeting sequences could 

be a consequence of specific targeting sequence:constant region structural interactions or of 
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differences in basal sgRNA expression levels such that lowly expressed sgRNAs are more susceptible 

to constant region modifications. These analyses suggest that modifications to the constant region 

can be used to titrate sgRNA activity, but the activity of a given constant region variant with a given 

targeting sequence is difficult to predict. We therefore focused on sgRNAs with mismatches in the 

targeting region for the remainder of our work, given that these sgRNAs conferred intermediate 

activity in a more predictable manner. 

 
A neural network predicts mismatched sgRNA activities with high accuracy 

We next sought to leverage our large-scale data set of mismatched sgRNA activities to learn 

the underlying rules in a principled manner and to enable predictions of intermediate-activity 

sgRNAs against other genes. We reasoned that a convolutional neural network (CNN) approach 

would be well-suited to uncovering these rules due to the ability of CNNs to learn complex global 

and local dependencies on spatially-ordered features such as nucleotide sequences (20), including 

factors governing guide RNA activity in orthogonal CRISPR systems (21). To train a CNN model, 

we converted singly-mismatched variants derived from perfectly matched sgRNAs into a binarized 

2D array of shape (4, 26), representing the mutated targeting sequence flanked by 2 upstream and 4 

downstream genomic bases (Fig. 3.4a). This array was then stacked onto a nearly identical array 

representing the sequence of the respective genomic locus, yielding a 3D volume of shape (4, 26, 2) 

for each mismatched sgRNA that differs in 1 or 2 positions along the depth axis, depending on 

whether the invariant G at the 5′ terminus of the sgRNA is base paired. The sgRNA series were 

randomly split into a training set (80%) and a validation set (20%), yielding a final training set 

composed of a feature array (X) of shape (21007, 4, 26, 2) mapped to a target vector (y) of 21,007 

relative activity measurements. 
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We constructed a model consisting of two convolution steps, a pooling step, and a 3-layer 

fully connected neural network (Fig. 3.4a, S3.4a) and optimized hyperparameters using a 

randomized grid search. We then trained 20 independent models initialized with the same 

parameters for 8 epochs, which minimized loss without extensive over-fitting (Fig. S3.4b). Predicted 

and measured relative activities were well-correlated (Pearson r2 = 0.65), with mean predictions of 

the 20-model ensemble outperforming all individual models (Fig. 3.4b, S3.4c). Moreover, the 

distribution of correlation coefficients for individual sgRNA series was unimodal with Pearson r 

values in the 25th-75th percentile ranging from 0.77 to 0.93, indicating that the model performed 

comparably well for most series (Fig. 3.4c). Model accuracy varied by mismatch position and type, 

with the highest accuracies corresponding to mismatches in the seed region (Fig. S3.4d-e). Despite 

the fact that the model was trained on relative growth phenotypes, it also accurately predicted 

relative fluorescence values measured in the GFP experiment (Fig. 3.4d), further supporting the 

hypothesis that relative growth phenotypes report on biophysical attributes of specific sgRNA:DNA 

interactions. 

To apply our model more broadly to the human genome, we generated all 57 singly-

mismatched sgRNAs for the top 5 sgRNAs against each gene in the hCRISPRi-v2.1 library (7) in 

silico and predicted their relative activities using the CNN ensemble (Table S3.7). Based on the 

accuracy of predictions for the validation set, we estimate that for any given gene, sampling 5 

sgRNAs with intermediate predicted relative activity (0.1-0.9) will yield at least one sgRNA in that 

activity range over 90% of the time (Fig. S3.4f-i). This resource should therefore enable generation 

of rationally constructed sgRNA libraries capable of titrating the knockdown of any gene(s) of 

interest. 
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Finally, we sought to further understand the features of mismatched sgRNAs that contribute 

most to their activity. As the contributions of individual features in a deep learning model are 

difficult to assess directly, we also trained an elastic net linear regression model on the same data 

using a curated set of features. This linear model explained less variance in relative activities than the 

CNN model (r2 = 0.52, Fig S5a-b), implying that our feature set was incomplete and/or sgRNA 

activity is partly determined by non-linear combinations of features. Nonetheless, the relative 

activities predicted by the different models were well-correlated (r2 = 0.74, Fig. S3.5c); therefore, the 

most important features determining sgRNA activity should correspond to those most heavily 

weighted in the linear model. Consistent with our earlier observations, mismatch position and type 

were assigned the largest absolute weights in the model, although other features such as GC content 

in the sgRNA and the identities of flanking bases up to 3 nucleotides away from the mismatch were 

heavily weighted as well (Fig. S3.5d-e). For any given position, the type of mismatch contributed 

differentially to the prediction, with the largest variation between types occurring in the intermediate 

region of the targeting sequence (Fig. S3.5f). Taken together, these data demonstrate that the 

activities of mismatch-containing sgRNAs are determined by multiple factors which can be gleaned 

using supervised machine learning approaches. 

 
A compact mismatched sgRNA library conferring intermediate growth phenotypes 

We next set out to design a compact version of our large-scale library to enable titration of 

essential genes with a small number of sgRNAs. We selected 2,405 genes, divided the relative activity 

space into six bins, and attempted to select mismatched variants from each of the center four bins 

(relative activities 0.1-0.9) for two sgRNA series targeting each gene. If a bin did not contain a 

previously measured sgRNA, we generated feature arrays for all 57 singly-mismatched sgRNAs 
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derived from the perfectly matched sgRNA and predicted their activities using the CNN model 

ensemble. After filtering for off-target binding potential, these novel sgRNAs were included as 

needed based on their predicted activity (Fig. 3.5a). For each gene, 2 perfectly matched and 8 

mismatched sgRNAs were selected for the library, with approximately 32% of mismatched sgRNAs 

imputed from the CNN model (Fig. S3.6a-c). 

 We evaluated the relative activities of sgRNAs in the compact library using pooled growth 

screens in K562 and HeLa (cervical carcinoma) CRISPRi cells. Growth phenotypes were well-

correlated in biological replicates from samples harvested at different time points after t0 in both cell 

lines and less correlated between cell lines (Fig. S3.6d-f). The CNN model predicted imputed 

sgRNA activities with lower accuracy than the large-scale validation (Fig. S3.6g), although we note 

that imputed guides were highly enriched in PAM-distal mutations which are associated with higher 

model errors (Fig. S3.6b, S3.4e). Whereas the majority of mismatched sgRNAs in the large-scale 

screen had little to no activity, relative activities in the compact library were evenly distributed, 

ranging from inactive to full activity (Fig. 3.5b). Relative sgRNA activities were also reasonably well-

correlated between K562 and HeLa cells (r2 = 0.58, Fig. 3.5c), suggesting that intermediate 

phenotypes should be achievable for most genes in multiple cell types using this library.  

 
Exploring essential gene loss-of-function phenotypes with sgRNA allelic series 

Finally, we sought to use intermediate-activity sgRNAs to explore the relationship between 

gene expression levels and biological phenotype. To simultaneously measure gene expression levels 

and obtain rich phenotypes for a variety of sgRNA series, we used perturb-seq, an experimental 

strategy developed by us and others that enables matched capture of the transcriptome and the 

identity of an expressed sgRNA for each individual cell in pools of cells (12, 14, 22, 23) (Fig. S3.7a). 
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We targeted 25 essential genes involved in diverse cell biological processes (Table S3.12) and chose 

series of sgRNAs consisting of a perfectly matched sgRNA and 4-5 variants with intermediate 

growth phenotypes (138 sgRNAs total including 10 non-targeting controls, Table S3.13). We 

cloned each sgRNA into a modified CROP-seq vector (12, 13), transduced these vectors into K562 

CRISPRi cells, and subjected the cells to single-cell RNA-seq (scRNA-seq) 5 days after transduction. 

In total, we captured transcriptomes for ~23,600 cells with a median number of ~31,500 transcripts 

per cell (Fig. S3.7b) and assigned single sgRNA identities to ~19,600 cells (83%, Fig. S3.7b) with a 

median number of 122 cells per sgRNA (Fig. S3.7c). We also quantified relative sgRNA abundances 

in the cell population after 5 and 10 days of growth to determine the growth phenotypes and relative 

activities conferred by each sgRNA in this vector (Fig. S3.7d-e). We used sgRNA relative activities 

determined after 5 days for further analyses. 

We first used the scRNA-seq data to assess the expression of the gene targeted by each 

sgRNA series. To account for cell-to-cell variability in transcript capture efficiency, we quantified 

target gene UMIs as a fraction of total UMIs in a given cell (Fig. S3.8), although analyzing raw UMI 

counts yielded similar results (Fig. S3.9). Owing to the limited capture efficiency of scRNA-seq, for 

lowly expressed genes such as CAD and COX11 we typically observed 0-4 UMIs per cell, with a shift 

to lower UMI numbers with increasing sgRNA activity (Fig. S3.8, S3.9). For genes with higher basal 

expression levels such as HSPA9 and ribosomal genes, the target gene expression distributions are 

more clearly apparent (Fig. 3.6a, S3.8). These distributions are largely unimodal, with medians 

shifting downwards with increasing sgRNA activity (Fig. 3.6a). Notably, for ribosomal genes and a 

few other highly expressed genes, two populations with different knockdown levels are apparent (Fig. 

3.6a, S3.8). These populations are present both with intermediate-activity sgRNAs and the perfectly 
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matched sgRNAs, suggesting that they are not a consequence of limited knockdown penetrance for 

intermediate-activity sgRNAs. 

Beyond expression levels of the targeted gene, titration is also apparent at the level of the 

transcriptome phenotypes. In the simplest cases, knockdown of POLR2H, a core subunit of RNA 

polymerase II (as well as RNA polymerases I and III), GATA1, a central myeloid lineage 

transcription factor, or to a lesser extent BCR, which is fused to the driver oncogene ABL1 in K562 

cells, led to substantial reductions in cellular UMI counts, consistent with global inhibition of 

mRNA transcription (Fig. 3.6b, Fig. S3.10a). Cells with mismatched sgRNAs against these genes 

had intermediate UMI counts (Fig. 3.6b), with the extent of reduction in UMI counts exhibiting a 

linear relationship with growth phenotype (Fig. S3.10b), but non-linear relationships with target 

gene knockdown at least in the cases of GATA1 and POLR2H (Fig. 3.6c, S3.10b). In particular, 

both relationships appear to be sigmoidal but with different thresholds: whereas cellular UMI counts 

drop rapidly once GATA1 mRNA levels are reduced by 50%, a larger reduction of POLR2H mRNA 

levels is required to achieve a similarly sized effect. Knockdown of most other targeted genes did not 

perturb total UMI counts to the same extent (Fig. S3.10a) but nonetheless resulted in measurable 

phenotypes. Knockdown of CAD, for example, triggered cell cycle stalling during S-phase, as had 

been observed previously (14), with a higher frequency of stalling with increasing sgRNA activity 

(Fig. S3.10c). Finally, knockdown of most of the targeted genes induced strong transcriptional 

phenotypes (Fig. S3.10d). For example, knockdown of HSPA9, the mitochondrial Hsp70 isoform, 

induced the expected transcriptional signature corresponding to activation of the integrated stress 

response (ISR) including upregulation of DDIT3 (CHOP), DDIT4, ATF5, and ASNS (asparagine 

synthetase), among others (24). The magnitude of this transcriptional signature increased with 
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increasing sgRNA activity both on the bulk population level (Fig. 3.6d) and on the single-cell level 

(Fig. 3.6e), although populations with intermediate-activity sgRNAs had larger cell-to-cell variation 

in the magnitudes of transcriptional responses. Similarly, the transcriptional responses to knockdown 

of other genes scaled with sgRNA activity and exhibited larger variance for intermediate-activity 

sgRNAs (Fig. 3.6e). These results highlight the ability of intermediate-activity sgRNAs to provide 

access to diverse cellular states. 

We next explored the relationships between target gene expression and two metrics of 

phenotype, growth in bulk and transcriptional response. Within each series, the relative magnitudes 

of the transcriptional responses appear to be well-correlated with growth phenotype, despite 

substantial differences in the absolute magnitudes of the transcriptional responses with different 

series (Fig. 3.6f, S3.10d-f). By contrast, the relationship between magnitude of transcriptional 

changes and target knockdown is more varied (Fig. 3.6g, S3.10g). For HSPA5 and GATA1, for 

example, a comparably small reduction in mRNA levels was sufficient to induce a near-maximal 

transcriptional response, whereas for most other genes a larger reduction was required. These 

relationships are similarly apparent when comparing the target gene knockdown to growth 

phenotype, with small reductions in HSPA5 or GATA1 levels triggering strong growth defects (Fig. 

S3.10h). These results prompt the hypothesis that expression of GATA1 and HSPA5 is more 

limiting to growth of K562 cells, with sharp transitions from growth to death once expression drops 

below a threshold. More broadly, these results highlight the utility of titrating gene expression with 

intermediate-activity sgRNAs on the single-cell level to systematically map the relationships between 

gene expression and phenotype. 
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To gain further insight into the diversity of transcriptional responses induced by depletion of 

essential genes, we compared the transcriptional profiles of all perturbations in this experiment. 

Clustering all individual perturbations according to the similarity (Pearson correlation) of their bulk 

transcriptomes revealed multiple groups of perturbations segregated by biological function, including 

a cluster of perturbations of ribosomal subunits and POLR1D, a subunit of the rRNA-transcribing 

RNA polymerase I (and of RNA polymerase III), and a cluster of perturbations that activate the 

integrated stress response (HSPA9, HSPE1, and EIF2S1/eIF2α) (Fig. S3.11a). To further visualize 

the space of transcriptional states, we performed dimensionality reduction on the single-cell 

transcriptomes using UMAP (25). The resulting projection of individual cells recapitulates the 

results from the clustering, as indicated for example by the close spatial proximity of cells with 

perturbations of HSPA9, HSPE1, and EIF2S1 (Fig. 3.6h). Within individual series, cells project 

further outward in UMAP space with increasing sgRNA activity, further highlighting that target 

gene expression levels are titrated on the single cell level (Fig. 3.6i). We did notice that ~5% cells had 

mis-assigned sgRNA identities (evident e.g. within the cluster of cells with HSPA5 knockdown). 

These cells had confidently assigned single perturbations and only expressed the corresponding 

barcode transcript, suggesting that they did not evade our doublet detection algorithm. We speculate 

that these cells expressed two different sgRNAs but silenced expression of one of the reporter 

transcripts. Given the strong trends in the results above, we concluded that this rate of mis-

assignment did not substantially affect our ability to identify trends within cell populations. 

Together, these analyses reveal a large diversity of transcriptional responses in response to inhibiting 

central cell biological processes to various degrees. 
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Closer examination of the UMAP projection revealed more granular structure, including the 

grouping of a subset of cells with knockdown of ATP5E, a subunit of ATP synthase, with cells with 

ISR-activating perturbations (Fig. 3.6h). This subset of cells indeed exhibited classical features of ISR 

activation (Fig. S3.11b), but not all cells with ATP5E knockdown exhibited this phenotype (Fig. 

3.6j, S11b). The frequency of ISR activation increased with lower ATP5E mRNA levels (Fig. 3.6j), 

but even at the lowest mRNA levels some cells did not exhibit ISR activation. These results suggest 

that depletion of ATP synthase under these conditions predisposes cells to activate the ISR, perhaps 

by exacerbating transient phases of mitochondrial stress, in a manner that is proportional to ATP 

synthase levels. More broadly, these results highlight the utility of titrating gene expression in 

probing cell biological phenotypes, especially in combination with rich phenotyping methods such 

as scRNA-seq. 

Discussion 

Here we describe the development of allelic series of sgRNAs to titrate gene expression in 

human cells, with a broad range of applications across basic and biomedical research. We highlight 

the utility of the approach in extracting rich phenotypes by single-cell RNA-seq along a continuum 

of gene expression levels, which enabled mapping of expression levels to various phenotypes and 

identification of expression level-dependent cell fates. 

Our approach builds on in vitro work characterizing the effects of sgRNA modifications on 

(d)Cas9 binding on-rates and activity (2, 17, 26–28). The effects of mismatches in cells follow the 

biophysical principles established by these studies, enabling us to apply machine learning approaches 

to derive the underlying rules and predict series for arbitrary sgRNAs. The resulting genome-wide in 
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silico library (Table S3.7) enables titration of any expressed gene of interest. We also describe a 

compact 25,000-element library that is composed largely of empirically validated sgRNAs and 

enables titration of ~2,400 essential genes (Table S3.8), with potential applications for example in 

focused chemical-genetic screens or in profiling interactions between genes with extremely strong 

growth phenotypes. Given that target gene expression levels are largely unimodally distributed in 

cells with sgRNA series, these sgRNAs can be combined with both single-cell or bulk population 

readouts. Thus, complex phenotypes as a function of gene expression levels can be recorded by a 

variety of techniques tailored to the particular question, such as perturb-seq or related techniques, 

microscopy, bulk metabolomics or proteomics, or targeted cell biological assays, providing 

substantial experimental flexibility. 

In perhaps the most basic application, sgRNA allelic series enable mapping expression-to-

phenotype curves, with implications for both evolutionary biology and biomedical research. Indeed, 

using these sgRNA series to titrate essential gene expression, we found gene-specific expression-to-

phenotype relationships: although all genes had a threshold expression level below which cell 

viability dropped rapidly, the relative locations of these thresholds varied across genes, with K562 

cells being particularly sensitive to depletion of GATA1 and HSPA5 by 50% but robust to depletion 

of most other genes by ~80%. This variability in threshold location suggests different buffering 

capacities for different genes, in line with previous findings in yeast (29), the logic of which remains 

unclear. More comprehensive efforts to generate such dose-response curves and determine the 

extents to which gene expression is buffered across cell models would allow for identification of 

patterns for different gene sets and processes and thereby begin to reveal the underlying principles 

that have shaped gene expression levels. Analogous efforts to map such dose-response curves in 
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cancer cell types could identify specific vulnerabilities as targets for therapeutics and, vice versa, 

mapping these curves for cancer driver genes or genes underlying specific diseases enables defining 

the corresponding therapeutic windows, i.e. the required extents of inhibition or restoration, as goals 

for drug development. 

As an additional feature, sgRNA allelic series provide access to a diversity of cell states and 

phenotypes including loss-of-function phenotypes that otherwise may be obscured by cell death or 

neomorphic behavior. Thus, our approach enables positioning cells at states of interest, for example 

to record chemical-gene or gene-gene interactions, or near phenotypic transitions to characterize the 

transcriptional trajectories. These series will also facilitate recapitulating gene expression levels of 

disease-relevant states such as haploinsufficiency or partial loss-of-function diseases, enabling 

systematic efforts to identify suppressors or modifiers as potential therapeutic targets, or modeling 

quantitative trait loci associated with multigenic traits in conjunction with rich phenotyping to 

systematically identify the mechanisms by which they interact and contribute to such traits. Finally, 

such sgRNA series can be equivalently used to titrate dCas9 occupancy and activity in other 

applications such as CRISPRa or dCas9-based epigenetic modifiers. 

In some regards our allelic series approach unlocks the full potential of CRISPRi to allow for 

titration of single or multiple genes and thereby evaluation of dose-response relationships. This 

resource should be equally enabling to systematic large-scale efforts and detailed single-gene 

investigations in drug development, basic cell biology, and functional genomics. 
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Data Availability 

The raw and processed single-cell sequencing data from this study have been submitted to 

the NCBI Gene Expression Omnibus under accession number GSE132080. Supplementary tables 

containing processed screening data will be available pending publication in a peer-reviewed journal.  
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Figure 3.1. Mismatched sgRNAs titrate GFP expression at the single-cell level. (a) Experimental 
design to test knockdown conferred by all mismatched variants of a GFP-targeting sgRNA. (b) 
Distributions of GFP levels in cells with perfectly matched sgRNA (top), mismatched sgRNAs 
(middle), and non-targeting control sgRNA (bottom). Sequences of sgRNAs are indicated on the 
right. (c) Relative activities of all mismatched sgRNAs, defined as the ratio of percent-knockdown 
conferred by a mismatched sgRNA to percent-knockdown conferred by the perfectly matched 
sgRNA. Relative activities are displayed as the mean of two biological replicates. 
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Figure 3.2. A large-scale CRISPRi screen identifies factors governing mismatched sgRNA activity. 
(a) Design of large-scale mismatched sgRNA library. (b) Schematic of pooled CRISPRi screen to 
determine activities of mismatched-sgRNAs. (c) Growth phenotypes (γ) in K562 and Jurkat cells for 
four sgRNA series, with the perfectly matched sgRNAs shown in darker colors and mismatched 
sgRNAs shown in corresponding lighter colors. Differences in absolute phenotypes likely reflect cell 
type-specific essentiality. (d) Comparison of mismatched sgRNA relative activities in K562 and 
Jurkat cells. Marginal histograms depict distributions of relative activities along the corresponding 
axes. (e) Distribution of mismatched sgRNA relative activities stratified by position of the mismatch. 
Position –1 is closest to the PAM. (f) Distribution of mismatched sgRNA relative activities stratified 
by type of mismatch, grouped by mismatches located in positions –19 to –13 (PAM-distal region), 
positions –12 to –9 (intermediate region), and positions –8 to –1 (PAM-proximal/seed region). (g) 
Comparison of mean apparent on-rates measured in vitro for mismatched variants of a single sgRNA 
(17) and mean relative activities from large-scale screen. Values are compared for identical 
combinations of mismatch type and mismatch position; mean relative activities were calculated by 
averaging relative activities for all mismatched sgRNAs with a given combination. 
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Figure 3.3. Identification and characterization of intermediate-activity constant regions. (a) Design 
of constant region variant library. (b) Mean relative activities of constant region variants, calculated 
by averaging relative activities for all targeting sequences. Grey margins denote 95% confidence 
interval. Inset: Focus on 6 constant region variants with higher activity than the original constant 
region. Black diamonds denote mean relative activity, grey dots relative activities with individual 
targeting sequences. (c) Mapping of constant region variant relative activities onto constant region 
structure. Each constant region base is colored by the average relative activity of the three single 
constant region variants carrying a single mutation at that position. Positions mutated in 6 highly 
active constant regions (inset in panel b) are indicated by colored dots. (d) Constant region activities 
by targeting sequence, plotted against ranked mean constant region activity. For each gene, the 
activities with the strongest targeting sequence are shown as rolling means with a window size of 50. 
(e-g) Constant region activities by targeting sequence for all three targeting sequences against the 
indicated genes. Growth phenotypes (γ) of each targeting sequence paired with the unmodified 
constant region are indicated in the legend. 
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Figure 3.4. Neural network predictions of sgRNA activity. (a) Schematic of a singly-mismatched 
sgRNA feature array (Xi), and the convolutional neural network architecture trained on pairs of such 
arrays and their corresponding relative activities (yi). Black squares in Xi represent the value 1 (the 
presence of a base at the indicated position); white represents 0. The mean prediction from 20 
independently trained models was used to assign a final prediction (ŷ) to each sgRNA in the hold-
out validation set (orange). (b) Measured relative growth phenotypes from the large-scale screen vs. 
predicted activities assigned by the neural network. Marginal histograms show distributions of 
relative activities along the corresponding axes. (c) Distribution of Pearson r values (predicted vs. 
measured relative activity) for each sgRNA series in the validation set. (d) Measured relative activity 
(i.e. relative knockdown) in the GFP experiment vs. predicted relative sgRNA activity. Two outliers 
with lower-than-predicted activity are annotated with their respective mismatch position and type. 
Predictions are shown as mean ± S.D. from the 20-model ensemble. 
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Figure 3.5. Compact mismatched sgRNA library targeting essential genes. (a) Design of library. For 
activity bins lacking a previously measured sgRNA, novel mismatched sgRNAs were included 
according to predicted activity. (b) Distribution of relative activities from the large-scale library 
(grey) and the compact library (purple) in K562 cells. (c) Comparison of relative activities of 
mismatched sgRNAs in HeLa and K562 cells. Marginal histograms show the distributions of relative 
activities along the corresponding axes. 
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Figure 3.6. Rich phenotyping of cells with intermediate-activity sgRNAs by perturb-seq. (a) 
Distributions of HSPA9 and RPL9 expression in cells with indicated perturbations. Expression is 
quantified as target gene UMI count normalized to total UMI count per cell. sgRNA activity is 
calculated using relative γ measurements from the perturb-seq cell pool after 5 days of growth. (b) 
Distributions of total UMI counts in cells with indicated perturbations. (c) Comparison of median 
UMI count per cell and GATA1 expression in cells with GATA1-targeting sgRNAs or control cells. 
(d) Right: Expression profiles of 100 genes in populations with HSPA9-targeting sgRNAs of various 
strength. Expression is quantified as z-score relative to population of cells with non-targeting 
sgRNAs. Left: Growth phenotype and knockdown for each sgRNA. (e) Distribution of gene 
expression changes in populations with indicated sgRNAs. Magnitude of gene expression change is 
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calculated as sum of z-scores of genes differentially expressed in the series, with z-scores of individual 
genes signed by the direction of change in cells with the perfectly matched sgRNA. Distribution for 
negative control sgRNAs is centered around 0 (dashed line). (f) Comparison of relative growth 
phenotype and magnitude of gene expression change for all individual sgRNAs. Growth phenotype 
and magnitude of gene expression change are normalized in each series to those of the sgRNA with 
the strongest knockdown. Individual series highlighted as indicated. (g) Comparison of magnitude 
of gene expression and target gene knockdown, as in f. (h) UMAP projection of all single cells with 
assigned sgRNA identity in the experiment, colored by targeted gene. Clusters clearly assignable to a 
genetic perturbation are labeled. Cluster labeled * contains a small number of cells with residual 
stress response activation and could represent apoptotic cells. (i) UMAP projection, as in h, with 
selected series colored by sgRNA activity. (k) Comparison of extent of ISR activation to ATP5E 
UMIs in cells with knockdown of ATP5E or control cells. 
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Supplementary Figure S3.1. Details of the GFP mismatch experiment. (a) Comparison of relative 
activities measured in two biological replicates. Relative activity was defined as the fold-knockdown 
of each mismatched variant (GFPsgRNA[non-targeting] / GFPsgRNA[variant]) divided by the fold-knockdown of 
the perfectly-matched sgRNA. The background fluorescence of a GFP– strain was subtracted from all 
GFP values prior to other calculations. (b) KDE plots of GFP distributions 10 days after transducing 
K562 GFP+ cells with the perfectly-matched sgRNA, a non-targeting sgRNA, and each of the 57 
singly-mismatched variants. Fluorescence of a GFP– K562 strain is shown in grey. 
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Supplementary Figure S3.2. Additional analysis of large-scale mismatched sgRNA screen. (a,b) 
Comparison of growth phenotypes (γ) of all sgRNAs derived from biological replicates of the (a) 
K562 and (b) Jurkat screens. (c) Comparison of growth phenotypes (γ) of perfectly matched 
sgRNAs from the K562 screen in this work and a previously published K562 screen (7). (d) 
Comparison of growth phenotypes (γ) of perfectly matched sgRNAs in K562 and Jurkat cells. (e) 
Distribution of mismatched sgRNA relative activities for sgRNAs with 1 mismatch (left) or 2 
mismatches (right). (f) Distribution of mismatched sgRNA relative activities stratified by sgRNA 
GC content, grouped by mismatches located in positions –19 to –13 (PAM-distal region), positions 
–12 to –9 (intermediate region), and positions –8 to –1 (PAM-proximal/seed region). (g) 
Distribution of mismatched sgRNA relative activities stratified by the identity of the 2 bases flanking 
the mismatch, grouped by mismatches located in positions –19 to –13 (PAM-distal region), 
positions –12 to –9 (intermediate region), and positions –8 to –1 (PAM-proximal/seed region). (h) 
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Distribution of sgRNA series by number of sgRNAs with intermediate activity (0.1 < relative activity 
< 0.9), using only sgRNAs with a single mismatch (top) or all mismatched sgRNAs (bottom). 
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Supplementary Figure S3.3. Additional analysis of modified constant regions. (a) Comparison of 
growth phenotypes measured in each biological replicate after 4, 6, or 8 days of growth from t0. Data 
from Day 4 was used for all subsequent analyses. (b) Comparison of relative % knockdown 
(quantified via RT-qPCR) and mean relative growth phenotype for 10 intermediate-activity constant 
region variants paired with two targeting sequences against DPH2. (c) Relative activities of constant 
regions paired with all 30 targeting sequences, ranked by the average strength of each constant region 
and displayed as rolling means with a window size of 50. (d) Distribution of all pairwise correlations 
of constant region relative activities within and between gene targets. N.S.; no significant difference 
according to two-tailed Student’s t-test (p >> 0.05). (e) Relative activity of each indicated target 
sequence:constant region pair vs. the mean relative activity of the respective constant region for all 
targets. Growth phenotypes (γ) with the unmodified constant region are indicated in the figure 
legends. Lines represent rolling means of individual data points.  
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Supplementary Figure S3.4. Additional details for the neural network. (a) Graph of the CNN model 
architecture. (b) Model loss, measured as root mean squared error, for training and validation data 
over 25 training epochs. Each line represents one of 20 models trained. The final models used for 
our predictions were only trained for 8 epochs, as additional cycles only reduced training loss 
without significant improvement in validation loss (i.e., the model becomes over-fit). (c) Explained 
variance (r2) of validation sgRNA relative activities for each individual model (black), and for the 
mean prediction of all 20 models (red). (d) Validation error stratified by mismatch position. (e) 
Validation error stratified by mismatch type. (f) Partitioning of sgRNAs into bins based on relative 
activity in the large-scale K562 screen. (g) Confusion matrix showing the fraction of sgRNAs in each 
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actual (measured) activity bin that were assigned to each predicted bin by the CNN model. Each 
row sums to 1. (h) Statistics indicating the requisite number of randomly sampled sgRNAs from 
each activity bin to have a given probability of selecting at least one sgRNA with true activity in that 
bin. Simulations are based on the probabilities outlined in the confusion matrix (panel e). (g) 
Similar to panel f, with random sampling from any of the intermediate activity bins (1-3) to yield at 
least one sgRNA with intermediate activity (0.1-0.9). 
 

  



 101 

 

 

Supplementary Figure S3.5. Additional details for the linear model. (a) Measured relative growth 
phenotypes from the large-scale screen vs. predicted activities assigned by the elastic net linear model. 
Marginal histograms show distributions of relative activities along the corresponding axes. (b) 
Measured relative activity (relative knockdown) in the GFP experiment vs. predicted relative sgRNA 
activity. (c) Comparison of predicted relative activities from the linear model vs. the neural network, 
based on the validation set of singly-mismatched sgRNAs. (d) Regression coefficients assigned to 
each feature in the linear model. 228 features (grey, blue) describe the position and type of 
mismatch; 42 features (gold) carry other information about the sgRNA and genomic context 
surrounding the protospacer. These features are detailed in subsequent panels. (e) Linear coefficients 
for features of the sgRNA and targeted locus. TSS; transcription start site. (f) Linear coefficients for 
features covering positions in the distal, intermediate, and seed regions of the targeting sequence 
(highlighted blue in panel d). 
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Supplementary Figure S3.6. Additional analysis of the compact allelic series screen. (a) Composition 
of the compact library, in terms of previously measured relative activities in the large-scale screen 
(dark purple), or predicted relative activities assigned by the CNN model ensemble (light purple). 
Perfectly matched guides, which by definition have relative activities of 1.0, comprise 20% of the 
library but were not included in the histogram. (b) Distribution of mismatch positions and types for 
singly-mismatched sgRNAs in the compact library, for previously measured (dark purple) and 
CNN-imputed (light purple) sgRNAs. (c) Heatmap showing the distribution of mutated positions 
for doubly-mismatched sgRNAs in the compact library. (d) Comparison of growth phenotypes 
measured in each K562 biological replicate 4- and 7-days post-transduction. Data from Day 7 was 
used for all subsequent analyses. (e) Comparison of growth phenotypes measured in each HeLa 
biological replicate 6- and 8-days post-transduction. Data from Day 8 was used for all subsequent 
analyses. (f) Comparison of growth phenotypes in HeLa and K562 cells (γ expressed as the average 
of biological replicate measurements). (g) Measured vs. predicted relative activities of CNN-imputed 
sgRNAs in K562 cells (left) and HeLa cells (right). A small number of points lying beyond the y-axis 
limits were excluded to more clearly display the bulk of the distribution. 
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Supplementary Figure S3.7. Summary of perturb-seq experiment. (a) Schematic of perturb-seq 
strategy to capture single-cell transcriptomes with matched sgRNA identities. (b) Summary of 
sequencing and perturbation assignment statistics. (c) Distribution of number of cells captured per 
perturbation. Median: 122 cells per perturbation; 5th to 95th percentile: 66 – 277 cells per 
perturbation. (d,e) Comparison of (d) growth phenotypes (γ) and (e) relative activities measured in 
the large-scale mismatched sgRNA screen and in the perturb-seq experiment. Differences are likely 
due to the different timescales and the different vectors used. 
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Supplementary Figure S3.8. Distributions of target gene expression in cells with indicated 
perturbations. Expression is quantified as target gene UMI count normalized to total UMI count per 
cell. 
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Supplementary Figure S3.9. Distributions of target gene expression in cells with indicated 
perturbations. Expression is quantified as raw target gene UMI count. 
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Supplementary Figure S3.10. Phenotypes resulting from target gene titration. (a) Distributions of 
total UMI counts in cells with the perfectly matched sgRNA against the indicated genes. (b) Left: 
Comparison of median UMI count per cell and relative growth phenotype in cells with sgRNAs 
targeting BCR, GATA1, or POLR2H or control cells. Right: Comparison of median UMI count per 
cell and target gene expression. (c) Cell cycle scores for populations of cells with individual sgRNAs. 
(d) Magnitudes of gene expression change of populations with perfectly matched sgRNAs targeting 
indicated genes. Magnitude of gene expression change is calculated as sum of z-scores of genes 
differentially expressed in the series, with z-scores of individual genes signed by the average direction 
of change in cells with the perfectly matched sgRNA. (e) Comparison of magnitude of gene 
expression change to growth phenotype (γ) for all perfectly matched sgRNAs in the experiment. (f) 
Comparison of relative growth phenotype and magnitude of gene expression change for all 
individual sgRNAs, as in Fig. 3.6f but without increased transparency for individual series. (g) 
Comparison of magnitude of gene expression and target gene knockdown, as in Fig. 3.6g but 
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without increased transparency for individual series. (h) Comparison of relative growth phenotype 
and target gene expression, as in Fig. 3.6f. 
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Supplementary Figure S3.11. Diverse phenotypes resulting from essential gene depletion. (a) 
Clustered correlation heatmap of perturbations. Gene expression profiles for genes with mean UMI 
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count > 0.25 in the entire population were z-normalized to expression values in cells with negative 
control sgRNAs and then averaged for populations with the same sgRNA. Crosswise Pearson 
correlations of all averaged transcriptomes were clustered by the Ward variance minimization 
algorithm implemented in scipy. (b) UMAP projection, distribution of cells with indicated sgRNAs, 
target gene expression (rolling mean over 50 cells), and magnitudes of transcriptional changes for all 
differentially expressed genes and selected ISR regulon genes (rolling mean over 50 cells) for cells 
with knockdown of ATP5E or control cells. 
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Supplementary Tables S3.1-S3.10 are too large to be published here but will be available online 
pending publication in a peer-reviewed journal. 
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Supplementary Table S3.11. Oligonucleotide sequences used in this study.  
 

NAME SEQUENCE 

constant_region_1_fw 
TAAGCTGGAAACAGCATAGCAAGCTCAAATAAGACTAGTTC
GTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTT
TTC 

constant_region_1_rv 
TCGAGAAAAAAAGCACCGACTCGGTGCCACTTTTTCAAGT
TGATAACGAACTAGTCTTATTTGAGCTTGCTATGCTGTTT
CCAGC 

constant_region_2_fw 
TAAGCTGGAAACAGCATAGCAAGTTCAAATAAGGCTAGTCC
GTTATGTACTTCAAAAAGTGGCACCGAGTCGGTGCTTTTT
TTC 

constant_region_2_rv 
TCGAGAAAAAAAGCACCGACTCGGTGCCACTTTTTGAAGT
ACATAACGGACTAGCCTTATTTGAACTTGCTATGCTGTTTC
CAGC 

constant_region_3_fw 
TAAGCTGGAAACAGCATAGCGAGTTCAAATAAGGCTCGTC
CGTTATCCACTTGAAAAAGTGGCACCGAGTCGGTGCTTTT
TTTC 

constant_region_3_rv 
TCGAGAAAAAAAGCACCGACTCGGTGCCACTTTTTCAAGT
GGATAACGGACGAGCCTTATTTGAACTCGCTATGCTGTTT
CCAGC 

constant_region_4_fw 
TAAGCTGGAAACAGCATAGCAAGTTCAAATAAAGTTAATCT
GTTATCAACTCGAAAGAGTGGCACCGAGTCGGTGCTTTTT
TTC 

constant_region_4_rv 
TCGAGAAAAAAAGCACCGACTCGGTGCCACTCTTTCGAGT
TGATAACAGATTAACTTTATTTGAACTTGCTATGCTGTTTC
CAGC 

constant_region_5_fw 
TAAGCTGGAAACAGCATAGCAAGTTCAAATAAGGCTAGCCC
GTTATGAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTT
TTC 

constant_region_5_rv 
TCGAGAAAAAAAGCACCGACTCGGTGCCACTTTTTCAAGT
TCATAACGGGCTAGCCTTATTTGAACTTGCTATGCTGTTT
CCAGC 

constant_region_6_fw 
TAAGCTGGAAACAGCATAGCAAGTTCAAATAAGGCTAGTCC
GTTATCAACTTGAAAAAGTGGCACCGGGGCGGTGCTTTTT
TTC 

constant_region_6_rv 
TCGAGAAAAAAAGCACCGCCCCGGTGCCACTTTTTCAAGT
TGATAACGGACTAGCCTTATTTGAACTTGCTATGCTGTTT
CCAGC 

constant_region_7_fw 
TAAGCTGGAAACAGCATAGCAAGTTCAAATATGGCTAGTCC
GTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTT
TTC 

constant_region_7_rv 
TCGAGAAAAAAAGCACCGACTCGGTGCCACTTTTTCAAGT
TGATAACGGACTAGCCATATTTGAACTTGCTATGCTGTTT
CCAGC 

constant_region_8_fw 
TAAGCTGGAAACAGCATAGCAAGTTCAAATAAGGATATTCC
GTTATCAAGTTGAAAAACTGGCACCGAGTCGGTGCTTTTT
TTC 
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NAME SEQUENCE 

constant_region_8_rv 
TCGAGAAAAAAAGCACCGACTCGGTGCCAGTTTTTCAACT
TGATAACGGAATATCCTTATTTGAACTTGCTATGCTGTTTC
CAGC 

constant_region_9_fw 
TAAGCTGGAAACAGCATAGCAAGTTCAAATAAGGCTAGTCC
GTTATCAACTTGAGAAAGTGGCACCGGGTCGGTGCTTTTT
TTC 

constant_region_9_rv 
TCGAGAAAAAAAGCACCGACCCGGTGCCACTTTCTCAAGT
TGATAACGGACTAGCCTTATTTGAACTTGCTATGCTGTTT
CCAGC 

constant_region_10_fw 
TAAGCTGGAAACAGCATAGCAAGTTCAAATAAGGCTAGTCC
GTTATCAACTTGAAAAAGTGGCACCGCGTCGGTGCTTTTT
TTC 

constant_region_10_rv 
TCGAGAAAAAAAGCACCGACGCGGTGCCACTTTTTCAAGT
TGATAACGGACTAGCCTTATTTGAACTTGCTATGCTGTTT
CCAGC 

DPH2_qPCR_fw ACCTGGACGGAGTGTACGAG 
DPH2_qPCR_rv TCTCCCAATAGCTGGTCAGG 
ACTB_qPCR_fw GCTACGAGCTGCCTGACG 
ACTB_qPCR_rv GGCTGGAAGAGTGCCTCA 

oCRISPRi_seq_V5 GTGTGTTTTGAGACTATAAGTATCCCTTGGAGAACCACCT
TGTTG 

oCRISPRi_seq_V4_3' CCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTAAACT
TGCTATGCTGT 

oCRISPRi_PE_constant_region
_common_primer 

AATGATACGGCGACCACCGAGATCTACACGCACAAAAGGAA
ACTCACCCT 

oCRISPRi_PE_constant_region
_indexing_primer 

CAAGCAGAAGACGGCATACGAGATNNNNNNGTCTCGTGG
GCTCGGAGATGTGTATAAGAGACAGGCCGCCTAATGGATC
CTAG 

oBA503 
CAAGCAGAAGACGGCATACGAGATCAGCCTCGGTCTCGTG
GGCTCGGAGATGTGTATAAGAGACAGGTGTTTTGAGACTA
TAAGTATCCCTTGGAGAACCACCTTGTTG 

PCR_perturb-seq_P5 AATGATACGGCGACCACCGAGATCTACAC 
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Supplementary Table S3.12. Genes targeted in perturb-seq experiment. 
 

GENE DESCRIPTION 
ALDOA Aldolase A; glycolytic enzyme 
ATP5E ATP synthase subunit 
BCR-ABL Fusion gene; drives CML-derived K562 cells 
CAD Pyrimidine nucleotide biosynthesis enzyme; catalyzes multiple pathway steps 
CDC23 Anaphase promoting complex/cyclosome component 
COX11 Mitochondrial respiratory chain; cytochrome c oxidase assembly factor 
DBR1 Lariat debranching enzyme; required for lariat intron degradation after splicing 
DUT dUTP pyrophosphatase; involved in thymidine biosynthesis 
EIF2S1 eIF2α; Translation initiation factor; translational control factor 
GATA1 Erythroid-lineage transcription factor 
GINS1 DNA replication initiation factor 
GNB2L1 RACK1; 40s ribosomal protein; associated with numerous signalling processes 
HSPA5 BiP; ER chaperone involved in protein import and folding 
HSPA9 Mortalin; Mitochondrial chaperone and import factor 
HSPE1 Mitochondrial chaperone 
MTOR Kinase; regulates growth, metabolism, and autophagy 
POLR1D RNA polymerase I and III subunit 
POLR2H RNA polymerase I, II, and III subunit 
RAN G-protein that controls protein and RNA transport through the nuclear pore 
RPL9 Ribosomal protein L9 
RPS14 Ribosomal protein S14 
RPS15 Ribosomal protein S15 
RPS18 Ribosomal protein S18 
SEC61A1 ER translocon component 
TUBB beta-tubulin; structural component of microtubules 
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Supplementary Table S3.13. sgRNA sequences used in this study. 
 

EXPERIMENT NAME SEQUENCE TARGET 

GFP single mismatches EGFP-NT2 GACCAGGATGGGCA
CCACCC EGFP 

constant region RT-
qPCR DPH2_+_44435896.24-all GAGTAAGCAGTCCTG

GCACCC DPH2 

constant region RT-
qPCR DPH2_-_44435877.23-all GATGTTTAGCAGCCC

TGCCG DPH2 

constant region RT-
qPCR non-targeting_00564 GCCGATGGTCTTGT

ACTACA N/A 

constant region screen RPL9_+_39460483.23-P1P2 GGATGTTTCTGTGC
TCGTGG RPL9 

constant region screen RPL9_+_39460504.23-P1P2 GCTGCGTCTACTGC
GAGGTA RPL9 

constant region screen RPL9_+_39460476.23-P1P2 GCTGTGCTCGTGGG
GGTACT RPL9 

constant region screen HSPE1_-_198365117.23-P1P2 GCGGACTGCGAGTC
TCTTTG HSPE1 

constant region screen HSPE1_+_198365089.23-P1P2 GGAGACTCGCAGTC
CGGCCC HSPE1 

constant region screen HSPE1_-_198365304.23-P1P2 GGCCCGATGGCACC
TTGGAG HSPE1 

constant region screen POLR1D_+_28196016.23-P1 GGGAAGCAAGGACC
GACCGA POLR1D 

constant region screen POLR1D_+_28196036.23-P1 GCGAGGCGCGGAGG
CGAAGC POLR1D 

constant region screen POLR1D_+_28196012.23-P1 GGCAAGGACCGACC
GACGGA POLR1D 

constant region screen SNRPD2_+_46195119.23-P1P2 GAGGCCGGGCTAGG
CTTAGG SNRPD2 

constant region screen SNRPD2_+_46195138.23-P1P2 GGCGTAGTGACCAT
CATGTG SNRPD2 

constant region screen SNRPD2_-_46195150.23-P1P2 GCTAGCCCGGCCTC
ACATGA SNRPD2 

constant region screen CDC23_+_137548970.23-P1P2 GAGTACCTCCATGGT
CCCGG CDC23 

constant region screen CDC23_-_137548987.23-P1P2 GACAGCCACCGGGA
CCATGG CDC23 

constant region screen CDC23_-_137548622.23-P1P2 GCCAGTGACAGGGC
ACTCAG CDC23 

constant region screen CAD_+_27440280.23-P1P2 GGCTGGAGAGAAGC
CGGGCG CAD 

constant region screen CAD_+_27440373.23-P1P2 GCGAGTACGGAGAA
GCGGGA CAD 

constant region screen CAD_+_27440253.23-P1P2 GTAGGAGCCTCGGG
CGCGCT CAD 
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EXPERIMENT NAME SEQUENCE TARGET 

constant region screen TUBB_+_30688126.23-P1 GCGGCAGGAAGGTT
CTGAGA TUBB 

constant region screen TUBB_+_30688173.23-P1 GAGGTTGGAATGCG
CCCCAG TUBB 

constant region screen TUBB_+_30688145.23-P1 GCAGCGAGGTGCAA
ACGCGA TUBB 

constant region screen POLR2H_-_184081237.23-P1P2 GGTGCACGTACTCC
CAACTG POLR2H 

constant region screen POLR2H_+_184081227.23-P1P2 GTGAGAGCGCGACC
ACAGTT POLR2H 

constant region screen POLR2H_+_184081251.23-P1P2 GGGGCCACGAGAGC
AGCAGA POLR2H 

constant region screen DUT_+_48624414.23-P1P2 GAGGCGAGCGAGGA
GACCAC DUT 

constant region screen DUT_-_48624041.23-P1P2 GCGTCTGGAAGGAA
TCCACG DUT 

constant region screen DUT_-_48623651.23-P1P2 GCAGGACGGGCGCG
TCTTCA DUT 

constant region screen DNAJC19_+_180707414.23-P1P2 GGGATGAGCCGTGC
TCCCGG DNAJC19 

constant region screen DNAJC19_+_180707118.23-P1P2 GCTTGCCTGGAACT
CCTGTA DNAJC19 

constant region screen DNAJC19_+_180707491.23-P1P2 GGGCGCCTGTGCTT
GAGGTT DNAJC19 

constant region screen non-targeting_03786 GTGGCCGTTCATGG
GACCGG N/A 

constant region screen non-targeting_03636 GACAATATCTGGATC
GCCAA N/A 

constant region screen non-targeting_03478 GGATGGGCTCGCCT
GGCCAG N/A 

constant region screen non-targeting_03229 GGTCCCACGGCGAA
GCGACT N/A 

constant region screen non-targeting_00564 GCCGATGGTCTTGT
ACTACA N/A 

constant region screen non-targeting_00763 GGCGCGGGCCCCAT
AAAAAC N/A 

perturb-seq RPS18_+_33239917.23-P1P2_00 GCTGCGATGCCGCT
GGATCA RPS18 

perturb-seq RPS18_+_33239917.23-P1P2_01 GCTGCAATGCCGCT
GGATCA RPS18 

perturb-seq RPS18_+_33239917.23-P1P2_02 GCTGGGATGCCGCT
GGATCA RPS18 

perturb-seq RPS18_+_33239917.23-P1P2_08 GCTGCGATTCCGCT
GGATCA RPS18 

perturb-seq RPS18_+_33239917.23-P1P2_04 GCTGCGATCCCGCT
GGATCA RPS18 
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EXPERIMENT NAME SEQUENCE TARGET 

perturb-seq RPS14_+_149829238.23-P1P2_00 GAGGCCCGGGCGCG
ACAATC RPS14 

perturb-seq RPS14_+_149829238.23-P1P2_01 GAGACCCGGGCGCG
ACAATC RPS14 

perturb-seq RPS14_+_149829238.23-P1P2_02 GAGGCCCTGGCGCG
ACAATC RPS14 

perturb-seq RPS14_+_149829238.23-P1P2_04 GAGGCCCGCGCGCG
ACAATC RPS14 

perturb-seq RPS14_+_149829238.23-P1P2_13 GAGGCCCGGGCGCG
ACAGTC RPS14 

perturb-seq RPS14_+_149829238.23-P1P2_08 GAGGCCCGGGCTCG
ACAATC RPS14 

perturb-seq RPL9_+_39460483.23-P1P2_00 GGATGTTTCTGTGC
TCGTGG RPL9 

perturb-seq RPL9_+_39460483.23-P1P2_01 GGATGATTCTGTGC
TCGTGG RPL9 

perturb-seq RPL9_+_39460483.23-P1P2_05 GGATGTTTCGGTGC
TCGTGG RPL9 

perturb-seq RPL9_+_39460483.23-P1P2_04 GGATGTTTCAGTGC
TCGTGG RPL9 

perturb-seq RPL9_+_39460483.23-P1P2_07 GGATGTTTCTGCGC
TCGTGG RPL9 

perturb-seq GNB2L1_+_180670873.23-
P1P2_00 

GTGCAAGGCGGCGG
CAGGAG GNB2L1 

perturb-seq GNB2L1_+_180670873.23-
P1P2_08 

GTGCAAGGTGGCGG
CAGGAG GNB2L1 

perturb-seq GNB2L1_+_180670873.23-
P1P2_13 

GTGCAAGGCGGCGG
CGGGAG GNB2L1 

perturb-seq GNB2L1_+_180670873.23-
P1P2_07 

GTGCAAGGCGGGGG
CAGGAG GNB2L1 

perturb-seq GNB2L1_+_180670873.23-
P1P2_02 

GTGCAAGACGGCGG
CAGGAG GNB2L1 

perturb-seq RPS15_-_1438413.23-P1P2_00 GACCAAAGCGATCTC
TTCTG RPS15 

perturb-seq RPS15_-_1438413.23-P1P2_07 GACCAAAGCGGTCTC
TTCTG RPS15 

perturb-seq RPS15_-_1438413.23-P1P2_02 GACCAAGGCGATCTC
TTCTG RPS15 

perturb-seq RPS15_-_1438413.23-P1P2_12 GACCAAAGCGATCTC
TTGTG RPS15 

perturb-seq RPS15_-_1438413.23-P1P2_01 GACCAAACCGATCTC
TTCTG RPS15 

perturb-seq HSPE1_+_198365089.23-P1P2_00 GGAGACTCGCAGTC
CGGCCC HSPE1 

perturb-seq HSPE1_+_198365089.23-P1P2_01 GGAGACACGCAGTC
CGGCCC HSPE1 
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EXPERIMENT NAME SEQUENCE TARGET 

perturb-seq HSPE1_+_198365089.23-P1P2_03 GGTGACTCGCAGTC
CGGCCC HSPE1 

perturb-seq HSPE1_+_198365089.23-P1P2_02 GGAGACTGGCAGTC
CGGCCC HSPE1 

perturb-seq HSPE1_+_198365089.23-P1P2_14 GGAGACTCGCAGTC
CTGCCC HSPE1 

perturb-seq RAN_+_131356438.23-P1P2_00 GGCGGTCGCTGCGC
TTAGGG RAN 

perturb-seq RAN_+_131356438.23-P1P2_02 GGCGGCCGCTGCGC
TTAGGG RAN 

perturb-seq RAN_+_131356438.23-P1P2_03 GGGGGTCGCTGCGC
TTAGGG RAN 

perturb-seq RAN_+_131356438.23-P1P2_04 GGCGGTCGCGGCGC
TTAGGG RAN 

perturb-seq RAN_+_131356438.23-P1P2_12 GGCGGTCGCTGCGC
TTAGGT RAN 

perturb-seq POLR1D_+_28196016.23-P1_00 GGGAAGCAAGGACC
GACCGA POLR1D 

perturb-seq POLR1D_+_28196016.23-P1_08 GGGAAGCAGGGACC
GACCGA POLR1D 

perturb-seq POLR1D_+_28196016.23-P1_03 GGTAAGCAAGGACC
GACCGA POLR1D 

perturb-seq POLR1D_+_28196016.23-P1_01 GGGAAGCCAGGACC
GACCGA POLR1D 

perturb-seq POLR1D_+_28196016.23-P1_07 GGGAAGCAAGGAGC
GACCGA POLR1D 

perturb-seq DBR1_+_137893744.23-P1P2_00 GTTTGCAGGAGTCTA
CACCC DBR1 

perturb-seq DBR1_+_137893744.23-P1P2_01 GATTGCAGGAGTCTA
CACCC DBR1 

perturb-seq DBR1_+_137893744.23-P1P2_07 GTTTGCAGGGGTCT
ACACCC DBR1 

perturb-seq DBR1_+_137893744.23-P1P2_05 GTTTGCAGGAGTGT
ACACCC DBR1 

perturb-seq DBR1_+_137893744.23-P1P2_08 GTTTGCAGTAGTCTA
CACCC DBR1 

perturb-seq SEC61A1_-_127771295.23-P1_00 GGCACTGACGTGTC
TCTCGG SEC61A1 

perturb-seq SEC61A1_-_127771295.23-P1_02 GGCGCTGACGTGTC
TCTCGG SEC61A1 

perturb-seq SEC61A1_-_127771295.23-P1_01 GGCACTGTCGTGTC
TCTCGG SEC61A1 

perturb-seq SEC61A1_-_127771295.23-P1_03 GGTACTGACGTGTC
TCTCGG SEC61A1 

perturb-seq SEC61A1_-_127771295.23-P1_04 GGCACTGAAGTGTC
TCTCGG SEC61A1 
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perturb-seq HSPA5_+_128003624.23-P1P2_00 GAGCCGAGTAGGCG
ACGGTG HSPA5 

perturb-seq HSPA5_+_128003624.23-P1P2_04 GAGCCGAGAAGGCG
ACGGTG HSPA5 

perturb-seq HSPA5_+_128003624.23-P1P2_08 GAGCCGAGTGGGCG
ACGGTG HSPA5 

perturb-seq HSPA5_+_128003624.23-P1P2_01 GAACCGAGTAGGCG
ACGGTG HSPA5 

perturb-seq HSPA5_+_128003624.23-P1P2_06 GAGCCGAGTAGACG
ACGGTG HSPA5 

perturb-seq GINS1_-_25388381.23-P1P2_00 GGACTAGAACGAAAG
GAGTG GINS1 

perturb-seq GINS1_-_25388381.23-P1P2_08 GGACTAGAGCGAAAG
GAGTG GINS1 

perturb-seq GINS1_-_25388381.23-P1P2_06 GGACTAGAACGGAAG
GAGTG GINS1 

perturb-seq GINS1_-_25388381.23-P1P2_03 GGACTATAACGAAAG
GAGTG GINS1 

perturb-seq GINS1_-_25388381.23-P1P2_14 GGACTAGAACGAAAG
GAGCG GINS1 

perturb-seq CDC23_-_137548987.23-P1P2_00 GACAGCCACCGGGA
CCATGG CDC23 

perturb-seq CDC23_-_137548987.23-P1P2_02 GACAGCTACCGGGA
CCATGG CDC23 

perturb-seq CDC23_-_137548987.23-P1P2_08 GACAGCCATCGGGA
CCATGG CDC23 

perturb-seq CDC23_-_137548987.23-P1P2_04 GACAGCCAACGGGA
CCATGG CDC23 

perturb-seq CDC23_-_137548987.23-P1P2_11 GACAGCCACCGGGA
CCACGG CDC23 

perturb-seq CAD_+_27440280.23-P1P2_00 GGCTGGAGAGAAGC
CGGGCG CAD 

perturb-seq CAD_+_27440280.23-P1P2_03 GGCTGGTGAGAAGC
CGGGCG CAD 

perturb-seq CAD_+_27440280.23-P1P2_07 GGCTGGAGCGAAGC
CGGGCG CAD 

perturb-seq CAD_+_27440280.23-P1P2_06 GGCTGGAGAGTAGC
CGGGCG CAD 

perturb-seq CAD_+_27440280.23-P1P2_13 GGCTGGAGAGAAGC
CTGGCG CAD 

perturb-seq TUBB_+_30688126.23-P1_00 GCGGCAGGAAGGTT
CTGAGA TUBB 

perturb-seq TUBB_+_30688126.23-P1_01 GCAGCAGGAAGGTT
CTGAGA TUBB 

perturb-seq TUBB_+_30688126.23-P1_06 GCGGCAGGACGGTT
CTGAGA TUBB 
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perturb-seq TUBB_+_30688126.23-P1_03 GCGGCAGCAAGGTT
CTGAGA TUBB 

perturb-seq TUBB_+_30688126.23-P1_10 GCGGCAGGAAGGTT
CAGAGA TUBB 

perturb-seq DUT_+_48624411.23-P1P2_00 GCGAGCGAGGAGAC
CACCGG DUT 

perturb-seq DUT_+_48624411.23-P1P2_01 GCCAGCGAGGAGAC
CACCGG DUT 

perturb-seq DUT_+_48624411.23-P1P2_08 GCGAGCGAGGAGGC
CACCGG DUT 

perturb-seq DUT_+_48624411.23-P1P2_07 GCGAGCGAGGAGCC
CACCGG DUT 

perturb-seq DUT_+_48624411.23-P1P2_10 GCGAGCGAGGAGAC
CAACGG DUT 

perturb-seq POLR2H_+_184081251.23-
P1P2_00 

GGGGCCACGAGAGC
AGCAGA POLR2H 

perturb-seq POLR2H_+_184081251.23-
P1P2_11 

GGGGCCACGAGAGC
AGCGGA POLR2H 

perturb-seq POLR2H_+_184081251.23-
P1P2_08 

GGGGCCACGCGAGC
AGCAGA POLR2H 

perturb-seq POLR2H_+_184081251.23-
P1P2_12 

GGGGCCACGAGAGC
AGGAGA POLR2H 

perturb-seq POLR2H_+_184081251.23-
P1P2_07 

GGGGCCACGAGTGC
AGCAGA POLR2H 

perturb-seq GATA1_-_48645022.23-P1P2_00 GTGAGCTTGCCACAT
CCCCA GATA1 

perturb-seq GATA1_-_48645022.23-P1P2_03 GTGCGCTTGCCACA
TCCCCA GATA1 

perturb-seq GATA1_-_48645022.23-P1P2_04 GTGAGCTTACCACAT
CCCCA GATA1 

perturb-seq GATA1_-_48645022.23-P1P2_08 GTGAGCTTTCCACAT
CCCCA GATA1 

perturb-seq GATA1_-_48645022.23-P1P2_06 GTGAGCTTGCGACA
TCCCCA GATA1 

perturb-seq GATA1_-_48645022.23-P1P2_12 GTGAGCTTGCCACAT
CCGCA GATA1 

perturb-seq BCR_+_23523092.23-P1P2_00 GCGCGCGGGGCCCG
TCTCAG BCR 

perturb-seq BCR_+_23523092.23-P1P2_07 GCGCGCGGGGCTCG
TCTCAG BCR 

perturb-seq BCR_+_23523092.23-P1P2_04 GCGCGCGGAGCCCG
TCTCAG BCR 

perturb-seq BCR_+_23523092.23-P1P2_05 GCGCGCGGCGCCCG
TCTCAG BCR 

perturb-seq BCR_+_23523092.23-P1P2_15 GCGCGCGGGGCCCG
TCGCAG BCR 
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perturb-seq BCR_+_23523092.23-P1P2_13 GCGCGCGGGGCCCA
TCTCAG BCR 

perturb-seq HSPA9_-_137911079.23-P1P2_00 GGAGCTGCGCGATG
CGGTGG HSPA9 

perturb-seq HSPA9_-_137911079.23-P1P2_07 GGAGCTGCGGGATG
CGGTGG HSPA9 

perturb-seq HSPA9_-_137911079.23-P1P2_02 GGAGTTGCGCGATG
CGGTGG HSPA9 

perturb-seq HSPA9_-_137911079.23-P1P2_08 GGAGCTGCTCGATG
CGGTGG HSPA9 

perturb-seq HSPA9_-_137911079.23-P1P2_04 GGAGCTGCGCAATG
CGGTGG HSPA9 

perturb-seq EIF2S1_-_67827080.23-P1P2_00 GAGCGAAGCGCACG
CTGAGG EIF2S1 

perturb-seq EIF2S1_-_67827080.23-P1P2_06 GAGCGAAGCGCGCG
CTGAGG EIF2S1 

perturb-seq EIF2S1_-_67827080.23-P1P2_02 GAGCGCAGCGCACG
CTGAGG EIF2S1 

perturb-seq EIF2S1_-_67827080.23-P1P2_01 GAGCGAAACGCACG
CTGAGG EIF2S1 

perturb-seq EIF2S1_-_67827080.23-P1P2_07 GAGCGAAGCGCTCG
CTGAGG EIF2S1 

perturb-seq COX11_+_53045977.23-P1P2_00 GGCTCTGGCGTCCT
GGATGG COX11 

perturb-seq COX11_+_53045977.23-P1P2_03 GGCTCTGTCGTCCT
GGATGG COX11 

perturb-seq COX11_+_53045977.23-P1P2_04 GGCTCTGGCGCCCT
GGATGG COX11 

perturb-seq COX11_+_53045977.23-P1P2_05 GGCTCTGGCGTCTT
GGATGG COX11 

perturb-seq COX11_+_53045977.23-P1P2_10 GGCTCTGGCGTCCC
GGATGG COX11 

perturb-seq MTOR_+_11322547.23-P1P2_00 GGGCAGGGGGCCTG
AAGCGG MTOR 

perturb-seq MTOR_+_11322547.23-P1P2_07 GGGCAGGGGGTCTG
AAGCGG MTOR 

perturb-seq MTOR_+_11322547.23-P1P2_05 GGGCAGGGGGCTTG
AAGCGG MTOR 

perturb-seq MTOR_+_11322547.23-P1P2_06 GGGCAGGGGGGCTG
AAGCGG MTOR 

perturb-seq MTOR_+_11322547.23-P1P2_10 GGGCAGGGGGCCTG
AAGCAG MTOR 

perturb-seq ATP5E_-_57607036.23-P1P2_00 GGTGTCCAGGGGCA
CTCTGT ATP5E 

perturb-seq ATP5E_-_57607036.23-P1P2_01 GGTGTCCTGGGGCA
CTCTGT ATP5E 
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perturb-seq ATP5E_-_57607036.23-P1P2_16 GGTGTCCAGGGGCG
CTCTGT ATP5E 

perturb-seq ATP5E_-_57607036.23-P1P2_04 GGTGTCCAGGAGCA
CTCTGT ATP5E 

perturb-seq ATP5E_-_57607036.23-P1P2_14 GGTGTCCAGGGGCA
CTGTGT ATP5E 

perturb-seq ALDOA_+_30077139.23-P1P2_00 GGTCACCAGGACCC
CTTCTG ALDOA 

perturb-seq ALDOA_+_30077139.23-P1P2_06 GGTCACCAGGATCC
CTTCTG ALDOA 

perturb-seq ALDOA_+_30077139.23-P1P2_07 GGTCACCAGGCCCC
CTTCTG ALDOA 

perturb-seq ALDOA_+_30077139.23-P1P2_14 GGTCACCAGGACCG
CTTCTG ALDOA 

perturb-seq ALDOA_+_30077139.23-P1P2_13 GGTCACCAGGACCC
CTTTTG ALDOA 

perturb-seq non-targeting_00001 GTGCACCCGGCTAG
GACCGG N/A 

perturb-seq non-targeting_00028 GGTGGCCTTTGCAA
TTGGCG N/A 

perturb-seq non-targeting_00054 GGGCCTGGACGAGC
CTAAAA N/A 

perturb-seq non-targeting_00089 GGGGTGAGGGTCCA
ATTCGG N/A 

perturb-seq non-targeting_00217 GTGAACTCAAAAATC
CCGAC N/A 

perturb-seq non-targeting_00283 GGGCCGACGGATAG
GAGGGA N/A 

perturb-seq non-targeting_00406 GGCGCCGGACTGGA
CCTCGA N/A 

perturb-seq non-targeting_00527 GTGGGAGCAGATCAA
GACTC N/A 

perturb-seq non-targeting_00802 GCACGACGCTCCGG
CACGCG N/A 

perturb-seq non-targeting_01040 GTACGGCATGGCGC
ACTGCG N/A 
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