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esearch  report

he  competitive  NMDA  receptor  antagonist  CPP  disrupts  cocaine-induced
onditioned  place  preference,  but  spares  behavioral  sensitization

tephanie  A.  Carmacka, Jeesun  S.  Kima,  Jennifer  R.  Sagea,  Alaina  W.  Thomasa,
imberly  N.  Skillicorna,  Stephan  G.  Anagnostarasa,b,∗

Molecular Cognition Laboratory, Department of Psychology, San Diego, CA 92093-0109, USA
Program in Neurosciences, University of California, San Diego, CA 92093-0109, USA

 i  g  h  l  i g  h  t  s

CPP  co-administration  with  cocaine  altered  the  acute  response  to  cocaine.
NMDAR  antagonism  with  CPP  had  no  effect  on  cocaine-induced  behavioral  sensitization.
NMDAR  antagonism  with  CPP  abolished  cocaine-induced  conditioned  place  preference.
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a  b  s  t  r  a  c  t

Recently,  the  notion  that  memory  and  addiction  share  similar  neural  substrates  has  become  widely
accepted.  N-methyl-d-aspartate  receptors  (NMDAR)  are  the cornerstones  of  synaptic  models  of mem-
ory. The  present  study  examined  the  effect  of  the  competitive  NMDAR  antagonist  CPP  on  the  induction
of  behavioral  sensitization  and  conditioned  place  preference  to cocaine.  Conditioned  place  preference
is  an  associative  memory  model  of drug  seeking,  while  sensitization  is a non-associative  model  of  the
transition  from  casual  to compulsive  use.  There  were  three  principal  findings:  (1)  co-administration  of
emory
lasticity
-methyl-d-aspartate
timulant
ice

CPP and  cocaine  altered  the  acute  response  to cocaine,  suggesting  a direct  interaction  between  the  two
drugs; (2)  NMDAR  antagonism  had  no  effect  on  behavioral  sensitization;  and  (3) NMDAR  antagonism
abolished  conditioned  place  preference.  A review  of prior  evidence  supporting  a role  for  NMDARs  in sen-
sitization  suggests  that  NMDAR  antagonists  directly  interfere  with  cocaine’s  psychostimulant  effects,  and
this  interaction  could  be  misinterpreted  as  a disruption  of  sensitization.  Finally,  we  suggest  that  addiction
recruits  multiple  kinds  of  plasticity,  with  sensitization  recruiting  NMDAR-independent  mechanisms.
. Introduction

Addiction is a chronic disease characterized by pathological drug
se, an overwhelming involvement with the taking of a drug, the
ecuring of its supply, and a chronic tendency to relapse, even
fter withdrawal and detoxification [1,2]. Indeed, although reha-
ilitation clinics have become quite successful in detoxing patients
nd sustaining abstinence for a few weeks or months, relapse
ates remain very high [3].  Therefore, in recent years, research

as increasingly focused on long-term changes that contribute
o relapse. Several long-lasting neurobehavioral adaptations to
epeated drug exposure have been found, including memories of
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the circumstances surrounding drug use, as well as neural and
behavioral sensitization.

In one conception, addiction-related neuroadaptation in the
brain, such as sensitization, is thought to reflect the same neuro-
biological processes as memory, especially at the molecular level,
because the brain may  have limited plasticity mechanisms to
remodel synapses [4].  In a similar conception, addiction may  repre-
sent aberrant learning, whereby addictive drugs hijack the natural
reinforcement (incentive) pathway and recruit maladaptive habit
learning directed at drug seeking and taking [5,6]. By these views,
addiction persists as a memory or memory-like process long after
drug exposure, which is consistent with high rates of relapse in
addicts even after prolonged abstinence. Thus, behavior is driven
by the approach and pursuit of incentive stimuli: contexts, people,

and emotions previously associated with drug use [5,7].

Complementary to this view, the incentive sensitization the-
ory of addiction suggests that in certain predisposed individuals,
addictive drugs sensitize neural circuits, assigning abnormally high
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ncentive salience to psychostimulant drugs and associated cues
hat elicit pathological drug craving, seeking, and use [8–10]. This
rocess is manifest as an increase in drug response after repeated
dministration and can be measured as increases in locomotor
ctivity or reward [11,12]. It is relevant to study the mechanisms
nderlying these synaptic changes because extinction or induced
mnesia of addiction-related memories could become a useful
reatment for relapse. From this perspective, it is logical to explore
he role of N-methyl-d-aspartate receptors (NMDARs) in sensi-
ization and other addiction-related memories, as NMDARs are
he cornerstone of synaptic models of associative learning [13].
hrough pairing of extensive depolarization and NMDAR activa-
ion by glutamate, the influx of calcium through NMDARs triggers

 signaling cascade that causes long-term synaptic remodeling
nderlying long-term potentiation (LTP) and memory. It follows,
hen, that blocking NMDARs during initial drug exposure should
nhibit the development of addiction-related memory.

Several behavioral studies have examined the role of NMDARs
n the development of addiction-related memory, primarily by
o-administering dizocilpine (MK801), a noncompetitive NMDAR
ntagonist, with psychostimulants (for a review see [14]).
o-administration of MK801 prevents the development of sensi-
ization to cocaine [15–23],  amphetamine [24–28] and metham-
hetamine [29,30]. Moreover, MK801 similarly prevents the
evelopment of cocaine, amphetamine, and methamphetamine-

nduced conditioned place preference, a prominent associative
emory model of drug seeking behavior [31–33].
Although these studies suggest a role for NMDARs in behavioral

ensitization and conditioned place preference, such findings are
ifficult to interpret because of several serious side effects associ-
ted with MK801 administration [34–36].  MK801 acts within the
MDA calcium channel in a manner similar to phencyclidine (PCP)
nd ketamine, and can produce psychosis [37], catalepsy, anal-
esia, and locomotor hyperactivity. Indeed, most noncompetitive
MDAR antagonists, because of their similarity to PCP, have been
roposed as animal models of schizophrenia [38]. As with PCP,
K801 induces large neuronal vacuoles (Olney’s lesions) within

0 min  of administration [39]. Furthermore, MK801 paradoxically
nduces behavioral sensitization and place preference to itself,

hile blocking the development of these behaviors to other drugs
28,34,40–44]. Thus, it is difficult to interpret the chronic behav-
oral effects of co-administering MK801 with psychostimulants as
nything other than ambiguous.

A few studies have used cleaner, competitive NMDAR
ntagonists in examining psychostimulant-induced sensitization
45,46,17,20,27,29,41,47–54]. For example, Wolf et al. [27] used
GS19755 and found a “clean block” of amphetamine sensitiza-
ion – i.e., stereotyped and locomotor behavior did not increase
ith repeated administration in rats co-administered CGS19755
ith amphetamine. However, CGS19755 dramatically altered the

cute locomotor response to amphetamine, in particular the time
ourse of the drug response (see for e.g., Wolf et al., 1995, their
ig. 3). This difference in time course makes a later sensitization
hallenge test difficult to interpret. It seems that most competitive
MDAR antagonists interfere with the acute behavioral response

o psychostimulants; CPP, CGS19755, and AP5 have all been
hown to alter the acute responses to cocaine and amphetamine
45,46,27,47,48,51–55]. These findings highlight the need for more
tudies using selective NMDAR antagonists and more attention
o the effect of NMDAR antagonism on acute psychostimulant-
nduced behaviors. In the present report, we  emphasize the
ifference in acute versus sensitized response as a measure of sen-

itization, which we believe is more transparently interpreted.

We  examined the effects of a well-tolerated competitive
MDAR antagonist, ±CPP [D-3-(2-Carboxypiperazin-4-yl) propyl-
-phosphate] on the induction of cocaine-induced locomotor
 Research 239 (2013) 155– 163

sensitization and conditioned place preference. CPP is a lipid sol-
uble AP7 analog, and a highly potent antagonist that binds to the
glutamate site on NR2A/2B subunits, in a manner similar to AP5
[56,57]. CPP produces only mild unconditional changes in behav-
ior (e.g., muscle relaxation), unlike the profound ataxia seen even
at low doses of MK801 [58]. We  found that co-administration of
CPP with cocaine abolished conditioned place preference and dra-
matically altered the acute behavioral response to cocaine, but
did not affect the development of cocaine-induced sensitization
of horizontal or vertical activity. To confirm that severe antero-
grade amnesia is present at the dose of CPP used in this study,
we also report a dose-response curve for CPP using Pavlovian fear
conditioning. The results are discussed in the context of theories
that describe parallels between addiction and memory. Rather than
arguing that addiction is a form of memory, we  argue that addiction
involves multiple associative memories (e.g., place preference),
along with non-associative neuroadaptationist changes (e.g., sen-
sitization).

2. Materials and methods

2.1. Subjects

Experiments were conducted using C57BL6/J inbred mice from the Jackson Labo-
ratory (West Sacramento, CA) in approximately equal numbers of males and females
balanced across groups. Mice were weaned at 3 weeks of age and group housed (4–5
mice  per cage) with continuous access to food and water. Mice were at least 10 weeks
old  before testing and were handled for 5 days prior to experimental procedures. The
vivarium was  maintained on a 14:10 h light:dark schedule and all testing was per-
formed during the light phase of the cycle. All animal care and testing procedures
were approved by the UCSD IACUC and were compliant with the National Research
Council Guide for the Care and Use of Laboratory Animals, 7th/8th editions.

2.2. Drugs

Cocaine HCl and ±CPP [±3-(2-carboxy-piperazine-4-yl)-propyl-1-phoshonic
acid] (Sigma–Aldrich Co., St. Louis, MO)  were dissolved in physiological (0.9%) saline.
All  saline and drug injections were administered intraperitoneally (i.p.) in a volume
of  10 ml/kg. In conditioned place preference and sensitization experiments, cocaine
HCl was  given 15 mg/kg (salt weight), a moderate dose previously found to induce
substantial sensitization and place preference [59]. CPP was given 20 mg/kg (salt
weight), a dose that produces severe amnesia in standard learning and memory
tasks [60]. In fear conditioning experiments, CPP injections (salt weight: 5, 10, or
20  mg/kg) were given 20 min before introduction to the testing equipment.

2.3. Apparatus

2.3.1. Conditioned place preference and sensitization
Eight mice were tested concurrently in individual place preference

chambers (43.2 cm × 43.2 cm × 30.5 cm; Med-Associates Inc., St. Albans, VT)
housed in a windowless room. Each chamber consisted of two  compartments
(21.6 cm × 43.2 cm × 30.5 cm; Med-Associates Inc., St. Albans, VT) bisected by an
opaque wall with a removable insert. The compartments each had distinct visual,
tactile, and odor cues, designed to maximize their contextual differences. One com-
partment had a wire-mesh floor and walls decorated with colorful stickers, while
the other compartment had a metal rod floor and standard clear polycarbonate
walls. Half of the compartments were cleaned and scented with 7% isopropanol and
half with plain water. The compartments were counterbalanced across Paired and
Unpaired side designations. Each of the chambers was equipped with two  rows of
16  × 16 infrared beam arrays and sensors that were evenly spaced and juxtaposed
around the four peripheral sides of the chamber. The data acquisition and analysis
software (Activity Monitor v 5.5; Med-Associates Inc., St. Albans, VT) used the
interruption of infrared beams in x, y, and z space to detect mouse position and to
derive distance traveled (horizontal activity), and rearing (vertical activity).

2.3.2. Fear conditioning
2.3.2.1. Conditioning context. Three to four mice were tested concurrently in indi-
vidual conditioning chambers housed in a windowless room. Conditioning chambers
were set up as described previously ([61,62]; [91]). Each conditioning chamber
(32 cm × 25 cm × 25 cm; Med-Associates Inc., St. Albans, VT) was  located within
a  sound-attenuating chamber (63.5 cm × 35.5 cm × 76 cm) and equipped with a

speaker in the sidewall. The context consisted of a stainless steel grid floor (36
rods,  each rod 2 mm in diameter, 8 mm center to center) and a stainless steel drop
pan. The sidewalls were white acrylic and the front wall was clear polycarbonate
to  allow for viewing. Between each trial, the chambers were cleaned and scented
with 7% isopropanol to provide a background odor. Ventilation fans provided



S.A. Carmack et al. / Behavioural Brain

Table  1

Injection

Group 1: Unpaired 2: Home 3: Paired
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CPP  Saline CPP Saline
CPP  + Coc Saline CPP Cocaine

ackground noise (65 dBA). Each sound-attenuating chamber was equipped with
n  overhead LED light source, providing white and near-infrared light. The mice
ere continuously monitored by a front-mounted IEEE 1394 progressive scan video

amera with a visible light filter connected to a computer in an adjacent room.
ach chamber was connected to a solid-state scrambler, providing AC constant cur-
ent shock, an audio stimulus-generator, controlled via an interface connected to a

indows computer running Video Freeze (Med-Associates, Inc., St. Albans, VT), a
rogram designed for the automated assessment of freezing and locomotor activ-

ty.  Computer and human scored freezing had a correlation of 0.971 and a fit of
omputer = −.007 + 971 × human (for more detail see [61,63]).

.3.2.2. Alternate context. The conditioning context was altered along several
imensions for tone testing trials. White acrylic sheets were placed over the grid
oors and a black plastic, triangular teepee (23 cm,  each side), translucent to near-

nfrared light, was  placed inside each box. Only near-infrared light was  used, creating
 dark environment visible only to the video camera. Between trials, the chambers
ere cleaned and scented with a 5% vinegar solution.

.4. Experimental procedures

.4.1. Conditioned place preference and sensitization

.4.1.1. Training. On each of 7 training days, mice were placed into both compart-
ents of a conditioned place preference chamber with the insert in place for 15 min

er compartment per day. Mice were randomly assigned to one of four groups:
aline, Cocaine, CPP + Coc, and CPP. All mice received 3 injections per day (Table 1).
ll mice were first given an injection of saline immediately prior to placement into

he  first compartment (Unpaired side) for 15 min. Following this, Saline control mice
n  = 18) were given saline and placed in their home cages. Fifteen minutes later, they
ere given a third saline injection and placed into the second compartment (Paired

ide). The Cocaine group (n = 25) was given saline for 15 min in their home cages and
hen  given cocaine prior to placement in the second compartment (Paired side). The
PP + Coc group (n = 25) was given CPP and placed in their home cages for 15 min.
hey were then injected with cocaine and placed into the second compartment
Paired side) for 15 min. To control for unconditional effects of CPP, the CPP group
n  = 18) was treated with CPP for 15 min  in their home cages and then injected with
aline prior to placement into the second compartment (Paired side) for 15 min.

.4.1.2. Place preference testing. Seven days after the final training session mice

ere tested for place preference. The insert between the two  compartments was

emoved and the subjects were allowed free access to both compartments for
5  min  following a saline injection. The amount of time spent in each compartment
as  recorded by Activity Monitor software (Med-Associates Inc., St. Albans, VT). A

ig. 1. Sensitization of Locomotor Activity. (A) Average locomotor activity after drug tre
n  increase in locomotor activity from Day 1 to 7, while CPP and Saline control mice do
nhances and then reduces locomotor activity as compared to mice given Cocaine only. 

ction on Day 7 of training. Cocaine and CPP + Coc groups are elevated with respect to Sali
he  mean ± 1 standard error.
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higher percentage of time spent on the Paired side was taken as a measure of place
preference.

2.4.1.3. Behavioral sensitization. Locomotor (horizontal distance traveled) and ver-
tical activity were recorded during training on the Paired side for each of the 7
training days. Behavioral sensitization was measured as the difference between the
response on Day 7 (sensitized response) and Day 1 (acute response) of training.

2.4.2. Fear conditioning
2.4.2.1. Training. Mice were injected with saline or CPP 20 min  prior to training.
Mice were randomly assigned to groups labeled by dose of CPP administered: 0
(saline control, n = 19), 5 (n = 14), 10 (n = 13), or 20 mg/kg (n = 20). Training consisted
of  a 2 min  baseline period, followed by three tone-shock pairings, each separated
by 30 s. A tone-shock pairing consisted of a 30 s tone (2.8 kHz, 85 dB, A Scale) that
co-terminated with a scrambled, constant current AC 2 s footshock (0.75 mA, RMS).
Mice were inside the fear conditioning chambers for a total of 10 min  before being
returned to their home cages [64]. Freezing behavior, defined as the absence of all
movement with the exception of respiration [65], was  scored automatically using
Video Freeze software (Med-Associates, Inc., St. Albans, VT) [61,63].

2.4.2.2. Testing. Mice were returned to the conditioning context, without drug,
7  days after training. Freezing was scored for 5 min. Mice were placed in the alter-
nate context 24 h later, also off drug. Tone testing consisted of a 2 min  baseline,
followed by 3, 30 s tones separated by 30 s, identical to the training tones. Freezing
was scored for the entire 5 min period.

3. Results

3.1. Conditioned place preference and behavioral sensitization

3.1.1. Locomotor activity
Fig. 1 depicts locomotor (horizontal) activity across the 7 days of

training. Sensitization of locomotor activity for the average activ-
ity of each day is shown in Fig. 1A. These data were fed into a
multivariate analysis of variance (MANOVA), which revealed a sig-
nificant group × day interaction [F(3,82) = 6.58, p < 0.0001]. Visual
inspection of Fig. 1A suggests that this reflects the fact that groups
receiving cocaine sensitized, while the others did not. Fig. 1B shows
the time course of the locomotor response for day 1. There were sig-
nificant group differences [F(3,82) = 20.4, p < 0.0001]. The unusual
response to the combination of CPP and cocaine suggests a direct
drug interaction. Although there was  an obvious group × time
interaction [F(3,82) = 20.6, p < 0.0001] due to the abnormal response
in CPP + Coc mice, for the sake of simplicity, only the average
response is discussed thoroughly. Similar conclusions are reached

if the min-by-min response is used. In terms of average response,
mice in the Cocaine group showed greater locomotor activity than
all other groups (p values <0.03, pairwise Wald tests). CPP + Coc
mice were reduced from Cocaine mice, but elevated compared to

atment on the Paired side by day. Cocaine and CPP + Coc mice show sensitization,
 not. (B) Time course of drug action on Day 1 (acute response). CPP + Coc initially
Neither Saline nor CPP alone stimulate locomotor activity. (C) Time course of drug
ne and CPP control mice, but do not differ from one another. Each point represents
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Fig. 2. Sensitization of Vertical Activity. (A) Average vertical activity after drug treatment on the Paired side by day. Both Cocaine and CPP + Coc mice show sensitization, an
increase  in vertical activity from Day 1 to 7, but CPP co-administration reduces the overall amount of vertical activity. CPP alone reduced activity from Day 1 to 7. (B) Time
course  of drug action on Day 1 (acute response). Cocaine mice show higher vertical activity than all other groups. CPP + Coc have a dramatically reduced response and do
n y 7. C
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ot  differ from mice given CPP or Saline alone. (C) Time course of drug action on Da
ave  reduced activity compared to Cocaine mice, but are elevated as compared m
ompared to Saline controls. Each point represents the mean ± 1 standard error.

PP and Saline controls (p values <0.0001), which did not differ
rom one another (p > 0.3). Thus, CPP alone did not alter locomotor
ctivity, but it dramatically altered the acute response to cocaine,
ithout totally abolishing it.

Fig. 1C shows the locomotor response for day 7. There were sig-
ificant group differences [F(3,82) = 30.0, p < 0.0001]. Mice in the
ocaine and CPP + Coc group did not differ (p > 0.4) and were ele-
ated with respect to the CPP alone and Saline control groups (p
alues <0.01). The CPP alone group exhibited a slight depression of
ctivity relative to Saline controls (p < 0.0001), but numerically the
ifference was quite small. Overall, by day 7, cocaine produced a
obust locomotor response, which was reduced when CPP was co-
dministered. CPP had little effect when given alone, producing a
mall, but significant, reduction in distance traveled.

.1.2. Vertical activity
Fig. 2A depicts average vertical activity across the 7 days of train-

ng. Each day was  considered separately as there was a significant
roup × day interaction [F(3,82) = 6.58, p < 0.0001]. The time course
f vertical activity for day 1 is shown in Fig. 2B. There were sig-

ificant group differences [F(3,82) = 18.2, p < 0.0001]. Cocaine mice
xhibited higher vertical activity than all other groups (p values
0.0001). CPP + Coc mice had a dramatically reduced response com-
ared to Cocaine mice (p < 0.0001) and did not differ from mice

ig. 3. Sensitization Difference Scores. Mice given Cocaine and CPP + Coc show sensitizat
ifference in locomotor activity (Day 7–Day 1) on a min-by-min basis. Cocaine and CPP
o  not. (B) Sensitization was  also quantified as the difference in average locomotor activ

ocomotor activity from Day 1 to Day 7, with no sensitization in control groups. (C) Mean v
ice  both exhibited substantial and similar sensitization compared to either CPP or Salin
ocaine mice again show higher vertical activity than all other mice. CPP + Coc mice
en CPP or Saline alone. CPP alone dramatically depresses vertical activity, even as

given CPP alone or Saline (p values >0.1). CPP alone also produced
a substantial reduction in vertical activity compared to Saline con-
trols (p < 0.05).

The time course for day 7 is shown in Fig. 2C. There were signif-
icant group differences [F(3,82) = 22.5, p < 0.0001]. Again, Cocaine
mice exhibited more vertical activity than all other groups (p values
≤0.001). CPP + Coc mice were depressed compared to Cocaine mice,
but exhibited higher activity than mice given CPP alone (p < 0.0001)
and were nearly different than mice given Saline alone (p = 0.077).
Finally, CPP alone depressed vertical activity relative to Saline con-
trols (p < 0.0001). Overall, CPP not only dramatically disrupted the
vertical response to cocaine, it also reduced vertical activity in
general.

3.1.3. Sensitization (activity difference) scores
Despite evidence that CPP reduced the acute response to

cocaine, it seems that mice given CPP + Coc exhibited sensitization
of both locomotor and vertical activity (see Figs. 1A and 2A). We
quantified sensitization as the difference in response from day 7
to day 1, both on an average and min-by-min basis. The difference

in locomotor activity (day 7–day 1) for each group on a min-by-
min  basis is shown in Fig. 3A. It is apparent that substantial and
similar sensitization exists in the Cocaine and CPP + Coc groups,
while none is present in the CPP and Saline groups. In order to

ion of both locomotor and vertical activity. (A) Sensitization was measured as the
 + Coc groups show substantial sensitization, while CPP and Saline control groups
ity from Day 7 to Day 1. Cocaine and CPP + Coc groups show a similar increase in
ertical activity difference scores (Day 7–Day 1) revealed that Cocaine and CPP + Coc
e control mice. Each bar or point represents the mean ± 1 standard error.
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Fig. 4. Place Preference. CPP abolished place preference induced by cocaine. Prefer-
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implify the statistical analysis, average locomotor activity data for
ay 7–day 1 is shown in Fig. 3B. There were significant group dif-
erences [F(3,82) = 12.3, p < 0.0001]. Cocaine and CPP + Coc mice did
ot differ in terms of overall sensitization of locomotor activity
p = 0.69) and were elevated with respect to both CPP and Saline
roups (p values <0.001). CPP alone and Saline alone groups did not
iffer (p = 0.45). Thus, the difference score between day 7 and day 1
learly revealed similar sensitization in the Cocaine and CPP + Coc
roups, with no sensitization in either control group.

Similar results were found for average vertical activity sensi-
ization difference scores (Fig. 3C; overall ANOVA, [F(3,82) = 7.54,

 < 0.001]). Cocaine and CPP + Coc mice did not differ in terms of
verall sensitization (p = 0.87); both groups exhibited sensitization
ompared to either CPP or Saline control mice (p values < 0.01). The
wo control groups showed hardly any change from day 1 to day

 and did not differ in this respect (p = 0.32). Thus, despite having
arge effects on the acute cocaine response, CPP co-administration
id not disrupt sensitization of locomotor or vertical activity.

.1.4. Place preference
Sensitization (Figs. 1–3)  was assessed during induction of place

reference on the drug-paired side. In order to test place prefer-
nce, mice were returned to the apparatus with access to both sides
f the chamber for a 15 min  preference test. Preference (Paired

 time – Unpaired % time) is depicted in Fig. 4. There were sig-
ificant group differences [F(3,82) = 6.81, p < 0.001]. Mice in the
ocaine group exhibited greater preference for the Paired side than
ll other groups (p values <0.03). They were the only group to show

 significant place preference [one-sample two-tailed t-test against
ypothesized � = 0, t(24) = 4.14, p < 0.001]. Place preference was
bolished in the CPP + Coc group [t(24) = 1.08, p = 0.3] and there was
lso no significant preference in the CPP alone group [t(17) = −1.34,

 = 0.2] or the Saline group [t(17) = −1.51, p = 0.15]. These groups
lso did not differ from one another (p = 0.75). Thus, CPP abolished
lace preference induced by cocaine.

Overall, there were three main findings: (1) CPP disrupted the

cute locomotor and vertical activity response to cocaine; (2) when
orrecting for the disrupted acute response, CPP failed to disrupt
ensitization of either behavior; and (3) CPP abolished the acquisi-
ion of place preference.

ig. 5. Fear Conditioning. (A) Training Activity. Prior to any shock, during the 2 min  baseli
ine).  The first 2 s shock presentation elicited a large increase activity (top line). There we
n  memory tests were not due to analgesia. (B) Context fear memory was  assessed 7 da
verage freezing during the test is presented. Subjects that previously received 10 or 20 m
r  5 mg/kg CPP. (C) Tone fear memory was assessed 24 h after the context fear test in an a
resentations minus baseline freezing in the alternate context. Pre-training administratio
he  mean ± 1 standard error.
cate a preference for the drug-paired side. Cocaine alone mice are the only group to
show significant place preference. Each bar represents the mean ± 1 standard error.

3.2. Fear conditioning

Previous studies have suggested that 20 mg/kg of CPP is a highly
amnesic dose. In order to verify this in our strain of mice, we  exam-
ined Pavlovian fear conditioning, a standard model of associative
memory.

3.2.1. Generalized activity
Mice were placed into the conditioning chambers and locomotor

activity was assessed prior to any shock. As in the place preference
chambers, CPP produced a small dose-dependent decrease in activ-
ity during the 2 min  baseline period of training when measured by
an automated computer scoring system (Fig. 5A, bottom). Group
differences were found on an analysis of variance [ANOVA; F(3,

65) = 9.73, p < 0.0001]. Subjects administered a 5–20 mg/kg dose of
CPP pre-training displayed significantly less activity during base-
line than the saline control group (p values <0.02).

ne period, CPP produced a dose-dependent decrease in locomotor activity (bottom
re no significant group differences in shock reactivity, indicating that deficits seen
ys after training. Mice were tested off drug for 5 min in the conditioning context.

g/kg CPP before training displayed less contextual fear than subjects given Saline
lternate context. Tone fear memory is defined as the average freezing to three tone
n of any dose of CPP resulted in impaired tone fear memory. Each point represents
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.2.2. Shock reactivity
A large increase in velocity, known as the “activity burst” or

nconditioned response (UR), was elicited by the 2 s shock presen-
ation. The average activity during the first 2 s shock is depicted in
ig. 5A (top). There were no significant overall differences in shock
eactivity [F(3,65) = 2.03, p = 0.12].

.2.3. Training
Subjects were in the conditioning context on the training

ay for a total of 10 min. Mice were given 3 tone-shock pair-
ngs during the first 5 min  (on drug training data not graphed).
here was a main effect of drug dose [F(3,65) = 8.37, p < 0.0001],
ith 0 mg/kg showing normal freezing (average of the 5 min,

5.1 ± 12.8%) and 10 (28.9 ± 15.5%) or 20 mg/kg (38.5 ± 19.4%)
howing increased freezing (p values <0.02) and 5 mg/kg producing
o effect (19.0 ± 13.1%; p = 0.48). Mice were then left in the cham-
ers for an additional 5 min  as an immediate memory test (data not
raphed). There were no significant differences in overall immedi-
te memory [F(3,65) = 2.15, p = 0.10; means, 0 mg/kg: 65.8 ± 27.1%,
: 55.5 ± 21.8%, 10: 63.5 ± 17.2%, 20: 73.6 ± 13.5%]. As these sub-

ects were on drug, it is important to note that CPP’s locomotor
ffects likely influenced the results. Any increase in freezing seen
uring training was likely due to the small depression of locomo-
or activity. Nonetheless, because CPP induces a small increase in
reezing and hypoactivity during training, direct motor effects are
nlikely to be related to the amnesia, reflected as decreased freez-

ng, that is observed one week later, off drug (Fig. 5B and C).

.2.4. Context fear
To examine if CPP given during training prevented the acqui-

ition of fear conditioning memory, mice were returned to the
onditioning chambers 7 days after training. Freezing was mea-
ured for 5 min, with all subjects off drug. The average of this test
s shown in Fig. 5B. Dose-dependent differences in contextual fear

ere apparent [F(3,65) = 8.56, p < 0.0001]. Subjects that had pre-
iously received 10 or 20 mg/kg CPP before training displayed less
ontextual fear than saline controls (p values < 0.02), while 5 mg/kg
ailed to induce an amnesic effect on this test (p = 0.15).

.2.5. Tone fear
Subjects were introduced to an alternate context 24 h after

he context test, also off drug. Freezing was measured for 5 min,
onsisting of a 2 min  baseline period followed by 3, 30 s tone pre-
entations, each separated by 30 s. The tone was the same frequency
nd volume as that which had been paired with the shock during
raining. Baseline freezing (not depicted) in the alternate con-
ext was very low, but differed among the groups [F(3,65) = 3.35,

 < 0.03]. Saline controls froze slightly more (11.3 ± 3.4%) than
he groups that had previously received CPP (5 mg/kg, 6 ± 2.8%;
0 mg/kg, 2.0 ± 2.8%; 20 mg/kg, 2.6 ± 1.1%; p values <0.05). Thus,
one fear was defined as the average of freezing to the three tones

inus baseline freezing (Fig. 5C). Overall, pre-training administra-
ion of any dose of CPP resulted in impaired tone fear memory
F(3,65) = 8.14, p < 0.0001]. Subjects given 5, 10, or 20 mg/kg CPP
rior to training froze significantly less than saline controls (p val-
es <0.002). The same conclusions are reached if the raw tone
reezing values are analyzed for any particular minute.

Overall, we were able to verify that 20 mg/kg CPP produced
evere deficits in both contextual and tone fear memory on a
tandard model of associative learning.

. Discussion
The present study examined the effect of the competitive
MDAR antagonist CPP on the induction of behavioral sensitiza-

ion and conditioned place preference to cocaine. There were three
 Research 239 (2013) 155– 163

principal findings, discussed in turn: (1) co-administration of CPP
and cocaine altered the acute response to cocaine, suggesting a
direct pharmacodynamic interaction between the two drugs; (2)
NMDAR antagonism had no effect on behavioral sensitization; and
(3) NMDAR antagonism blocked conditioned place preference.

(1) Acute or chronic administration of CPP alone produced lit-
tle to no effect on locomotor activity, but significantly altered the
locomotor response to cocaine (Fig. 1B). After a 5 min  enhance-
ment of cocaine-induced horizontal activity, a dramatic reduction
was observed. By the seventh day of drug administration, this pat-
tern was absent (Fig. 1C). In contrast to locomotor activity, CPP
produced a dramatic acute and chronic reduction in vertical activ-
ity when given alone or with cocaine (Fig. 2). These findings are
in agreement with previous studies reporting that the competi-
tive NMDAR antagonists CPP [55], CGS19755 [55] and AP5 [53]
attenuate or completely block the acute behavioral responses to
cocaine. If NMDAR antagonists interfere with a psychostimulant’s
primary pharmacological actions, necessary for both acute and sen-
sitized responses, then blockade of the induction of sensitization by
NMDAR antagonists cannot simply be attributed to a blockade of
neuroplasticity.

The nature of the interaction between CPP and cocaine is puz-
zling, but may  be pharmacodynamic. First, CPP may  interact with
some element of dopamine (DA) neurotransmission. CPP and AP5
have both been shown to increase DA synthesis and efflux in
the striatum as measured by in vivo microdialysis [66]. Second,
some of cocaine’s effects could be through NMDARs, either directly
or indirectly. Indeed, acute cocaine exposure causes a delayed
increase in NMDAR-mediated synaptic currents in DA neurons
by stimulating DA D5 receptors, which leads to an increase in
NR2B-containing NMDARs [67]. Several studies have now reported
that cocaine modulates the NMDAR population, noting sustained
increases in NR1 and/or NR2B densities in the striatum, VTA, amyg-
dala, and hippocampus, following both acute and chronic cocaine
exposure [67,68]. Likewise, cocaine increases available NMDA  and
PCP binding sites [69,70]. Some evidence suggests this interac-
tion between cocaine and NMDARs is responsible, in part, for
cocaine-induced convulsions; NMDAR antagonists are able to pro-
tect against cocaine-induced toxicity [55]. Finally, we should not
forget cocaine’s canonical local anesthetic effect at voltage gated
sodium channels [71]. It is obvious that inhibition of sodium
conductance can alter NMDAR function [72,73].  Thus, although
the exact cause of the interaction observed here cannot be fully
explained, there is considerable evidence for bidirectional interac-
tions between NMDAR antagonists and cocaine.

So far we have focused primarily on studies using cocaine, rather
than amphetamine, because of their distinct pharmacodynamics.
For example, amphetamine does not share cocaine’s local anes-
thetic effect, and selective DA antagonists differentially affect the
induction of sensitization to cocaine and amphetamine [74,75].
Despite these differences, however, the behavioral findings with
amphetamine are consistent with those of cocaine. Competitive,
non-competitive, and glycine-site NMDAR antagonists interfere
with both the acute and sensitized responses to amphetamine
[45,46,27,47,48,52].

(2) CPP clearly had no effect on behavioral sensitization when
the difference in either locomotor or vertical activity between day
7 and day 1 is taken as a measure of cocaine sensitization (Fig. 3).
It has been accepted that NMDARs are critical for the development
of cocaine-induced sensitization. This notion is primarily based on
evidence that co-administration of MK801 with cocaine completely
blocks [15–23] or reduces [16,33,49,76,77] cocaine-induced sensi-

tization. However, this conclusion is still highly controversial and
the role of NMDARs in addiction remains unclear [78]. The problems
with using MK801, including its non-specific side effects and para-
doxical ability to induce sensitization to itself, have been reviewed
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xtensively [34–36].  It has been repeatedly suggested that alterna-
ive antagonists, particularly competitive antagonists, be used in
lace of MK801.

In addressing this controversy, Wolf [79] argued that many
abs have now shown that several classes of NMDAR antagonists
lock the induction of sensitization without producing the trou-
ling side-effects associated with MK801. For example, her lab [52]
ound that CGS19755 produced a “clean block” of sensitization by
reventing any increase in amphetamine-induced activity across
raining days and during the sensitization challenge test. How-
ver, in both this and a prior study [27], the acute response to
mphetamine was dramatically increased when CGS19755 was co-
dministered (compare [52], their Figs. 1A and 2A, day 1 response
or amphetamine only and amphetamine with CGS19755 and [27],
heir Fig. 3). We  believe that most or all competitive NMDAR antag-
nists alter the acute response to psychostimulants, and that using a
ifference score to calculate sensitization can control for this inter-
erence. This, however, results in little evidence that NMDARs are
nvolved in sensitization (Fig. 3).

To the best of our knowledge, seven studies have used compet-
tive NMDAR antagonists on the induction of cocaine sensitization
17,19,20,41,49,53,80]. Every one of these studies claim to find

 blockade or attenuation of cocaine-induced sensitization when
 competitive NMDAR antagonist is co-administered, but all also
how either acute interactions between the NMDAR antagonist and
ocaine or do not report acute response data. First, CPP [19,80]
nd CGS19755 [20] have been reported to block cocaine-induced
ensitization, but only data from the sensitization challenge tests
ere reported in these studies. As such, the results are difficult

o interpret given that competitive NMDAR antagonists dramati-
ally interfere with the acute response to cocaine (Figs. 1 and 2)
53,55]. Similarly, Haracz et al. [49] found that d-CPP-ene atten-
ates cocaine-induced sensitization, but they also do not report
cute response data. It is possible that intact sensitization was
asked in these studies by a reduced behavioral response to

ocaine. Druhan and Wilent [41] co-administered CPP into the ven-
ricles with cocaine (i.p.) and also found a blockade of the induction
f sensitization to cocaine. However, they present their induction
ata as an average of all training sessions; it is clear that CPP reduced
he response to cocaine during training (their Fig. 5), but it is impos-
ible to discern acute effects during the first injection. Further,
ensitization was reduced in mice co-administered CPP and cocaine
ecause control mice showed an elevated response to CPP, rather
han Paired mice showing a reduction in activity when pre-treated
ith CPP (their Fig. 7).

The remaining two studies report an altered acute response
o cocaine when competitive NMDAR antagonists were co-
dministered. Kalivas and Alesdatter [17] demonstrated that CPP
iven intra-VTA with cocaine (i.p.) blocked one-shot sensitization
o cocaine (their Fig. 6), but CPP appeared to reduce the acute
orizontal activity induced by cocaine (their Fig. 5). Additionally,
icata et al. [53] found that AP5, given intra-VTA, co-administered
ith cocaine (i.p.), appeared to reduce acute distance traveled and

ttenuated the sensitized locomotor response to cocaine (their Fig.
). Therefore, we believe a number of studies could have possi-
ly taken a direct reduction of overall response as a reduction in
ensitization.

(3) NMDAR antagonism by CPP abolished the induction of
ocaine-induced conditioned place preference and Pavlovian fear
onditioning (Figs. 4 and 5). This is consistent with conditioned
lace preference being a form of associative learning and is not
ontroversial; NMDARs are critical for the formation of most or all

ssociative memories [13,81,82].  Our findings support and extend
revious literature indicating that non-competitive [31,33,83,84],
ompetitive [85], and glycine-site [86,87] NMDAR antagonists
lock cocaine-induced place preference.

[

[
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The present results suggest that addiction may  recruit multi-
ple types of memories, and therefore, multiple types of plasticity.
Anagnostaras and colleagues [11,12] have previously suggested
that sensitization recruits both associative and non-associative
forms of plasticity. In this view, sensitization is likely sustained by
non-associative learning, the mechanisms of which only partially
overlap with those underlying traditional associative learning.
Indeed, some forms of non-associative learning do not require the
mechanisms typically implicated in associative learning. For exam-
ple, habituation of the Hering–Breuer apnea reflex in the primary
vagal pathway, a classic model of non-associative memory, recruits
NMDAR-independent plasticity [88]. Likewise, mossy fiber long-
term potentiation is NMDAR-independent and often non-Hebbian
[89]; it can be induced without any post-synaptic activity or cal-
cium influx at all [90].

Therefore, we propose that addiction is better characterized
as inducing both associative and non-associative forms of mem-
ory that together contribute to compulsive drug taking behavior.
Associations between drug-induced affective states and contextual
cues could trigger craving and some goal-directed behavior toward
drugs, like that seen in the conditioned place preference paradigm.
However, the transition from recreational to pathological and
compulsive drug seeking may  involve non-associative processes,
such as sensitization, whereby the neural substrate mediating the
unconditioned response to the drug is directly augmented [8–10].
The long-term neural changes induced by psychostimulants, that
lead to chronic relapse, likely involve synaptic modifications not
seen during ordinary associative learning.
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