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Abstract

We demonstrate an interferometric method to provide direct, single shot measurements of 

cavitation bubble dynamics with nanoscale spatial and temporal resolution with results that closely 

match theoretical predictions. Implementation of this method reduces the need for expensive and 

complex ultra-high speed camera systems for the measurement of single cavitation events. This 

method can capture dynamics over large time intervals with sub-nanosecond temporal resolution 

and spatial precision surpassing the optical diffraction limit. We expect this method to have broad 

utility for examination of cavitation bubble dynamics as well as for metrology applications such 

as optorheological materials characterization. This method provides an accurate approach for 

precise measurement of cavitation bubble dynamics suitable for metrology applications such as 

optorheological materials characterization.

Precise measurement of cavitation dynamics is relevant to phenomena as diverse as 

sonoluminescence, sonochemistry, molecular transport, fluidic mixing, and light-tissue 

interactions [1–4]. These phenomena have been exploited in numerous applications 

including ultrasonic cleaning [6], microfluidic mixing [7] and pumping [8], tissue ablation 

[5], drug delivery [9,10], ocular surgery [11], microrheology [12,13], screening of cellular 

mechanosignaling [14,15], and measurement of mechanical properties of soft materials 

[13,16,17].

Empirical studies providing detailed measurement of cavitation bubble dynamics most 

often utilize high-speed photographic methods [18,19]. Such measurements are critical 
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to understand complex fluidic processes, assess computational fluid dynamics models, 

and optimize applications that utilize cavitation bubbles [20]. While the capabilities of 

high-speed photographic and holographic methods have advanced formidably in recent 

years, with systems capable of imaging rates as large as 1 trillion frames/second [21–23], 

significant limitations remain including the total number of frames available, diffraction-

limited spatial resolution, and significant expense and complexity. These limitations place 

these high-speed photography and holography out of the reach of most researchers in terms 

of cost and/or needed expertise.

On the other hand, time-resolved photography, achieved through combining individual time-

gated images from independent cavitation events, has been used by a larger number of 

investigators [7,24–28]. This approach has enabled the reconstruction of complex bubble 

dynamics over long-time intervals with high temporal resolution. However, this approach 

provides an “average” view of the phenomena since the data acquisition utilizes images from 

different events. This effectively blinds the investigator to important factors that may cause 

shot-to-shot variability such as the stochastic nature of laser-induced plasma formation and 

the potential effects of medium heterogeneity and/or impurities [29,30].

As an alternative, investigators have developed optical techniques utilizing probe deflection 

or spatial transmittance modulation to determine cavitation bubble dynamics [31–34]. 

However, these techniques appear best suited to probe millimeter scale sized bubbles 

and generally lack the precision necessary to allow for detailed analysis. Moreover, to 

obtain quantitative bubble dynamics, these techniques require calibration and/or pairing with 

photography.

In this Letter, we present a new method for precise measurement of cavitation bubble 

dynamics with nanoscale temporal resolution and spatial precision. This method utilizes a 

heterodyne interferometer in a modified Mach-Zehnder configuration [35,36] as shown in 

Figure 1. To demonstrate its capabilities, we formed cavitation bubbles were formed via 

laser-induced plasma generation by irradiation using a single 500ps duration pulse emitted 

by a frequency-doubled Nd:YAG laser (λ=532 nm, Teem Photonics PNG-M03012) laser. 

The laser beam output was expanded and delivered to a water-filled cuvette using a 40× 

0.8 numerical aperture water immersion microscope objective (OBJ, Leica HCX APO L 

40x/0.80 W U-V-I). The interferometer was constructed utilizing a polarized continuous 

wave Helium-Neon laser (HeNe, λ=632.8 nm, 12mW, Newport Optics, R-30993). The 

separate arms of the interferometer are formed using a 110 MHz acousto-optic modulator 

(AOM, IntraAction Inc., ATM-1101A1) such that the first-order frequency-shifted beam 

from the AOM serves as the reference arm and the unshifted beam serves as the sample 

arm. The sample arm is directed through the cuvette perpendicular to and passing through 

the center of the bubble. The two beams are recombined using a non-polarizing 50/50 beam 

splitting cube (BSC, Thorlabs BS013). Dual balanced detection [37] is performed using two 

1 GHz bandwidth Si PIN photodiodes (P1 & P2, S5973 Hamamatsu) with the detection 

circuit enclosed in a steel Faraday cage to reduce ambient electrical noise. The photodiode 

output signals are amplified using a broadband low-noise amplifier (AMP, Mini-Circuits, 

ZFL-500LN), digitized by a 2 GHz bandwidth oscilloscope (OSC, LeCroy WaveRunner 
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6200A) at a sampling rate of 5GS/s, and processed using MATLAB’s Hilbert transform 

function.

Prior to bubble formation the detected interferometer signal consists of a sinusoidal 

oscillation at the 110 MHz modulation frequency. Bubble formation changes the optical 

path length of the sample arm as it passes through the growing and collapsing cavity. This 

dynamic change in optical path length is detected by the photodiodes and prototypical 

waveforms of both the AOM reference and detected interferometer signals are shown in 

Figure 2.

The phase difference between the reference and sample arms is directly proportional to the 

cavitation bubble size. Figure 3 illustrates the results of the Hilbert transform in which both 

the phase of AOM signal, which is equivalent to the phase of the interferometer reference 

beam, φref, and phase of the detected interferometer signal, φsample, are plotted vs time. 

The phase difference between these two signals is shown by φbub. Prior to applying the 

Hibert transform, the raw interferometer signal is processed using notch filters to exclude 

314MHz and 629 MHz frequency peaks that correspond to the mode hopping frequency of 

our HeNe laser. Additionally, a band pass filter between 2.9MHz to 220MHz is used to filter 

out electrical noise above and below relevant frequency range of the system.

The time-resolved bubble radius RB(t) is obtained from the optical phase φbub(t) 
corresponding to the dynamic optical path length difference between the reference and 

sample arms introduced by the bubble. This leads to the following relationship between the 

time-resolved bubble radius RB(t) and the optical phase introduced by the bubble φbub(t)

RB t = λφbub t
4π nG − nW

(1)

where λ is the wavelength of the probe beam and nG and nW are the refractive index of the 

gas within the bubble and surrounding water, respectively.

Once the bubble is initiated and growing in size, the instantaneous frequency of the 

interferometer signal Iint falls below the 110 MHz heterodyne frequency since the optical 

Pathlength in the sample arm is decreasing with time. Conversely, once the bubble reaches 

its maximum size and begins to collapse the instantaneous frequency of the interferometer 

signal Iint rises above 110 MHz heterodyne signal. The detection limit of our bubble 

measurement is dependent on the phase noise associated with the baseline signal which 

is 0.1 radians corresponding to 15nm.

To assess the measurement accuracy of the interferometer, we compare the bubble dynamics 

measurements with predictions provided by the Rayleigh-Plesset model [38] which has been 

demonstrated to provide accurate predictions for the cavitation bubbl dynamics in this case 

[13,26]:

ρ RB
d2RB
dt2 + 3

2
dRB
dt

2
= pb − p∞ − 2σ

RB
− 4μ

RB

dRB
dt , (2)
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where RB(t) represents the time-resolved bubble radius, µ the viscosity of water, ρ the 

density of water, and σ the surface tension at water/vapor interface, with pB and p∞ 
representing the pressure inside the bubble and surrounding liquid, respectively. Figure 4 

shows excellent agreement between the predictions made by the Rayleigh-Plesset model 

and the interferometric measurement. As a point of comparison, we also provide bubble 

dynamics data obtained under similar conditions obtained by taking a single bubble image at 

different time points using time-resolved photography.

Comparison of the two data sets clearly illustrates the increased measurement uncertainty 

that is incurred when determining the bubble dynamics using time-resolved images obtained 

using multiple independent trials. However, we do find that our current interferometric 

method has difficulty unwrapping the phase during the final stages of bubble collapse once 

the velocity of the bubble wall exceeds approximately 84–94 m/s. This collapse velocity 

corresponds to a heterodyne detection frequency in excess of 154–159MHz. Interestingly, 

we have an unidentified source of ambient electronic noise located at 156 MHz. This leads 

us to believe that our difficulty in resolving the bubble collapse is not intrinsic to our overall 

approach but may instead be resolved through better electrical isolation or by using an AOM 

operating at a lower modulation frequency.

In summary, we have demonstrated an accurate interferometric method for obtaining the 

complete cavitation bubble dynamics from a single cavitation event with 15nm radial 

precision and sub-nanosecond temporal resolution. This approach is more accurate, less 

costly and simpler to operate as compared to fast-frame photographic and holographic 

methods. Moreover, unlike probe beam methods, our method requires no calibration to 

obtain quantitative measurements. This approach allows for capturing of the full cavitation 

bubble dynamics extending over 10’s of microseconds while retaining (sub-)nanosecond 

temporal resolution. We anticipate these capabilities will be of broad utility for examination 

of cavitation bubble dynamics as well as for metrology applications such as optorheological 

materials characterization.
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Fig. 1: 
Diagram of the Mach-Zehnder interferometric system. M1-M5 are 1 inch silver mirrors 

used to direct both the pump (Nd:YAG) and interferometer probe (HeNe) beams. 50mm 

convex lenses L1 & L2 are used to direct the interferometer probe beam through the bubble. 

10mm convex lenses L3 & L4 are used to focus the combined interferometer beams onto the 

Si-PIN diodes P1 and P2. 50mm concave (L5) and 125 mm convex (L6) lenses are used to 

expand and recollimate the Nd:YAG pump beam.
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Fig. 2: 
Recovered Photodiode signal and AOM driving signal from oscilloscope following initiation 

of a cavitation bubble using a 20µJ. Iint (blue) and Iaom (orange) are shown in segments 

corresponding to (a) the beginning, (b) middle and (c) end of bubble a 175µm diameter 

bubble created by a 20uJ laser pulse.
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Fig. 3: 
Measured φref and φint corresponding to the formation of a 141.3 µm diameter cavitation 

bubble using a 10µJ laser pulse. φbub is the phase difference between the reference and 

interferometer signals.
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Fig. 4: 
Time resolved bubble dynamics for bubbles formed using pulse energies of 2.5, 10, and 20 

µJ resulting in maximum bubble radii of 77, 136, and 172 µm, respectively, is shown with 

theoretical bubble radius predicted by the Rayleigh-Plesset model. In the case of the 10µJ 

pulse energy, we also show data acquired using images from captured from separate events 

using an intensified CCD camera.
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