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The role of brain somatostatin receptor 2 in the regulation of 
feeding and drinking behavior
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1Charité Center for Internal Medicine and Dermatology, Division of General Internal and 
Psychosomatic Medicine; Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, 
Germany

2CURE: Digestive Diseases Research Center, Center for Neurobiology of Stress and Women's 
Health, Department of Medicine, Digestive Diseases Division at the University of California Los 
Angeles, and VA Greater Los Angeles Health Care System, CA 90073, USA

Abstract

Somatostatin was discovered four decades ago as hypothalamic factor inhibiting growth hormone 

release. Subsequently, somatostatin was found to be widely distributed throughout the brain and to 

exert pleiotropic actions via interaction with five somatostatin receptors (sst1-5) that are also 

widely expressed throughout the brain. Interestingly, in contrast to the predominantly inhibitory 

actions of peripheral somatostatin, the activation of brain sst2 signaling by intracerebroventricular 

injection of stable somatostatin agonists potently stimulates food intake and independently, 

drinking behavior in rodents. The orexigenic response involves downstream orexin-1, 

neuropeptide Y1 and μ receptor signaling while the dipsogenic effect is mediated through the 

activation of the brain angiotensin 1 receptor. Brain sst2 activation is part of mechanisms 

underlying the stimulation of feeding and more prominently water intake in the dark phase and is 

able to counteract the anorexic response to visceral stressors.
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Introduction

The 14 amino acid peptide, somatostatin was isolated in 1973 from 490,000 ovine 

hypothalami by Guillemin and colleagues as a potent inhibitor of growth hormone (GH) 

secretion from the pituitary in vitro and in vivo that led to its naming (Brazeau et al., 1973). 
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Seven years later, Pradayrol et al. identified the N-terminally extended form, 

somatostatin-28, from porcine intestine (Pradayrol et al., 1980). In mammals, both 

somatostatin-14 and 28 originate from the prohormone, pro-somatostatin, which is generated 

after removal of a 24 amino acid signal sequence from the 116 amino acids precursor, pre-

pro-somatostatin (Benoit et al., 1990). Somatostatin-14 and 28 bind with similar affinity to 

five distinct somatostatin receptor subtypes, sst1 to sst5 (Bruns et al., 1996; Patel, 1999). 

These receptors belong to the G-protein coupled seven transmembrane domain receptor 

family (Olias et al., 2004) and are related to the urotensin II receptors (Tostivint et al., 

2014). In addition, spliced variants have been described for the sst2 including the full length 

sst2a and the C-terminally truncated form sst2b in rodents (Cole and Schindler, 2000). Both, 

sst2a and sst2b splice variants bind somatostatin and display similar potency and 

desensitization rates (Cole and Schindler, 2000). In addition, several functionally active 

truncated forms of the sst5 have been identified in humans and rodents (Cordoba-Chacon et 

al., 2010; Duran-Prado et al., 2009). These sst5 splice variants display a differential 

subcellular localization (Cordoba-Chacon et al., 2010) and a reduced [Ca2+]i response 

compared to somatostatin (Duran-Prado et al., 2009).

Soon after the initially described inhibitory action of somatostatin on GH secretion, several 

extra-pituitary effects were identified in line with the widespread brain distribution of the 

peptide (Finley et al., 1981; Viollet et al., 2008). In rodents, somatostatin acts in the brain to 

increase body temperature and influence visceral functions (e.g. increase blood pressure 

through vasopressin-dependent mechanisms, decrease heart rate, prevent sympathetically 

mediated hyperglycemia and stimulate gastric acid secretion) (Brown and Taché, 

1981;Brown, 1981; Brown, 1988; Hajdu et al., 2000). Somatostatin was also found to induce 

behavioral alterations of food consumption – either increase or decrease as discussed below 

– (Feifel and Vaccarino, 1994), increased grooming (Van Wimersma Greidanus et al., 1987) 

and locomotor activity (Vecsei and Widerlov, 1990). Other early studies also pointed to the 

central action of somatostatin-28 to counteract the activation of the hypothalamic pituitary 

adrenal (HPA axis) and sympathetic nervous system induced by acute stressors (Brown et 

al., 1984).

The review will focus on recent advances that unraveled mechanisms involved in the 

alterations of food intake induced by pharmacological activation of brain somatostatin 

signaling pathways. We will also address new evidence that somatostatin in the brain 

induces a potent dipsogenic response through distinct mechanisms independent from the 

stimulation of food intake. The role of endogenous brain somatostatin signaling will be 

reviewed in the context of its relevance in regulation of nocturnal feeding and drinking 

behavior in rodents and stress-related alterations of food intake (Sominsky and Spencer, 

2014). Progress in the characterization of somatostatin receptors involved in these 

behavioral changes was greatly facilitated by the use of stable and selective peptide 

somatostatin agonists and the development of selective somatostatin receptor antagonists 

(Table 1) (Erchegyi et al., 2008).
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Brain somatostatin signaling and the regulation of feeding behavior

Neuroanatomical support

Somatostatin (not distinguishing between 14 and 28) immunoreactivity was shown to be 

widely distributed in cell bodies and fibers of distinct nuclei throughout the rodent brain 

(Finley et al., 1981). In particular, dense somatostatin immunoreactivity is present in the 

hypothalamus, namely in the arcuate (Arc), ventromedial, periventricular and 

paraventricular (PVN) nuclei, and at the level of brainstem in the nucleus of the solitary tract 

(NTS) (Finley et al., 1981; Johansson et al., 1984; Moga and Gray, 1985; Viollet et al., 

2008). These brain sites are well established to regulate food intake and energy balance 

(Schneeberger et al., 2014).

Consistent with the broad distribution of the ligand, the sst1-5 are also widely expressed 

throughout the brain and – although overlap exists – the sst subtypes show a distinct 

expression pattern (Olias et al., 2004). With regards to feeding regulatory centers, a dense 

expression of sst receptors has been detected in the dorsomedial hypothalamic nucleus (sst1 

= sst3), ventromedial hypothalamic nucleus (sst1 > sst3 > sst2), PVN (sst2a = sst3) and Arc of 

the hypothalamus (sst1 = sst2a = sst3 > sst4), the NTS (sst1 = sst2 > sst3) and the dorsal motor 

nucleus of the vagus nerve (sst2a/b = sst4 > sst5) (Fehlmann et al., 2000; Hannon et al., 2002; 

Schindler et al., 1999; Schulz et al., 2000; Spary et al., 2008). Therefore, in feeding 

regulatory nuclei such as the Arc, PVN and NTS, both ligands and receptors are expressed. 

Interestingly, only the sst2 and sst3 are expressed in all three nuclei.

Orexigenic response to central injection of stable somatostatin agonists

Early on, studies reported that injection of somatostatin-14 or the stable sst2,3,5 agonist 

octreotide (Table 1) into the brain stimulates food intake in rats (Table 2). Somatostatin or 

octreotide injected intracerebroventricularly (icv), into the dorsal hippocampus or anterior 

piriform cortex increased food intake in rats (Beranek et al., 1999; Danguir, 1988; Feifel and 

Vaccarino, 1990; Feifel et al., 1993; Rezek et al., 1976). More recent studies established that 

the stable pan-somatostatin agonist, ODT8-SST or octreotide injected icv at low doses (0.3 

and 1 nmol/animal) induces a robust increase of food intake in ad libitum fed rats or mice 

under basal conditions during the light phase or already stimulated conditions during the 

dark photoperiod (when rodents usually eat) (Karasawa et al., 2014a; Karasawa et al., 

2014b; Stengel et al., 2010a). The orexigenic response to icv injection of the stable 

somatostatin agonist, octreotide in rats is rapid in onset (within 10 min) (Beranek et al., 

1999), reaches a peak response at the first hour post icv injection of the pan-somatostatin 

agonist, ODT8-SST and is long lasting (4 h) resulting in an enhanced cumulative food intake 

over a period of 9 h (Stengel et al., 2010a). A rapid orexigenic response to icv somatostatin 

(0.5 nmol) was also reported in non-mammalian species such as chicks under fasted or ad 

libitum feeding conditions (Tachibana et al., 2009).

However, at higher doses (1 – 3 nmol/rat, or 1 nmol/mouse, icv), somatostatin decreased 

food intake in rats and mice (Cummings et al., 1998; Feifel and Vaccarino, 1990; Lin et al., 

1987; Nakahara et al., 2012; Vijayan and McCann, 1977) (Table 2). The anorexigenic effect 

at higher doses may be related to the confounding effects due to the occurrence of other 
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competing behavioral changes such as barrel rotation (Vecsei et al., 1989) and leakage into 

the peripheral circulation (Tannenbaum and Patel, 1986) – where the peptide largely exerts 

inhibitory effects (Bray, 1995). Taken together, activation of brain somatostatin signaling by 

icv injection of stable somatostatin agonists at low doses robustly increases food intake in 

rodents and non-mammalian species.

Role of brain somatostatin 2 receptor in the orexigenic effect

Further studies using selective sst receptor subtype agonists and antagonists (Table 1) 

delineated the primary involvement of the brain sst2 receptor in the orexigenic response to 

icv injection of somatostatin agonists. This is supported by the demonstration that the sst2 > 

sst5 > sst3 agonist, octreotide injected icv stimulates light phase food intake in ad libitum fed 

rats (Beranek et al., 1999; Danguir, 1988) and mice (Stengel et al., 2010b). This response is 

reproduced by the selective sst2 agonist, S-346-011 injected icv (0.09 – 0.9 nmol/rat and 0.9 

nmol/mouse, respectively), while the sst1 (S-406-062) or sst4 agonists (S-315-297, Table 1) 

injected at ∼0.25 or 0.8 nmol have no effect (Stengel et al., 2010b; Stengel et al., 2010c). 

Moreover, the action of the pan-somatostatin agonist, ODT8-SST was blocked by icv 

injection of the selective peptide sst2 antagonist, S-406-028 (Table 1) in rats (Stengel et al., 

2010a). Subsequent characterization of the sst2-mediated meal pattern associated with the 

orexigenic response in mice showed that during the 0 – 4 h period post icv injection of the 

sst2 agonist, S-346-011, there was an increase in the number of meals occurring after shorter 

intermeal intervals, whereas meal size was not altered compared to icv vehicle injected 

animals (Stengel et al., 2010b). These data indicate that the activation of sst2 signaling in the 

brain suppresses “satiety” (mechanisms causing delayed onset of the next meal after one 

completed meal), while not influencing “satiation” (mechanisms causing meal termination) 

(Fekete et al., 2007).

Brain orexigenic circuits recruited by intracerebroventricularly injected somatostatin 
agonists

Pharmacological approaches indicate that several orexigenic signaling pathways, namely 

neuropeptide Y (NPY), opioid and orexin (OX) – through activation of Y1, μ and OX1 

receptors, respectively – are involved in mediating the icv pan-somatostatin agonist, ODT8-

SST-induced stimulation of food intake in rats (Karasawa et al., 2014b; Stengel et al., 

2010a). Peripheral injection of the μ-opioid receptor antagonist, naloxone (Bodnar, 2004) 

completely prevented the orexigenic effect of icv injected pan-somatostatin agonist, ODT8-

SST in rats (Stengel et al., 2010a). Likewise, in chicks the opioid μ-receptor antagonist, β-

funaltrexamine injected icv prevented the stimulation of food intake in response to icv 

somatostatin, while δ or κ opioid antagonists had no effect (Tachibana et al., 2009). The 

opioid dependence and the demonstration that the sst2 agonist, S-346-011 injected icv can 

further increase (1.4-times) already stimulated food intake induced by palatable high fat 

food in mice (Stengel et al., 2010b) suggest that sst2 signaling may be involved in reward-

induced eating (Gosnell and Levine, 2009). The interaction of sst and opioid signaling is 

further corroborated at the cellular level since the sst2 has been shown to heterodimerize 

with the μ opioid receptor (Duran-Prado et al., 2008). However, whether this is linked with 

altered pharmacological and/or functional properties of sst2 within brain reward centers 

needs to be investigated.
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In addition to the μ receptor opioid antagonist, the Y1 receptor antagonist, BIBP-3226 

(O'Shea et al., 1997) or the OX1 antagonist, SB-334867 (Smart et al., 2001) injected icv also 

completely blocked the orexigenic effect induced by icv injection of the pan-somatostatin 

agonist, ODT8-SST (Karasawa et al., 2014b; Stengel et al., 2010a). The demonstration that 

the sst2 antagonist, S-406-028 did not alter the orexigenic response to icv orexin-A in rats 

indicates that the orexin-OX1 pathway is downstream to the sst2 activation (Karasawa et al., 

2014b). Other studies have established that the NPY-NPY1 signaling in the Arc is involved 

in the downstream mediation of orexin A's orexigenic effect (Yamanaka et al., 2000). 

Therefore, the signaling cascade targeted by icv injection of the stable pan-somatostatin 

agonist, ODT8-SST may involve the activation of the sst2➔orexin-A-OX1➔NPY-NPY1 

circuitry (Fig. 1). This assumption is supported by convergent neuroanatomical and 

electrophysiological studies showing that orexin-expressing neurons in the lateral 

hypothalamic area project to NPY-immunopositive neurons in the Arc (Horvath et al., 1999) 

and activate these neurons (Muroya et al., 2004; van den Top et al., 2004). Moreover, the 

food intake stimulation by icv orexin-A is blunted by icv injection of an NPY1 antagonist 

(Jain et al., 2000). However, it cannot be ruled out that in addition, the pan-somatostatin 

agonist ODT8-SST acts by directly stimulating NPY signaling in the Arc as sst2 receptors 

are localized on 50% of NPY expressing neurons in the Arc (Lanneau et al., 2000). The 

exact anatomical circuits by which somatostatin-sst2 signaling stimulates OX1 bearing 

neurons are still to be identified. Activation of sst2 by icv injection of the pan-somatostatin 

agonist, ODT8-SST or a selective sst2 agonist (S-346-011) induces Fos expression in the 

supraoptic nucleus and PVN, unlike in orexin-expressing neurons of the lateral 

hypothalamic area (Goebel et al., 2010) supporting an indirect action. GABAergic neurons 

are inhibited by somatostatin-sst2 signaling in the brain (Chigr et al., 2001; Meyer et al., 

1989) and may thereby reduce the inhibitory tone on orexin neurons, a hypothesis that 

warrants further investigation. Whether cannabinoid signaling is also involved in 

somatostatin's orexigenic effect as recently suggested based on the co-localization of CB1 

and somatostatin in the PVN (Zou et al., 2015) will be subject to further studies.

Additional mechanisms modulating the somatostatin orexigenic response may involve the 

interplay with leptin, an adipose tissue-derived anorexigenic hormone that contributes to the 

long term regulation of body weight (Friedman, 1997). Somatostatin dampened leptin 

signaling as shown by the reduction in STAT3-phosphorylation level and nuclear STAT3 

translocation in various hypothalamic nuclei, an effect mediated by several sst receptors 

(sst3 > sst1 > sst2) (Stepanyan et al., 2007). This could contribute to a reduction of leptin's 

anorexigenic action. Conversely, leptin injected icv reduced sst2 protein expression in the rat 

hippocampus (Perianes-Cachero et al., 2012) followed by a delayed increase of sst2 protein 

expression (Perianes-Cachero et al., 2013) which may be a counter-regulatory mechanism to 

balance leptin's action in the rat brain. In an in vitro preparation of rat fetal hypothalamic 

neurons, leptin also decreases somatostatin mRNA expression and somatostatin secretion 

under basal as well as NPY stimulated conditions (Quintela et al., 1997) further underlining 

the antagonistic interplay between these two hormones. Taken together, somatostatin's 

action in the brain is likely to be exerted via sst2 signaling stimulating orexigenic pathways: 

sst2➔orexin-A-OX1➔NPY-NPY1 and may also involve inhibiting the leptin anorexigenic 

pathway (Fig. 1).
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Central action of somatostatin on energy metabolism

The robust increase in food intake observed after acute icv injection of the pan-somatostatin 

agonist, ODT8-SST (1 nmol/rat) in rats was accompanied by an increase in energy 

expenditure as assessed by indirect calorimetry (Stengel et al., 2010a). The peptide also 

increases body temperature and grooming under these conditions (Stengel et al., 2010a). 

These functional alterations may – at least in part – contribute to the observed decrease in 

body weight at 24 h after the icv injection (Stengel et al., 2010a).

Dipsogenic response to central injection of somatostatin agonists

Two earlier studies reported that the icv injection of low doses of the stable somatostatin 

agonist, octreotide (0.01 – 0.4 nmol) increased water consumption when assessed without 

food for a 10-min period post injection (Hajdu et al., 2000; Hajdu et al., 2003). In the 

presence of food, the somatostatin peptide agonist stimulates first drinking behavior within 1 

min followed by eating after 10 min (Beranek et al., 1999). These reports were the first 

observations indicative of a dipsogenic effect, independent of food intake, induced by 

injection of the somatostatin agonist. Recent studies demonstrated that the activation of 

brain sst receptors by icv injection of endogenous ligands, somatostatin-14 or cortistatin, a 

structurally related peptide (de Lecea, 2008) which activates sst1-sst5 with binding affinities 

comparable to those of somatostatin-14 (Siehler et al., 2008) or the pan-somatostatin 

agonist, ODT8-SST (0.6 nmol/rat), stimulates water consumption in rats deprived of food 

(Karasawa et al., 2014a). The dipsogenic response was observed only during the first 10 min 

after icv injection of somatostatin or cortistatin and maintained for 60 min after icv injection 

of ODT8-SST (Karasawa et al., 2014a).

Interestingly, when food intake was assessed without water or water intake without food for 

1-h, the pan-somatostatin agonist, ODT8-SST stimulated both food and water intake, while 

somatostatin-14 and cortistatin rapidly (within 10 min) stimulated water but not food intake 

in rats (Karasawa et al., 2014a). This may be related to the short half-life of somatostatin-14 

and cortistatin compared to the stable pan-agonist, ODT8-SST not allowing these 

endogenous peptides to reach feeding-regulatory centers, while those regulating thirst are 

affected (Karasawa et al., 2014a). The demonstration that in rats with access only to either 

food or water or both concomitantly, icv ODT8-SST induces a dipsogenic response of 

similar magnitude, further supports the independence of water intake from that of food 

consumption (Karasawa et al., 2014a).

Role of somatostatin 2 receptor

Convergent pharmacological evidence established that the dipsogenic response to icv 

injection of the pan-somatostatin agonist, ODT8-SST and cortistatin in rats is primarily 

mediated by the sst2 receptor. Reports showed that the selective sst2 agonist (S-346-011, 0.8 

nmol, icv) stimulates water intake with a similar magnitude to that of icv ODT8-SST or 

cortistatin in rats deprived of food during the test (Karasawa et al., 2014a). By contrast, the 

sst1 agonist (S-406-062) or sst4 agonist (S-315-297, Table 1) under the same conditions had 

no significant effect (Karasawa et al., 2014a). Moreover, icv injection of the sst2 antagonist 

Stengel et al. Page 6

Horm Behav. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(S-406-028) completely prevented the dipsogenic response to icv ODT8-SST and cortistatin 

(Karasawa et al., 2014a).

Mechanism of action

The activation of the brain sst2 receptor-induced dipsogenic response involves downstream 

angiotensin II-angiotensin-1 (AT1) receptors well established to regulate thirst and fluid 

maintenance (Fitzsimons, 1998). Saralasin, an AT1 and AT2 receptor antagonist or the AT1 

antagonist, losartan injected icv in rats without access to food completely blocked the 

stimulation of water intake induced by icv injection of the stable somatostatin agonists, 

octreotide and ODT8-SST or cortistatin (Hajdu et al., 2000; Karasawa et al., 2014a). 

Moreover, icv octreotide induced the release of angiotensin I in the rat hypothalamus within 

10 min (Gardi et al., 2001). By contrast, the angiotensin II-induced increase of water 

consumption in rats was not altered by a selective sst2 antagonist further supporting the 

action of angiotensin II signaling downstream of the somatostatin-sst2 receptor pathway 

(Karasawa et al., 2014a).

Although the exact neuroanatomical substrate(s) through which sst2 receptor activation 

recruits the brain angiotensin-AT1 system (McKinley et al., 2003) remains to be determined, 

indirect evidence supports the PVN as a site of action. The pan-somatostatin agonist, ODT8-

SST or the sst2 agonist injected icv did not activate the subfornical organ (SFO) or median 

preoptic nucleus while activating magnocellular neurons in the PVN and supraoptic nucleus 

(Goebel et al., 2010; Karasawa et al., 2014a). These hypothalamic nuclei are part of the 

angiotensinergic system descending from the SFO and organum vasculosum's lamina 

terminalis (Fitzsimons, 1998; Miselis, 1981). Other evidence shows that icv injection of 

angiotensin II induces c-Fos/c-Jun prominently in neurons of the PVN and SON co-

expressing the AT1 receptor (Moellenhoff et al., 2001). Moreover, the PVN and surrounding 

areas are sites of action for the somatostatin agonist, octreotide to induce a drinking response 

in rats (Hajdu et al., 2003). There is also a dense expression of sst2 receptors in the PVN 

with neuronal localization supporting both pre- and post-synaptic actions (Csaba et al., 

2003; Dournaud et al., 1996). Moreover, the inhibitory action of somatostatin on GABA 

transmission is well documented (Kumar and Grant, 2010). Therefore, it may be speculated 

that the activation of sst2 pathways may reduce the tonic GABAergic inhibitory influence on 

the angiotensin system that drives drinking (Tanaka et al., 2003).

A recent study demonstrated that the dipsogenic response to icv injection of the pan-

somatostatin agonist, ODT8-SST is also blocked by the icv OX1 antagonist, SB-334867 in 

rats with access to food post injection (Karasawa et al., 2014b). Orexin A can exert 

dipsogenesis in the absence of food upon icv injection (Kunii et al., 1999). However, as the 

orexin pathway is also part of the orexigenic circuitry of brain sst2 activation, the role of 

OX1 signaling in the stimulation of drinking induced by activation of sst2 receptors still 

needs to be ascertained in the absence of food. In summary, brain somatostatin/cortistatin 

exerts a rapid in onset dipsogenic response via the activation of an sst2-AT1 signaling 

pathway most likely taking place within the PVN.
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Role of brain somatostatin 2 receptor signaling in nocturnal feeding and 

drinking

One recent study indicates the physiological relevance of sst2 signaling in the diurnal 

regulation of food intake in rats, namely in the nocturnal feeding behavior, when rodents 

show their maximal food consumption. The sst2 antagonist, S-406-028 injected icv reduced 

the cumulative dark phase food intake at 5 h and 14 h post injection by 27% and 29%, 

respectively in rats, while having no effect during the light phase (Stengel et al., 2010c). 

However, under other conditions of stimulated food intake by acute tail pinch in the light 

phase, the sst2 antagonist injected icv did not alter the robust feeding response in rats 

(Goebel-Stengel et al., 2014).

Importantly, the activation of brain sst2 contributes to the early nocturnal water intake. There 

is indeed a nocturnal pattern of water ingestion in rats that is well established to be 

independent of food intake (Karasawa et al., 2014a; Oatley, 1971). First evidence shows that 

somatostatin and cortistatin-14 injected at low doses devoid of orexigenic effects stimulate 

water intake resulting in a consumption similar to that occurring spontaneously during the 

first hours of the dark phase (Karasawa et al., 2014a). Furthermore, the sst2 antagonist, 

S-406-028 injected icv inhibited the stimulated water intake observed during the dark phase 

by >50 %, an effect that lasted over a period of three hours (Karasawa et al., 2014a). Lastly, 

consistent reports showed that hypothalamic somatostatin content and release are subject to 

a circadian rhythm with a peak of peptide release at the beginning of the dark phase while 

lowest levels are observed in the early light phase (Gardi et al., 1999; Ishikawa et al., 1997; 

Shinohara et al., 1991). In summary, brain somatostatin signaling is likely to be primarily 

involved in the physiological regulation of nocturnal water intake and to contribute partly to 

dark phase feeding in rats.

Modulation of stress-related decrease in food intake by somatostatin 

agonists

Various conditions of acute stress, such as exposure to nociceptive stimuli, immobilization, 

handling or low doses of endotoxin lead to an increase of hypothalamic somatostatin mRNA 

expression and peptide release in the median eminence in rats (Arancibia et al., 1984; 

Arancibia et al., 2000; Priego et al., 2005). The enhanced somatostatin release under 

conditions of acute stress is further supported by the finding of reduced peptide content in 

the supraoptic nucleus and the PVN, the locus coeruleus and nucleus of the solitary tract in 

the rat brainstem (Arancibia et al., 2000; Negro-Vilar and Saavedra, 1980). Likewise, in 

lambs the stress of maternal separation enhanced somatostatin concentration in nerve 

terminals of the median eminence (Polkowska and Wankowska, 2010). Other studies also 

showed that rats exposed to an elevated plus maze displayed activation of somatostatin 

neurons in the basolateral amygdala (Butler et al., 2012). Lastly, predator stress up-regulates 

the expression of sst2 mRNA in the anterior cingulate cortex and the amygdala (Nanda et al., 

2008).
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In rodents, most stressors including psychological (e.g. acute restraint or emotional stress), 

somatic (e.g. abdominal surgery) or immunological (e.g. injection of the endotoxin 

lipopolysaccharide) reduce food intake during the post stress-period through – at least in part 

– the activation of brain corticotropin releasing factor (CRF) receptors in rats (Hotta et al., 

1999; Krahn et al., 1986; Sekino et al., 2004; Shibasaki et al., 1988b; Stengel and Taché, 

2014a). Convergent pharmacological reports indicate that the activation of brain sst2 

signaling can prevent the stress-related suppression of food intake. Indeed, earlier studies 

showed that icv injection of somatostatin-14, somatostatin-28 or octreotide blunted the 

reduction of food intake induced by restraint (Somiya and Tonoue, 1984) and suppressed the 

anorexigenic action of CRF (Shibasaki et al., 1988a). Furthermore, the pan-somatostatin 

agonist, ODT8-SST or a selective sst2 agonist injected icv completely abolished the 

inhibition of food intake observed at 2, 4 and 9 h after abdominal surgery in rats, resulting in 

a normalization of food consumption through a sst2 mediated action (Stengel et al., 2011). 

Although ghrelin, a major stimulator of food intake, is reduced by abdominal surgery and 

restored by icv injection of the stable somatostatin agonist, ODT8-SST (Stengel and Taché, 

2012), the additional blockade of the ghrelin receptor under these conditions did not alter the 

orexigenic effect of the pan-somatostatin agonist, ODT8-SST after abdominal surgery 

(Stengel et al., 2011). Collectively, stress-related activation of brain somatostatin expression 

and release along with pharmacological evidence that the activation of somatostatin 

receptors counteracts the anorexic response to acute stressors support a modulatory role of 

brain sst2 signaling in the stress response (Stengel et al., 2013). Further studies are required 

to assess whether brain somatostatin-sst2 signaling plays a physiological role in modulating 

the response to stress through CRF, the hallmark transmitter of the stress response (Stengel 

and Taché, 2014a).

Summary

Somatostatin and its five receptors are widely expressed in the brain with specific expression 

patterns indicating the involvement in various homeostatic processes. Early on, a central 

action of somatostatin administered at low doses to stimulate food intake has been reported. 

The development of selective sst agonists and antagonists recently allowed the 

characterization of receptors involved, highlighting a prominent role of the sst2 for the 

orexigenic action of brain somatostatin in rodents. Activation of sst2 signaling recruits a 

series of orexigenic pathways involving μ-opioid, OX1, and NPY1 receptors (Fig. 1) and the 

inhibition of leptin signaling. Recent studies also point towards a rapid and robust 

dipsogenic response following the activation of brain sst2. The stimulation of drinking 

behavior occurs independently of the orexigenic action and involves angiotensin II-AT1 

signaling. The brain somatostatin-sst2 signaling contributes in part to nocturnal eating and 

more importantly to the water consumption. Pharmacological activation of brain sst2 also 

prevents visceral stress-related inhibition of food intake, e.g. during postoperative gastric 

ileus known to involve CRF (Stengel and Taché, 2014b) adding to existing evidence that 

brain somatostatin counteracts several functional responses to acute stressors by interacting 

with CRF (Stengel et al., 2013).
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Highlights

• Besides regulation of growth hormone, somatostatin affects several homeostatic 

systems

• Somatostatin interacts with five somatostatin receptors (sst1-5)

• Brain somatostatin exerts a robust orexigenic effect

• Independent from its orexigenic actions, brain somatostatin also exerts a 

dipsogenic effect

• Somatostatin counterbalances the response to stress

Stengel et al. Page 17

Horm Behav. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Suggested downstream hypothalamic circuitries involved in the somatostatin-sst2 signaling-

induced orexigenic response.

The stable pan-somatostatin agonist, ODT8-SST increases food intake via activation of sst2 

receptors, an action that involves a downstream stimulation of orexin OX1 ➔ NPY Y1 

signaling and also μ opioid receptors, indicating an involvement of the rewarding aspect of 

food. A dimerization of sst2 and μ opioid receptors might be involved, although the 

functional relevance of this phenomenon remains to be further characterized. On the other 

hand, an inhibition of leptin as well as GABA signaling is also likely to contribute to 

somatostatin's orexigenic effect. Abbreviations: ↓ decrease; ↑ increase; - inhibition; + 

stimulation; ARC, arcuate nucleus; GABA, gamma-aminobutyric acid; icv, 

intracerebroventricular; PVN, paraventricular nucleus of the hypothalamus; SON; supraoptic 

nucleus; sst2, somatostatin receptor 2; STAT3, signal transducer and activator of 

transcription 3.
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