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ARTICLE

Exact Transport Representations of the Classical and
Nonclassical Simplified PN Equations

I. Makinea,b, R. Vasquesc, and R.N. Slaybaughd

aEcole Polytechnique de Bruxelles, ULB, Bruxelles, Belgium; bINSTN, Centre CEA de Saclay, Gif-
sur-Yvette, France; cDepartment of Mechanical and Aerospace Engineering, The Ohio State
University, Columbus, OH, USA; dDepartment of Nuclear Engineering, University of California,
Berkeley, 4151 Etcheverry Hall, Berkeley, CA, USA

ABSTRACT
We show that the recently introduced nonclassical simplified
PN equations can be represented exactly by a nonclassical
transport equation. Moreover, we validate the theory by show-
ing that a Monte Carlo transport code sampling from the
appropriate nonexponential free-path distribution function
reproduces the solutions of the classical and nonclassical sim-
plified PN equations. Numerical results are presented for four
sets of problems in slab geometry.

KEYWORDS
Diffusion equation;
transport equation;
nonclassical transport;
Monte Carlo method

1. Introduction

A nonclassical linear Boltzmann equation has been recently proposed
(Larsen 2007; Larsen and Vasques 2011) to address transport problems in
which the particle flux is not attenuated exponentially. The original motiv-
ation for this formulation came from measurements of photon free-paths
in atmospheric clouds, which could not be explained by classical radiative
transfer with exponential attenuation (cf. sections 5.1 and 8.3 in Davis and
Marshak 2010) This theory has since been extended and has found applica-
tions for neutron transport in reactor cores (cf. Vasques and Larsen 2014)
as well as image rendering in computer graphics (cf. d’Eon 2013).
The nonclassical theory requires the use of a memory variable, namely

the free-path s, representing the distance traveled by a particle since its pre-
vious interaction (birth or scattering). Assuming that scattering is isotropic,
the one-speed nonclassical transport equation with an isotropic internal
source is written as (Larsen and Vasques 2011)
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ow
os

þX � rwþ Rt sð Þw ¼ d sð Þ
4p

c
ð
4p

ð1
0
Rt s

0ð Þw x;X0; s0
� �

ds0dX0 þ Q xð Þ
� �

:

(1)

Here, w ¼ wðx;X; sÞ represents the nonclassical angular flux, c is the
scattering ratio, and QðxÞ is the source. The total cross section Rt is a func-
tion of s such that the free-path probability distribution function

p sð Þ ¼ Rt sð Þe�
Ð s

0
Rt s0ð Þds0 (2)

does not have to be exponential.
Equation (1) is a generalization of the linear Boltzmann equation; clas-

sical transport is recovered when Rt is independent of s. In that case,
Equation (2) becomes the exponential decay

p sð Þ ¼ pc sð Þ :¼ Rte
�Rt s; (3)

and Equation (1) reduces to the well-known (classical) one-speed linear
Boltzmann equation (Larsen and Vasques 2011)

X � rW x;Xð Þ þ RtW x;Xð Þ ¼ 1
4p

c
ð
4p
RtW x;X0� �

dX0 þ Q xð Þ
� �

(4)

for the classical angular flux

W x;Xð Þ ¼
ð1
0
w x;X; sð Þds: (5)

The simplified PN (SPN) equations, first derived by Gelbard (1960, 1961,
1962), have been shown to be a high-order asymptotic approximation of
the transport equation (Larsen, Morel, and McGhee 1993). They are par-
ticularly attractive when addressing problems in which the spatial and
angular dependence of the angular flux is not severe. They are used to
improve the quality of transport physics in a diffusion model while avoid-
ing the complexity of the full PN (spherical-harmonics) or SN (discrete-
ordinates) equations. Specifically, the SPN equations can be implemented
directly within a diffusion code, with numerical solutions frequently much
more transport-like than diffusion solutions. We refer the reader to
(McClarren 2011) for a complete review on SPN theory.
It has been shown that certain cases in the hierarchy of the classical SPN

equations (SP1, SP2, and SP3) can be represented exactly by a nonclassical
transport equation (Frank et al. 2015). One can obtain explicit expressions
for the free-path distribution p(s) and the corresponding RtðsÞ such that
Equation (1) can be converted to an integral equation for the scalar flux
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U xð Þ ¼
ð
4p
W x;Xð ÞdX ¼

ð
4p

ð1
0
w x;X; sð ÞdsdX (6)

that is identical to the integral formulation of the SPN equations. This
result was later extended to include the case of nonclassical diffusion
(Vasques 2016).
In this work, the following original results are presented:

1. We demonstrate that the nonclassical simplified PN equations recently
introduced in (Vasques and Slaybaugh 2017) are special cases of the
nonclassical Boltzmann equation (1). In particular, we derive explicit
expressions for p(s) and RtðsÞ such that the nonclassical simplified P2
and P3 equations can be exactly represented by a nonclassical transport
equation. This fully generalizes the results introduced in (Frank et al.
2015; Vasques 2016). (This result has been shown for the nonclassical
simplified P1 in Vasques (2016)).

2. We show that the moments of the transport free-path distribution p(s)
are approximated with increasing accuracy as the order of the SPN
equations increases. If p(s) is an exponential, even moments up to 2N
are exactly preserved.

3. We establish that the sampling of s from the probability function p(s)
for this generalized results can be explicitly performed in terms of a
computed-generated random number. This allows us to use Monte
Carlo methods to solve these equations.

4. We present for the first time numerical simulations that validate the the-
ory proposed in references (Frank et al. 2015; Vasques 2016), as well as
the generalized theory introduced here. We consider transport in slab
geometry and perform Monte Carlo simulations in which the free-paths
are sampled from the appropriate nonexponential distributions, demon-
strating that they match the solutions obtained with both the classical
and the nonclassical forms of the simplified PN equations. This effect-
ively shows that it is possible to solve diffusion, SP2, and SP3 problems
using a nonclassical Monte Carlo transport method.

The remainder of the paper is organized as follows. In Section 2, we
describe the classical and nonclassical simplified PN equations. A sketch of
the integral formulation for Equation (1) is presented in Section 3. In
Section 4, we use Green’s function analysis to show that the nonclassical
simplified PN equations can be represented as nonclassical transport equa-
tions. Section 5 presents the numerical results that validate the theory. The
paper concludes with a brief discussion in Section 6.
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2 Simplified PN equations

The nonclassical simplified PN equations (Nc-SPN) are a set of diffusion
approximations to Equation (1) derived by Vasques and Slaybaugh using a
high-order asymptotic expansion (Vasques and Slaybaugh 2017). This
asymptotic analysis requires the first 2M raw moments of the free-path dis-
tribution p(s) to be finite in order to obtain the Nc-SPN equations for
N¼M. Here, we will limit ourselves to presenting the Nc-SP1, Nc-SP2, and
Nc-SP3 formulations for the nonclassical transport equation (1).
Let us define

hsmi :¼
ð1
0
smp sð Þds (7)

as the mth raw moment of the free-path distribution function p(s). The
second-order Nc-SPN equations are explicitly given as follows (Vasques and
Slaybaugh 2017):

(I) Nonclassical simplified P1 equation (Nc-SP1):

� 1
6
hs2i
hsi r

2U xð Þ þ 1�c
hsi U xð Þ ¼ Q xð Þ: (8)

(II) Nonclassical simplified P2 equation (Nc-SP2):

� 1
6
hs2i
hsi r

2 U xð Þ þ k1 1� cð ÞU xð Þ � hsiQ xð Þ� �� �þ
1�c
hsi 1�b1 1�cð Þ� �

U xð Þ ¼ 1�b1 1�cð Þ� �
Q xð Þ;

(9)

where k1 and b1 are constants given by

k1 ¼ 3
10

hs4i
hs2i2�

1
3

hs3i
hsihs2i ; (10a)

b1 ¼
1
3

hs3i
hsihs2i�1: (10b)

(III) Nonclassical simplified P3 equations (Nc-SP3):

� 1
6
hs2i
hsi r

2 1þ b1 1�cð Þ� �
U xð Þ þ 2m xð Þ

� �þ 1�c
hsi U xð Þ ¼ Q xð Þ; (11a)

� 1
6
hs2i
hsi r

2 k1
2
U xð Þ þ k2m xð Þ

� �
þ 1�b2 1�cð Þ

hsi m xð Þ ¼ 0; (11b)

where k2 and b2 are constants given by

k2 ¼ 1
10hs2ihs3i � 9hsihs4i

9
5
hs5i � 27

21
hsihs6i
hs2i þ 3

hs3ihs4i
hs2i � 10

3
hs3i2
hsi

" #
;

(12a)
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b2 ¼
1

10hs2ihs3i � 9hsihs4i
10
3
hs3i2
hsi � 9

5
hs5i

" #
�1; (12b)

and k1 and b1 are given by Equations (10).
The Nc-SPN equations described in items (I)–(III) above represent a gen-

eralization of the classical SPN equations. If Rt is independent of s, then
Equation (3) holds and hsmi ¼ hsmic :¼ m!R�m

t . Under these circumstances,
k1 ¼ 4=5; k2 ¼ 11=7; b1 ¼ b2 ¼ 0, and the Nc-SPN equations reduce to the
classical formulations as given in (Larsen, Morel, and McGhee 1993):

(IV) Classical simplified P1 equation (SP1):

� 1
3Rt

r2U xð Þ þ 1�cð ÞRtU xð Þ ¼ Q xð Þ: (13)

(V) Classical simplified P2 equation (SP2):

� 1
3Rt

r2 U xð Þ þ 4
5

1�cð ÞRtU xð Þ�Q xð Þ
Rt

� �
þ 1�cð ÞRtU xð Þ ¼ Q xð Þ: (14)

(VI) Classical simplified P3 equations (SP3):

� 1
3Rt

r2 U xð Þ þ 2m xð Þ½ � þ 1�cð ÞRtU xð Þ ¼ Q xð Þ; (15a)

� 1
3Rt

r2 2
5
U xð Þ þ 11

7
m xð Þ

� �
þ Rtm xð Þ ¼ 0: (15b)

The classical SPN formulations described in items (IV)–(VI) are asymp-
totic approximations of the classical linear Boltzmann equation (4).

3 Integral equation formulation

In this section, we sketch the derivation of the integral equation formulation for
Equation (1). A detailed derivation can be found in (Larsen andVasques 2011).
Let SðxÞ be given by

S xð Þ ¼ c
ð
4p

ð1
0
Rt s

0ð Þw x;X0; s0
� �

ds0dX0 þ Q xð Þ ¼ cf xð Þ þ Q xð Þ; (16a)

where

f xð Þ ¼
ð1
0
Rt s

0ð Þ/ x; s0ð Þds0 ¼ collision�rate density (16b)

/ x; sð Þ ¼
ð
4p
w x;X; sð ÞdX ¼ nonclassical scalar flux: (16c)
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Equation (1) can now be written as an initial value problem:

ow
os

x;X; sð Þ þX � rw x;X; sð Þ þ Rt sð Þw x;X; sð Þ ¼ 0; 0<s; (17a)

w x;X; 0ð Þ ¼ S xð Þ
4p

: (17b)

Following the work in (Larsen and Vasques 2011) and (Frank et al.
2015), we perform the following steps:

1. Calculate the solution of Equations (17) using the method of
characteristics;

2. Operate on this solution by
Ð
4p

Ð1
0 RtðsÞð�ÞdsdX;

3. Perform a change of spatial variables, from the three-dimensional (3-D)
spherical ðX; sÞ to the 3-D Cartesian x0 ¼ x�sX.

This yields

f xð Þ ¼
ð ð ð

S x0ð Þ p jx0�xjð Þ
4pjx0 � xj2 dV

0; (18)

where pðjx0�xjÞ is given by Equation (2).
For classical transport, pðsÞ ¼ pcðsÞ as given in Equation (3), and

f xð Þ ¼
ð ð ð

S x0ð ÞRte�Rt jx0�xj

4pjx0 � xj2 dV
0 ¼
ð ð ð

cf x0ð Þ þ Q x0ð Þ� �Rte�Rt jx0�xj

4pjx0 � xj2 dV
0:

(19)

This is the classical integral equation for the scalar flux obtained from
Equation (4). Sampling of s is given by

n ¼
ðs
0
pc s

0ð Þds0 ¼ 1�e�Rt s ) s ¼ � 1
Rt

ln 1�nð Þ ¼ � 1
Rt

ln nð Þ: (20)

Table 1 presents expressions and numerical values of the first six
moments of pcðsÞ.

4. Exact transport representations of the Nc-SPN equations

In this section, we perform a Green’s function analysis for each of the Nc-
SPN equations described in Section 2. The goal is to convert these equa-
tions into an integral equation for the scalar flux UðxÞ. By choosing the
appropriate p(s), the integral equation (18) becomes equivalent to the inte-
gral formulation obtained by this Green’s function analysis. Therefore,
using the corresponding RtðsÞ, Equation (1) becomes an exact representa-
tion of the Nc-SPN equations.
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4.1 Nc-SP1 equation (diffusion)

This nonclassical result was originally presented in (Vasques 2016) and is
included here for completeness. We define

S xð Þ ¼ chsi�1U xð Þ þ Q xð Þ (21)

and rewrite Equation (8) as

�r2U xð Þ þ a2U xð Þ ¼ a2hsiS xð Þ; (22)

where a2 ¼ 6=hs2i: The Green’s function for the operator ð�r2 þ a2Þ on
the left hand side of Equation (22) is

Gsp1 jx�x0j� � ¼ e�ajx�x0j

4pjx� x0j : (23)

Therefore, we can transform Equation (22) into an integral equation for
UðxÞ by taking

U xð Þ ¼
ð ð ð

Gsp1 jx�x0j� �
a2hsiS x0ð ÞdV 0 ¼

ð ð ð
a2hsijx�x0je�ajx�x0j

4pjx� x0j2 S x0ð ÞdV 0:

(24)

Bearing in mind that hsi represents the mean free path of a particle (i.e.,
the average distance between collisions), the collision-rate density can be
written as f ðxÞ ¼ hsi�1UðxÞ, such that

f xð Þ ¼ U xð Þ
hsi ¼

ð ð ð
a2jx�x0je�ajx�x0j

4pjx� x0j2 S x0ð ÞdV 0: (25)

This result agrees with Equation (18) if and only if

p sð Þ ¼ psp1 sð Þ :¼ a2se�as ¼ 6se�
ffiffiffiffiffiffiffiffiffiffiffi
6=<s2>

p
s

hs2i : (26)
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Table 1. Moments of pcðsÞ (classical transport).
Moment General expression Numerical value if Rt ¼ 1

hsic 1
Rt

1

hs2ic 2!
R2
t

2

hs3ic 3!
R3
t

6

hs4ic 4!
R4
t

24

hs5ic 5!
R5
t

120

hs6ic 6!
R6
t

720
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It is easy to verify that psp1ðsÞ is always positive and thatÐ1
0 psp1ðsÞds ¼ 1, which proves that it is a probability density function. The
total cross section is given by

Rt sð Þ ¼ Rt;sp1 sð Þ :¼ psp1 sð ÞÐ1
s psp1 s0ð Þds0 ¼

a2s
1þ as

: (27)

This shows that the nonclassical Equations (1) and (18) with pðsÞ ¼
psp1ðsÞ and RtðsÞ ¼ Rt;sp1ðsÞ reproduce the Nc-SP1 equation. We can calcu-
late the mth raw moments of psp1ðsÞ:

hsmisp1 :¼
ð1
0

6smþ1e�
ffiffiffiffiffiffiffiffiffiffiffi
6=<s2>

p
s

hs2i ds ¼ mþ 1ð Þ!hs2im=2

6m=2
: (28)

If classical transport takes place, the moments in Table 1 hold and

psp1 sð Þ ¼ 3R2
t se

� ffiffi
3

p
Rt s; (29)

which is the probability function derived in (Frank et al. 2015) for the SP1
Equation (13). The total cross section becomes

Rt;sp1 sð Þ ¼ 3R2
t s

1þ ffiffiffi
3

p
Rts

: (30)

Table 2 shows the nonclassical and classical expressions for the moments
of psp1ðsÞ, as well as numerical values of the classical moments when
Rt ¼ 1. It can be seen from the general expressions that the second
moment of the original transport p(s) is always exactly preserved.
Comparing to the classical transport moments hsmic (see Table 1), the first
moment is slightly overestimated while the remaining higher-order
moments are underestimated.
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Table 2. Moments of psp1ðsÞ (diffusion).

Moment
Nonclassical Classical Numerical value
Expression Expression If Rt ¼ 1

hsisp1 2ffiffi
6

p hs2i1=2 2ffiffi
3

p
Rt

1.1547

hs2isp1 hs2i 2
R2
t

2

hs3isp1 4ffiffi
6

p hs2i3=2 8ffiffi
3

p
R3
t

4.6188

hs4isp1 10
3 hs2i2 40

3R4
t

13.3333

hs5isp1 10
ffiffi
6

p
3 hs2i5=2 80ffiffi

3
p

R5
t

46.1880

hs6isp1 70
3 hs2i3 560

3R6
t

186.6667
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Sampling of s is given by

n ¼
ðs
0
a2s0e�as0ds0 ¼ 1� 1þ asð Þe�as

¼ 1� 1þ
ffiffiffi
6

pffiffiffiffiffiffiffiffihs2ip
 !

s

" #
exp �

ffiffiffi
6

pffiffiffiffiffiffiffiffihs2ip
 !

s

" #
: (31)

Hence,

s ¼ 1
a
s�1 nð Þ ¼

ffiffiffiffiffiffiffiffihs2ip
ffiffiffi
6

p s�1 nð Þ (32)

where

s zð Þ ¼ 1þ zð Þe�z: (33)

In the classical case, this expression reduces to (Frank et al. 2015)

s ¼ 1ffiffiffi
3

p
Rt

s�1 nð Þ: (34)

4.2 Nc-SP2 equation

Using the definition in Equation (21), we can rewrite Equation (9) as

� hs2i
6hsir

2 1þ k1ð ÞU½ � þ 1� b1 1� cð Þ� � U
hsi ¼ 1� b1 1� cð Þ� �

S� k1
6
hs2ir2S:

(35)

Let us define a new constant a such that

a2 ¼ 6
hs2i

1
1þ k1

1� b1 1� cð Þ� �
: (36)

Multiplying Equation (35) by 6
hsi
hs2i

1
1þk1

we obtain

�r2Uþ a2U ¼ a2hsiS� k1
1þ k1

hsir2S; (37)

which can be rewritten as

�r2 þ a2½ �U ¼ 1
k1 þ 1

a2hsiSþ k1
1þ k1

hsi �r2 þ a2ð ÞS: (38)

The Green’s function associated with the operator ð�r2 þ a2Þ is

Gsp2 jx�x0j� � ¼ e�ajx�x0j

4pjx� x0j : (39)

345
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Using the Green’s function, we can write

U xð Þ ¼ a2hsi
1þ k1

ð ð ð
Gsp2SdV

0 þ k1
1þ k1

hsiS; (40)

and the collision-rate density is given by

f xð Þ ¼ U xð Þ
hsi ¼ a2

1þ k1

ð
Gsp2SdV

0 þ k1
1þ k1

S: (41)

Note that the identity

S xð Þ ¼
ð1
0
S xþ sXð Þd sð Þds ¼ 1

4p

ð
4p

ð
d sð ÞS xþ sXð ÞdsdX

¼
ð
4p

ð
d jx�x0jð ÞS x0ð Þ
4jx� x0j2 dV 0 (42)

holds, with x0 ¼ xþ sX; jx�x0j ¼ s; s2dsdX ¼ dV 0. Therefore, we can
rewrite the collision-rate density as

f xð Þ ¼ a2

1þ k1

ð ð ð jx�x0je�ajx�x0j

4pjx� x0j2 S x0ð ÞdV 0 þ k1
1þ k1

ð ð ð
d jx�x0jð Þ
4pjx� x0j2 S x0ð ÞdV 0:

(43)

This result agrees with Equation (18) if and only if

p sð Þ ¼ psp2 sð Þ :¼ a2se�as

1þ k1
þ k1
1þ k1

d sð Þ: (44)

It is easy to verify that psp2ðsÞ is always positive and thatÐ1
0 psp2ðsÞds ¼ 1, proving that it is a probability density function. We can
determine the total cross section, which is written as

388
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411
412
413
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416
417
418
419
420
421
422
423
424
425
426
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428
429
430

Table 3. Moments of psp2ðsÞ.

Moment
Nonclassical Classical Numerical value
Expression Expression If Rt ¼ 1

hsisp2
2
ffiffiffiffiffiffi
hs2i

pffiffi
6

p ffiffiffiffiffiffiffiffi
1þk1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�b1ð1�cÞ

p
ffiffiffiffi
20

pffiffiffiffi
27

p
Rt

0.8606

hs2isp2
hs2i

1�b1ð1�cÞ
2
R2

t

2

hs3isp2
4
ffiffiffiffiffiffiffiffi
1þk1

pffiffi
6

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�b1ð1�cÞÞ3

p hs2i3=2 8
ffiffi
3

pffiffi
5

p
R3
t

6.1968

hs4isp2
10ð1þk1Þ

3ð1�b1ð1�cÞÞ2hs
2i2 24

R4
t

24

hs5isp2
10
ffiffi
6

p ð1þk1Þ3=2
3ð1�b1ð1�cÞÞ5=2hs

2i5=2 144
ffiffi
3

pffiffi
5

p
R5
t

111.5419

hs6isp2
70ð1þk1Þ2

3ð1�b1ð1�cÞÞ3hs
2i3 3024

5R6
t

604.8
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Rt sð Þ ¼ Rt;sp2 sð Þ :¼
k1

k1þ1 d sð Þ þ a2s

1þ as
: (45)

The nonclassical Equations (1) and (18) with pðsÞ ¼ psp2ðsÞ and RtðsÞ ¼
Rt;sp2ðsÞ reproduce the Nc-SP2 equation. We can calculate the mth raw
moments of psp2ðsÞ:

hsmisp2 :¼
ð1
0
smpsp2 sð Þds ¼ mþ 1ð Þ!

am 1þ k1ð Þ : (46)

If classical transport takes place, the moments in Table 1 hold and

psp2 sð Þ ¼ 25
27

R2
t se

�Rt

ffiffiffiffiffi
5=3

p
s þ 4

9
d sð Þ; (47)

which is the probability function derived in (Frank et al. 2015) for the SP2
equation (14). The total cross section becomes

Rt;sp2 sð Þ ¼
4
9 d sð Þ þ 5

3R
2
t s

1þ ffiffiffiffiffiffiffiffi
5=3

p
Rts

: (48)

Table 3 shows the nonclassical and classical expressions for the moments
of psp2ðsÞ, as well as numerical values of the classical moments when
Rt ¼ 1. The classical moments of psp2ðsÞ give a more accurate estimate of
the classical transport moments hsmic (Table 1) than the ones obtained
from psp1ðsÞ (Table 2). In particular, both the second and the fourth
moments of the original transport p(s) are exactly preserved. However,
these moments are not generally preserved in the nonclassical case; for
instance, the general nonclassical second moment is conserved only
if b1 ¼ 0.
Sampling of s is given by

n ¼
ðs
0
psp2 s0ð Þds0 ¼ k1

1þ k1
þ 1
1þ k1

1� 1þ asð Þe�asð Þ: (49)

Hence,

s ¼
0; for 0<n<

k1
1þ k1

1
a
s�1 k1 þ 1ð Þ 1�nð Þ� �

; for n>
k1

1þ k1

;

8>><
>>: (50)

where sðzÞ is defined in Equation (33). In the classical case, this expression
reduces to (Frank et al. 2015)

431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
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s ¼
0; for 0<n<

4
9ffiffiffi

3
pffiffiffi
5

p 1
Rt

s�1 9
5

1� nð Þ
	 


; for n>
4
9

:

8>><
>>: (51)

4.3 Nc-SP3 equations

Using the definition in Equation (21), we can rewrite Equations (11) as

� hs2i
6hsir

2 1þ b1 1� cð Þ� �
Uþ 2m

� �þ 1
hsiU ¼ S; (52a)

� k2hs2i
6hsi r2mþ 1�b2 1�cð Þ

hsi m ¼ 1
2
k1
6
hs2i
hsi r

2U: (52b)

This system can be rewritten as

� hs2i
6hsir

2 1þ b1 1� cð Þ� �
Uþ 2m

� �þ 1
hsiU ¼ S; (53a)

� hs2i
6hsi k2 � k1

1þ b1 1� cð Þ
	 


r2mþ 1�b2 1�cð Þ
hsi m ¼ 1

2
k1

1þ b1 1� cð Þ
U
hsi � S
� �

:

(53b)

We need to find the Green’s functions associated to this system, which
must satisfy

� hs2i
6hsir

2 1þ b1 1� cð Þ� �
GU
sp3 þ 2Gm

sp3

h i
þ 1
hsiG

U
sp3 ¼ d xð Þ; (54a)

� hs2i
6hsi k2 � k1

1þ b1 1� cð Þ
	 


r2Gm
sp3 þ

1�b2 1�cð Þ
hsi Gm

sp3�
1
2

k1
1þ b1 1� cð Þ

GU
sp3

hsi
¼ � 1

2
k1

1þ b1 1� cð Þ d xð Þ:
(54b)

Here, GU
sp3 and Gm

sp3 are functions of r ¼ jxj that enable Equations (53) to
be written as

U0 xð Þ ¼
ð ð ð

GU
sp3 jx�x0j� �

S x0ð ÞdV 0; (55a)

m xð Þ ¼
ð ð ð

Gm
sp3 jx�x0j� �

S x0ð ÞdV 0: (55b)

Following the procedure presented in (Frank et al. 2015), we seek GU
sp3ðrÞ

and Gm
sp3ðrÞ that satisfy

474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
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� hs2i
6hsi

1
r2

o
or

r2
o
or

1þ b1 1� cð Þ� �
GU
sp3 þ 2Gm

sp3

h i
þ 1
hsiG

U
sp3 ¼ 0; (56a)

� hs2i
6hsi k2 � k1

1þ b1 1� cð Þ
	 


1
r2

o
or

r2
o
or

Gm
sp3 þ

1�b2 1�cð Þ
hsi Gm

sp3

� 1
2

k1
1þ b1 1� cð Þ

GU
sp3

hsi

" #
¼ 0;

(56b)

with

� hs2i
6hsi lime!0

4pe2 1þ b1 1� cð Þ� � oGU
sp3 eð Þ
or

þ 2
oGm

sp3 eð Þ
or

	 
� �
¼ 1; (57a)

� hs2i
6hsi k2 � k1

1þ b1 1� cð Þ
	 


lim
e!0

4pe2
oGm

sp3 eð Þ
or

	 

¼ � 1

2
k1

1þ b1 1� cð Þ :

(57b)

Specifically, we are looking for the Green’s functions of the form

GU
sp3 ¼

e�as

4ps
; (58a)

Gm
sp3 ¼ a

e�as

4ps
; (58b)

where a and a are constants to be determined.
Using that r2GU

sp3 ¼ a2GU
sp3 and r2Gm

sp3 ¼ a2Gm
sp3 , Equations (56) yield

�hs2i
6

1þ b1 1� cð Þ� �
a2 þ 2aa2

� �þ 1 ¼ 0; (59a)

�hs2i
6

k2 � k1
1þ b1 1� cð Þ

	 

a2aþ 1�b2 1�cð Þ� �

a� 1
2

k1
1þ b1 1� cð Þ ¼ 0:

(59b)

From Equation (59b) we can determine a, which is given by

a ¼
1
2

k1
1þb1 1�cð Þ

1� b2 1� cð Þ� �� hs2i
6 k2 � k1

1þb1 1�cð Þ
� �

a2
: (60)

We can now write Equation (59a) as

�hs2i
6

z1 þ
k1
z1

z2 � hs2i
6 k2 � k1

z1

� �
a2

2
4

3
5a2 þ 1 ¼ 0; (61)

where

z1 ¼ 1þ b1 1�cð Þ; (62a)

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
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z2 ¼ 1�b2 1�cð Þ: (62b)

After some manipulations, we attain

� hs2i
6

	 
2

z1 k2 � k1
z1

	 

a4�hs2i

6
k2 þ z1z2ð Þa2 þ z2 ¼ 0: (63)

The roots of this polynomial are given by

a6ð Þ2 ¼ 2
hs2i

1
3 k2 þ z1z2ð Þ6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
9 k2 þ z1z2ð Þ2� 4

9 k2z1�k1ð Þz2
q

2
9 k2z1 � k1ð Þ : (64)

Now we can revisit the expression for a; keeping only the non-complex
solutions, we have

a6 ¼
1
2
k1
z1

z2 � 3
2z1

1
3 k2 þ z1z2ð Þ6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
9 k2 þ z1z2ð Þ2� 4

9 k2z1�k1ð Þz2
q	 
 : (65)

Thus, we have two solutions of Equations (56): one for aþ and aþ, and
the other for a� and a–. The general solution is a linear combination of
these two solutions:

GU
sp3 sð Þ ¼ Aþ

hsi
e�aþs

4ps

	 

þ A�

hsi
e�a�s

4ps

	 

; (66a)

Gm
sp3 sð Þ ¼ Aþaþ

hsi
e�aþs

4ps

	 

þ A�a�

hsi
e�a�s

4ps

	 

; (66b)

where A6 are determined by Equations (57), such that

Aþaþ þ A�a� ¼
�k13

hsi2
hs2i

k2z1 � k1
; (67a)

Aþ þ A� ¼
1þ k1

k2z1�k1

� �
z1

6
hsi2
hs2i : (67b)

Let us define

A0þ ¼ Aþ hs2i
3hsi2 ; (68a)

A0� ¼ A� hs2i
3hsi2 ; (68b)

b ¼ k1
k2z1 � k1

: (68c)

560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
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Then, Equations (67) become

A0þaþ þ A0�a� ¼ �b; (69a)

A0þ þ A0� ¼ 2 1þ bð Þ=z1: (69b)

Finally, we solve this system to obtain

A� ¼ c�
hsi2
hs2i ; (70a)

Aþ ¼ cþ
hsi2
hs2i ; (70b)

where

c� ¼ 3
2aþ 1þ bð Þ=z1 þ b

aþ � a�
; (71a)

cþ ¼ 3
2a� 1þ bð Þ=z1 þ b

a� � aþ
: (71b)

The Green’s function we seek is given by

GU
sp3 sð Þ ¼ 1

4ps
hsi
hs2i cþe�aþs þ c�e�a�s

� �
; (72)

and the collision-rate density can be written as

f xð Þ ¼
ð ð ð

1

4pjx� x0j2
jx�x0j
hs2i cþe�aþjx�x0j þ c�e�a�jx�x0j� �

S x0ð ÞdV 0: (73)

This result agrees with Equation (18) if and only if

p sð Þ ¼ psp3 sð Þ :¼ s
hs2i cþe�aþs þ c�e�a�s

� �
: (74)

Although the calculation is not straightforward, psp3ðsÞ is always positive
and

Ð1
0 psp3ds ¼ 1, confirming that it defines a probability density function.

We can also determine the total cross section, which is written as

603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645

Table 4. Moments of psp3ðsÞ.
Moment Classical expression Numerical value if Rt ¼ 1

hsisp3 1:042533
Rt

1.0425

hs2isp3 2
R2
t

2

hs3isp3 5:94625
R3
t

5.9462

hs4isp3 24
R4
t

24

hs5isp3 120:734028
R5
t

120.7340

hs6isp3 720
R6
t

720
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Rt sð Þ ¼ Rt;sp3 sð Þ :¼
s

hs2i cþe�aþs þ c�e�a�s
� �

cþ 1
aþ þ s

hs2i
� �

e�aþs þ c� 1
a� þ s

hs2i
� �

e�a�s
: (75)

The nonclassical Equations (1) and (18) with pðsÞ ¼ psp3ðsÞ and RtðsÞ ¼
Rt;sp3ðsÞ reproduce the Nc-SP3 equations. We can calculate the mth raw
moments of psp3ðsÞ:

hsmisp3 :¼
ð1
0
smpsp3 sð Þds ¼ mþ 1ð Þ!

hs2i
cþ

aþð Þ mþ2ð Þ þ
c�

a�ð Þ mþ2ð Þ

" #
: (76)

If classical transport takes place, the moments in Table 1 hold and

psp3 sð Þ ¼ R2
t s 5:642025e

�2:94134Rt s þ 0:469086e�1:161256Rtsð Þ; (77)

which is the probability function derived in (Frank et al. 2015) for the SP3
equations (15). The total cross section becomes

Rt;sp3 sð Þ ¼ 5:642025 R2
t s

� �
e�2:94134Rt s þ 0:469086 R2

t s
� �

e�1:161256Rt s

5:642025 1þ2:94134Rts
8:651481

� �
e�2:94134Rt s þ 0:469086 1þ1:161256Rts

1:348515

� �
e�1:161256Rts

:

(78)

Table 4 presents the classical expressions for the moments of psp3ðsÞ, as
well as numerical values for Rt ¼ 1. The nonclassical expressions are not
explicitly given, but can be obtained from Equation (76); they are consist-
ent with the classical expressions. Comparing to the corresponding classical
transport moments in Table 1, the moments are preserved more accurately
than in the previous cases (SP1;2). In particular, the second, fourth, and
sixth moments are exactly preserved as expected. However, these moments
are not generally preserved in the nonclassical case.
Sampling of s is given by

n ¼
ðs
0
p s0ð Þds0 ¼ cþ

aþð Þ2 1� 1þ aþsð Þe�aþs
� �

þ c�

a�ð Þ2 1� 1þ a�sð Þe�a�s
� � ¼ F sð Þ;

(79)

such that

s ¼ F�1 nð Þ: (80)

In the classical case, this expression becomes

F sð Þ ¼ 5:642025
8:651481

1� 1þ 2:94134Rtsð Þe�2:94134Rt s
� �

(81)

646
647
648
649
650
651
652
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660
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678
679
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þ 0:469086
1:348515

1� 1þ 1:161256Rtsð Þe�1:161256Rt s
� �

: (82)

5. Numerical results

This section gives numerical validation for the theoretical results presented
in this paper, as well as in references (Frank et al. 2015; Vasques 2016).
Specifically, we use a Monte Carlo (MC) transport code in which the free-
paths were sampled from the probability density functions derived in
Section 4. The results of this MC transport code are then compared against
the results obtained by deterministically solving the corresponding classical
or nonclassical simplified PN equations. It is important to note that we are
not concerned about obtaining the correct transport solution of these prob-
lems. Our goal is to show that the nonclassical MC transport code correctly
reproduces the solutions of the deterministic simplified PN equations.
Due to the challenges of estimating the free-path distribution p(s) in

multi-dimensional nonclassical systems, this task will be left for future
work. In this paper, we consider only one-dimensional (1-D) slab geometry
transport. Two types of problems have been analyzed: (I) classical trans-
port, and (II) nonclassical transport in an ensemble-averaged (homogen-
ized) periodic random medium. For each of these cases, we have simulated
two different internal source configurations: (A) a homogeneous source
throughout the whole system (global source); and (B) a constant source
located in a small region in the center of the system (local source).
Sections 5.1–5.4 describe each set of problems and present the results

obtained. All problems obey the following simplifying assumptions:

� Transport takes place in slab geometry.
� Transport is monoenergetic and scattering is isotropic.
� The source Q emits particles isotropically.
� There are no incoming particles through the boundaries of the system;

that is, vacuum boundary conditions.

5.1 Problem set I.A: classical transport, global source

Consider a slab with dimensions �50 � x � 50 composed of a homoge-
neous material with Rt ¼ 1. We assume that there is a homogeneous
source Q¼ 1 throughout the whole system. Under these assumptions,
Equation (3) holds and the classical SPN equations apply. In a diffusive sys-
tem, it is expected that the scalar fluxes obtained from solving SP1

689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
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[Equation (13)], SP2 [Equation (14)], and SP3 [Equations (15)] will con-
verge to the same value, which should approximate the scalar flux obtained
from the solution of Equation (4). As the system becomes less diffusive, the
scalar flux away from the boundaries should converge to the “infinite sol-
ution” UðxÞ ¼ Q=½ð1�cÞRt�.
This can be seen in Figure 1, in which we present results of the simula-

tions performed with the nonclassical MC transport code. We sample the
free-paths from Equation (29) (MC SP1), Equation (47) (MC SP2), and
Equation (77) (MC SP3). For the diffusive system with c¼ 0.999, the SPN
solutions converge to the same estimate of the scalar flux (Figure 1a). For
the system with c¼ 0.2, the SPN solutions converge to
UðxÞ ¼ 1=ð1�0:2Þ ¼ 1:25, as expected (Figure 1b).
Figure 2 is a summary of the results obtained for this set of problems

showing estimates for the scalar flux at x¼ 0 for different values of c. The
system varies from diffusive to absorbing, and the results of the MC trans-
port code (MC SP1;2;3) match those obtained by deterministically solving
the SPN equations (SP1;2;3). This is as expected; however, since the solutions
of the different equations overlap, this set of results does not provide by
itself an appropriate validation of the theoretical predictions.

732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774 Figure 2. MC and deterministic estimates for the scalar flux (in log) at x¼ 0: problem set I.A.

Figure 1. MC simulations for classical transport with global homogeneous source.
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5.2 Problem set I.B: classical transport, local source

Consider a slab composed of a homogeneous material with Rt ¼ 1. We
assume a constant source defined in a region of the system such that

Q xð Þ ¼ 1; for �0:5<x<0:5
0; elsewhere:


(83)

We allow the system dimensions to be as large as needed in order for
the leakage to be negligible. This means that dimensions will increase as c
increases and the system becomes more diffusive.
As in the previous case, Equation (3) holds and the classical SPN equa-

tions apply. If the system is diffusive, we expect that the scalar fluxes will
approximate the scalar flux obtained from the solution of Equation (4).
However, as the system becomes less diffusive, the SPN equations should
yield different results.
Figure 3 shows the results of the simulations performed with the non-

classical MC transport code. Once again, for the diffusive system with
c¼ 0.999, the SPN solutions converge to the same estimate of the scalar
flux (Figure 3a). However, we can see that the SPN solutions yield different
results for nondiffusive systems as depicted in Figure 3b.
Figure 4 is a summary of the results obtained for this set of problems. It

shows estimates for the scalar flux at x¼ 0 for different values of c. In par-
ticular, we see that the MC transport code (MC SP1;2;3) accurately matches
the solutions obtained by solving the SPN equations (SP1;2;3) deterministic-
ally. This validates the theoretical predictions for the classical SPN transport
representations originally introduced in (Frank et al. 2015).

5.3 Problem set II.A: nonclassical transport, global source

We consider a random periodic system as depicted in Figure 5. It repre-
sents a random segment of a periodic medium with a period ‘ ¼ 1:0, con-
taining alternate layers of material 1 (solid) with thickness ‘1 ¼ 0:5, and
material 2 (void) with thickness ‘2 ¼ 0:5. Thus, the probability to find
material i¼ 1, 2 in position x is given by Pi ¼ ‘i=‘ ¼ 1=2.
Let us assume that this random periodic segment has dimensions

�50 � x � 50, and that material 1 is a homogeneous solid with Rt ¼ 1.
We also assume that there is a homogeneous source Q¼ 1 throughout the
whole system. Under these assumptions, the free-path distribution in the
ensemble-averaged (homogenized) system is not and exponential. We can
numerically estimate the moments of this homogenized angular-dependent
free-path distribution; these are given in Table 5. For this class of problems
we must apply the Nc-SPN equations using the estimated moments given
in Table 5.
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818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
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847
848
849
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851
852
853
854
855
856
857
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859
860

Table 5. Estimated moments of the free-path distribution in the homogenized random peri-
odic medium.
hsi hs2i hs3i hs4i hs5i hs6i
2.000467 8.791506 56.152561 457.65052 4521.87604 52969.8811

Figure 3. MC simulations for classical transport with constant local source.

Figure 4. MC and deterministic estimates for the scalar flux (in log) at x¼ 0: problem set I.B.

Figure 5. Sketch of the random periodic medium.

Figure 6. MC simulations for nonclassical transport with global homogeneous source.
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Similarly to the results in Section 5.1, it is expected that in a diffusive
system the scalar fluxes obtained from solving Nc-SP1 [Equation (8)], Nc-
SP2 [Equation (9)], and Nc-SP3 [Equations (11)] will converge to the same
value, which should approximate the scalar flux obtained from the solution
of Equation (1). As the system becomes less diffusive, the scalar flux away
from the boundaries should converge to the volume-averaged infinite solu-
tion UðxÞ ¼ Q=½ð1�cÞP1Rt�.
This can be seen in Figure 6, in which we present results of the simula-

tions performed with the nonclassical MC transport code. We sample the
free-paths from Equation (26) (MC SP1), Equation (44) (MC SP2), and
Equation (74) (MC SP3). For the diffusive system with c¼ 0.999, the Nc-
SPN solutions converge to the same estimate of the scalar flux (Figure 6a).
For the system with c¼ 0.2, the Nc-SPN solutions converge to
UðxÞ ¼ 1=½ð1�0:2Þ0:5� ¼ 2:5, as expected (Figure 6b).
Figure 7 is a summary of the results obtained for this set of problems,

showing estimates for the scalar flux at x¼ 0 for different values of c. As in
the classical case, the MC transport code (MC SP1;2;3) closely agrees with
the deterministic solutions of the Nc-SPN equations (SP1;2;3).

5.4 Problem set II.B: nonclassical transport, local source

Assume a slab composed of a random segment of the periodic medium
described in Section 5.3. We consider a constant source defined in a region
of the system such that

Q xð Þ ¼ 1; for �0:5<x<0:5
0; elsewhere:


(84)

As in Section 5.2, we allow the system dimensions to be as large as
needed in order for the leakage to be negligible.
We expect the Nc-SPN equations to yield similar results when the system

is diffusive. This can be seen in Figure 8a. As c decreases, the solutions of
the Nc-SPN equations differ, as depicted in Figure 8b. Figure 9 presents a
summary of the results obtained for this set of problems, in which it is
clear that the MC transport code (MC SP1;2;3) closely reproduces the deter-
ministic solutions of the Nc-SPN equations (SP1;2;3).
We note that the MC estimates for the Nc-SP3 solutions present relative

errors of 4–5% for a few cases. This is mainly due to the numerical and
statistical errors introduced in the MC calculations by numerically estimat-
ing the moments in Table 5. Nevertheless, it is clear that the MC simula-
tions predict the overall behavior of the Nc-SP3 equations. These numerical
results validate the original theory derived in this paper, demonstrating that
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the nonclassical transport equation (1) can exactly represent the Nc-
SPN equations.

6. Discussion

In this paper, we have shown that the nonclassical simplified P1;2;3 equa-
tions (Nc-SP1;2;3) can be represented exactly by the nonclassical transport
equation (1). We derived an explicit expression for the free-path distribu-
tion p(s) for each of these equations, and showed that these expressions are
a generalization of the ones previously obtained for the classical SP1;2;3
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Figure 7. MC and deterministic estimates for the scalar flux (in log) at x¼ 0: problem set II.A.

Figure 8. MC simulations for nonclassical transport with constant local source.

Figure 9. MC and deterministic estimates for the scalar flux (in log) at x¼ 0: problem set II.B.
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equations. We have shown that the moments of the transport p(s) are
approximated with increasing accuracy as the order N increases, with the
even moments up to 2N being preserved when p(s) is exponential.
Moreover, we present numerical simulations that validate our theoretical

predictions as well as those presented in previous work (Frank et al. 2015;
Vasques 2016). We show that a nonclassical Monte Carlo transport code
that samples the free-paths from nonexponential distributions can accur-
ately reproduce the deterministic solutions of the Nc-SPN equations and
the classical SPN equations. This has not been done before.
Although performed only in slab geometry, these numerical results pave

the road to consistently simulate these diffusion-based approximations
using a Monte Carlo transport method. Furthermore, it hints to the possi-
bility of using these analytical formulations of p(s) to approximate the solu-
tions of the nonclassical Boltzmann equation in near-diffusive systems.
Further work needs to be done to investigate how well this approach per-
forms in multi-dimensional nonclassical systems. However, this task must
be left for future work.
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