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ABSTRACT 

A Hamiltonian matrix diagonalization (HMD) method is applied to cal
culate the lowest several bands in 230•232•234Th. Neutron pair trans
fer strength distributions are calculated and compared between HMD 
and cranked Hartree-Fock-Bogoliubov plus Random Phase Approximation 
(CHFB+RPA). Sudden-approximation methods are applied to estimate pair 
transfer population patterns in 206Pb+ 232 Th reactions. Band-crossing, pair
ing, and spin alignment properties are also discussed. 

1. Introduction 

The subject of transfer reactions among heavy -ions is a va8t topic, and we 
must necessarily focus on a small niche area in this paper. We shall present neutron
pair transfer calculations among the thorium nuclei of mass 230, 232, and 234 with 
collision partners some of the even isotopes of Zr and Ph. The enhancement of 
ground-to-ground pair transfer by the pairing-force superfluidity in nuclei has long 
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been known 1 . The even-even 232Th and its nearest neighboring isotopes are of special 
interest in view of the extensive studies on heavy-ion neutron transfer by groups at 
Heidelberg and Darmstadt2 • 

The circumstances under which some pair-transfer strength also goes to ex
cited states have been investigated, and the notion of pairing vibrational excitation is 
associated with this subject3 . Much remains to be learned, despite extensive experi
mental and theoretical work. Theory is less reliable for excited states than for ground, 
since variational methods predominate in nuclear structure theory of the heavier nu
clei, and variational theories tell us best about lowest energy levels of a given spin, 
the yrast levels. 

By going to transfer between heavy nuclei, where one nucleus is deformed and 
has rotational bands, an extra complication (richness) enters in the form of multiple 
Coulomb, and nuclear, excitation on inward and outward paths of the collision. Thus, 
transfer near closest approach involves excited rotational states as well as ground. It 
has been a hope4 that heavy-ion pair transfer might be a probe of the expected Coriolis 
antipairing (CAP) effect, whereby the pairing correlation diminishes steadily with 
increasing spin. The bandcrossing (backbending5 ) of spin-aligned6 bands has been 
a complication to measuring CAP but is interesting in its own right. It is an open 
question whether Berry-phase interference effects can be experimentally measured 
by driving heavy-ion 2-neutron transfer paths through the vicinity of diabolic points, 
where the energy sheets in the plane of chemical potential and angular velocity touch 7 • 

The sharpness of band crossing is known to depend sensitively on the position 
of the chemical potential with respect to the Nilsson levels of the highest-j orbital8 • 

The sharpest band crossings occur when the chemical potential is slightly above one of 
the levels with projection 3/2 through j -1. Quasiparticle (CHFB) methods, without 
RPA corrections, may have difficulty due to proximity to CHFB pairing collapse. The 

\ 

RPA corrections, putting in fluctuations of the pairing field, improve the situation. 
Very close to the band crossing CHFB+RPA still has problems, and this, coupled with 
the need for accurate number-conserving, and angular-momentum conserving wave 
functions for transfer calculations, prompted some of us to turn to exact diagonaliza
tion of the Hamiltonian matrix (HMD) in a multi particle-plus-rotor model. The main 
deterrent to HMD is the explosion in the number ~f configurations as the number of 
Nilsson basis states approaches a dozen. The random-phase-approximation methods 
with deformed basis states and pairing force in a rotating field have the virtue that 
they can span a much larger space of basis states than the HMD. The RPA meth
ods are also conceptually useful, since they allow introducing the rotation of a static 
deformation of the pair field and its vibrations around this mean value (dynamic 
pairing), exploiting the close analogy to the nuclear shape degrees of freedom9•10• 

Space limitations here do not allow a comprehensive review of developments 
in this area, but the 1986 review of Broglia et al.9 , covers developments to that 
time very well. Somewhat away from the point of collapse of static pairing the 
CHFB+RPA method is a relatively good approximation that is able to cover a realistic 
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single-particle space. Thus, in this paper we present and compare results from HMD 
and from CHFB+RPA. Engeland has reviewed Hamiltonian matrix diagonalization 
methods and presented results a few years ago11 • These HMD methods have a long 
history, being the traditional approach to spherical shell-model structure calculations 
close to closed shells, or in the case of the sd shell used comprehensively with very 
large matrices12

• In the case of mid-shell spheroidal nuclei, though, we have the 
combinatorial explosion in the number of configurations within a shell mentioned 
above. Half-filled systems of six equally-spaced Nilsson orbitals were studied in the 
60's to gain insight on the sharpness of pairing collapse with changing pairing strength 
rel~tive.to level spacing13• Half-filled systems with two sets of degenerate levels were 
found to have exact solutions and furnished further understanding of critical pairing 
phenomena14 • Restriction of studies to 0+ levels ofdeformed nuclei kept matrices at 
reasonable dimensions for systems of 9 Nilsson orbitals about the chemical potential 
and 4 or 5 pairs15 • These matrices have the dimension of the binomial coefficient 
9!/( 4! x5!), which is 126. In order to reproduce high spin and bandcrossing phenomena 
our newer approach in the rare-earth studies was to keep the set of 9 Nilsson orbitals 
but to allow broken pairs in the highest-j orbital, i 13; 2 , projeCtions 1/2, 3/2, and 5/2. 
By truncating states with ]{ > 2 the dimension is 266. In contrast to Hara, Sun, 
and Ring's angular-momentum projected Hartree-Fock-Bogoliubov calculations16 the 
aligned band does not stay intact at spins well below the crossing. The aligned-spin 
property appears to admix onto higher excited states, while the first excited (yrare) 
band takes on a pairing-vibration character at low spins. Due to the severe truncation 
of the basis in the HMD calculations and the constraint against broken pairs in the 
low j-orbitals, caution is in order regarding the pairing decrease at highest spins and 
about magnitude of pair-transfer enhancement. Thus, it is important to compare 
these properties with large-space models as we do in this paper. 

The even-even 232Th and its nearest neighboring isotopes are of special interest 
in view of the extensive studies on heavy-ion neutron transfer by groups at Heidelberg 
and Darmstadt2 • 

For the 2n transfer calculations of this paper we choose to work within the 
sudden approximation (negligible nuclear rotation during the collision time) using and 
extending tested Classical Limit S-matrix methods (CLSM)17

• The CLSM sudden 
methods are expected to be quite valid for projectiles up to Zr and somewhat beyond, 
incident on actinides, with their large moments of inertia. 

2. Diagonalization Calculation for the Thorium Region 

We shall not give a detailed discussion of the HMD method here, since it is 
contained in the work of Engeland11 • The differences ·with that work are as follows: 

• we use 12 orbitals, rather than his 13 
• we allow broken pairs in the lowest 4 of the high-j j 15; 2 orbitals, rather than all 

of them 
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• the quadrupole-pairing term in our code is turned off 
• the recoil energy terms are calculated only for the four lowest ils/2 orbitals. 

The truncation to omit configurations with]{ > 2 is as before. For our calculation the 
matrix dimension is 2646 for 232Th, with 12 active neutrons, and 2220 for 234Th and 
230Th, with 14 and 10 neutrons, respectively. Engeland did not deal with such large 
matrices but separately diagonalized submatrices of given projection I< values, then 
did an overall diagonalization; his procedure involves some approximation compared 
to our handling of the very large matrices directly. We omit quadrupole pairing in 
order to facilitate the comparison with the earlier comprehensive structure calCula
tions in the actinides by Egido and Ring18 and with the CHFB+ RPA calculations of 
Shimizu and Frauendorf19 on thorium nuclei presented below. There seems no clean 
nuclear property by which to adjust the quadrupole pairing strength, and we defer 
study of its effects to a later time. Thus, our Hamiltonian simplifies to 

H = L fv a! av - G pt p + Hrot (1) 
v 

where 

(2) 

(3) 

where v is the index for the single particle level, the f 11 is the single particle energy, 
the operators a!, and a 11 are the particle creation and annihilation operators for level 
v, G is the monopole pairing constant*, and the R is the rotor angular momentum 
and x', y', z' are the nucleus bodyfixed coordinates. Following the particles plus rotor 
model, the rotor angular momentum is expressed in terms of total spin I and the 
angular momentum from all the valence particles, J, namely, 

R 1-J 

J - L < 112 U lvt > a~ a111 

111112 

and the Hrot can ·be written as follows: 

(4) 

(5) 

(6) 

*Actually the pairing term in the Hamiltonian should be symmetric in order (PfP + ppt)/2. For 
our 232Th case, where the neutron orbital system is exactly half-filled, the results are identical. For 
the other systems, not half-filled, there are small differences, analogous to the usual neglect of V 4 

terms in the CHFB formulations. By inserting a sum over complete set of states between operators, 
i.e.(Pt I A- 2, a >< A- 2, a I P + P lA + 2, a >< A+ 2, a I pt)/2 one gets a sum rule on pair 
transfer strengths in relation to our calculated expectation values and off-diagonal elements of the 
pairing term in the Hamiltonian. 
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where 

U±)112111 - < 112 U± !111 > = < 112 Ux' ± ijy' lilt > (7) 

Hii = ~ L [L: ( U+ )11211(j- )wl + (j+ )wl U- )11211 )] a~ a111 
111112 II 

_ "'"'( (j+)ll3112(j_)~~.~~~ - (j+)~~.II2U-)11311! ) at at a a (8) 
. ~ ( . ) ( . ) ( . ) ( . ) 113 114 112 Ill 111<112 + )+ 114111 J- 113112- )+ 11311! J- 114112 

113 <114 

Matrix diagonalization is done with the code using the Lanczos algorithm20
, 

and we calculate only the lowest eight eigenvalues and eigenvectors. Table 1 lists 
the neutron single-particle energies used both in our HMD and CHFB+ RPA calcula
tions. These energies are from Bengtsson and Ragnarsson21 • The strength parameter 
G for pairing needs to be renormalized to larger than the values used in traditional 
CHFB calculations with two oscillator shells of orbitals active, since we have i2 or
bitals in all. Since there is no gap parameter ~ in our calculation, we take ·the 

Table 1. Relative neutron single-
particle energy (MeV) 

n± B & R* Bunched Nazarewiczx 
Table 2. Relative 

1/2-t -1.8460 -1.8460 -0.8951 t proton single-particle 
3/2-t -1.0882 -1.0882 -0.59oot energy (MeV) 
5/2-t ot 0, 0 n± Nazarewicz 7/2-t 1.2276 1.2276 1.1230t 
5/2- -1.1918 1/2+t -0.5338 
1/2- -0.8881 -0.05 3/2+t 0 
3/2+ -0.7413 -0.02 -0.2638t 5/2+t 1.1435 
5/2+ -0.3465 0.02 O.l354t 3/2+ -1.0881 
1/2+ 0.4754 1.20 0.8934t 3/2- -0.9501 
5/2+ 0.6964 1.25 1.3288t 1/2+ -0.8561 
7/2+ 1.1440 1.27 1.8730t 1/2- -0.5047 
1/2- 1.9430 1.9430 5/2- 1.2051 
9/2- 2.3461 3/2- 1.7363 
7/2+ 1.9917 1.9917 2.5776 

t These are j 1512 orbitals. 
t These are i 13; 2 orbitals. 

t These neutron orbitals also used in grand combined calculations. 
* Bengtsson & Ragnarsson21 for deformation f 2 = 0.2 and f = -.056 
x Nazarewicz code SWGAMMA for deformation /32 = .208 and /34 = .105, · 

see Sec.8 
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expectation value < 0 I ptp I 0 > for the ground state. It can be shown for the ground 
state that the product of G times the square root of this expectation value roughly 
corresponds to .6., the odd-even mass difference. The rotor moment-of-inertia is taken 
as constant and adjusted separately for each of the three thorium nuclei so that the en
ergy of the 12+ state of each is correct. As the non-linear region of proton alignment is 
reached, the neutron calculation will be subject to corrections. In the theoretical cal
culation of reference18 the onset of proton alignment in the thoriums is rather abrupt, 
occurring around spin 24, so the neutron-only calculation should be valid below this 
spin. However, since Egido and Ring had a different Hamiltonian than Bengtsson 
and R.agnarsson21

, the alignment behavior could well be due to small differences in 
single-particle level energies. 

Figs.1-3 show results of the HMD method for 230
•
232

•
234Th, respectively. The 

insets a (upper left) give the lowest eight energy values as a function of spin. Insets b 
(upper right) are traditiona.l back bending plots for the yrast levels, using the so-called 
kinematic moment-of-inertia1 J. Insets c (lower left) are the expectation values of 
the monopole pairing operator for yrast ( x ), yrare ( + ), and the off-diagonal value 
(-) connecting the two. Finally, insets dare shown the aligned .angular momenta, 

which are calculated as the expectation value < I a: I I· J I I a: > / J 1(1 + 1), where 
J is define in Eq.5, and a designates the additional quantum numbers required to 
uniquely label the eigenstate. The aligned angular momenta. are shown for yrast ( x) 
and yrare (+ ). For none of these three nuclei is there a sharp band crossing between 
yra.st and yra.re, consistent with what is experimentally known. In contrast the work 
of Egido and R.ing18 shows an abrupt neutron alignment in 230Th, where the chemical 
potential lies just above the j 15; 2 5/2- orbital. It is important to point out that 
the sharpness of band crossing is very sensitive to the Nilsson-level energies near the 
chemical potential. Our calculations (not shown here for lack of space) using single
particle Nilsson energies calculated from a program of Nazarewicz do show sharp band 
crossing in 230Th due to neutron alignment, but our huge-space calculations using both 
broken proton and neutron pairs in coupled mode, to be discussed later, show a soft 

\ 
bandcrossing, despite the use of the same Nazarewicz-code neutron energies. Thus, 
agreement with experiment on sharpness of backbending is not a very fundamental 
test of· a. given theoretical approach or model; sharpness of band crossing can be 
"tuned" in or out merely by shifting one level near the Fermi surface. 

In all cases (Figs. I c, 2c, and 3c) the ground band shows a Coriolis anti pairing 
effect. The first excited band shows a reduced pairing correlation at low spins and 
cross-over effects near crossing spins around 18-20. The corresponding d parts of the 
figures show at lowest spins alignment of the j 15; 2 orbitals that at first go linearly 
with spins, the yrare band always showing more alignment than the yrast. This 
linear a.ligi1ment region is where the j 15; 2 contributes simply to renormalized the 
moment-of-inertia.. At higher spins the alignment'is non-linear and will be manifested 
in rotational energy correction terms to the normal 1(1 + 1) spacing. The linear 
alignment slope of the yra.re band is always more than that of the yrast band. This 
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Figure 1: Result of HMD calculations using 12 Nilsson neutron levels with Bengtsson-Ragnarsson 
energies21 (a) HMD energies for the yrast and lowest seven even-parity neutron-excitation bands 
in 230Th. (b) Traditional yrast "back bending" plot, kinetic moment-of-inertia vs. angular veloc
ity (MeV) (the dots are experimental values). {c) Expectation values of the pairing-operator for 
yrast( x) and yrare ( +) states. The dashed line is the off-diagonal value of the pairing operator, and 
it is a measure of pairing vibration strength in the yrare state. There is evidently very little pairing 
vibration strength in the 230Th yrare band. (d) neutron spin alignment for ·yrare and yrast bands. 

greater contribution to moment-of-inertia and the reduced pairing correlation in the 
low-spin yrare states can be trivially understood as characteristics of states with 
components of two-quasiparticle I< = 0 excitation of the correlated ground state. 
That the three thorium isotopes shown here have a good deal of similarity, except for 
the sharper upbending andsimpler crossing phenomena in 230Th, is a con~equence of 
a rather uniform single-particle level spacing in the Bengtsson and Ragnarsson level 
set of Table 1. Other single-particle level schemes tendto show a neutron subshell at 
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Figur-e 2: Same as Fig.l except for 232Th. Note in (c) the greater pairing vibration character of the 
yrare for spins up to 14 and in (d) its neutron-spin-aligned character at higher spins. 

232Th, and this results in qualitative differences among the subshell nucleus and its 
neighbors. 

Note that nowhere in the level schemes does an idealized aligned band ap
pear with energy minimum at a spin equal to the aligned angular momentum. The 
bandheads are always at the lowest spin in the band, unlike the aligned bands from 
angular-momentum-projected uncranked UHFB solutions of Y. Sun et al.16 Rather in 
the HMD method the "aligned band" seems to be a kind of strength function that con
centrates on different real bands in different regions of spin. Just below bandcrossing 
the yrare band ha.S most of the aligned band character, as the large plateaus of aligned 
spin in Figs.ld and 2d show. For 234Th in Fig.3 the situation is more complicated, 
with two bands competing for yrare. The comparisons with experimental data in 
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Figure 3: Same as Figs.l and 2 except for 234Th. Note in (c) that pairing vibration character of' 
the yrare is small throughout. 

the backbending plots do not seem very good, but we reiterate that the backbending 
plot is extremely sensitive to small shifts in single-particle energy levels. Further
more, the Figs.l-3 calculations are exclusively for neutron systems to facilitate the 
HMD comparisons with CHFB+RPA, and it is well-known that proton alignment oc
curs for thorium in the same spin region as neutron alignment. The complementary 
model we will use here use a self-consistent cranked Hartree-Fock-Bogoliubov plus 
Random-Phase Approximation (CHFB+RPA) spanning a much larger shell-model 
space than HMD. The CHFB+RPA calculations were carried out by methods de
scribed in refs9 •10• The energies of CHFB+RPA solutions are seen in Figs.4b and 5b, 
to be discussed in the next section on pair transfer strengths. The Coriolis Anti
Pairing in the CHFB calculation leads to static pairing collapse at a critical value of 
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liwc = 0.20 MeV (about I= 18). Above this liwc only the dynamic RPA pairing cor
relations remain. Near the end of this paper we show a calculation of HMD coupling 
the neutron and proton systems. There we shall also show an idealized example of a 
bunched single-particle level set, where structural features are more prominent, but 
first we want to explore the pair-transfer strength distributions. 

3. Pair-Transfer Strength Distributions 

As mentioned in the introduction,. the neutron-pair transfer properties con
necting adjacent even-even isotopes have much intrinsic interest. The general yrast
to-yrast enhancement by the pairing force has been measured and studied a great 
deal. The conditions under which pair transfer strength may partially attach to ex
cited bands are less understood. Some cases attributed to shape coexistence have 
been proposed22 • · Some tendency for strength to excited bands has been associated 
with gaps in the single-particle level spacing, leading to concentrations of pairing 
vibrational strength on excited bands. Some twenty years ago the principles of pair 
transfer strength in regions of bunched levels near closed shells or subshells23 were 
elucidated. Recently C.Y. Wu et al.,24 ~eviewed the subject of pairing correlations and 
pair transfer between heavy nuclei, where excitation to high spin states is extensive .. 

We realize that pair transfer need not be confined to transfer of pairs cou
pled to total angular momentum or even body-projected angular momentum zero. 
However, for this work we restrict ourselves, as do most such transfer studies, to this 
limit. We take the pair transfer operator of form a tat for addition of a pair and a a 
for removal of a pair. In the case of the CHFB+RPA calculations here we just take 
the expectation value of thes~ operators between yrast and excited states at various 
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Figure 6: Same as Figs.4 and 5 except for neutron-pair addition to 230Th. 

values of the angular velocity w. In the case of our microscopic HMD calculations 
we use the operators with appropriate < A + 21 or < A - 21 and I A > states, 
respectively. For the HMD we.take these pair-transfer amplitudes here between yrast 
level of given spin I in the initial nucleus and the first eight levels of that I in the final 
nucleus. The pairing strengths and level energies can be examined for patterns in the 
gray-scale plots of Figs.4-6 a and b. The a parts show the HMD calculations, and the 
b parts show the CHFB+RPA. In the latter there is a discontinuity at the critical 
angular velocity where static pairing vanishes. Below this critical value the RPA 
calculations ?ring in the pairing fluctuations about a static pairing vacuum state, 
and above the critical value the pairing fluctuations are about a zero-pairing vacuum 
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state. Figs.4 are for pair removal from 232Th. For both methods we see at lower spin 
that the predominant transfer strength is in the yrast-to-yrast. Both methods show 
some strength settling in three places among the excited states between 1.5 and 2.5 
MeV at lowest spins; the energies of these excited bands move down toward a cusp, 
then up with increasing spin and the transfer strength may shift between bands. The 
strength to excited states generally remains in three, sometimes four, solutions. Very 
close-lying excited states may have greatly differing transfer strengths. The apparent 
sporadic discontinuities in CHFB+RPA bands are because solutions with too low 
transfer strength were not saved. The discontinuity at the pairing phase transitions 
result because of change of the vacuum, and the CHFB+RPA is not expected to be 
valid close to this point. In comparing results for the two models it must be borne 
in mind that the spin I and angular velocity w are not linearly proportional to each 
other. From Fig.1b it can be seen that in the upbending region several successive 
spin values from 16 to 24 have almost the same value of w of about 0.24. The 
aligned band near crossing will have a lower w for a given spin than the ground band; 
indeed, each excited band will have its own correspondence between I and w. One 
can see some similarities in patterns between the two models for the other transfers 
depicted in Figs.5 and 6. In Fig.5a a limitation on our particular HMD model is 
seen, in contrast with CHFB+RPA in Fig.5b. The HMD here does not have sufficient 
Coriolis AntiPairing at highest spins, since we do not allow broken pairs in any but 
the j 15; 2 orbitals. Hence, the ground-to-ground transfer in the HMD remains strong 
even at the highest spins, whereas the CHFB+RPA falls off as it should. 

Figs.5a and 6a show in the band crossing region that there is predominant 
transfer strength between yrast and yrare. This is a consequence of the band crossings 
in initial and final nuclei being at somewhat different spins. 

4. Pair Transfer Cross Sections 

To go beyond the calculation of transfer matrix elements and obtain theoretical 
cross sections to compare with data is a challenging task. The Alder, Winther, deBoer 
method25 has been adapted to explore the "diabolic" Berry-phase interference effects, 
first taking into account just yrast bands26 and later taking both yrast and yrare bands 
in a coupled-channel treatment27

. The above semiclassical treatments were restricted 
to head-on collisions to simplify the computation. The inclusion of the second band 
clearly was important, making the diabolic interference effects smaller. 

Now when we look at the distribution of transfer strength among the eight 
lowest bands, we may well surmise that inclusion 'of more than two bands is necessary. 
Certainly, if theory is to confront the calorimetric data of the "HK" plots, total energy 
vs. number of gamma rays (fold), obtained from 471" gamma detector arrays, these 

· higher bands need to be taken into account. 
For the actinides with their larger moments of inertia it is worth: reconsidering 

the sudden approximation approach, in which the spheroidal nucleus does not appre-
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ciably rotate during the collision time. In this limit important simplifications can be 
made in the treatment. Let us derive the necessary formulas. 

5. Sudden Approximation Formulas 

Let the wavefunction from the HMD calculation be expressed as follows: 

I I, M, a, N >= .NI 2::::: vJ.tK(n) b,.(I, a; K, N) cp: (9) ,. 

where normalization constant .N1 = .ji + 1/2/(27r), the cp~ are the basis wavefunc
tions for configuration with index p., and b,.(I, a; K, N) is its amplitude from the HMD 
calculation. Then the amplitude for transition from the ground state I OMO, N > to 
I IMa,N + 2 >is given by 

Aoo,N-+Ia,N+2 

x < ltMat,NIU IOMO,N > 

- J .N1 LV~K *(0) exp( -* fooo V(f!, R(t)) dt) L .N11 Vi}K(O) dO, 
I.L , It ,a2 

b,.(I, a; K, N + 2) b,.(I11 a2; K, N + 2) 

L 2::::: b,.; {It, a2; K, N + 2) b,.~ (It, at, It; K, N) < cp~+2 1 L a!ab I cp~ > 
Ott ,.;,.~ v 

.NII J 2::::: v~ K * ( n2) exp (-* ]_0
00 v ( n2' R( t)) dt) No vgo ( n2) d0.2 

ILO 

b!LO(I1 , a 1; 0, N) b!LO(O, 0; 0, N) (10) 

Let us define some auxiliary matrices. 

• The matrix X:%(117 a 1 ; I2 , a 2) is the K component of the overlap of the intrinsic 
wavefunctions between two states with {It, a 1) and (I2 , a 2 ) in the nucleus of 
N neutrons. We can view this matrix X as a projection of the microstructure 
wavefunction, from eigenstate (I~, at) to eigenstate (12, a 2 ). 

X:%(1~, a1; I2, a2) = L b,.(It, a1; K', N) b,.(I2, a2; K', N)8K',K (11) ,. 

• The transition matrix Yf ..... N+2(at,a2) is the overlap of intrinsic wavefunction 
before (in excitation state a 1) and after 2n transfer (in excitation state a 2) at 
spin I. 

13 



• The Coulomb excitation matrix Z1, 

Z1 - j 'D~0(0) exp( -* j_o~ V(O, R(t)) dt) dO 

j 'D~(n) exp( -* fooo V(n, R(t)) dt) dO 

(12) 

(13) 

which is the component of the Coulomb excitation in spin I at closest approach. 

Now the transfer matrix elements can be expressed in a more compact form 
as follows: 

AI0 a0 ,N-Ia,N±2 = N10 N1 L N'J.. (2I2 + 1)(2I3 + 1) Z12ZI3 L 
It,I2,/3 Ko,K 

( _!~ ~ · ~2 ) ( -7<o· ~o ~) ( -~ ~ ~) ( -~< ;~ ~) 
L x~o(Io, ao; It, at) y~-N±2 (at; a2) x~±2 (It, a2; I, a) (14) 

0},0'2 

In particular, if the initial state is the zero spin ground state, then 

Aoo,N-Ia,N±2 = 

NoN1 L:N'f.. Zh 2::::(213 + 1)ZI3 ( ~ 
I! Ia 

It I3 ) 2:::: ( 1 It 1
0
3 ) 

0 0 K -J< J< 

(15) 

6. Transfer and Rotational Inelastic .Probabilities 

For the sample numerical calculations shown here we took the reaction 206Pb 
on 232Th at 1180 MeV (lab). The microscopic HMD wave functions are with the 
12 Nilsson orbitals at the Bengtsson-Ragnarsson single-particle energies, as for our 
earlier figures. Space limitations preclude our showing also the calculations for. a 
90Zr beam, but the heavier beam is considered of more interest, since it pumps ro
tational population into the band mixing region at closest approach. Figs. 7 a-d show 
the results. Fig. 7 a plots the yrast rotational state population at closest approach 
and before transfer. Fig.7b shows in gray scale the absolute value of the amplitudes 
in the various spin states of the lowest eight bands. We see the familiar oscillating 

14 



Spin Spin 

Spin Spin 

Figure 7: Theoretical HMD sudden-approximation amplitudes in reaction of 206Pb +232 Th. (a) 
yrast band and (b) all-band population in 232Th from Coulomb excitation at closest approach but 
before transfer. (c) population in 230Th at closest approach immediately after pair transfer, and 
(d) population in 230Th after collision partners have fully separated. 

mterterence pattern dominated by a rainbow maximum at spins 16-18. There is a fair 
amount of population in the excited bands, a consequence of band-mixing. Fig. 7 c 
shows in gray scale the absolute values of the complex amplitudes immediately after 
the I --. I transfer. It is evident that most population is still in the yrast band 
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with about the same spin distribution as before transfer. A considerable population 
is in the yrare band, peaking at spin 18, and some population is spread into all the 
other six higher bands. The transfer population to excited bands is enhanced by 
the Q-window centering at the Q value of 2 MeV. In excited bands the intensity 
oscillations with spin value seem nearly washed out compared to yrast. Fig. 7 d shows 
the final amplitudes after the collision partners have widely separated. There is 
further pumping of spin to higher values, the main population now being in the yrare 
band, which is the continuation of the ground band past spin 18, where the aligned 
band crosses under. There is good reason to distrust the sudden approximation in the 
final stage of Coulomb excitation on the outward path. The system of Ph + Dy was 
studied by Canto et a/.,26 using an Alder, Winther, deBoer semiclassical method, and 
spin populations were found to change very little on the outward path. The sudden 
approximation may be a little better for the actinide target, with its higher moment 
of inertia,- but the final spin distribution may be something between those shown in 
Figs.7c,d. 

7. Idealized Bunched Nilsson-level Case 

It is instructive to repeat the above structure and transfer calculations for a 
case where the Nilsson levels nearest the chemical potential are bunched, rather than 
in the near-uniform distribution of the Bengtsson and Ragnarsson21 values used above. 
Other calculations show something of a neutron subshell at 232Th. To accentuate this 
tendency we carry out calculations where the odd-parity j 15; 2 levels retain their BR 
values but the nearest three even-parity, lower-j orbitals are made nearly degenerate 
with the 5/2- and with the 7/2- level. Figs.8 and 9 show the structure calculation 
results for 230Th and 232Th, respectively. In the former case the chemical potential 
is within the cluster of four Nilsson levels around the 7/2-. The pairing force splits 
out a ground band with large pairing and leaves a nearly degenerate triplet of bands 
at 1.5 MeV, as simple considerations would lead one to expect. The very small 
off-diagonal pairing between yrast and yrare below spin 8 shows that the pairing 
correlation completely concentrates on the lowest level for the system of degenerate 
Nilsson orbitals, and there is no pairing vibrational character in the near-degenerate 
set of excited states. Above spin 8 the character of the yrare band changes to a spin
aligned band, which makes a sharp crossing with the ground band at spin 24. Fig.9 
shows quite a different picture for 232Th, the nucleus at the subshell. Band mixing is 
very diffuse, with yrast and yrare bands never getting very close. The eight Nilsson 
levels equidistant from the Fermi energy (four above and four below) give rise under 
the pairing force to a highly paired ground band and a moderately paired yrare band, 
increasing in pairing correlation with spin and exceeding the yrast in pairing by spin 
16. The large off-diagonal pairing matrix element between yrast and yrare below spin 
16 shows the pairing-vibrational nature of the yrare. Above the two collective bands 
is a cluster of 6 nearly degenerate bands. The blip in energy of the highest band at 
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Figure 8: Same as Fig.l e30Th) except that Nilsson single particle levels have been artificially 
bunched into two bunches of four each on either side of the Fermi energy (see text and Table 1). 

spin 10 probably shows that the Lanczos algorithm broke down and missed a state, 
where the degeneracy was high. 

Figs.10a,b shows the I--+ I pair transfer matrix elements from yrast of 232Th 
for this bunched-level idealized case. Fig.lOc shows the corresponding values for 230Th 
going into the subshell of 232Th. The pattern is just what Bohr and Mottelson led 
us to expect in their early treatment of pairing vibration. That is, pair transfer out 
ofthe subshell (Fig.9) goes predominantlyto ground, while transfer into the subshell 
(Fig.lO) has a fair fraction of strength going to the first-excited pairing-vibrational 
state. Though we do not show a figure the calculations for 2n removal from 234Th, 
going into the subshell from the other side show much the same pattern as Fig.lOc. 

The 1986 work of Egido and Rasmussen28 on 2n transfer strengths in the Dy 
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region showed a great deal of structure and fluctuation on up to the 10 MeV calcu
lated. Only the strength to the yra.St and yrare bands was systematically discussed. 
With insights from our new calculations we would suggest that 2n addition( removal) 
to(from) excited bands probes the non-uniformity of energy distribution of Nilsson 
levels above(below) the Fermi energy. 

18 



3 

,...... 
> 
C!) 

;:;E 
'-' 

2 ..... 
"" (<$ 

!>. 
C!) 

> 

~ 
~ 

D 0 
".::l 

(<$ EZ3 ..... ·u 
K []J 

u.l 
II]) 

0 
20 30 

Spin Spin 

3 
(c) 

,...... 
> 
C!) 

6 
..... 2 
"" (<$ ..... » 
C!) 

> 
0 

~ 
~ 
0 

".::l 
5 ·u 
K 
u.l 

Spin 

Figure 10: (a) Same as Fig.4a 232Th --+230 Th except using idealized level bunching as in Figs.S and 
9, (b) Same as Fig.5a 232Th -+234 Th. except using idealized level bunching. (c) Same as Fig.6a, 
230Tb --+232 Th, except using idealized level bunching. . 

19 



8. Interconnection of Proton and Neutron Alignment 

To avoid greatly complicating nuclear structure calculations in heavier nuclei, 
where neutrons and protons are filling different shells, a factorization is often assumed. 
That is, neutron structure and proton structure are independently calculated. For 
high-spin studies in the deformed rare earths that may be valid for many properties, 
since neutron alignment always occurs at lower spin values than proton alignment. 
For the actinide region, though, such factorization is less justified, sine~ the protons 
and neutrons undergo spin alignment in the same region. As a final illustration of the 
potentialities of the HMD method with modern computers, we show two calculations 
on 232Th. The first, shown in Fig.ll, is as before, with neutron structure alone. We 
use 12 Nilsson orbitals but with orbital energies calculated with the SWGAMMA 
code of Nazarewicz for (32 = 0.208 and (34 = 0.105 from the tables of Moller and 
Nix. We use axial symmetry in the code SWGAMMA for Woods-Saxon potential. 
These energies are shown in the last column of Table 1. Our earlier comments about 
the sensitivity of sharpness of band crossing to the single particle level energies are 
further illustrated. Even though the single particle energies for Fig.ll are only slightly 
changed from the Bengtsson and Ragnarsson energies of Fig.1, we now see sharp band 
crossing in Fig.11 a. , 

Finally we go to an HMD calculation combining a 9-Nilsson-level neutron 
system with a similar proton system. We do not add any explicit np force terms 
to the Hamiltonian, but n-p coupling arises not only in our recoil-energy term but 
also through the rotor-particle Coriolis coupling. Such effects ~re easy to see in the 
spin-alignment graphs of Egido and Ring18 , where one type of nucleon may begin 
gradually to align and the other suddenly aligns, with a concomitant decrease of 
alignment of the first type. The sudden alignment has slowed the rotor and decreased 
the alignment of the other type of nucleon. 

Figs.12a-/ show the results of the combined calculation. The dimensionality of 
the matrix has been decreased by an energy criterion that cuts out the less important 
configurations. Even so, the Hamiltonian matrix here has dimensionality of 19,098. 
The matrix is rather sparse, with 275,189 non-vanishing matrix elements. Parts of 
the code with the Lanczos algorithm require quadruple precision in the Sparcstations 
and double precision on the U.C Berkeley Cray in order to converge. The eight lowest 
roots were taken for the 16 diagonalizations at the 16 different spin values. The CPU 
time on the Sparcstation ELC was 73 hrs. 

Note the differences between the pure neutron and the grand combined cal
culations. The sharp backbending at spin 18-20 in the neutron case shift to spin 22 
in the coupled case. From Figs.12c,d we see that the first two excited bands at spin 
0-4 are neutron excitations and factorization is perfect, since the proton pairing is 
unchanged.· From Figs.12e,J it is evident that for intermediate spins 10-16 the first 
excited band has neutron alignment character and the second excited band proton 
alignment. Figs.12c,d show that the aligned bands have a low degree of pairing in the 
type of nucleon that is aligned. Fig.13 shows the corresponding plots for the grand 
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Figure 11: Same as Fig.1 for 230Th except with Nazarewicz-code for the 12 Nilsson energies instead 
of Bengtsson and Ragnarsson energies (see Table 1.) · 

combined calculation on 232Th. Beyond a crossing of excited bands at spin 8 the yrare 
band is mainly a proton-alignment bands. The neutron spin alignment does not as 
cleanly concentrate on a single band. 
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Figure 12: Grand combined HMO calculation for 230Th with 9 neutron and 9 proton Nilsson orbitals 
and Nazarewicz energies (see Tables 1,2). This is like Fig.l except that proton as well as neutron
alignment and pairing is shown and for the lowest three bands, yrast( x ), yrare( + ), and second
excited( • ). 
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9. Conclusion 

We have presented here some samples of what c·an be done on nuclear rotational 
band theory with high-speed desktop computers. By straightforward Hamiltonian 
matrix diagonalization (HMD) we calculate families of K = o+, 1 +, and 2+ bands 
in spheroidal even-even nuclei, obtaining wave functions conserving particle number 
and total ang)Jlar momentum. With such wavefunctions, band mixing behavior can 
readily be studied through spin alignment and pairing properties of various states. 

Quadrupole pairing and quadrupole-quadrupole field terms in the Hamiltonian 
were turned off in the actinide calculations shown here, since we wished to make direct 
comparisons between HMD and CHFB+RPA calculations for neutron-pair transfer. 
Comparing the two approaches we find remarkably similar patterns in the transfer 
strength distributions. This gives us some confidence that the similar patterns may be 
realistic, and with the two methods, one may guess the results in those regions, where 
each of the approaches is weakest (HMD at high spin, where the CAP is strong and 
CHFB+RPA near the transition point). The measurable population pattern is very 
much dominated by the COULEX. Thus, to study the transfer pattern experimentally 
one needs to study the impact energy and scattering angle dependence carefully, to 
disentangle, as far as possible, the CO ULEX pattern from the transfer pattern. 

We made exploratory studies of quadrupole pairing in the 90-neutron region, 
and we note its importance in lowering the pairing vibrational band head. This 
influence of downsloping (polar) and upsloping (equatorial) Nilsson orbitals near the 
Fermi surface, and the region of thorium nuclei studied in this paper should be less 
sensitive to quadrupole pairing. 

Our HMD calculations to date have been constrained to fixed deformation, a 
reasonable constraint for 232Th and its neighboring isotopes. However, if HMD is to be 
extended to the very borders of stable deformation ·or into some of the sub rare-earth 
regions with shape coexistence pioneered by Joe Hamilton and associates, we must 
develop a measure of self-consistency in shape determination. It seems promising 
to add quadrupole-quadrupole field interactions among the valence nucleons in the 
9-12 Nilsson orbitals, thus, opening the approach to shape self-consistency and shape 
coexistence phenomena. 
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