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ABSTRACT OF THE DISSERTATION

Parameter Estimation Procedure of Reaction Diffusion Equation with Application on Cell
Polarity Growth

by

Chenwei Tian

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, September 2018

Dr. Xinping Cui, Chairperson

Cell polarity is a fundamental feature of almost all cells. An excellent example for

studying cell polarity is pollen tube tip growth, which is a specialized form of cell growth,

in which growth is limited to the apical end of the cell, allowing the cell to rapidly elongate

and penetrate tissues. The key of pollen tube tip growth is polarized distribution on plasma

membrane of a particle named ROP1 and Ca2+. The oscillated distribution is the result of

a feedback loop between ROP1 and Ca2+.

This dissertation takes a multidisciplinary approach by combining knowledge of

cell biology, mathematics, and statistics in order to quantitatively study the full system

for the interaction between ROP1 and Ca2+ in pollen tube tip growth. In the first part

of the dissertation, we propose a mechanistic reaction-diffusion equation derived model of

cell polarity, and analytically study the spatiotemporal dynamic of proposed model. In the

second part, we first introduce parameter estimation procedure of linear reaction-diffusion

equation, then extend it to nonlinear case. Our approach can be seen as an extension of

gradient matching procedure. Moreover, consistency and asymptotic normality of proposed

vi



method will be discussed in linear case. And simulation study will be conducted in both

cases. In the end, we will apply proposed method on the pollen tube tip growth model

to predict ROP1 and Ca2+ concentration on plasma membrane. And guidance of refining

proposed model is given based on predication of ROP1 and Ca2+.
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Chapter 1

Introduction

Cell polarity refers to the asymmetric shape and structure of cells, which plays

a very important role in specialized functions in both animal cells and plant cells. In the

immune system of animals, a type of white blood cell called monocyte can move quickly

toward the site of infection through cell polarity, differentiate into macrophages and remove

dead cell debris. Cell polarity also plays an important role in asymmetric division of epithe-

lial stem cells, which is pivotal for the maintenance of epithelial tissue homeostasis. Loss of

cell polarity may cause symmetric division, leading to tissue overgrowth, thereby favoring

tumor initiation. In plant cells, cell polarity is involved in processes such as embryogenesis,

organogenesis, and vascular tissue formation and regeneration. For example, tip growth of

pollen tubes and root hairs is controlled by cell polarity. In this dissertation, we will focus

on the cell polarity of pollen tubes.

Cell polarity in pollen tube tip growth is described in [43]. It begins with the

recruitment and activation of the signaling apparatus, i.e., ROP GTPbase, under the spatial
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cues that determine the site and the direction of tip growth. Once the localization of

ROP1 has been established and maintained, active ROP1 controls exocytosis of pectin that

determines cell wall mechanics and therefore the shape of pollen tubes. Many previously

proposed models focus on the cell wall mechanics and shape formation of pollen tubes. In

this dissertation, we will focus on modeling the establishment of polarized distribution of

ROP1 on the membrane.

Altschuler et.al.[1] proposed a PDE model for yeast cell polarization but only

considered positive feedback. The reaction-diffusion pattern formation theory suggests that

positive feedback alone cannot generate stable spatial patterns. Chou, Nie, etc. have also

constructed RD models for yeast cell polarization induced by pheromone spatial gradient

[5, 19, 22, 45, 46]. As a key regulator of the self-organizing PT system, the activity and

distribution of ROP1 are fine-tuned by both positive and negative feedback mechanisms

as well as slow diffusion. Yang’s group have shown that Ca2+ is involved in the negative

feedback regulation of ROP1 signaling, and conducted experiments [12, 15, 16, 26, 40] to

study the oscillation of Ca2+ gradient and established ODE based model to describe Ca2+

activity. In general, ROP1 activity can be summarized as: (1) activation of inactive ROP1;

(2) inhibition of active ROP1, which depends on Ca2+; (3) lateral diffusion of molecules

along the membrane. On the other hand, Ca2+ concentration near plasma membrane is

determined by: (1) influx of Ca2+, which is regulated by ROP1; (2) self-decay of Ca2+; and

(3) diffusion of Ca2+ along the membrane.

In the first part of this dissertation, we focus on mathematical modeling of pollen

tube tip growth. In chapter 2, we will first review some models of ROP1 activity and Ca2+
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activity and their drawbacks. We then propose a partial differential equation (PDE) based

model, which describes interaction between ROP1 and Ca2+ with diffusion effect taken into

account. In chapter 3, we will analytically study the spatial-temporal dynamic of proposed

model. First, we will discuss temporal pattern of the kinetic system of proposed model.

In this section, conditions on parameter, under which oscillation can be generated, will be

discussed. Then, we will add the diffusion and non-local effect to study the spatial pattern

of the proposed model.

In the second part of this dissertation, we focus on statistical inference based

on the proposed PDE mdoel for pollen tube tip growth. In particular, we will introduce

a general framework of parameter estimation procedure for reaction diffusion equation,

which can be applied to our proposed model. In fact, parameter estimation of differential

equation (DE) based model have been widely studied [4, 18, 27, 39]. In chapter 4, we

will review different type of parameter estimation procedures for DE models as well as

their limitations, such as lack of explicit formula of variation of parameter estimator, and

requirement of nonparametric estimation of higher order derivatives. In chapter 5 and 6, we

will introduce our parameter estimation procedure for reaction diffusion equation, which can

avoid nonparametric estimation of higher order derivatives. The key idea of our method is

to decompose unknown spatial-temporal dynamic by eigenfunction of Laplacian operator.

With this decomposition, we can transform our PDE to a set of ODEs, which describe

how weight of eigenfunctions change over time. In chapter 5, we will first discuss about

parameter estimation procedure, then provide consistency and asymptotic normality of

proposed procedure for linear PDE together with simulation study. In chapter 6, proposed

3



method will be extended to nonlinear PDE. We will first describe parameter estimation

procedure and its implementation, then conduct simulation study to illustrate consistency

of proposed estimators. In chapter 7, we will apply the proposed methods to estimate

positive feedback and negative feedback parameters in pollen tube tip growth model and

predict ROP1-Ca2+ concentration on plasma membrane. In addition, we suggest to refine

our pollen tube tip growth model guided by results of our real data analysis.
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Part I

Mathematical Modeling of Pollen

Tube Tip Growth
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Chapter 2

Biological Background: Rapid

Spatial-temporal Oscillation of

Pollen Tube Tip Growth

As a key regulator of the self-organizing pollen tube system, the activity and dis-

tribution of ROP1 are fine-tuned by both positive and negative feedback mechanisms as well

as slow diffusion. It has been indicated that the Ca2+ gradient is involved in the negative

feedback regulation of ROP1. In addition, it also has been shown that ROP1 promotes

the formation of the intracellular Ca2+ gradients probably via the influx of extracellular

Ca2+[12, 16]. In this chapter, we propose a reaction-diffusion model of ROP1 and Ca2+

distributions on the cell membrane to show how ROP1 and Ca2+ are spatio-temporally

intertwined and what is the quantitative relationship between them in order to generate

the ROP1-Ca2+ spatio-temporal oscillation.
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Modeling polarized distribution of signaling molecule on plasma membrane , such

as Cdc42 in budding yeast, has been widely studied. Altschuler et al. [1] showed that

feedbacks alone can generate polarized distribution of signaling molecule when the number

of molecules is small. A PDE model for yeast cell polarization was proposed in [1] but

it only considered the positive feedback. The reaction-diffusion pattern formation theory

suggests that positive feedback alone cannot generate stable spatial patterns. Reaction-

diffusion models for yeast cell polarization induced by pheromone spatial gradient have

been established in [5, 19, 22, 45, 46]. Moreover, Gupta [13] provides an explanation for

the existence of polarized distribution in such cells if the population size is large. In recent

work, Zhen[38] proposed a PDE model for the ROP1 dynamics for the pollen tube tip

growth, which captures positive feedback, negative feedback and diffusion of ROP1. It is

shown in [38] that the positive steady state of proposed model is unique and has a soliton-

like profile which resembles the Arabidopsis PT experimental ROP1 data obtained in Yang

lab.

Several studies from the Yang group have shown that Ca2+ is involved in the

negative feedback regulation of ROP1 signaling, and they have formulated an ODE based

mathematical model and conducted experiments [12, 15, 16, 26, 40] to investigate the os-

cillation. On the other hand, ROP1 activation promotes increase in calcium level.

In this chapter, we will first provide some main results about ROP1 activity. Then

we will discuss the interaction between ROP1 and Ca2+. In the end, we will introduce our

proposed full system of reaction-diffusion model for interaction between ROP1 and Ca2+

on the cell membrane.

7



2.1 Main results of ROP1 activity

The redistribution of signaling molecules is determined by the rates of four funda-

mental transport mechanisms [1] (Fig 2.1 ): (1) recruitment (kfb) of cytoplasmic molecules

to the locations of membrane-bound signaling molecules; (2) spontaneous association (kon)

of cytoplasmic molecules to random locations on the plasma membrane; (3) lateral diffusion

(D) of molecules along the membrane; and (4) random disassociation (koff ) of signaling

molecules from the membrane.

Figure 2.1: A conceptual model of a ROP1 positive feedback circuit is characterized by four
biologically interpretable parameters [1].

In an initial analysis of the dynamics of this positive feedback circuit when the

spatial distribution of molecules on the membrane is ignored, Altschuler [1] found out that

the fraction of total signaling molecules on the membrane can switch from zero to a final

equilibrium heq with a half time of ∼ 1/(heqkfb). This equilibrium fraction heq can be esti-

mated simply as 1−koff/kfb. Accounting for the spatial distribution of signaling molecules
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on the plasma membrane, Altschuler [1] shows that distinct polarized regions emerge spon-

taneously When the total number of signaling molecules (N) is small. He also showed that

this behaviour is strongly affected by the ratio kon/kfb of spontaneous membrane associa-

tion rate to feedback rate. When the ratio is large, it is more likely to result in a spatially

homogeneous density. When the ratio is small, local amplification by positive feedback fre-

quently results in the emergence of spatially isolated clusters of signaling molecules. When

the total number of signaling molecules (N) is large, Gupta [13] illustrated that at station-

arity, the membrane molecules are arranged into clans of various sizes and molecules in a

clan are spatially clustered. In addition, there are times when most of the molecules are

part of a single clan and lie in a single hemisphere on the membrane, thereby causing a cell

to polarize.

The rest of the chapter is organized as follows. Section 2.1.1 presents a determin-

istic model which gives the results on equilibrium fraction heq. In section 2.1.2, we present a

stochastic process consisting of a continuous time Markov process and an undergone Brown-

ian motion, and provide the results about cell polarity behavior when N is small. In section

2.1.3, A Fleming-Viot stochastic process will be discussed, which characterizes membrane

molecule behavior when N is large. In section 2.1.4, we discuss the PDE model proposed

by Zhen [38] and describes dynamic of ROP1 distribution on the cell membrane.

2.1.1 Deterministic Model

In this section, we summarize Altschuler’s deterministic model, including two

parts: (1) ODE model of the amount of all molecules on the membrane; (2) PDE model of

dynamics of density of membrane-mound molecules [1].

9



First, Altschuler[1] modeled the fraction h(t) of all molecules on the membrane

that changes in time t by the following ordinary differential equation:

dh

dt
= kon(1− h) + kfb(1− h)h− koffh (2.1)

Let h+ and h− be two equilibrium of model (2.1) with
dh

dt
= 0 so we have

h± =
kfb − kon − koff

2kfb
±

√
(
kfb − kon − koff

2kfb
)2 +

kon
kfb

(2.2)

Hence, solution of model (2.1) can be written as

h(t) =
h+ + h−Ce

−t/Teq

1 + Ce−t/Teq
(2.3)

where C =
h+ − h(0)

h(0)− h−
, Teq = [(h+ − h−)kfb]

−1 and h(0) is the initial value of h(t). There-

fore, two conclusions can be drawn from this solution:

1. Assuming t/Teq � 0, we have h(t) = h+ − (h+ − h−)Ce−t/Teq . In this case, h(t)

approaches h+ at an exponential rate with half-time Teq, i.e. h+ − h(t) decreases by

a factor 2 in every time interval length Teqln2.

2. Assuming kfb > koff > 0 and kon � kfb − koff , we have heq = h+ ≈ 1 −
koff
kfb

and

h− ≈ 0. In this case, Teq ≈ (heqkfb)
−1.

In the next stage, Altschuler[1] modeled the density of membrane-bound molecules

u(x, t) that evolves in time by the following partial differential equation:

∂u

∂t
=

1

2
D52 u+ kon(1− h) + kfb(1− h)u− koffu (2.4)

where h as h(t) in model (2.1). For PDE (2.4), We can reparameterize it with v(x, t) =

u(x, t)− h(t)

h(t)
. The quantity v(x, t) can be interpreted as the deviation of membrane density
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from its spatial average relative to this average. Then PDE (2.4) can be rewritten as:

∂v

∂t
=

1

2
D52 v − kon

1− h
h

v (2.5)

Altschuler [1] pointed out that spatial oscillations of the membrane density decay expo-

nentially with half time of Tdiff = 2ln2 × λ2
1/D, where λ1 is the first eigenvalue of the

Laplacian operator. In a special case where the membrane is modeled by a circle of radius

R, Tdiff = 2ln2×R2/D. In the case where the membrane is modeled by a sphere of radius R,

Tdiff = ln2×R2/D. Therefore, solutions of the PDE model may exhibit spatial localization

for some time, this localization cannot persist. That is to say, it is impossible to achieve

a spatially inhomogeneous steady-state for positive feedback system. Moreover, since Tdiff

only depends on the diffusion constant and the physical size of the membrane, but not on

the rate constants kon, kfb and koff , a change in rates kon, kfb and koff will not lead to

spatially localized state.

2.1.2 Stochastic Model: Markov Process for small population

Besides describing the positive feedback system by PDE model (2.4), Altschuler [1]

also introduced a three-stage stochastic model to describe the stochastic process of positive

feedback system. The first stage describes the behavior of the total number of particles

on the membrane n(t) with a Markov process. The second stage describes the behavior of

the locations of the particles on the membrane with a Brownian motion. The third stage

describes the behavior of the clans on the membrane with a birth-death process. The models

are as follow:
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Stage 1 : The total number of particles on the membrane n(t) can be described with a

Markov process with the time evolution of the probability distribution of n(t) written as:

dpn(t)

dt
= Wn −Wn−1 (2.6)

where pn(t) is the probability that there are n particles on the membrane at time t; Wn =

koff (n + 1)pn+1(t) − (kon + kfb
n

N
)(N − n)pn(t) [9]. Denote a sequence of random times

t1 < t2 < · · · , at which n(t) jumps by ±1. During each time interval (ti, ti+1), the number

of particles on membrane is a constant ni. Denote x1(t), · · · , xni(t) be the location of each

particles at time t during t ∈ [ti, ti+1].

Stage 2 : During time period t ∈ [ti, ti+1], the location of each particles x1(t), · · · , xni(t)

can be described as a Brownian motion with diffusion coefficient D. Moreover, let the

locations at the end of the previous time interval [ti−1, ti] be x1(ti), · · · , xni−1(ti). Then,

the locations at the beginning of current time interval [ti−1, ti] can be initialized based on

the old locations in following ways:

1. If ni = ni−1 + 1, then the new locations are set by keeping the old locations and

randomly adding a new location xni−1+1(ti). Notice that the way of randomly picking

the new location depends on whether it is a spontaneous-on event or a recruitment

event. With probability kon/[kon + kfb(N − ni−1)], a spontaneous-on event occurred,

in which case we let xni(ti) be a randomly selected point on the membrane. Otherwise

a recruitment occurred, in which case we let xni(ti) be a random selection from the

already exist particle location.

2. If ni = ni−1 − 1, then the new locations are set as the old locations with randomly
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discarding one of old locations.

Stage 3 Particles can be tracked individually, and their lineage can be considered by

dividing the particles on the membrane into clans. Initially each particle is assigned to its

own clan. Then any particle which gets recruited to the membrane are assigned to the clan

of the recruiting particle.

Altschuler [1] modeled dynamics of clans in a time interval [0, T0], where no spon-

taneous on-event happens. Assuming that initially N0 = heqN particles on the membrane

starting its own clan so there are N0 clans at the beginning numbers with C = 1, · · · , N0,

where N is total number of particles in the cell and heq is equilibrium fraction of particles on

the membrane. Let nC(t) be the size of clan C at time t so nC(0) = 1 for any C = 1, · · · , N0.

Altschuler [1] described the behavior of nC(t) as a birth-death process with birth rate as

(1 − h)kfb and death rate as koff , which are the same at the equilibrium. Then denote

pCn(t) as the changes of the probability that a given clan C has n particles at time t, which

can be modeled as

dpCn(t)

dt
=


koff{(n− 1)pCn−1(t)− 2npCn(t) + (n+ 1)pCn+1(t)} if n > 0

koffp
C
1 (t) if n = 0

(2.7)

with initial value as pC1 (0) = 1 and pCi (0) = 0 for any i 6= 0. In this case, pC0 (t) is the

probability of a given clan C becomes extinct at time T . By solving model (2.7), the

probability that a given clan still exist at time t can be given as 1 − pC0 (t) =
1

1 + koff t
.

Hence, the expected number of clans at time t is
N0

1 + koff t
. Therefore, the expected time

that only one clan is left on the membrane can be calulated as Tstoch ≈ N
(

1

koff
− 1

kfb

)
if

N0 � 1.
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Therefore, in order to have only one clan on the membrane, Tstoch < T0 is required

where T0 is the time between two spontaneous on-event. In fact, with heqN particles on the

membrane, the spontaneous on-event occur rate is kon(1 − heq)N , which leads to average

time between two spontaneous on-event Ton = [kon(1− heq)N ]−1. Therefore, the sufficient

condition to guarantee cluster formation is

Tstoch � Ton ⇒ kon
koff

� (heq(1− heq)N2)−1 (2.8)

Moreover, the above analysis did not depend on the initial distribution of particles on the

membrane. Thus, the polarized state will frequently recur infinitely and with high proba-

bility in any timespan of length Tstoch. In addition, from stage 2 model, which describes the

location of each particles as Brownian motion with diffusion coefficient D. One can expect

the particles of a clan to be located in a region of radius dstoch =
√
DTstoch, which means

that if diffusion rate D is small then the clan members will spread out to form a localized

particle cluster; if diffusion rate D is very large then the clan members will move so far to

evenly spread cover membrane and form no cluster.

Besides the case where the number of signaling molecules is closed to equilibrium,

Altschuler [1] also discussed the case where the number of signaling molecules N is suffi-

ciently small. In this case, the spontaneous event is so infrequent that there is no signaling

molecules on the membrane, in most cells. Based on model (2.6) in stage 1, the probability

that there is no particles on membrane can be written as

p0 = P (n(t) = 0) ≈ {1 +
α

A

√
NeBN}−1 (2.9)

where α =
kon
kfb

; A = heq
√

(1− heq)/2π, B = −heq − ln(1− heq). Hence, the probability of

an empty membrane will be exactly 50% when kon/kfb ≈ AN−1/2e−BN .
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2.1.3 Stochastic Model: Fleming-Viot process for infinite population limit

Gupta [13] proposed a Fleming-Viot process for positive feedback circuit when N

is large. He claimed that if we let the feedback strength of each membrane bound molecule

increase linearly with the population, then we can get recurring cell polarity in the infinite

population limit. Gupta scales up kfb and koff by the population size N and leaves kon the

same. Here we consider the recruitment, spontaneous association and random disassociation

of molecules as birth, immigration and death process, respectively.

Gupta [13] started with the Markov process and Brownian motion described by

Altschuler [1] as in section 2.1.2. He showed that in the infinite population limit, the

dynamics of cell molecules is given by a measure-valued process µ where µ = heqv with

v being a Fleming-Viot process. He also proved ergodicity and unique stationarity of this

process v in the sense that its transition function converges exponentially to the stationary

distribution.

At any time, the molecules on the membrane can be divided into clans based on

their ancestral relationship. According to the theorem proposed by Ethier and Kurtz [7]

and results in Feng’s book [10], at stationarity in Fleming-Viot process, the sizes of atoms

in descending order has the Possion-Dirichlet distribution with the parameter θ =
kon
koff

. It

indicates that there are a few large clans and many small clans.

Gupta [13] mainly discussed the size and the proportion of clans. He showed

that while the molecules are constantly diffusing on the membrane, each clan will not

spread out more and more with time. In fact, the expected distance squared between

two molecules from the same clan at stationarity is Sp(t) =
2D

(kon + kfb)α+D/R2
where
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α = (1− heq)/heq. Therefore, as the diffusion speed D goes down or the effective feedback

strength γ = kfb(
1− heq
heq

) increases, the quantity Sp gets smaller. As for the proportion

of clans, Gupta [13] defined a concept called ε-polarized. For any 0 < ε � 1, a cell is

ε-polarized if at least (1− ε) fraction of the membrane population belongs to a single clan

and also resides in a single hemisphere on the membrane. Then he showed that the cell gets

ε-polarized (defined below) infinitely frequent. Therefore, we obtain recurring cell polarity

when N is large.

2.1.4 Reaction-Diffusion model

The PDE model (2.4) proposed by Altschuler [1] was further modified in [38], in

which the spontaneous term was eliminated for two reasons. Firstly, the spontaneous rate

kon is much smaller than kfb and koff . If kon is not small, then most particles will arrive on

the membrane through spontaneous associations rather than recruitment. The stochastic

model above indicates that no cluster will be formed in this case. Therefore, we can assume

that kon is small enough. Secondly, the time between two spontaneous events follows an

exponential distribution with expectation Ton = (kon(1 − heq)N)−1. When kon is small,

Ton will be large leading to a long time between two spontaneous events. Since the PDE

model only describes the change of distribution of ROP1 intensity in a small time limit, i.e.

dR(x, t)

dt
, we can assume that spontaneous event does not happen.

The ROP1 polarization dynamics without spontaneous association can be simpli-

fied as three main procedure (Fig 2.2 ): (1) activation of inactive ROP1; (2) deactivation of

active ROP1; (3) lateral diffusion of ROP1 along the membrane. The activation and deacti-
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Figure 2.2: ROP1 polarization dynamics

vation of ROP1 can be considered as positive feedback and negative feedback, respectively.

Both activation rate and deactivation rate are proportional to substrate concentration.

Since majority of inactive ROP1 are in cytoplasm with high mobility, the activation rate is

proportional to the total amount of cytoplasmic molecules (i.e. Rtot−
∫
Rdx) with rate kpf .

Moreover, empirical data analysis suggests that the activation rate is proportional to Rα

where α > 1. On the other hand, most active ROP1 are on membrane. Since molecules on

the membrane have much less mobility, the deactivation rate is proportional to the density

of molecules (i.e. R(x, t)) at given location with rate knf . Therefore, the PDE model (2.4)

were modified as following in [38]:

∂R(x, t)

∂t
= kpfR(x, t)α(

Rtot −
∫ L0

−L0
R(x, t)dx

Rtot
)−knfR(x, t)+D

∂2R(x, t)

∂x2
(x, t) ∈ [−L0, L0]×[0,∞]

(2.10)
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where R(x, t) is the ROP1 density on cell membrane, kpf and knf are coefficients of positive

feedback and negative feedback, respectively. Rtot denotes the total free ROP1 in the cell,

and D is the diffusion coefficient of ROP1 on membrane. The activation of inactive ROP1

is assumed to be proportional to Rα for α ∈ (1, 2) based on Yang lab’s experimental results,

and x is the signed distance from the tip of pollen tube.

It has been shown in [38] that the positive steady state of (2.10) is unique and has

a soliton-like profile which resembles the Arabidopsis PT experimental ROP1 data obtained

in Yang lab. Moreover the parameters kpf and knf were estimated based on the numerically

integrated steady state profile of (2.10) and the experimental data using a constrained Least

Squares (CNLS) method. The experimental data fits with the numerical steady state of

(2.10) reasonably well. However the positive steady state of (2.10) indeed is unstable with

respect to the time-evolution dynamics of (2.10), which suggests that some other feedback

mechanism or other key activator/inhibitor in the system is not identified in (2.10), such as

Ca2+ inhibition. Also the model (2.10) cannot produce time-periodic patterns which occurs

in the pollen tube tip growth. Therefore, we need a new model that can couple the spatial

Ca2+ dynamics with the ROP1 dynamics in (2.10).

2.2 Interaction between ROP1 and Ca2+

Several experimental studies have been conducted by Yang group to investigate

the interaction between ROP1 signaling regulation and Ca2+ activities. Their experimental

data [40, 12, 15, 16, 26] suggests that Ca2+ plays a important role in negative feedback of

ROP1 regulation. Accordingly, Yan [40] proposed two possible hypotheses along with two
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models to explain the inhibition effect of Ca2+ on ROP1: (1) Ca2+ promotes the disassembly

of the apical F-actin, leading to the down-regulation of ROP1 activity by countering the

F-actin-mediated positive feedback, which can be modeled as

dR

dt
= βR ×max{R0 −R, 0}

max{C0 − C, 0}R
R0C0

− αRR (2.11)

where βR is ROP1 activation rate, αR is ROP1 inactivation rate, R0 is saturated ROP1

concentration in cell, and C0 is high calcium threshold to decrease F-actin; (2) Ca2+ signal-

ing might down-regulate ROP1 activity by activating negative regulators of ROP1, which

can be modeled as

dR

dt
= βR ×max{R0 −R, 0}

R

R0
− αRRf(C)

f(C) =



1/M C < Cmin

1

M

[
1 +

(M − 1)(C − Cmin)

Cmax − Cmin

]
Cmin ≤ C ≤ Cmax

1 C > Cmax

where M , Cmin and Cmax are piecewise activation of GAP by calcium.

On the other hand, ROP1 activates the RIC3 downstream pathway, which may

trigger extracellular calcium influxes and activate calcium release from the internal calcium

pool. Therefore, ROP1 activity promotes the increase in calcium level which can be modeled

as

dC

dt
= βC [R(t− τ) + b]− αCC

where βC is calcium accumulation rate, αC is calcium depletion, and τ is time delay between

ROP1 and calcium accumulation. According to Yan’s simulation and experimental results

[40], time delay plays an important role in generation of oscillation.
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2.3 Proposed Model

Studies show that negative feedback of ROP1 depends on Ca2+ near the plasma

membrane, and that Ca2+ influx, which is activated by ROP1, have most effects on con-

centration of Ca2+ near the plasma membrane. In this dissertation, we propose a model to

describes ROP1-Ca2+ feedback loop on plasma membrane.

As described previously, ROP1 polarization dynamics without spontaneous asso-

ciation can be simplified as three main procedures (see Fig. 2.2 ): (1) activation of inactive

ROP1; (2) inhibition of active ROP1, which is forced by Ca2+; (3) lateral diffusion of ROP1

along the membrane. The activation and inhibition of ROP1 can be considered as posi-

tive feedback and negative feedback, respectively. Both activation and inhibition rates are

proportional to the substrate concentrations.

The lateral movement of ROP1 is modeled by a diffusion term Dr
∂2R(x, t)

∂x2
, where

Dr is the diffusion coefficient of ROP1. The ROP! activation rate is assumed to be pro-

portional to Rα where the exponent satisfies 1 < α < 2 based on empirical studies. Since

majority of inactive ROP1 are in cytoplasm with high mobility, the activation rate is pro-

portional to the total amount of cytoplasmic molecules (i.e. Rtot −
∫ L

−L
R(x, t)dx) with

rate kpf . On the other hand, most active ROP1 are on the membrane. Since molecules on

the membrane have much less mobility, the inhibition rate is proportional to the density of

molecules (i.e. R(x, t)) at any given location with rate knf . Moreover, Ca2+ can inhibit

ROP1 with some threshold kc and an inhibition term C2

C2+k2c
, which is a Hill function show-

ing a transition from low inhibition rate at low Calcium density, to a high but bounded

inhibition rate at a high Calcium density. The constant kc is the half-saturation value in-
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dicating the threshold between the low and high Calcium density. Hence R(x, t) satisfies a

reaction-diffusion equation with a nonlocal integral term:

∂R(x, t)

∂t
= kpfR

α(x, t)

(
Rtotal −

∫ L

−L
R(x, t)dx

)
− knfR(x, t)

C2

C2 + k2
c

+Dr
∂2R(x, t)

∂x2
.

(2.12)

The Ca2+ activities can also be simplified by the following three procedures: (1)

influx of Ca2+ which is regulated by ROP1 concentration; (2) efflux of Ca2+; and (3)

diffusion of Ca2+ along the membrane (see Fig.2.3). The diffusion of Ca2+ is given by

Figure 2.3: Ca2+ dynamics

Dc
∂2C(x, t)

∂x2
, where Dc is the diffusion coefficient of Ca2+. The Ca2+ ions could flow into

the cell through Calcium channel on the membrane, and the Ca2+ influx is controlled by

ROP1 with rate kac. Also there is a time delay τ in this promotion. In this work, we model

Ca2+ promotion with kacR(x, t−τ) to show a linear response of Calcium influx to the ROP1

density. On the other hand, self-decay of Ca2+ is proportional to substrate concentration

at a certain rate kdc. Therefore, the Ca2+ activities are described by a reaction-diffusion
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equation with time-delay:

∂C(x, t)

∂t
= kacR(x, t− τ)− kdcC(x, t) +D2

∂2C(x, t)

∂x2
. (2.13)

Note that ROP1 activates both ROP1 and Ca2+ growth, and Ca2+ inhibits both

ROP1 and Ca2+ (see Fig. 2.4).

Figure 2.4: Interaction diagram of ROP1 and Ca2+.

Putting 2.12 and 2.13 together with the proper initial conditions, we have the

following full system for the interaction between the ROP1 and Ca2+ on the cell membrane:



Rt = kpfR
α
(
Rtot −

∫ L
−LRdx

)
− knf

RC2

C2 + k2
c

+DrRxx, (x, t) ∈ (−L,L)× (0, T ),

Ct = kacR(x, t− τ)− kdcC +DcCxx, (x, t) ∈ (−L,L)× (0, T ),

Rx(x, t) = Cx(x, t) = 0, x = −L,L,

R(x, t) = R0(x, t), (x, t) ∈ (−L,L)× [−τ, 0],

C(x, 0) = C0(x), x ∈ (−L,L).

(2.14)

In fact, time delay is not necessary to generate oscillations in model (2.14) since

the spatial information (diffusion term) introduces a kind of time delay in the dynamics.
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Specifically, Ct function in model (2.14) is a heat equation Ct = kacR − kdcC + DcCxx.

Therefore, C(x, t) =

∫ ∫
K(x−u, t− s)R(u− s)duds, where K(,̇)̇ is a kernel function that

averages R on its past values, which can be interpreted as a time delay effect. Therefore,

in this dissertation we mainly work on the following model without time delay term:



Rt = kpfR
α
(
Rtot −

∫ L
−LRdx

)
− knf

RC2

C2 + k2
c

+DrRxx, (x, t) ∈ (−L,L)× (0, T ),

Ct = kacR(x, t)− kdcC +DcCxx, (x, t) ∈ (−L,L)× (0, T ),

Rx(x, t) = Cx(x, t) = 0, x = −L,L,

R(x, 0) = R0(x), C(x, 0) = C0(x), x ∈ (−L,L).

(2.15)
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Chapter 3

Analytic Study: Spatial-temporal

dynamic of proposed model

It has been observed in experimental data that membrane-localized Ca2+ and

ROP1 an oscillation of double-peak pattern which seems to be tightly correlated with ROP1

activity at the membrane both in time and space. Therefore, before moving on to param-

eter estimation procedure, it is necessary to verify that proposed model (2.15) is able to

generate observed oscillation pattern of ROP1 and Ca2+ distribution on the membrane. In

this chapter, we will analytically discuss spatial-temporal dynamic of solution to proposed

model (2.15) under different condition of parameters. For this purpose, we first convert the

equation into a dimensionless form, we introduce the normalized quantities:

ť = kdct, x̌ =

√
kdc
Dr

x, Ř =
2LR

Rtot
, Č =

2LkdcC

Rtotkac
, (3.1)
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k1 =
2Lkpf
kdc

(
Rtot
2L

)α
, k2 =

knf
2Lkpf

(
2L

Rtot

)α
, k3 =

2Lkckdc
kacRtotal

, D =
Dr

Dc
, (3.2)

Ľ = L

√
kdc
Dc

, Ť = kdcT. (3.3)

With these normalized quantities, the PDE model (2.15) is rewritten in the fol-

lowing normalized form:



Řť = k1Ř
α

(
1− 1

2Ľ

∫ Ľ

−Ľ
Řdx̌

)
− k1k2

ŘČ2

Č2 + k2
3

+DŘx̌x̌, (x̌, ť) ∈ (−Ľ, Ľ)× (0, Ť ),

Čť = Ř(x̌, ť)− Č + Čx̌x̌, (x̌, ť) ∈ (−Ľ, Ľ)× (0, Ť ),

Ř(x̌, 0) = Ř0(x̌), Č(x̌, 0) = Č0(x̌), x̌ ∈ (−Ľ, Ľ).

(3.4)

Dropping the ·̌ in (3.4), we have the system



Rt = k1R
α

(
1− 1

2L

∫ L

−L
Rdx

)
− k1k2

RC2

C2 + k2
3

+DRxx, (x, t) ∈ (−L,L)× (0, T ),

Ct = R(x, t)− C(x, t) + Cxx, (x, t) ∈ (−L,L)× (0, T ),

Rx(x, t) = Cx(x, t) = 0, x = −L,L,

R(x, 0) = R0(x), C(x, 0) = C0(x), x ∈ (−L,L).

(3.5)

From now on, we will analyze the dynamics behavior of the simplified system (3.5).

First, we will discuss about temporal dynamic of kinetic system. In the second section, we
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will add diffusion and nonlocal term to kinetic system, and study how the spatial term

changes the dynamics behavior of model (3.5).

3.1 Kinetic system

In system (3.5), if the initial conditions (R0(x, t), C0(x)) are spatially homoge-

neous, then the corresponding solution of (3.5) is also spatially homogeneous and it satisfies

Rt = k1R
α (1−R)− k1k2

RC2

C2 + k2
3

,

Ct = R(t)− C,

R(t) = R0(t), t ∈ [−τ, 0], C(0) = C0.

(3.6)

The steady states of (3.6) satisfy
k1R

α(1−R)− k1k2
RC2

C2 + k2
3

= 0,

R− C = 0.

(3.7)

A nonnegative steady state is either the trivial one (R,C) = (0, 0), or a positive one satis-

fying

Rα−1(1−R)− k2
C2

C2 + k2
3

= 0, C = R. (3.8)

Then (3.8) is equivalent to C = R and

f(R) ≡ k2 −Rα−3(1−R)(R2 + k2
3) = 0. (3.9)

The following result shows the existence and exact multiplicity of roots R of (3.9),

which also reveals the existence and exact multiplicity of steady states of (3.6) in form

(R,R).
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Proposition 1 There exists a constant k31 > 0 such that

1. If 0 < k3 < k31, then there exists 0 < k21 < k22 which depend on k3 and α such that

(a) when 0 < k2 < k21, there is a unique positive root R3 for (3.9) (see Fig. 3.1a);

(b) when k2 > k22, there is a unique positive root R1 for (3.9) (see Fig. 3.1e);

(c) when k2 = k21 or k2 = k22, then there are exactly two positive roots R1, R3

satisfying R1 < R3 for (3.9) (see Fig. 3.1b and Fig. 3.1d);

(d) when k21 < k2 < k22, there are exactly three positive roots R1, R2, R3 satisfying

R1 < R2 < R3 for (3.9) (see Fig. 3.1c).

2. If k3 > k31, then for any k2 > 0, there is a unique positive root R1 for (3.9) (see Fig.

3.1f).

The proof of Proposition 1 is given in Appendix. From Proposition 1, (3.6) pos-

sesses one, or two, or three positive steady states depending on the parameter values of k2

and k3. We denote the positive steady states of (3.6) by (Rj , Cj) = (Rj , Rj) (1 ≤ j ≤ 3),

where Rj is the root of (3.9) as shown in Proposition 1, and Cj = Rj . Fig. 3.2 shows the

regions of parameters (k2, k3) where (3.6) has 1 or 3 positive steady states. When k3 > k31,

the bifurcation diagram in (k2, R, C)-space is a monotone curve (see Fig. 3.3a and Fig.

3.3c), while when 0 < k3 < k31, the corresponding bifurcation diagram is an S-shaped one

with two saddle-node bifurcation points at k2 = k21 and k2 = k22 (see Fig. 3.3b). When

the parameter k2 varies, the bifurcation diagram depicts a typical hysteresis scenario with

a bistable structure. Similar bifurcation structure have been found in various biological
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Figure 3.1: Graphs of f(R) with α = 1.5 and varying (k2, k3).

models of spruce budworm population [20], shallow lakes [29, 30], coral reef [17, 23], and

forest and savanna [33, 34].

Next we consider the local stability of the steady states (0, 0) and (Rj , Rj) (1 ≤

j ≤ 3) with respect to (3.6). First at steady state (0, 0), the Jacobian matrix is

 0 0

1 −1

.

Therefore we have two eigenvalues λ1 = 0 and λ2 = −1 < 0 which indicates that (0, 0) is

a degenerate steady state. One can apply the theory of two-dimensional dynamical system

to obtain the following description of the dynamics of (3.6) near (0, 0):

28



Figure 3.2: The number of positive steady state of system (2.5) for different values of (k2, k3)
with α = 1.5

Figure 3.3: Bifurcation diagrams of system (2.5) with α = 1.5
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Proposition 2 For any k1, k2, k3 > 0, there exists a δ > 0 such that in the neighborhood

B = {(R,C) : 0 < R < δ, 0 < C < δ} of (0, 0),

1. (3.6) has a unique center manifold Wc = {(R, hu(R)) : 0 < R < δ} such that hc(0) =

h′c(0) = 1, and the orbit of (3.6) on Wc is unstable;

2. there exists a function hs : (0, δ) → (0, δ) such that for any region O = {(R,C) :

0 ≤ R ≤ hs(C), 0 < C < δ} is invariant, and for any (R0, C0) ∈ O, the solu-

tion (R(t), C(t)) of (3.6) with (R(0), C(0)) = (R0, C0) satisfies limt→∞(R(t), C(t)) =

(0, 0).

3. other orbits in B exhibits saddle behavior near (0, 0), that is, the orbit does not ap-

proach (0, 0) as t→∞, and for t > T , the orbit leaves the neighborhood B.

The proof of Proposition 2 is given in Appendix. It shows that there is a ”horn”-

shaped region belonging to the basin of attraction of the origin (0, 0). Indeed for any

parameter values, if the initial value of Ca2+ C0 is sufficiently large, then the solution will

converge to (0, 0) (see Fig 3.4). So our subsequent discussion will be for the remaining part

of the phase portrait in which the orbits do not converge to (0, 0).

For positive steady states, we linearize (3.6) at a steady state (Rj , Rj) (j = 1, 2, 3),

then we obtain the Jacobian matrix as

J(Rj , Rj) =

 k1Rjf
′
1(Rj) −k1Rjf

′
2(Rj)

1 −1

 , (3.10)
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Figure 3.4: Dynamical behavior of (3.6) near (0, 0). Here α = 1.5, k1 = 175, k2=0.31, k3 =
0.0316, and the initial conditions for the solution orbits in the right panel are (R(0), C(0)) =
(0.05, 0.05) and (0.04, 0.04)

where

f1(R) = Rα−1(1−R), f2(R) =
k2R

2

R2 + k2
3

. (3.11)

Hence we find that

Tr(J(Rj , Cj)) = k1Rjf
′
1(Rj)− 1, (3.12)

Det(J(Rj , Cj)) = k1Rj(f
′
2(Rj)− f ′1(Rj)). (3.13)

We recall that a steady state (R,R) of (3.6) is a sink or spiral sink if both eigenvalues

of J(R,R) are of negative real parts; it is a source or spiral source if both eigenvalues of

J(R,R) are of positive real parts; and it is a saddle if J(R,R) has one positive and one

negative eigenvalue. From the trace-determinant theory, it is easy to know that (R,R) is a

sink or spiral sink if Tr(J) < 0 and Det(J) > 0; it is a source or spiral source if Tr(J) > 0

and Det(J) > 0; and it is a saddle if Tr(J) ∈ R and Det(J) < 0.

For our next result regarding the local stability of the positive steady state (Rj , Rj)
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(j = 1, 2, 3) obtained above, we determine the stability using the trace and determinant of

J(R,C). We also observe that the steady states of (3.6) are independent of parameter k1,

but k1 does affect the stability of steady states. For for fixed α ∈ (1, 2) and k3 > 0, and any

0 < R < 1, the pair (R,R) can be a steady state of (3.6) for exactly one value of k2 > 0 by

the relation (from (3.7)):

k2 = Rα−3(1−R)(R2 + k2
3). (3.14)

That is, for fixed α ∈ (1, 2) and k3 > 0, the set of steady states of (3.6) can be parameterized

by R as a bifurcation diagram (see Fig. 3.3):

Σ = {(k2(R), R,R) : R ∈ (0, 1)}, (3.15)

where k2(R) is given by (3.14). Now we state our results on the local stability of the positive

steady state in terms of parametrization in (3.15).

Theorem 3 Suppose that α ∈ (1, 2) and k3 > 0, and k2(R) is defined as in (3.14) so that

(R,R) is a positive steady state of (3.6) with k2 = k2(R) for 0 < R < 1.

1. If k3 > k31 (defined in Proposition 1), then Det(R,R) > 0 for any R ∈ (0, 1); and if

0 < k3 < k31, then there exist r1, r2 > 0 such that Det(R,R) > 0 for R ∈ (0, r1) ∪

(r2, 1), and Det(R,R) < 0 for R ∈ (r1, r2). Here k2(r1) = k21 and k2(r2) = k22

(defined in Proposition 1).

2. Define

k11 =
α2α−1

(α− 1)2α−1
. (3.16)

If 0 < k1 < k11, then Tr(R,R) < 0 for any R ∈ (0, 1); and if k1 > k11, then there

exist 0 < R̃1 < R̃2 such that Tr(R,R) < 0 for R ∈ (0, R̃1)∪ R̃2, 1), and Tr(R,R) > 0
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for R ∈ (R̃1, R̃2).

According to Theorem 3, we can have following results for 0 < k3 < k31, when

there are at least one and at most three positive steady state of (3.6):

1. The middle positive steady state (R2, R2) is always a saddle.

2. The largest positive steady state (R3, R3) or the smallest one (R1, R1) is either a sink

or spiral sink, or a source or spiral source, but it is not a saddle.

3. Define

Is = ((0, r1) ∪ (r2, 1)) ∩ ((0, R̃1) ∪ (R̃2, 1)). (3.17)

Then when R ∈ Is, the positive steady state (R,R) is a sink or spiral sink which is

locally asymptotically stable. In particular, when R > 0 is sufficiently small or when

R is close to 1, then (R,R) is a sink or spiral sink.

4. Define

Iu = ((0, r1) ∪ (r2, 1)) ∩ (R̃1, R̃2). (3.18)

Then when R ∈ Iu, the positive steady state (R,R) is a source or spiral source which

is unstable.

The proof of Theorem 3 is in the Appendix. Note that the stable regime Is is always

not an empty set as it contains a right neighborhood of R = 0 and a left neighborhood of

R = 1, but Is may also contain another connected component which is disconnected from

R = 0 and R = 1. The unstable regime Iu could be empty, and that happens when

0 < k1 < k11. However Iu is not empty when k1 is chosen as sufficiently large. Indeed for
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fixed k3 > 0, one has that

lim
k1→∞

R̃1 = 0, lim
k1→∞

R̃2 =
α− 1

α
. (3.19)

The local stability analysis given in Theorem 3 can be used to guide our clas-

sification of global dynamics of (3.6). A complete classification in terms of parameters

(k1, k2, k3) is rather exhaustive and it will be given in Appendix. Here we focus on in which

cases, the system (3.6) shows sustained temporal oscillations. The follow result classifies

the occurrence of Hopf bifurcations in terms of parameters k1, k2 and k3.

Proposition 4 Suppose that α ∈ (1, 2), and define

g(R) = Rα−1[(α− 1)− αR]. (3.20)

Let k31, k11 be defined as in Proposition 1 and (3.16) respectively, and let r1, r2, R̃1, R̃2 > 0

be defined in Theorem 3. We also define k̃21 = k2(R̃1) and k̃22 = k2(R̃2).

1. If k3 > k31, (3.6) has a unique positive steady state for all k1, k2 > 0. Moreover

(a) When k1 < k11, the unique positive steady state of (3.6) is a sink or spiral sink

for any k2 > 0. (see Fig. 3.5a)

(b) When k1 > k11, the unique positive steady state of (3.6) is a sink or spiral sink

for k2 ∈ (0, k̃22) ∪ (k̃21,∞), and is unstable for k2 ∈ (k̃22, k̃21); Hopf bifurcations

occur at k2 = k̃21 and k2 = k̃22, and there exists at least one periodic orbit for

k2 ∈ (k̃22, k̃21). (see Fig. 3.5b)

2. If 0 < k3 < k31, (3.6) has at least one and at most three positive steady states, and
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Figure 3.5: Possible bifurcation diagrams of (3.6) with parameter k2. Here the horizontal
axis is k2 and the vertical axis is R, α = 1.5 and k1, k3 are specified for each diagram.
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when there exist three positive steady states, the middle one (R2, R2) is a saddle.

Moreover

(c) If k1 > 1/g(r2), then Hopf bifurcations occur at k̃22 on the large steady state

(R3, R3) and at k̃21 on the small steady state (R1, R1) of (3.6). (see Fig. 3.5c)

(d) If 1/g(r1) < k1 < 1/g(r2), then the large positive steady state (R3, R3) is always

a sink or spiral sink, and a Hopf bifurcation occurs at k̃21 on the small positive

steady state (R1, R1) of (3.6). (see Fig. 3.5d)

(e) Define

k̃3 =

√
(α− 1)5

α3(−α2 + 5α− 2)
. (3.21)

If 0 < k1 < 1/g(r1) and 0 < k3 < k̃3, or 0 < k1 < k11 and k̃3 < k3 < k31,

then both the large positive steady state (R3, R3) and the small positive steady

state (R1, R1) are always sink or spiral sink, and there is no Hopf bifurcation

occurring. (see Fig. 3.5e)

(f) If k11 < k1 < 1/g(r1) and k̃3 < k3 < k31, then the large positive steady state

(R3, R3) is always a sink or spiral sink, and Hopf bifurcations occur at k̃21 and

k̃22 on the small positive steady state (R1, R1) of (3.6). (see Fig. 3.5f)

The proof of Proposition 4 is in the Appendix. The six bifurcation diagrams of

steady states and Hopf bifurcations are shown in Fig. 3.5, and a classification of (k3, k1)

parameter regions in which Hopf bifurcations with parameter k2 can occur is summarized

in Fig. 3.6.

Guided by bifurcation diagrams above, there are following six possible dynamic
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Figure 3.6: Classification of (k3, k1) parameter region for Hopf Bifurcation occurrence with
α = 1.5.

phase planes and dynamics of (R(t), C(t)) solutions. Note that from Proposition 2, there is

always a region of initial conditions that orbits starting from there converge to the origin

(0, 0) as t→∞. That region is bounded below by the maximum center manifold. So in the

following we only describe the dynamics below the maximum center manifold.

1. There is only one positive steady state R1, which is a sink or spiral sink. All the

solutions will converge to R1. For example, when α = 1.5, k1 = 9.5, k2 = 1, k3 = 0.06,

there is a spiral sink at R1 = 0.02587. (See Fig 3.7 upper row)

2. There is only one positive steady state R1, which is a source or spiral source, and there

is a limit cycle around R1. For example, when α = 1.5, k1 = 15, k2 = 1, k3 = 0.06,

there is a limit cycle around positive steady state R1 = 0.02587.(See Fig 3.7 lower

row)
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3. There are three positive steady states R1, R2 and R3; R2 is a saddle point while R1

and R3 are sinks or spiral sinks. A solution will converge to either R1or R3 depending

on the initial value. For example, when α = 1.5, k1 = 5, k2 = 0.4035, k3 = 0.0707,

there are two sinks, R1 = 0.1418 and R3 = 0.3194. The solution will converge

to R1 = 0.1418 if initial value is (R(0), C(0)) = (0.1, 0.4) while to R3 = 0.3194 if

(R(0), C(0)) = (0.4, 0.1). (See Fig 3.8)

4. There are three positive steady states R1, which is a source, R2, which is a saddle

point, R3, which is a global sink. Whatever initial value is, the solution will converge

to R3. For example, when α = 1.5, k1 = 12, k2 = 0.31, k3 = 0.0316, the sink

R3 = 0.6013 attracts most of initial conditions, and Fig 3.9 shows an orbit connecting

R1 to R3. It is also possible that there is a limit cycle around R1, but the parameter

range for that case is not robust.

5. There are three positive steady states R1, R2 and R3. R2 is a saddle point while

R1 and R3 are source or spiral source. Again the parameter range supporting such

dynamics is not robust enough so we do not include a phase portrait for that case

here.

3.2 Diffusion Effect (Joint Work with Dr. Qingyan Shi)

In this section, we shall show that spatiotemporal pattern formation is possible for

(3.5) as a combined effect of diffusion, kinetic dynamics discussed in Section 3.1, and also
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Figure 3.7: Dynamic behavior of (3.6) when α = 1.5, k2 = 1, k3 = 0.06; Upper:k1 = 9.5;
Lower: k1 = 15.

Figure 3.8: Dynamic behavior of (3.6) when α = 1.5, k1 = 5,k2 = 0.4035, k3 = 0.0707.
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Figure 3.9: Dynamic behavior of (3.6) when α = 1.5, k1 = 12,k2 = 0.31, k3 = 0.0316.

the nonlocal integral term.

It is easy to see that a steady state (R∗, R∗) of (3.6) is a constant steady state

solution of (3.5). Linearizing Eq. (3.5) at a constant steady state (R∗, R∗), we obtain the

following eigenvalue problem which determines the linear stability of the constant steady

state:

µφ = Dφxx + (k1R∗f
′
1(R∗) + k1R

α
∗ )φ− k1R∗f

′
2(R∗)ψ − k1R

α
∗

1

2L

∫ L

−L
φdx, x ∈ (−L,L),

µψ = ψxx + φ− ψ, x ∈ (−L,L),

φx(x) = ψx(x) = 0, x = −L,L,

(3.22)

where f1(R) and f2(R) are defined in (3.11). The eigenvalue problem (3.22) can be consid-

ered in the real-valued Sobolev space with the Neumann Boundary problem X = {(φ, ψ) ∈

H2(−L,L) × H2(−L,L) : Rx(±L) = Cx(±L) = 0}, and the eigenvalues of the diffusion
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operator u 7→ −u′′ on X are

λn =
(nπ

2L

)2
, n ∈ N0 := {0, 1, 2, · · · }, (3.23)

and the corresponding eigenfunctions are

ϕn(x) =


cos(
√
λnx), n = 0, 2, 4, · · · ,

sin(
√
λnx), n = 1, 3, 5, · · · .

(3.24)

The following lemma shows that the eigenvalue problem (3.22) can be solved through a

Fourier decomposition of the eigenfunction and it is reduced to eigenvalues of infinitely

many 2× 2 matrices.

Lemma 5 Let λn and ϕn(x) be defined by (3.23) and (3.24) respectively, and let (R∗, R∗)

be a constant steady state of Eq. (3.5) with R∗ satisfying Eq. (3.9). Define

J0 =

k1R∗f
′
1(R∗) −k1R∗f

′
2(R∗)

1 −1

 ,

Jn =

−Dλn + k1R∗f
′
1(R∗) + k1R

α
∗ −k1R∗f

′
2(R∗)

1 −λn − 1

 , n = 1, 2, 3 · · · ,

(3.25)

then we have

(i) if µ is an eigenvalue of (3.22), then there exists n ∈ N0 such that µ is an eigenvalue

of Jn;

(ii) (R∗, R∗) is locally asymptotically stable when the eigenvalues of Jn for all n ∈ N0 have

negative real parts, and it is unstable when there exists some n ∈ N0 such that Jn has

at least one eigenvalue with positive real part.
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From Lemma 5, the eigenvalues of (3.22) are the eigenvalues of Jn, which are

determined by the characteristic equation

Γn(µ) = µ2 − Tnµ+Dn = 0, (3.26)

where

T0 = k1R∗f
′
1(R∗)− 1, D0 = k1R∗(f

′
2(R∗)− f ′1(R∗)),

and for n ≥ 1,

Tn = −(D + 1)λn + k1R∗f
′
1(R∗) + k1R

α
∗ − 1,

Dn = Dλ2
n +

(
D − k1R∗f

′
1(R∗)− k1R

α
∗
)
λn + k1R∗(f

′
2(R∗)− f ′1(R∗))− k1R

α
∗ .

Following the approach in [37, 44], the condition for the occurrence of a Hopf

bifurcation near (R∗, R∗) is that there exist a pair of purely imaginary eigenvalues ±iωn

with ωn > 0 such that Eq. (3.26) holds, which is equivalent to that there exists n ∈ N0

such that

(H) Tn = 0, Dn > 0, and Ti 6= 0, Di 6= 0 for i 6= n.

Also, we need to the verify the transversality condition which is dRe(µ)
dk1

6= 0 for Hopf bifur-

cation is satisfied. By the fact that Re(µ) = Tn/2, we obtain that

dRe(µ)

dk1
= R∗f

′
1(R∗) +Rα∗ = (α− 1)Rα−1

∗ (1−R∗) > 0,

as 0 < R∗ < 1. Therefore, the transversality condition holds and Hopf bifurcations indeed

occur at the following defined bifurcation points.

Here we choose k1 the as bifurcation parameter, while one can also use other

parameter as the bifurcation parameter. Then we have the spatially homogeneous and
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non-homogeneous Hopf bifurcation points:

k
(0)
1H =

1

R∗f ′1(R∗)
, k

(n)
1H =

1 + (D + 1)λn
R∗f ′1(R∗) +Rα

, n ∈ N, (3.27)

provided that k2 ∈ (k∗2,+∞) such thatR∗f
′
1(R∗) > 0 which is necessary for the homogeneous

Hopf bifurcation, where

k∗2 = k2

(
α− 1

α

)
(3.28)

with k2(R) defined by (3.14). Also, notice that R∗f
′
1(R∗) +Rα = (α− 1)Rα−1

∗ (1−R∗) > 0

holds for any R∗ ∈ (0, 1), thus k
(n)
1H > 0. To sum up the discussion, we have the following

lemma.

Lemma 6 For fixed parameters k3, D in system (3.5) and let k∗2 and k
(n)
1H , n ∈ N0 be defined

by (3.28) and (3.27) respectively, then we have

(i) when k2 ∈ (0, k∗2), the spatially homogeneous Hopf bifurcation does not occur, but

system (3.5) undergoes a spatially non-homogeneous Hopf bifurcation at k1 = k
(n)
1H

defined in (3.27) for each n ∈ N;

(ii) when k2 ∈ (k∗2,+∞), system (3.5) undergoes a spatially homogeneous Hopf bifurcation

at k1 = k
(0)
1H and a spatially non-homogeneous Hopf bifurcation at k1 = k

(n)
1H for each

n ∈ N.

Similarly a steady state bifurcation occurs when

(S) Dn = 0, Tn 6= 0, and Ti 6= 0, Di 6= 0, for i 6= n,

holds for some n ∈ N, which is also called the diffusion-driven instability developed by

Turing [36]. According to the condition (S), by taking k1 as the bifurcation parameter, we
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can obtain the following bifurcation points for the Turing instability:

k
(n)
1S =

D(λ2
n + λn)

(R∗f ′1(R∗) +Rα∗ )λn +R∗(f ′1(R∗)− f ′2(R∗)) +Rα∗
, n ∈ N. (3.29)

Note that k
(n)
1S may not be positive, but there exist a N ∈ N such that k

(n)
1S > 0 when n > N

and a steady state bifurcation indeed occurs at k1 = k
(n)
1S when n > N . According to [44],

we also need to the verify the transversality condition which is dDn
dk1
6= 0 for the steady state

bifurcation is satisfied. By a direct calculation, we have

dDn

dk1
= −(R∗f

′
1(R∗) +Rα∗ )λn +R∗(f

′
2(R∗)− f ′1(R∗)−Rα−1) < 0.

The Hopf bifurcation points defined in (3.27) and the steady state bifurcation

points defined in (3.29) provide theoretical parameter values where spatial/temporal pat-

terns for system (3.5) can emerge. In the remaining part of this section, we take some

different values of k1, k3 and the spatial domain length L to numerically demonstrate pos-

sible bifurcations and rich dynamical behavior of model (3.5).

Example 7 We choose k2 = 1, k3 = 0.06, α = 1.5, L = 0.5π. In this case there is a

unique constant steady state (R∗, R∗) = (0.0259, 0.0259) which is determined by Eq. (3.9).

According to Proposition 4, (0.0259, 0.0259) is locally asymptotically stable for k1 ∈ (0, k∗1)

and unstable for k1 ∈ (k∗1,+∞) with k∗1 = 13.4744 being the homogeneous Hopf bifurca-

tion point of the kinetic system (3.10). Then, by (3.27) and (3.29), we can compute the

bifurcation points as

k
(0)
1H = k∗1 = 13.4744, k

(n)
1H = 12.7578(1 + (D + 1)n2), k

(n)
1S =

D(n4 + n2)

0.0784n2 − 0.1822
. (3.30)
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Figure 3.10: Steady state and Hopf bifurcation diagram for (3.5) on D − k1 plane with
k2 = 1, k3 = 0.06, α = 1.5, L = 0.5π. We choose six points in D − k1 plane to per-
form the numerical simulations: P1 = (0.1, 10), P2 = (0.1, 14.5), P3 = (0.04, 5), P4 =
(0.04, 7), P5 = (0.04, 14.5).

The bifurcation curves in (3.30) are plotted in Fig. 3.10 in D− k1 plane, and this

diagram serves as a guidance map for the different spatiotemporal patterns shown below.

Fig. 3.11 demonstrates the situation when D = 0.1 and k1 = 10 (P1) or k1 = 14.5 (P2) in

Fig. 3.10. For parameter value at P1, the constant steady state (0.0259, 0.0259) is locally

stable under a small random perturbation around the steady state (Fig. 3.11a,b); while

a spatially homogeneous time-periodic orbit arises when k1 crosses the homogeneous Hopf

bifurcation line k1 = k
(0)
1H and reaches P2 (Fig. 3.11c,d).

For a smaller diffusion rate D = 0.04, spatially non-homogeneous steady states

and periodic orbits can be generated when k1 increases (see from Fig. 3.10). When k1 = 5
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Figure 3.11: The dynamics of (3.5) when D = 0.1, k2 = 1, k3 = 0.06, L = 0.5π.
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Figure 3.12: The dynamics of Eq. (3.5) when D = 0.04, k2 = 1, k3 = 0.06, L = 0.5π.
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(P3), the constant steady state is stable under a small perturbation (see Fig. 3.12a,b);

when k1 = 7 (P4), a mode-2 Turing pattern (spatially non-homogeneous steady state) is

observed (see the Fig. 3.12c,d). Finally if k1 crosses the homogeneous Hopf bifurcation

line k1 = k
(0)
1H to k1 = 14.5 (P5), then spatiotemporal patterns (spatially non-homogeneous

periodic orbits) are observed (see Fig. 3.12e,f).

In this example, the homogeneous Hopf bifurcation curve (n = 0) and the steady

state bifurcation curve with lowest n (n = 2) are where stability switches occur. For

parameter values below both curves (P1, P3), the constant steady state is stable; for the one

above the homogeneous Hopf bifurcation curve but below the steady state bifurcation curve

(P2), a spatial homogeneous periodic orbit is observed; for the ones below the homogeneous

Hopf bifurcation curve but above the steady state bifurcation curve (P4), a spatially non-

homogeneous steady state is observed; and for the one above both bifurcation curves (P6),

a spatially non-homogeneous periodic orbit emerges.

Example 8 We choose k2 = 1, k3 = 0.5, α = 1.5, L = π, there is a unique constant

steady state (R∗, R∗) = (0.3920, 0.3920) which is determined by Eq. (3.9) and is locally

asymptotically stable for the kinetic system (3.6) by Proposition 4. Then, by (3.27) and

(3.29), we can compute the bifurcation point as

k
(n)
1H = 5.2539(1 + (D + 1)n2), k

(n)
1S =

D(n4 + n2)

0.1903n2 − 0.2812
. (3.31)

Similarly, by plotting (3.31) in D − k1 plane, we obtain the bifurcation diagram

in Fig. 3.13. Note that here a homogeneous Hopf bifurcation line is absent as k2 < k∗2.
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Figure 3.13: Steady state and Hopf bifurcation diagram for Eq. (3.5) on D− k1 plane with
k2 = 1, k3 = 0.5, α = 1.5, L = π. The chosen points for the numerical simulations are:
P7 = (0.2, 5), P8 = (0.2, 8), P9 = (0.1, 3.5), P10 = (0.1, 6), P11 = (0.1, 8).

According to Lemma 6, we know that there is no homogeneous Hopf bifurcation in this

case. When D = 0.2, Fig. 3.14 shows that the constant steady state is stable below the

non-homogeneous Hopf bifurcation line (P7, upper row of Fig. 3.14), and a stable spatially

non-homogeneous time-periodic pattern emerges when k1 crosses the first non-homogeneous

Hopf bifurcation line (P8, lower row of Fig. 3.14). On the other hand when D = 0.1, with

the increase of k1, the first bifurcation line is the steady state bifurcation with mode n = 4,

so we observe the spatially non-homogeneous steady state at P10 (see the middle row of

Fig. 3.15). Then the lower row of Fig. 3.15 demonstrates that a spatiotemporal oscillatory

pattern is generated after k1 traverses the spatially non-homogeneous Hopf bifurcation line.

In this example, a spatially homogeneous Hopf bifurcation does not occur, and
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Figure 3.14: The dynamics of Eq. (3.5) when D = 0.2, k2 = 1, k3 = 0.5, L = π.
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Figure 3.15: The dynamics of Eq. (3.5) when D = 0.1, k2 = 1, k3 = 0.5, L = π.
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the spatially non-homogeneous time-periodic orbits can bifurcate directly from a constant

steady state (Fig. 3.14), or through a steady state bifurcation first then a Hopf bifurcation

(see Fig. 3.15), which is different from the ones in Example 7.
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Part II

Statistical Analysis of Pollen Tube

Tip Growth Model
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Chapter 4

Literature Review: Parameter

Estimation of Differential Equation

Reaction diffusion equation, a special type of Differential Equation (DE), has been

widely used in modeling dynamic processes from molecular level to species level in biology.

At molecular level, enzyme inhibition and cooperatively reaction is typically studied with

nonlinear reaction-diffusion equation [41]. At cellular level, reaction diffusion equation is

used to model formation of clusters of cells, which gives rise to disease, such as growth

of small avascular solid tumors [35]. At species level, as basic structure of food chains

and ecological system, dynamic of prey-predator is also formulated with reaction diffusion

equation incorporated with time delay and spatial components [28].

However, studies on parameter estimation of DE models are limited, especially

for PDE. Most parameter estimation procedures of DE models can be classified into three

types: (1) gradient matching procedure [4, 18, 27]; (2) generalized profiling estimation
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[39, 27]; (3) Bayesian estimation [39]. Gradient matching procedure can be considered as a

two-step method, which in the first step obtains nonparametric estimate of the function and

its derivative and then in the second step estimates parameters by least square or weighted

least square methods. For generalized profiling estimation, the unknown dynamic is still

estimated by nonparametric function, such as linear combination of basis function. How-

ever, there are two main differences between generalized profiling estimation and gradient

matching procedure. One is that a different smoothing penalty is used in nonparametric es-

timation of the function. The other is that in generalized profiling estimation the unknown

dynamic and PDE parameters are estimated simultaneously. For Bayesian estimation of

dynamic function, Xun [39] outlined a Monte Carlo Markov Chain (MCMC) based Bayesian

estimation procedure with Bayesian P-spline. In this chapter, we will briefly review all three

types of methods.

4.1 Gradient matching procedure

Liang [18] and Brunel [4] both proposed gradient matching related parameter

estimation procedure. Both methods are developed based on ODE as
Ḟ = F(F (t),θ)

F (0) = F0

(4.1)

In Liang’s work [18], data points are observed at time grids {ti}ni=1, where ti are i.i.d

uniformly distributed on [0, 1].

Yi = F (ti) + εi i = 1, 2, · · · , n (4.2)
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where εi, i = 1, 2, · · · , n are independently distributed with mean zero and finite variance

σ2(ti). Liang and Wu [18] proposed a 2-step procedure consisting of (1) local polynomial re-

gression to smooth the function and (2) parameter estimation by least square method. Based

on local polynomial regression [8], with symmetric kernel function as Kh(·) = K(·/h)/h,

the function and its derivative can be estimated by

F̂ (t) = ζT1
(
T T1,tW tT 1,t

)−1
T T1,tW tY

ˆ̇F (t) = ζT2
(
T T2,tW tT 2,t

)−1
T T2,tW tY

where ζ1 = (1 0), ζ2 = (0 1 0), W t = diag{Kh(t1 − t), · · · ,Kh(tn − t)}, and

T 1,t =

∣∣∣∣∣∣∣∣∣∣∣∣

1 t1 − t

...
...

1 tn − t

∣∣∣∣∣∣∣∣∣∣∣∣
T 2,t =

∣∣∣∣∣∣∣∣∣∣∣∣

1 t1 − t (t1 − t)2

...
...

...

1 tn − t (tn − t)2

∣∣∣∣∣∣∣∣∣∣∣∣
With nonparametric estimators of function and its first order derivative, F̂ (t) and ˆ̇F (t), the

parameter estimation can be obtained by

θ̂ = argmin
θ

n∑
i=1

∣∣∣ ˆ̇F (ti)−F(Ḟ (ti),θ)
∣∣∣2

Moreover, Liang and Wu [18] provided asymptotic theory for their method under the fol-

lowing assumptions:

1. The third derivative of F (t) is continuous on [0, 1].

2. The kernel function K(·) is symmertric about zero and is supported on [−1, 1].

3. The bandwidth h = hn = n−2/7an is a sequence satisfying h → 0 as n → ∞, where

an is a sequence tending to 0 slower than log−1n.
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4. F(F,θ) is a continuous function of θ.

5. Parameter space is closed, bounded compact set.

6. Distance between two parameters dn(θ1,θ2) =
∑n

i=1 |F(F (ti),θ1)−F(F (ti),θ2)|2 →

d(θ1,θ2) = 0 if and only if θ1 = θ2.

7. The first and second partial derivatives of F(F,θ) exist and are continuous for all θ

and F , and for some 0 < ι < 1 and constant M1,

∣∣∣∣∂F(F1,θ)

∂θ
− ∂F(F2,θ)

∂θ

∣∣∣∣ ≤M1|F1 − F2|ι.

8. The first partial derivative
∂F(F,θ)

∂F
is continuous, for some constant Mθ,

sup
F

∣∣∣∣∂F(F,θ)

∂F

∣∣∣∣ ≤Mθ.

With all of the above assumptions, θ̂ is proved to be consistent, and nh3/2(θ̂− θ)

is asymptotically normally distributed with mean zero and covariance matrix as

Σθ = σ2µ−2
2 (K)µ2(K2)

[
E
{
∂F(F,θ)

∂θ

}⊗2
]−1

where µ2(K) =
∫ 1
−1 z

2K(z)dz.

In Brunel’s work [4], he used B-spline regression instead of local polynomial re-

gression in smoothing step and weighted least square method in estimation step. Although

both methods are developed for ODE, Bar, Hegger and Kantz [2] applied similar method

to PDE using multivariate polynomial approximation.
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4.2 Generalized Profiling Estimation

Xun [39] and Ramsay [27] introduced similar generalized profiling estimation meth-

ods based on a PDE model

F(x, F,
∂F

x1
, · · · , ∂F

xp
,
∂2F

∂x1∂x1
, · · · , ∂2F

∂x1∂xp
, · · · ,θ) = 0 x ∈ Ω (4.3)

Data {Yi}ni=1 is observed over a meshgrid with measurement error as

Yi = F (xi) + εi i = 1, · · · , n

where εi, i = 1, · · · , n, follow i.i.d Gaussian distribution with mean zero and variance σ2
e .

Similar as gradient matching procedure, the unknown dynamic is also represented

with nonparametric function, such as linear combination of basis functions:

F (x) =

N∑
m=1

φm(x)βm = φT (x)β (4.4)

where {φm(x)}Nm=1 are basis functions. The PDE model (4.3) can be rewritten in terms of

basis functions as

F(x,φTβ,
∂φ

x1

T

β, · · · , ∂φ
xp

T

β,
∂2φT

∂x1∂x1
β, · · · , ∂2φT

∂x1∂xp
β, · · · ,θ) = 0 (4.5)

However, one of the differences between gradient matching procedure and generalized pro-

filing estimation is that the latter introduces a new penalty function in smoothing step.

Here the smoothing coefficient β is estimated by penalized least square with

Sinner(β|θ) =
n∑
i=1

(Yi − φT (xi)β)2 + ρ

∫
Ω
F(φT (x)β,θ)2dx

and PDE parameter estimation is obtained by minimizing

Souter(θ) =

n∑
i=1

[
Yi − φT (xi)β̂(θ)

]2
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Therefore, algorithm for generalized profiling method can be summarized as bellow: (1) set-

ting up initial value as θ = θ(0); (2) obtaining β(itr+1)(θ(itr)) by minimizing Sinner(β|θ(itr));

(3) updating θ = θ(itr+1) by minimizing Souter(θ); (4) repeating step (2) and (3) for suffi-

cient time until θ(itr) converges.

4.3 Bayesian Estimation

Xun [39] also proposed a Bayesian estimation procedure for model (4.3) with ap-

plication of Bayesian P-Spline and the idea of incorporating PDE model (4.3) as prior

information. Bayesian P-Spline is applied in smoothing step with similar nonparametric

representation of the unknown dynamic Yi = φT (xi)β + εi, where εi, i = 1, · · · , n, follow

i.i.d Gaussian distribution with mean zero and variance σ2
e . Here we use two-dimensional

case as an example. Considering the interaction of one-dimensional coefficients as well as

each dimension, we applied difference penalty. Let Φ1 and Φ2 be basis function matrices of

each dimension, and Φ̇1, Φ̇2 be corresponded first order derivative matrices. In this case,

prior is suggested by Berry , Carroll and Ruppert [3] as

[β|γ1, γ2] ∝ (γ1γ2)N/2exp{−βT (γ1H1 + γ2H2 + γ1γ2H3)β/2}

where N is the number of basis function, H1 = ΦT
1 Φ1 ⊗ Φ̇

T
2 Φ̇2, H2 = Φ̇

T
1 Φ̇1 ⊗ ΦT

2 Φ2,

and H3 = Φ̇
T
1 Φ̇1 ⊗ Φ̇

T
2 Φ̇2. As hyper-parameter, prior of γ1 and γ2 is suggested to be

Gamma(a1,b1) and Gamma(a2,b2), respectively. Meanwhile, model (4.3) also incorporates

prior information as

F(φT (xi)β,θ) = ψ(xi) i = 1, · · · , n
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where ψ(xi), i = 1, · · · , n is assumed to be i.i.d with a prior distribution N(0, γ−1
0 ), where

γ0 is precision parameter and large enough so that the approximation error in basis function

representation is small. The prior of γ0 is suggested to be Gamma(a0,b0) by Xun [39]. The

hierarchical Bayesian model can be summarized as follows:

Stage 1 Observation data:

Yi = φT (xi)β + εi, εi ∼ N(0, σ2
e) i = 1, · · · , n

Stage 2 Bayesian P-Splines:

[β|θ, γ0, γ1, γ2] ∝ (γ0γ1γ2)N/2exp{−γ0ψ
T (β,θ)ψ(β,θ)/2−βT (γ1H1+γ2H2+γ1γ2H3)β/2}

Stage 3 Prior of PDE parameters:

θ ∝MVN(0, σ2
θI)

σ2
e ∼ Inverse Gamma(a, b)

Stage 4 Prior of hyper parameters in Bayesian P-Splines:

γj ∼ Gamma(aj , bj), j = 0, 1, 2

In order to obtain Bayesian estimates, MCMC is implemented by using the Gibbs

sampling approach to get a sequence of realizations of σ2
e , γ0, γ1, γ2 from posterior distribu-

tion, and Metropolis-Hastings method to simulate realizations of β and θ. Therefore, with

all prior information, the Bayesian method is implemented as discussed below.
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Let the procedure starts with initialized values σ
2(0)
e , γ

(0)
0 , γ

(0)
1 , γ

(0)
2 , β(0) and θ(0).

Suppose current value is σ
2(itr)
e , γ

(itr)
0 , γ

(itr)
1 , γ

(itr)
2 , β(itr) and θ(itr). The updating procedure

is as follows:

step 1 Using Gibbs sampling to simulate a realization of each of σ2
e , γ0, γ1, γ2 given other

parameters, β(itr), θ(itr) and Y

σ2(itr+1)
e |γ(itr)

0 , γ
(itr)
1 , γ

(itr)
2 ,β(itr),θ(itr),Y

∼ Inverse Gamma
(
a+ n/2, b+ (Y −Φβ(itr))T (Y −Φβ(itr))/2

)
γ

(itr+1)
0 |σ2(itr+1)

e , γ
(itr)
1 , γ

(itr)
2 ,β(itr),θ(itr),Y

∼ Gamma
(
a0 +N/2, b0 +ψT (β(itr),θ(itr))ψ(β(itr),θ(itr))/2

)
γ

(itr+1)
1 |σ2(itr+1)

e , γ
(itr+1)
0 , γ

(itr)
2 ,β(itr),θ(itr),Y

∼ Gamma
(
a1 +N/2, b1 + β(itr)T (H1 + γ

(itr)
2 H3)β(itr)/2

)
γ

(itr+1)
2 |σ2(itr+1)

e , γ
(itr+1)
0 , γ

(itr+1)
1 ,β(itr),θ(itr),Y

∼ Gamma
(
a2 +N/2, b2 + β(itr)T (H2 + γ

(itr+1)
1 H3)β(itr)/2

)
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step 2 Using Metropolis-Hastings method to simulate a realization of β(itr+1), θ(itr+1)

with conditional distribution as

β|σ2(itr+1)
e , γ

(itr+1)
0 , γ

(itr+1)
1 , γ

(itr+1)
2 ,θ(itr),Y

∝ exp
{
−βT (σ2(itr+1)

e ΦTΦ + γ
(itr+1)
1 H1 + γ

(itr+1)
2 H2 + γ

(itr+1)
1 γ

(itr+1)
2 H3)β/2

−σ−2(itr+1)
e βTΦTY − γ(itr+1)

0 ψT (β,θ(itr))ψ(β,θ(itr))/2
}

θ|σ2(itr+1)
e , γ

(itr+1)
0 , γ

(itr+1)
1 , γ

(itr+1)
2 ,β(itr+1),Y

∝ exp
{
−θTθ/(2σ2(itr+1)

e )− γ(itr+1)
0 ψT (β,θ(itr))ψ(β,θ(itr))/2

}

We repeat the above 2-step updating rule to get a sequence of realizations of

{σ2
e , γ0, γ1, γ2,β,θ}. Moreover, it is suggested that initial burn-in period should be ignored

because the initial realizations are most likely not coming from the target distribution, and

that one should save every k-th realizations to reduce dependence.
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Chapter 5

Parameter Estimation Procedure

of Linear Reaction Diffusion

Equation

In Chapter 4, we reviewed the current state-of-the-art parameter estimation pro-

cedures for DE models, which can be categorized as gradient matching procedure [4, 18, 27],

generalized profiling method [39, 27] and Bayesian method [39, 27]. However, all of these

methods have some limitations. For example, the computation of variation of parameter

estimators can be hard. Sometimes bootstrap method is introduced to evaluate standard

error of estimators. Moreover, most of these methods require nonparametric estimation of

the second order (or even higher order) derivative with respect to spatial axes, which would

be difficult in high dimensional cases.

In this chapter and the following chapter, we propose a parameter estimation
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procedure for the reaction diffusion equation written as below:

∂F (x, t)

∂t
= F(F (x, t),θ) +D∆F (5.1)

where F (x, t) is unknown spatial-temporal dynamics function, F(·) is local reaction func-

tion depending on F (x, t) and parameter θ, D is diffusion coefficient, and ∆ is Laplacian

operator. Our proposed method is based on gradient matching procedure. Instead of using

naive version of gradient matching procedure with nonparametric estimation of the sec-

ond order derivative with respect to x, we identify a system of ODEs on inner product

of solution and eigen-function of Laplacian operator, which also depends on parameters.

Moreover, in linear reaction diffusion equation case, we can obtain a closed-form expression

for parameters.

Specifically, we consider a general linear reaction diffusion model defined on the

bounded space Ω with boundary denoted as ∂Ω.

Ft = θ1G(x, t) + θ2F (x, t) +D∆F, for (x, t) ∈ Ω× [0, T ]

α1F (x, t) + α2
∂F

∂n
= 0, for (x, t) ∈ ∂Ω× [0, T ]

F (x, 0) = f0(x)

(5.2)

where θ1, θ2 and D are unknown parameters and f0(x) is the initial condition. In particular,

we will focus on the domain Ω = [0, 1]p. There exist a variety of boundary conditions which

have strong influence on the solutions (existence, or qualitative properties). In this case, we

only consider Dirichlet condition, where α2 = 0, and Neumann’s condition, where α1 = 0.

In model (5.2), G(x, t) serves as a source function and F (x, t) as unknown dynamic

function defined on domain Ω. Hence, the first, second and the third term in model (5.2)
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can be considered as source, linear reaction and diffusion term, respectively. In this chapter,

we will first review some mathematical background. Then, we will describe the proposed

procedure with technique details. In the end, we will provide consistency and asymptotic

normality of the proposed estimator, followed by simulation studies.

5.1 Mathematical background

We are interested in the parameter estimation of general linear parabolic PDE

defined on the set Ω× [0, T ], where Ω is a bounded set in Rp. The existence and uniqueness

of solutions to this kind of PDEs can be assessed in general situations. In this case, the

existence of the solutions for linear hyperbolic PDE is based on a suitable series expansion

provided by the eigenfunctions of the Laplacian.

Model (5.2) is a parabolic PDE, closely related to the Heat Equation. Indeed, if

we consider the standard transformation F̌ = exp(−θ2t)F , the function F̌ is the solution of

the Heat equation:

F̌t = θ1Ǧ+D∆F̌ (5.3)

with a source (x, t) 7→ Ǧ(x, t) = exp(θ2t)G(x, t), and the same boundary and initial con-

ditions. It suffices to have mild regularity conditions on the initial condition f0(x) and

the source function G(x, t). In particular, a convenient derivation of the solution F (x, t)

to (5.2) is provided by the use of a Hilbert basis of L2(Ω) obtained for the Laplacian on

Ω with boundary conditions. Indeed, an almost closed-form expression is obtained by the
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eigenfunctions {ϕn}∞n=0 satisfying:
−∆ϕn = λnϕn, for x ∈ Ω

α1ϕn(x) + α2
∂ϕn(x)

∂n
= 0, for x ∈ ∂Ω

(5.4)

where {λn}∞n=0 is the sequence of increasing eigenvalues. Obviously, the eigenfunctions de-

pend on the boundary conditions. Here we only consider Dirichlet or Neumann’s condition,

hence the solution space is either the Sobolev space H1
0 or H1.

Example 9 Examples of eigenfunctions {ϕn}∞n=0:

1. For Ω = [0, 1]:

• Neumann’s condition (α1 = 0),

ϕn(x) =


1 n = 0

√
2cos(nπx) n = 1, 2, · · ·

(5.5)

with λn = (nπ)2;

• Dirichlet’s condition (α2 = 0),

ϕn(x) =


0 n = 0

√
2 sin(nπx) n = 1, 2, · · ·

(5.6)

with λn = (nπ)2.

2. For hypercube Ω = [0, 1]p with eigenfunctions for the Laplacian with Dirichlet condi-

tions,

ϕn(x) = 2p/2
p∏
i=1

sin(nπxi)
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while for Neumann’s condition

ϕn(x) = 2p/2
p∏
i=1

cos(nπxi)

We assume that the source function (x, t) 7→ G(x, t) is a function in L2
(
Ω× [0, T ]

)
and that the functions

t 7→ 〈G,ϕn〉
∆
= Gn(t)

are differentiable for all n ≥ 0. From equation (5.2) and (5.4) and integration by parts

exploiting the boundary conditions, we obtain that the solution (x, t) 7→ F (x, t) can be

decomposed as

F (x, t) =
∞∑
n=0

Fn(t)ϕn(x),

and we have for all n ≥ 0, for all t in [0,T]:
d
dtFn(t) + (λnD − θ2)Fn(t) = θ1Gn(t)

Fn(0) = F0,n

(5.7)

The initial conditions F0,n are derived from the series expansion of the initial condition

F0(x) =
∑∞

n=0 F0,nϕn(x). We have an explicit expression for the (5.7) given by

Fn(t) = F0,ne
(θ2−λnD)t + θ1

∫ t

0
Gn(s)e(θ2−λnD)(t−s)ds (5.8)

The existence and uniqueness of the solution shows that the L2 norm of Fn(t) is finite for

all t:
∑∞

n=0 |Fn(t)|2 <∞ but we also have
∑∞

n=0 λn|Fn(t)|2 <∞.
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5.2 Statistical Model and Estimation Procedures

5.2.1 Statistical Model

We observe the source G(x, t) and the dynamics F (x, t) with noise on a determin-

istic time grid 0 < t1 < · · · < tnt = T , at some locations xi = 0, 1, . . . , nx.


fij = F (xi, tj) + ε

(f)
ij

gij = G(xi, tj) + ε
(g)
ij

i = 0, 1, 2, · · · , nx j = 1, 2, · · · , nt (5.9)

where ε
(f)
ij , ε

(g)
ij are observation errors satisfying ε

(f)
ij

i.i.d∼ N(0, σ2
f ) and ε

(g)
ij

i.i.d∼ N(0, σ2
g) inde-

pendently, for all i = 0, 1, 2, · · · , nx and j = 1, 2, · · · , nt. With observations of {fij , gij}nx,nti=0,j=1,

we want to estimate the unknown reaction rate θ1, θ2 and diffusion rate D based on model

(5.2).

5.2.2 Motivation: From PDE to ODE

Now we are going to present our parameter estimation procedure for PDE model

(5.2). The proposed procedure can be considered as an extension of gradient matching

approach applied to an ODE system (5.7), which is derived through spectral decomposition

of the solution to PDE (5.2).

By taking the inner product on L2(Ω) with the eigenfunctions of the Laplacian,

we obtain a set of ODEs defined as (5.7). For instance, in the case of Neumann’s condition
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on Ω we get

Ḟ0(t) = θ1G0(t) + θ2F0(t) (5.10)

Ḟn(t) = θ1Gn(t) + (θ2 −Dλn)Fn(t) n = 1, 2, · · · (5.11)

For the Dirichlet conditions, the set of ODEs starts from n = 1. Therefore, we propose an

extended gradient matching procedure for θ1, θ2 and D estimation. As we can see from the

equation (5.11), the diffusion coefficient D can be difficult to obtain, because it is crushed

by exploding with eigenvalues λn. This will need a special care.

5.2.3 Estimator definition and computational procedure

Inspired by the idea in section 5.2.2, we propose the following parameter estimation

procedure: (1) obtaining pseudo data of Fn(t) and Gn(t); (2) smoothing pseudo data; (3)

plugging smoothed pseudo data in equation (5.10) and (5.11) and estimating θ1, θ2 and D

with 2-step least square estimate. Details for each step is discussed below:

Step 1: Obtaining pseudo data of Fn(t) and Gn(t)

The Fourier coefficients Fn(t) and Gn(t) are obtained by Right Riemann Summation

F̃n(tj) = ∆x

nx∑
i=1

f(xi, tj)ϕn(xi) G̃n(tj) = ∆x

nx∑
i=1

g(xi, tj)ϕn(xi)

where ∆x = ∆x1∆x2 · · ·∆xp for x ∈ Ω ∈ Rp. Notice that ∆x is of order n−1
x .
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Step 2: Smoothing pseudo data F̃n(t) and G̃n(t)

Let F̃ n =



F̃n(t1)

F̃n(t2)

· · ·

F̃n(tnt)


, G̃n =



G̃n(t1)

G̃n(t2)

· · ·

G̃n(tnt)


. F̃ n and G̃n can be smoothed by any smooth-

ing technique, such as local polynomial method, projection estimator, kernel estimator and

so on. Here, we use projection technique with orthogonal basis function set {φm(t)}∞m=0.

Note that basis function set {φm(t)}∞m=0 can be chosen from multiple smoothing techniques,

such that B-splines. As for periodic function, {φm(t)}∞m=0 can also be chosen as Fourier

series. Suppose, we choose the number of basis function is NT,est. Let

Φ =
(
φ1 φ2 · · · φNT,est

)
=



φ1(t1) φ2(t1) · · · φNT,est(t1)

φ1(t2) φ2(t2) · · · φNT,est(t2)

...
... · · ·

...

φ1(tnt) φ2(tnt) · · · φNT,est(tnt)



Φ̇ =
(
φ̇1 φ̇2 · · · φ̇NT,est

)
=



φ̇1(t1) φ̇2(t1) · · · φ̇NT,est(t1)

φ̇1(t2) φ̇2(t2) · · · φ̇NT,est(t2)

...
... · · ·

...

φ̇1(tnt) φ̇2(tnt) · · · φ̇NT,est(tnt)


Let φ(t) =

[
φ1(t) φ2(t) · · · φNT,est(t)

]
. In this case, F̃n(t), G̃n(t) can be

smoothed by

F̂n(t) = φ(t)(ΦTΦ)−1ΦT F̃n Ĝn(t) = φ(t)(ΦTΦ)−1ΦT G̃n (5.12)
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The first derivative of F̃n(t) can be obtained by

ˆ̇Fn(t) = φ̇(t)(ΦTΦ)−1ΦT F̃n (5.13)

Step 3: two-step least square estimation of θ̂1, θ̂2 and D̂

Based on equation (5.10), we obtain θ̂1 and θ̂2 by minimizing

S1(θ1, θ2) =

∫ T

0

[
ˆ̇F0(t)− Ĝ0(t)θ1 − F̂0(t)θ2

]2
dt (5.14)

In order to estimate D, we plug the estimates of θ1 and θ2 in equation (5.11), and consider

multiple ODEs. Suppose we look at the first NX,est equations, D̂ is obtained by minimizing

S2(D) =

NX,est∑
n=1

∫ T

0

[
ˆ̇Fn(t)− θ̂1Ĝn(t)− θ̂2F̂n(t) + λnF̂n(t)D

]2
dt (5.15)

In practice, we are not minimizing the integral in mean squared error (5.14) or (5.15).

Instead, we minimize mean squared error as

Ŝ1(θ1, θ2) =
1

nt

nt∑
j=1

[
ˆ̇F0(tj)− Ĝ0(tj)θ1 − F̂0(tj)θ2

]2
(5.16)

and

Ŝ2(D) =
1

nt

NX,est∑
n=1

nt∑
j=1

[
ˆ̇Fn(tj)− θ̂1Ĝn(tj)− θ̂2F̂n(tj) + λnF̂n(tj)D

]2
(5.17)

Since ODE (5.10) and (5.11) are linear with respect to θ1, θ2 and D, θ̂1, θ̂2 and D̂ are

obtained by a 2-step linear least square estimation procedure.

NX,est is the number of equations used to estimate D. It is analog to the number of

equations used in the Method of Moment. That is to say, NX,est can be fixed, which means

that it is not necessary to have NX,est →∞ when sample size gets larger. In practice, NX,est

can be chosen with cross validation based on criteria of minimum prediction error. On the
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other hand, NT,est is the number of basis functions used in smoothing step. The choice

of NT,est is much more critical than NX,est. In the following discussion of consistency and

asymptotic normality, we treat NX,est as fixed and mainly discuss the asymptotic results

when NT,est goes to infinity.

5.3 Consistency

5.3.1 Assumptions and Notations

In order to develop consistency and asymptotic normality of the proposed estima-

tors, we need the following assumptions:

Assumption 10 The source G(x, t), the first and the second partial derivatives of G(x, t)

are uniformly bounded.

Notice that, due to the relationship between F (x, t) and G(x, t), assumption 10 implies

that the unknown dynamic F (x, t), the first and the second partial derivatives of F (x, t)

are also uniformly bounded. This assumption is made to control the approximation error

of pseudo data. Moreover, the consistency of smoothed data is required as well. Based on

Newey’s results [24], we define |g|d = max|Λ|<d supt∈[0,T ] |∂|Λ|g(x)/∂xΛ1 · · · ∂xΛi |.

Assumption 11 There exists α and βNT,est, such that |Gn−ΦNT,estβG,NT,est |1 = O(N−αT,est)

and |Fn −ΦNT,estβF,NT,est |1 = O(N−αT,est) as NT,est →∞.

In the case of periodic function, without loss of generality, we assume that measure-

ment period T is a multiple of period T0. Thus, basis functions φ(t) =
[
φ1(t) · · · φNT,est(t)

]
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are orthogonal in each time period and satisfy

sup
t

√
trace(φφT ) =

√√√√NT,est∑
m=1

φ2
m(t) ≤

√
NT,est. (5.18)

5.3.2 Consistency of pseudo data and smoothed data.

Since smoothed data is obtained from pseudo data, bias and variation of smoothed

data can come from both smoothing and approximation in pseudo data. Under assumption

10, bias and variation of pseudo data G̃n(t) and F̃n(t) can be directly calculated based on

approximation error of Right Riemann Summation, i.e., for all n 6= m ≥ 0

Bias
(
G̃n(t)

)
= O(∆x) Bias

(
F̃n(t)

)
= O(∆x)

Var
(
G̃n(t)

)
= ∆x

(
σ2
g +O(∆x)

) ∆
= s1 Var

(
F̃n(t)

)
= ∆x

(
σ2
f +O(∆x)

)
∆
= s2

Cov
(
G̃n(t), G̃m(t)

)
= O((∆x)2) Cov

(
F̃n(t), F̃m(t)

)
= O((∆x)2)

The smoothing error is discussed below based on Neway’s result [24]:

Theorem 12 Define F̄n(t), Ḡn(t), ¯̇Fn(t) as expectation of pseudo data F̃n(t), G̃n(t), ˜̇Fn(t).

Under assumption 11, suppose NT,est is chosen such that N2
T,est/nt → 0 as nt → ∞, then

we have smoothing error as

∫ T

0
|F̄n(t)− F̂n(t)|2dt = Op(NT,est/nt +N−2α

T,est) (5.19)∫ T

0
|Ḡn(t)− Ĝn(t)|2dt = Op(NT,est/nt +N−2α

T,est) (5.20)

sup
t
| ¯̇Fn(t)− ˆ̇Fn(t)| = Op(NT,est/

√
nt +N−αT,est) (5.21)

Therefore, by combining approximation and smoothing results, we can obtain the consis-

tency of smoothed data as
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Theorem 13 Under assumption 10 and 11, suppose NT,est is chosen such that N2
T,est/nt →

0 as nt →∞, for any n = 0, 1, · · · , consistency of smoothed data can be given by

∫ T

0
|Fn(t)− F̂0(t)|2dt = Op(NT,est/nt +N−2α

T,est + n−2
x )

∆
= Op(cnx,NT,est,nt) (5.22)∫ T

0
|Gn(t)− Ĝ0(t)|2dt = Op(NT,est/nt +N−2α

T,est + n−2
x )

∆
= Op(cnx,NT,est,nt) (5.23)

sup
t
|Ḟn(t)− ˆ̇F0(t)| = Op(NT,est/

√
nt +N−α+0.5

T,est + n−1
x )

∆
= Op(bnx,NT,est,nt) (5.24)

Moreover, the smoothed data F̂ , Ĝ and ˆ̇F follow multivariate normal distributions with

the following variance-covariance matrix, i.e., for any n 6= m ≥ 0,

cov(F̂n) = Φ(ΦTΦ)−1ΦT s2 cov( ˆ̇Fn) = Φ̇(ΦTΦ)−1Φ̇
T
s2 (5.25)

cov(F̂n,
ˆ̇Fn) = Φ(ΦTΦ)−1Φ̇

T
s2 cov(Ĝn) = Φ(ΦTΦ)−1ΦT s1 (5.26)

cov(F̂n, F̂m) = 0 cov( ˆ̇Fn,
ˆ̇Fm) = 0 (5.27)

cov(F̂n,
ˆ̇Fm) = 0 cov(Ĝn, Ĝm) = 0 (5.28)

5.3.3 Consistency of θ̂1 and θ̂2

θ̂1 and θ̂2 are obtained by minimizing S1(θ1, θ2) defined in (5.14). In order to

prove that θ̂1 and θ̂2 are consistent estimators of θ1 and θ2, the key is to prove that

limnt→∞ S1(θ1, θ2) reaches its minimum at true values θ∗1 and θ∗2.

The large sample behavior of S1(θ1, θ2) depends on consistency of smoothed data

ˆ̇F0(t), Ĝ0(t) and F̂0(t). Based on our discussion of consistency of smoothed data and The-

orem 13, we know that the smoothed data converge to true value with certain convergence
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rate. Therefore, we can have

S1(θ1, θ2)→
∫ T

0

[
Ḟ0(t)−G0(t)θ1 − F0(t)θ2

]2
dt

=

∫ T

0
[(θ∗1 − θ1)G0(t) + (θ∗2 − θ2)F0(t)]2 dt

In fact, based on result in Theorem 13, with simple calculation and Cauchy inequality, we

can prove that

Lemma 14 Under assumption 10 and 11, suppose NT,est is chosen such that N2
T,est/nt → 0

as nt →∞ and parameter space Θ = {θ1, θ2, D} is a compact space, then limit of objective

function S1(θ1, θ2) is

S1(θ1, θ2) =

∫ T

0
[(θ∗1 − θ1)G0(t) + (θ∗2 − θ2)F0(t)]2 dt+Op(dnx,nt,NT,est) (5.29)

where the error order dnx,nt,NT,est = N2
T,est/nt +N−2α+1

T,est + n−2
x .

The detailed proof of Lemma 14 is given in the Appendix.

Notice that

∫ T

0
[(θ∗1 − θ1)G0(t) + (θ∗2 − θ2)F0(t)]2 dt is minimized at θ1 = θ∗1 and

θ2 = θ∗2. Therefore, θ̂1 and θ̂2 are consistent estimator of θ1 and θ2 with convergence rate

at dnx,nt,NT,est = N2
T,est/nt +N−2α+1

T,est + n−2
x .

Theorem 15 Under assumption 10 and 11, suppose NT,est is chosen such that N2
T,est/nt →

0 as nt → ∞ and parameter space Θ = {θ1, θ2, D} is a compact space, then the estimator

(θ̂1, θ̂2) are consistent estimator of (θ1, θ2).

5.3.4 Consistency of D̂

D̂ is obtained by minimizing S2(D) defined in (5.15). Let D∗ be the true value of

D. Similar as the consistency of θ̂1 and θ̂2, it is critical to study the large sample behavior of
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S2(D), which depends on consistency of smoothed data and estimator θ̂1 and θ̂2. We already

discussed about consistency of ˆ̇Fn(t) and F̂n(t). Now we look at the limiting behavior of

θ̂1Ĝn and θ̂2F̂n. Note that θ̂1,θ̂2 are consistent estimators of θ1 and θ2 with convergence

rate dnx,NT,est,nt , and that Ĝn(t) and F̂n(t) converge to the true value of the functions with

L2 convergence rate at cnx,NT,est,nt . With simple calculation of Cauchy inequality, we can

obtain the limiting behavior of θ̂1Ĝn(t) and θ̂2F̂n(t) as

Lemma 16 Under assumption 10, 11, suppose NT,est is chosen such that N2
T,est/nt → 0 as

nt →∞, then we have

NX,est∑
n=1

∫ T

0

[
θ̂1Ĝn(t)− θ∗1Gn(t)

]2
dt = Op(cnx,NT,est,nt) +Op(d

2
nx,NT,est,nt

)

NX,est∑
n=1

∫ T

0

[
θ̂2F̂n(t)− θ∗2Fn(t)

]2
dt = Op(cnx,NT,est,nt) +Op(d

2
nx,NT,est,nt

)

Detailed proof of Lemma 16 is given in Appendix. Note that based on Theorem

13, Lemma 16 and Cauchy-Schwartz inequality, suppose N2
T,est/nt → 0 as nt →∞, we have

NX,est∑
n=1

∫ T

0

[
ˆ̇Fn − θ̂1Ĝn − θ̂2F̂n − Ḟn + θ∗1Gn + θ∗2Fn

]2
dt = Op(N

2
T,est/nt +N−2α+1

T,est + n−2
x )

(5.30)

Furthermore, with the similar calculation as the proof in Lemma 14, we can obtain the

limiting behavior of the objective function S2(D) as

S2(D) =

NX,est∑
n=1

λ2
n

∫ T

0
[(D∗ −D)Fn]2 dt+Op(N

2
T,est/nt +N−2α+1

T,est + n−2
x ) (5.31)

Since

NX,est∑
n=1

λ2
n

∫ T

0
[(D∗ −D)Fn]2 dt is minimized at D = D∗, we have the following result:
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Theorem 17 Under assumption 10, 11, suppose N2
T,est/nt → 0 as nt → ∞, if parameter

space Θ = {θ1, θ2, D} is a compact space, the estimator D̂ is a consistent estimator of D

with convergence rate as Op(N
2
T,est/nt +N−2α+1

T,est + n−2
x ).

5.4 Asymptotic Normality

5.4.1 Asymptotic Normality of θ̂1 and θ̂2

Since θ̂1 and θ̂2 are obtained by minimizing S1(θ1, θ2), θ̂1 and θ̂2 are solutions of

∂S1

∂θ
=

 −2
∫ T

0

[
ˆ̇F0(t)− Ĝ0(t)θ1 − F̂0(t)θ2

]
Ĝ0(t)dt

−2
∫ T

0

[
ˆ̇F0(t)− Ĝ0(t)θ1 − F̂0(t)θ2

]
F̂0(t)dt

 = 0

With taylor expansion at (θ1, θ2) = (θ∗1, θ
∗
2), we have θ̂1

θ̂2

−
 θ∗1

θ∗2

 =

 ||Ĝ0(t)||2 〈F̂0(t), Ĝ0(t)〉

〈Ĝ0(t), F̂0(t)〉 ||F̂0(t)||2


−1

×

 〈Ĝ0(t)θ∗1 + F̂0(t)θ∗2 −
ˆ̇F0(t), Ĝ0(t)〉

〈Ĝ0(t)θ∗1 + F̂0(t)θ∗2 −
ˆ̇F0(t), F̂0(t)〉

 (5.32)

Based on consistency of smoothed data, we have ||Ĝ0(t)||2 〈F̂0(t), Ĝ0(t)〉

〈Ĝ0(t), F̂0(t)〉 ||F̂0(t)||2


−1

→

 ||G0(t)||2 〈F0(t), G0(t)〉

〈G0(t), F0(t)〉 ||F0(t)||2


−1

∆
= A1

∗

(5.33)
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For

 〈Ĝ0(t)θ∗1 + F̂0(t)θ∗2 −
ˆ̇F0(t), Ĝ0(t)〉

〈Ĝ0(t)θ∗1 + F̂0(t)θ∗2 −
ˆ̇F0(t), F̂0(t)〉

, in practice the L2 inner products are approx-

imated by summation of smoothed data as

T

nt

 Ĝ0
T

F̂0
T

( −θ∗1Int −θ∗2Int Int

)

Ĝ0 − E(Ĝ0)

F̂0 − E(F̂0)

ˆ̇F0 − E( ˆ̇F0)

 (5.34)

According to consistency and asymptotic normality of smoothed data, we can obtain

Lemma 18 Under the assumptions 10 and 11, suppose NT,est is chosen such that N2
T,est/nt →

0 as nt →∞, then

 〈Ĝ0(t)θ∗1 + F̂0(t)θ∗2 −
ˆ̇F0(t), Ĝ0(t)〉

〈Ĝ0(t)θ∗1 + F̂0(t)θ∗2 −
ˆ̇F0(t), F̂0(t)〉

 follows multivariate normal dis-

tribution with mean zero and variance-covariance matrix B1 →
T∆x

nt
B1
∗, where B1

∗ = σ11 σ12

σ12 σ22

 and

σ11 = θ∗
2

1 ||G0(t)||2σ2
g + ||θ∗2G0(t)− Ġ0(t)||2σ2

f

σ12 = θ∗
2

1 〈G0(t), F0(t)〉σ2
g + 〈θ∗2G0(t)− Ġ0(t), θ∗2F0(t)− Ḟ0(t)〉σ2

f

σ22 = θ∗
2

1 ||F0(t)||2σ2
g + ||θ∗2F0(t)− Ḟ0(t)||2σ2

f

Detailed proof of Lemma 18 is given in Appendix. Let Σ∗ = A1
∗B1

∗A1
∗. According to

equation (5.32), (5.33) and Lemma 18, asymptotic normality of θ̂1 and θ̂2 can be given as

Theorem 19 Under the assumptions 10 and 11, supporse NT,est is chosen such that
N2
T,est

nt
→

0 as nt →∞ and parameter space Θ = {θ1, θ2, D} is a compact space, then

√
nt
T∆x


 θ̂1

θ̂2

−
 θ∗1

θ∗2


 d→ MVN


 0

0

 ,Σ∗

 (5.35)
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5.4.2 Asymptotic Normality of D̂

Since D̂ is obtained by minimizing S2(D), D̂ is the solution to

∂S2

∂D
=

NX,est∑
n=1

2

∫ T

0

[
ˆ̇Fn(t)− θ̂1Ĝn(t)− θ̂2F̂n(t) + λnF̂n(t)D

]
λnF̂n(t)dt = 0

With Taylor expansion at D = D∗, we know that the difference between our estimator and

the true value can be evaluated as

D̂ −D∗ =

NX,est∑
n=1

λ2
n||F̂n(t)||2

−1
NX,est∑
n=1

〈 ˆ̇Fn(t)− θ̂1Ĝn(t)− θ̂2F̂n(t) + λnF̂n(t)D∗,−λnF̂n(t)〉

(5.36)

Based on consistency and normality of smoothed data, we haveNX,est∑
n=1

λ2
n||F̂n(t)||2

−1

→

NX,est∑
n=1

λ2
n||Fn(t)||2

−1

∆
= A2

∗ (5.37)

Moreover, with similar logic as the proof of Lemma 18, we have

Lemma 20 Under assumption 10, 11, suppose NT,est is chosen such that N2
T,est/nt → 0

as nt → ∞, then we have

NX,est∑
n=1

〈 ˆ̇Fn(t) − θ̂1Ĝn(t) − θ̂2F̂n(t) + λnF̂n(t)D∗,−λnF̂n(t)〉 is

asymptotically normally distributed with mean zero and variance
T∆x

nt
(B∗21 +B∗22), where

B∗21 =

NX,est∑
n=1

[
bxxn∗21 + bxyn∗21 + byyn∗21

]
, B∗22 = b22

∗Σ∗b22
∗T , and

bxxn∗21 = λ4
n||Fn(t)||2σ2

f

bxyn∗21 = −2D∗λ3
n

[
θ∗2||Fn(t)||2σ2

f − 〈Fn(t), Ḟn(t)〉σ2
f

]
byyn∗21 = λ2

n

[
θ∗2||Fn(t)||2σ2

f + ||Ḟn(t)||2σ2
f + θ∗21 ||Fn(t)||2σ2

g − 2θ∗2〈Fn(t), Ḟn(t)〉σ2
f

]
b22
∗ =

NX,est∑
n=1

λn〈Fn(t), Gn(t)〉
NX,est∑
n=1

λn||Fn(t)||2
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Detailed proof of Lemma 20 is given in Appendix. Let σ∗2 = A∗2(B∗21 +B∗22)A∗2. According

to equation (5.36), (5.37) and Lemma 20, asymptotic normality of D̂ can be given as

Theorem 21 Under assumption 10 and 11, Supporse NT,est is chosen such that
N2
T,est

nt
→ 0

as nt →∞ and parameter space Θ = {θ1, θ2, D} is a compact space, then√
nt
T∆x

(
D̂ −D∗

)
d→ N

(
0, σ∗2

)
(5.38)

5.5 Implementation of Proposed Method and Simulation

As discussed in the end of section 5.2.3, although it is not necessary to have

NX,est →∞ when sample size gets larger, we still need to choose NX,est properly. Moreover,

the choice of NT,est, the number of basis functions used in smoothing step, is always crucial.

Therefore, in terms of the implementation of the proposed method, we want to choose

NT,est and NX,est by cross validation. In the smoothing-pseudo-data step, NT,est can be

chosen to smooth G̃n(t) and F̃n(t) with general cross validation (GCV) method. Notice

that in this case, NT,est can be different for G̃n(t) and F̃n(t). In the parameter estimation

step, we can conduct 10-fold cross validation to choose the number of equations NX,est

based on the criterion of optimal predicted error, which is defined as the sum of square

of difference between data f(xi, tj) and the predicted value f̂(xi, tj) by plugging in the

parameter estimators and solving PDE (5.2). Notice that in order to solve PDE (5.2), not

only the parameter estimators but also source G(x, t) and initial values F (x, t = 0) are

needed. In this case, we plug in smoothed data G̃(x, t) and initial values F̃ (x, t = 0).

In this section, we will first describe how we smooth G(x, t) and F (x, t = 0).

Then, we will discuss about the details of the cross validation procedure implemented for
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choosing NX,est and NT,est. In the end, we will give a summary of steps to implement the

proposed method.

5.5.1 Smoothing Procedure of G(x, t)

In terms of smoothing, we have a lot of technique to choose from, such as local

polynomial method, smoothing with spline, kernel smoothing, etc. In our particular case,

G(x, t), F (x, t) can be decomposed by eigenfunctions {ϕn(x)}∞n=1, and the coefficient func-

tions can be smoothed by projection technique. So we smooth function G(x, t) based on

decomposition as

G(x, t) =
∞∑
n=1

Gn(t)ϕn(x) =
∞∑
n=1

∞∑
m=1

gnmφm(t)ϕn(x) (x, t) ∈ Ω× [0, T ]. (5.39)

where Gn(t) =

∫
Ω
G(x, t)ϕn(x)dx. Therefore, we first obtain coefficient function Gn(t) by

Right Riemann Summation, which is the same as how we obtained pseudo data in parameter

estimation procedure. Then we smoothed Gn(t) by projection technique with basis function

{φm(t)}NT,smoothm=1 , which is similar as how we smoothed pseudo data in parameter estimation

procedure. In the end, we plug in smoothed Gn(t) back to the decomposition, G(x, t) =
NX,smooth∑

n=1

Gn(t)ϕn(x), to get smoothed G(x, t). Notice that since the actual basis functions

for smoothing G(x, t) are {φm(t)ϕn(x)}NX,smooth,NT,smoothn=1,m=1 , the number of basis function

{φm(t)}, NT,smooth should be the same across different Gn(t), for n = 0, 1, · · · . In this case,

NT,smooth and NX,smooth are chosen based on 10-fold cross validation. Therefore, we smooth

G(x, t) with the following procedure:

Step 1: In this step, we choose a proper combination of NX,smooth and NT,smooth to

smooth G(x, t) with 10-fold cross validation. We first randomly partition our data into
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10 equal-size subsets {Ak}10
k=1. For each time, we treat Ak as testing data and the rest 9

subsets as training data. We smooth function G(x, t) based on training data, then evaluate

smoothed function G̃(x, t) at testing data points. Define smoothing error as sum of squares

of difference between data g(x, t) and the smoothed function G̃(x, t) at testing data points.

PEsmoothk(NT,smooth, NX,smooth) =
∑

(xi,tj)∈Ak

(
g(xi, tj)− G̃(xi, tj)

)2

The best combination of NX,smooth and NT,smooth is chosen by minimizing mean of smooth-

ing error across 10 folds:

PEsmooth(NT,smooth, NX,smooth) =
1

10

10∑
k=1

PEsmoothk(NT,smooth, NX,smooth)

Step 2: In this step, we smoothed G(x, t) with the best combination of NX,smooth and

NT,smooth.

5.5.2 Cross Validation in Parameter Estimation Procedure

First, we need to decide NT,est, the number of basis function in smoothing step

of parameter estimation procedure. Notice that NT,est chosen in this step is different from

NT,smooth chosen in smoothing procedure described in section 5.5.1. In section 5.5.1, our

goal is to smooth function G(x, t) so NT,smooth is chosen based on criterion of minimum

predicted error of smoothed data G̃(x, t). However, now we are working on smoothing of

pseudo data F̃n(t) and G̃n(t). So in this smoothing step, we can choose different NT,est

for different F̃n(t) and G̃n(t) based on generalized cross validation(GCV) method. GCV

criterion is defined as

GCVFn(NT,est) =
nt||Φ

[
ΦTΦ

]−1
ΦT F̃n − F̃n||2(

nt − Trace(Φ
[
ΦTΦ

]−1
ΦT )

)2
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GCVGn(NT,est) =
nt||Φ

[
ΦTΦ

]−1
ΦT G̃n − G̃n||2(

nt − Trace(Φ
[
ΦTΦ

]−1
ΦT )

)2

where Φ is basis function matrix which is of size nt×NT,est, nt is the number of time points,

and n = 1, 2, · · · , NX,est. we minimize GCVFn(NT,est) and GCVGn(NT,est) to obtain desired

NT,est(Fn) and NT,est(Gn) to smooth F̃n(t) and G̃n(t).

With smoothed Ĝ0(t) and F̂0(t), we can estimate θ1 and θ2. However, we need to

decide NX,est, the number of equations used for D estimation. Here we use 10-fold cross

validation to choose desired NX,est based on the criterion of minimum prediction error of

PDE (5.2) solution F (x, t). Similar as in section 5.5.1, we randomly partition F̂n(t) and

Ĝn(t) into 10 equal-size subsets {Bk}10
k=1 by subsetting time point {tj}ntj=1. Within each

fold, we train, test and evaluate performance in the following procedure:

• We treat Bk as testing data and the rest 9 subsets as training data. For each NX , we

first estimate D with training data.

• We plug smoothed data G̃(xi, tj), F̃ (xi, t = 0) as initial values and estimators θ̂1, θ̂2

and D̂(NX,est) into model to solve PDE (5.2), and obtain prediction F̂ (xi, tj).

• We evaluate performance of parameter estimation procedure at NX,est using prediction

error, which is defined as the sum of squares of difference between data f(xi, tj) and

F̂ (xi, tj) on testing data:

PEk(NX,est) =
∑

(xi,tj)∈Bk

(
f(xi, tj)− F̂ (xi, tj)

)2
(5.40)
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NX,est is chosen by minimizing the average of prediction errors across all 10 folds:

PE(NX,est) =
1

10

10∑
k=1

PEk(NX,est) (5.41)

5.5.3 Implementation of Proposed Method

In summary, the proposed method is implemented with the following steps: (1)

smoothing data f(xi, tj) and g(xi, tj) with procedure in section 5.5.1; (2) obtaining pseudo

data; (3) smoothing pseudo data with NT,est chosen by GCV; (4) estimating θ1 and θ2

with smoothed data F̂0(t) and Ĝ0(t); (5) choosing NX,est with 10-fold cross validation; (6)

Estimating D with smoothed data F̂n(t) and Ĝn(t) with n = 1, 2, · · · , NX,est.

5.6 Simulation

In this section, simulation studies are conducted with different set-ups of source

function G(x, t) and true parameters θ1, θ2 and D. All the estimation procedures were im-

plemented in R. We first choose two sets of source function with different spatial-temporal

patterns. In addition, we use our pollen tube tip growth set-ups as true values for simula-

tion. For each set-up, we first fix the number of equation used to estimate D, NX,est = 2,

conduct simulation study, and compare simulated standard error with theoretic standard

error provided in Theorem 19 and 21. Moreover, we conduct simulation study with NX,est

selected by 10-fold cross validation to evaluate proposed procedure implementation. For all

three set-ups, we choose NX,est and NT,est from 1, 2, · · · , 10.
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5.6.1 Simulation with arbitrary source G(x, t)

Set-up 1:

In this set-up, we choose θ1 = 1, θ2 = −0.5, D = 0.1, and source function G(x, t) is defined

as a periodic function with single-peak spatial pattern (See Fig 5.1b) as

G(x, t) = (sin(2πt/5) + 1) ∗ (e−(x−0.5)2/0.02) + 1.

With initial value F (x, t = 0) = e−
(x−0.4)2

0.02 , we can solve PDE (5.2) and obtain the true

value of solution F (x, t) (See Fig 5.1a). As shown in Fig 5.1, F (x, t) and G(x, t) are in

Figure 5.1: Spatial-temporal pattern of F (x, t) and G(x, t) in set-up 1

[2.4, 2.7] and [1, 2.5], respectively, so we choose noise of F (x, t) and G(x, t) as σf = 0.3 and

σg = 1. We simulate data from t ∈ [0, 25] with sample sizes nt = 251 and nx = 101. The

simulation is conducted 1000 times and the results are summarized in table 5.1.

Set-up 2:

In this set-up, we choose θ1 = 2, θ2 = 0.8, D = 0.2, and source function G(x, t) is defined
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Table 5.1: Simulation of parameter estimation procedure for model (5.2) with set-up 1.
SE: simulated standard error; SE* and covProb*: theoretical standard error and coverage
provability obtained based on true value and Theorem 19 and 21; SE** and covProb**:
theoretical standard error and coverage probability obtained based on estimated value and
Theorem 19 and 21.

θ1 (1) θ2 (-0.5) D (0.1)
NX = 2 CV NX = 2 CV NX = 2 CV

bias -0.0070 0.0051 0.0033 0.0025 -0.0051 -0.0014

SE 0.0447 0.0462 0.0225 0.0231 0.0075 0.0060
SE* 0.0452 0.0228 0.0070
SE** 0.0450 0.0227 0.0068

MSE 2.0468e-3 2.1572e-3 5.1710e-4 5.4051e-4 8.2487e-5 3.7848e-5

covProb* 0.954 0.952 0.868
covProb** 0.947 0.948 0.851

as a periodic function with double-peak spatial pattern (See Fig 5.2b) as

G(x, t) = (sin(2πt/5) + 1) ∗ (e(x−0.25)2/0.02 + e(x−0.75)2)/0.02 + 1.

With initial value F (x, t = 0) = e−
(x−0.25)2

0.02 + e−
(x−0.75)2

0.02 , we can solve PDE (5.2) to obtain

the true value of solution F (x, t) (See Fig 5.2a).

Figure 5.2: Spatial-temporal pattern of F (x, t) and G(x, t) in set-up 2

As shown in Fig 5.2, for each time point, the variation of F (x, t) along spatial
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dimension is quite small so we choose noise of F (x, t) as σf = 0.5. However, the variation of

G(x, t) along spatial dimension is very large so we choose noise of G(x, t) as σg = 1.5. We

simulate the data from t ∈ [0, 25] with sample size nt = 251 and nx = 101. The simulation

is conducted 1000 times and the results are summarized in 5.2.

Table 5.2: Simulation of parameter estimation procedure for model (5.2) with set-up 2.
SE: simulated standard error; SE* and covProb*: theoretical standard error and coverage
provability obtained based on true value and Theorem 19 and 21; SE** and covProb**:
theoretical standard error and coverage probability obtained based on estimated value and
Theorem 19 and 21.

θ1 (2) θ2 (-0.8) D (0.2)
NX = 2 CV NX = 2 CV NX = 2 CV

bias -0.0132 -0.01508 0.0050 0.0062 -0.0128 0.0135

SE 0.0665 0.0657 0.02717 0.0267 0.0293 0.0281
SE* 0.0647 0.0264 0.0274
SE** 0.0643 0.0262 0.0257

MSE 4.5993e-3 4.5450e-3 7.6278e-4 7.5051e-4 1.0203e-3 9.6992e-4

covProb* 0.943 0.953 0.91
covProb** 0.939 0.945 0.854

Interpretation of simulation results:

For each sets of source function, we did two simulation studies: (1) we fixed NX,est = 2

and use cross validation to choose NX,smooth, NT,smooth and NT,est; (2) we choose all the

numbers of basis functions, NX,smooth, NT,smooth, NT,est and NX,est with cross validation as

described in section 5.5. In table 5.1 and 5.2, true value of each parameter is labeled in the

parentheses. First, we look at results of cases where we fix NX,est = 2 and where we choose

NX,est with cross validation separately and draw the following conclusions:

1. Compared with the true value of each parameter, bias, standard error (SE) and mean

squared error (MSE) are relatively small in both set-ups. It shows that our proposed
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parameter estimators are consistent, and that the sample size chosen in this simulation

study is sufficiently large for convergence.

2. In table 5.1 and 5.2, we provides two types of standard error. One is obtained as

standard deviation of 1000-times simulation labeled as ”SE” in table 5.1 and 5.2, and

the other is calculated based on Theorem 19 and 21 as ”SE*” or ”SE**”. Notice that

standard error can only be calculated theoretically in the case when we fix the number

of equations used in parameter estimation, NX,est = 2. In this case, based on results

in table 5.1 and 5.2, we concluded that the simulation results and theoretical values

are close to each other as expected, suggesting good convergence behavior warranted

by asymptotic theory.

3. The ”covProb” in the table represents coverage probability, which is the proportion

of 95% CI that includes true value among 1000-times simulation. We expect it to be

closed to 0.95 if asymptotic normality is valid. Based on results in table 5.1 and 5.2,

we find out that the coverage probability of θ1 and θ2 is closed to 0.95. However, the

coverage probability of D is 0.868 and 0.91 for set-up 1 and set-up 2, respectively.

In order to explain this difference, we check the distribution of D̂ by QQ-plots (Fig

5.3), in which the straight line indicates normal distribution with true value of D

and theoretical value of SE(D̂) from Theorem 21. From Fig 5.3, we can see that the

deviation between coverage probability of D and 0.95 is caused by bias, difference

between theoretical value and simulated value of SE, and deviation from normality in

tails parts which is caused by approximation in calculation of distribution of θ̂1Ĝn(t)

and θ̂2F̂n(t), all of which can be improved with larger sample size.
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Figure 5.3: QQ plot for normality check of D̂

Now we compare between results of case where we fix NX,est = 2 and where

we choose NX,est with cross validation. Based on table 5.1 and 5.2, we have following

conclusions:

1. In terms of reaction rate θ1 and θ2, bias, SE, MSE in both cases are similar. This

results is what we expect because the only difference between both cases are how to

choose NX,est, the number of equation used for D estimation, which does not involves

in parameter estimation procedure of θ1 and θ2. Therefore, results of θ1 and θ2 should

be similar between case where we fix NX,est = 2 and where we choose NX,est with

cross validation.

2. In terms of diffusion rate D,it shows that MSE of D̂ is smaller in case where NX,est is

chosen with cross validation than in case where NX,est = 2, which indicates a better

performance when NX,est is chosen with cross validation as expected.
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5.6.2 Simulation with pollen tube tip growth model

In this section, we investigate how proposed procedure performs on our pollen tube

model (2.15) through simulation study. We first solve model (2.15) with a set of parameters

as

α = 1.5 L = 2.5π Rtot = 5π Dr = 0.1 Dc = 10

kpf =
0.72

π
knf = 3.6 kc = 0.15 kac = 1 kdc = 0.4

(5.42)

and initial values R(x, t = 0) = C(x, t = 0) = 0.0259 − 0.01cos(4x). Then, the solution of

model (2.15) is shown in Fig 5.4.

Figure 5.4: Spatial-temporal pattern of C(x, t) and R(x, t) as solution of model (2.15) with
parameter as (5.42).

Note that Ct function in model (2.15) is in the same form of linear reaction diffusion

equation as model (5.2). Therefore, we can treat R(x, t) and C(x, t) as true value of G(x, t)

and F (x, t), respectively. In this case, kac, kdc and Dc in model (2.15) can be considered as

θ1, θ2 and Dc in model (5.2), which can be estimated by our proposed method.

Based on this idea, we conduct simulation with our pollen tube model. In this
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case, true value of kac, kdc and Dc are 1, 0.4, and 10. Moreover, as shown in Fig 5.4, at

each time point, range of C(x, t) and R(x, t) is 0.02 and 0.2 respectively, so we set noise of

C(x, t) and R(x, t) as σc = 0.01 and σr = 0.05. We simulated data from t ∈ [0, 97.2], which

included 9 entire periods of oscillation. We conducted simulation studies with different

sample sizes. The results based on 1000 simulations are shown in table 5.3:

• Case 1: nx = 51, nt = 52.

• Case 2: nx = 101, nt = 122.

• Case 3: nx = 301, nt = 389.

Table 5.3 suggests the similar conclusions as those from the previous simulation

studies including (1) Bias, SE, MSE are relatively small compared to true values, which

indicates consistency of estimators; (2) Standard errors obtained by simulation and calcu-

lated based on Theorem 19 and 21 are close to each other, which indicates convergence

in variation; (3) Coverage probabilities are close to 0.95, which indicates asymptotic nor-

mality of the proposed estimators. Here although coverage probability of Dc in case 3 is

only 0.906, we still can conclude that the asymptotic normality of D̂c is valid based on

P-value of Kolmogorov-Smirnov test, Shapiro-Wilk test, Anderson-Darling test as 0.7746,

0.8018 and 0.6627, respectively and QQ-plot (Fig 5.5(c)). From Fig 5.5(c), we claim that

the difference between coverage probability of D̂c and 0.95 is caused by bias and difference

between theoretical value and simulated value of standard error, which might be due to

overfitting issue in smoothing step.

Moreover, comparing cases where we fix NX,est = 2 and where we choose NX,est
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Table 5.3: Simulation of parameter estimation procedure for model (5.2) with R(x, t) as Fig
5.4b and different cases of sample size. SE: simulated standard error; SE* and covProb*:
theoretical standard error and coverage provability obtained based on true value and The-
orem 19 and 21; SE** and covProb**: theoretical standard error and coverage probability
obtained based on estimated value and Theorem 19 and 21.

kac (1) kdc (0.4) Dc (10)
NX = 2 CV NX = 2 CV NX = 2 CV

Case 1

bias -0.0308 -0.0313 -0.0123 -0.0123 -0.3767 -0.2567
SE 0.0728 0.0764 0.0314 0.0328 0.7976 0.9334
SE* 0.0726 0.0309 0.8108
SE** 0.0702 0.0299 0.7865
MSE 0.0062 0.0068 0.0011 0.0012 0.7780 0.9372

covProb* 0.934 0.934 0.94
covProb** 0.899 0.899 0.895

Case 2

bias -0.0083 -0.0101 0.0023 -0.0030 -0.1155 -0.0841
SE 0.0335 0.0336 0.0140 0.0146 0.3815 0.3848
SE* 0.0333 0.0142 0.3720
SE** 0.0331 0.0141 0.3703
MSE 0.0012 0.0012 0.0002 0.0002 0.1589 0.1551

covProb* 0.946 0.945 0.932
covProb** 0.938 0.946 0.924

Case 3

bias -0.0048 -0.0044 -0.0011 -0.0010 -0.0782 -0.0417
SE 0.0107 0.0108 0.0046 0.0046 0.1196 0.1246
SE* 0.0108 0.0046 0.1201
SE** 0.0107 0.0046 0.1201
MSE 1.3681e-4 1.3663e-4 2.2134e-5 2.2119e-5 0.0204 0.0173

covProb* 0.939 0.945 0.906
covProb** 0.938 0.943 0.901

with cross validation, we concluded that (1) results of kac and kdc are similar in terms of

bias, SE and MSE; (2) MSE of Dc is smaller when NX,est is chosen with cross validation

than when it is fixed at 2, which indicates choosing NX,est with cross validation gives better

performance of estimators.

The comparison across different cases clearly shows that the performance of the

proposed estimation procedure is getting better when sample size is getting larger, in terms

of bias, standard error and MSE of kac, kdc and Dc.
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Figure 5.5: QQ plot for normality check of D̂c in three different cases.
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Chapter 6

Parameter Estimation Procedure

of Nonlinear Reaction Diffusion

Equation

In this chapter, we will introduce a parameter estimation procedure of nonlinear

reaction diffusion model defined on the bounded space Ω with boundary denoted ∂Ω.



Ft = F(G(x, t), F (x, t),θ) +D∆F for(x, t) ∈ Ω× [0, T ]

α1F (x, t) + α2
∂F

∂n
= 0 for(x, t) ∈ Ω× [0, T ]

F (x, 0) = f0(x)

(6.1)

where θ is a set of unknown parameters involved in reaction activities, D is unknown

diffusion coefficient, G(x, t) is known spatial-temporal force which affects reaction activities

and can be observed, F(·) is local reaction function depending on F (x, t), G(x, t), θ and D.
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In this chapter, we only consider Dirichlet condition with α2 = 0 and Neumann’s condition

with α1 = 0 as boundary condition.

Our proposed method is the extension of the parameter estimation procedure for

linear reaction diffusion equation described in the previous chapter. In that chapter, the

reason why we can avoid nonparametric estimation of the second order derivative with re-

spect to spatial dimension, is that we can derive an ODE system (5.7) based on spectral

decomposition of the solution to PDE (5.2). In fact, the coefficient functions Fn(t) and

Gn(t) satisfying ODE system (5.7) is inner product of normalized eigenfunction of Lapla-

cian operator and F (x, t) and G(x, t). That is to say, the ODE system (5.7) can also be

considered as obtained by taking inner product of normalized eigenfunction of Laplacian

operator and both side of PDE (5.2). In this chapter, motivated by this idea, we pro-

pose a parameter estimation procedure for nonlinear reaction diffusion equation. Then, we

will describe implementation of the method and conduct simulation studies with different

nonlinear reaction function set-ups.

6.1 Statistical Analysis

In fact, model (5.2) is a special case of model (6.1). The observation process of

model (6.1) is the same as that of model (5.2). The reaction forcing factor G(x, t) and

unknown dynamics F (x, t) is observed with independent Gaussian noise on deterministic

time grid and location grid {(xi, tj)}nx,nti=0,j=1, i.e.
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fij = F (xi, tj) + ε

(f)
ij

gij = G(xi, tj) + ε
(g)
ij

i = 0, 1, 2, · · · , nx j = 1, 2, · · · , nt (6.2)

where ε
(f)
ij , ε

(g)
ij are observation errors satisfying ε

(f)
ij

i.i.d∼ N(0, σ2
f ) and ε

(g)
ij

i.i.d∼ N(0, σ2
g)

independently for all i = 0, 1, 2, · · · , nx and j = 1, 2, · · · , nt. With observations of fij and

gij , we want to estimate unknown reaction parameter θ and diffusion rate D based on model

(6.1).

6.1.1 Motivation

Inspired by parameter estimation procedure of linear reaction diffusion equation

described in the previous chapter, the proposed procedure is also built upon the gradient

matching approach on an ODE system obtained by inner product of normalized eigenfunc-

tion {ϕn(x)}∞n=0 of Laplacian operator and both sides of PDE (6.1). For instance, in the

case of Neumann’s condition on Ω, we can obtain

Ḟ0(t) =

∫
Ω
F(G(x, t), F (x, t),θ)ϕ0(x)dx

∆
= F0(θ, t) (6.3)

Ḟn(t) =

∫
Ω
F(G(x, t), F (x, t),θ)ϕn(x)dx−DλnFn(t)

∆
= Fn(θ, t)−DλnFn(t) n = 1, 2, · · ·

(6.4)

For the Dirichlet conditions, the set of ODEs starts from n = 1.

6.1.2 Parameter Estimation Procedure

Parameter estimators are obtained based on ODEs (6.3) and (6.4), which requires

to evaluate each term on both sides of ODEs. First, Ḟn(t) and Fn(t) in the left and right
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hand sides of the model can be obtained easily with the same method described in step 1 and

step 2 in section 5.2.3. However, it takes more effort to obtain Fn(θ, t). First of all, for most

of nonlinear function F(·), it is difficult to calculate explicit formula for

∫
Ω
F(·)ϕn(x)dx.

Moreover, we don’t know analytically the formulas for G(x, t) and F (x, t). Instead we can

only observe G(x, t) and F (x, t) with uncertainty. On the other hand, the two problems

can be solved by approximating integral with Right Riemann Summation and estimating

G(x, t) and F (x, t) by smoothing data. Therefore, the term Fn(θ, t) on the right hand side

of the equation can be obtained by plugging smoothed data F̃ (x, t) and G̃(x, t) in Right

Riemann Summation as

F̂n(θ, t) = ∆x

nx∑
i=1

F
(
G̃(xi, t), F̃ (xi, t),θ

)
ϕn(xi) n = 0, 1, 2, · · · (6.5)

Moreover, since model (6.3) only involves θ, we can use (6.3) to estimate θ with nonlinear

least square method. Then we plug estimator θ̂ in equation (6.4) to get least square esti-

mator of D. Therefore, proposed parameter estimation procedure can be summarized as

follow:

Step 1: Obtaining smoothed function F̂n(t) and ˆ̇Fn(t) with exactly the same procedure

as step 1 and step 2 in section 5.2.3.

Step 2: Approximating integration of Fn(θ, t) for n = 0, 1, 2, · · · with Right Riemann

Summation as equation (6.5), where F (x, t) and G(x, t) can be smoothed by any smoothing

technique, such as local polynomial, smoothing with spline, kernel smoothing, etc. In this

dissertation, F (x, t) and G(x, t) is smoothed by the same technique as described in section

5.5.1.
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Step 3: Estimating θ by minimizing L2 norm of difference between left hand side and

right hand side of model (6.3), i.e.

θ̂ = argmin
θ

Sθ(θ) = argmin
θ

∫ T

0

(
Ḟ0(t)−F0(θ, t)

)2
dt

Then we plug in estimator θ̂ in model (6.4). Suppose we consider first NX,est equations, D

is obtained by minimizing

SD(D) =

NX,est∑
n=1

∫ T

0

(
Ḟn(t)−Fn(θ̂, t) +DλnFn(t)

)2

In practice, we minimize the following mean squared error instead of Sθ(θ) and SD(D):

Ŝθ(θ) =
1

nt

nt∑
j=1

(
ˆ̇F0(tj)− F̂0(θ, tj)

)2

and

ŜD(D) =
1

nt

NX,est∑
n=1

nt∑
j=1

(
ˆ̇Fn(tj)− F̂n(θ̂, tj) +DλnF̂n(tj)

)2

It is also worth pointing out that if F(·) is linear function as F(F (x, t), G(x, t),θ) =

θ1G(x, t) + θ2F (x, t), then Fn(θ, t) = θ1Gn(t) + θ2Fn(t), which means that the proposed

method would degenerate to the parameter estimation procedure of linear reaction diffusion

equation provided in section 5.2.3.

6.2 Implementation and Simulation Study

Similar as the parameter estimation procedure in section 5.2.3, NX,est, the number

of equations used to estimate diffusion coefficient D can be fixed, which means that it is

not necessary to have NX,est → ∞ when sample size gets larger. On the other hand, the

number of basis functions in smoothing step, NT,est should be chosen carefully. In practice,
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we choose NT,est, NX,est, NT,smooth, NX,smooth with cross validation, which is similar as

described in section 5.5.1 and 5.5.2. Thus, we implement the proposed method in the

following order: (1) smoothing data f(xi, tj) and g(xi, tj) with the procedure described in

section 5.5.1; (2) obtaining pseudo data F̃n(t) as described in the step 1 in section 5.2.3;

(3) smoothing pseudo data F̃n(t) and obtaining first derivative of F̃n(t) as described in step

2 in section 5.2.3. As for the choice of NT,est, GCV method is used in the way described

in section 5.5.2; (4) obtaining F̂(θ, t) based on equation (6.5); (5) estimating θ with F̂0(t),

ˆ̇F0(t) and F̂(θ, t); (6) choosing NX,est with 10-fold cross validation with similar procedure

as described in 5.5.2; (7) estimating D with first NX,est equations of (6.4).

In this section, simulation studies are conducted with different nonlinear reaction

function F(·) and set-up of G(x, t) and true parameters. All the estimation procedures were

implemented in R. We first choose an arbitrary nonlinear reaction function F(·), which can

generate some interesting spatial-temporal pattern. In addition, we use our pollen tube tip

growth setting for simulation. For each set-up, we conduct simulation study with NX,est

and NT,est chosen from 1, 2, · · · , 10.

6.2.1 Simulation with arbitrary nonlinear reaction function F(·)

In this set-up, we apply our proposed method on nonlinear reaction-diffusion model

as 
Ft = θ1F (x, t) + θ2F (x, t)2G(x, t) +DFxx (x, t) ∈ [0, 1]× [0, T ]

Fx(0, t) = Fx(1, t) = 0 t ∈ [0, T ]

(6.6)
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with θ1 = 0.5, θ2 = −0.2, D = 0.3 and G(x, t) defined as a periodic function with single-peak

spatial pattern (See Fig 6.1b) as

G(x, t) = (sin(2πt/5) + 1) ∗ (e−(x−0.5)2/0.02) + 1.

With initial value as F (x, t = 0) = F (x, t = 0) = e−
(x−0.5)2

0.05 , we can solve PDE (6.6) to get

true value of solution F (x, t) (See Fig 6.1a).

Figure 6.1: Spatial-temporal pattern of F (x, t) and G(x, t) in set-up 1 of nonlinear reaction
diffusion model

As shown in Fig 6.1, at each time point, the range of F (x, t) and G(x, t) are around

0.1 and 2, respectively, so we choose noise of F (x, t) and G(x, t) as σf = 0.05 and σg = 1.

We simulate data from t ∈ [0, 25]. As for sample size, we choose nt = 251 and nx = 101.

The simulation was repeated for 1000 times. The results are shown in table 6.1.

In table 6.1, the true value of each parameter is shown in the parentheses. Com-

pared with true value of each parameter, bias, SE and MSE are relatively small, which

indicates consistency of the proposed estimators.
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Table 6.1: Simulation of parameter estimation procedure for model (6.6).

θ1(0.5) θ2 (-0.2) D (0.3)

bias -0.0032 0.0016 -0.0047
SE 0.0197 0.0078 0.0155

MSE 3.9789e-4 6.3247e-5 2.6275e-4

6.2.2 Simulation with pollen tube tip growth model

In this section, we apply our proposed method on Rt equation of our pollen tube

model (2.15). We use the same parameter setting as in (5.42) and true value of F (x, t) and

G(x, t) as solution to R(x, t) and C(x, t) shown in Fig 5.4, respectively. Specifically, we are

working on the following nonlinear reaction diffusion model
Rt = kpfR(x, t)1.5(5π −

∫ 2.5π

−2.5π
R(x, t)dx)− knfR(x, t)

C(x, t)2

C(x, t)2 + kc32
+DrRxx

Rx(2.5π, t) = Rx(−2.5π, t) = 0 t ∈ [0, T ]

(6.7)

with (x, t) ∈ [−2.5π, 2.5π] × [0, T ], true value of parameters as kpf = 0.229, knf = 3.6,

kc = 0.15, Dr = 0.1, true value of C(x, t) and R(x, t) as shown in Fig 5.4a and b. Based on

range of R(x, t) and C(x, t), we set noise of R(x, t) and C(x, t) as σr = 0.05 and σc = 0.01.

We simulated data from t ∈ [0, 97.2], which included 9 entire periods of oscillation. We

conducted simulation studies with different sample sizes, and repeat each simulation 1000

times. The results are summarized in table 6.2:

• Case 1: nx = 51, nt = 52.

• Case 2: nx = 101, nt = 122.

• Case 3: nx = 301, nt = 389.
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Table 6.2: Simulation of parameter estimation procedure for model (6.7) with different cases
of sample size.

kpf (0.229) knf (3.6) kc (0.15) Dr (0.1)

Case 1
bias 0.0033 0.6122 0.0056 -0.0075
SE 0.0521 4.5248 0.0909 0.0468

MSE 0.0027 20.8486 0.0083 0.0022

Case 2
bias 0.0108 -0.1390 -0.0105 0.0063
SE 0.0200 0.2858 0.0150 0.0189

MSE 5.1614e-4 0.1010 3.3479e-4 3.9601e-4

Case 3
bias 0.0079 -0.1379 -0.0086 0.0058
SE 0.0068 0.0955 0.0053 0.0058

MSE 1.0829e-4 0.0281 1.0213e-4 6.6821e-5

Based on the table 6.2, we can draw similar conclusion as those from previous

simulation studies: bias, SE and MSE are relatively small compared with true value of each

parameter, which indicates consistency of the proposed estimator. The comparison across

different cases clearly shows that the performance of the proposed estimation procedure is

getting better when sample size is getting larger because MSE of kpf , knf , kc and Dc are

getting smaller.

102



Chapter 7

Real Data Study: Cell Polarity

Growth

The real data of ROP1 and Ca2+ concentration, R(x, t) and C(x, t) were collected

from Arabidopsis pollen tubes from one of its oblique planes at position every 0.1161µm

from -5.3574µm to 5.3574µm at every 0.67s from 0 to 69.68s. Each data point consists of

four items, the position x, time t, the associated observed ROP1 and Ca2+ concentration

R(x, t) and C(x, t). As shown in Fig 7.1, both R(x, t) and C(x, t) concentration have a

oscillatory temporal pattern with 5.7s period and double-peak spatial pattern with peaks

on shoulders of the plasma membrane.

In this chapter, we first fit the model (2.15) with observed data to estimate un-

known parameters listed in table 7.1. The values for α and Rtot used here are suggested

by the biologist as 1.5 and 12 based on empirical studies, respectively. Then we refine the

model guided by prediction of Ca2+ and ROP1 concentration along membrane obtained by
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Figure 7.1: Spatial-temporal pattern of Observed R(x, t) and C(x, t)

plugging back estimators to model (2.15).

Table 7.1: Unknown parameters in model (2.15)

Unknown parameter Interpretation

kpf ROP1 positive feedback rate
knf ROP1 negative feedback rate
kc Threshold of Ca2+ inhibition effect on ROP1 activity
kac Ca2+ influx rate
kdc Ca2+ efflux rate

Dr, Dc ROP1 and Ca2+ diffusion coefficient

104



7.1 Application of the Proposed Method on Pollen Tube

Model

Although there are interaction effect between R(x, t) and C(x, t), parameters are

independent between the two equations with {kpf , knf , kc, Dr} only involved in Rt equation

and {kac, kdc, Dc} only involved in Ct equation. Therefore, we can separately estimate

{kpf , knf , kc, Dr} with Rt equation as
Rt = kpfR(x, t)α(Rtot −

∫ L

−L
R(x, t)dx)− knfR(x, t)

C(x, t)2

C(x, t)2 + k2
c

+DrRxx

Rx(L, t) = Rx(−L, t) = 0 t ∈ [0, T ]

(7.1)

and {kac, kdc, Dc} with Ct equation as
Ct = kacR(x, t)− kdcC(x, t) +DcCxx (x, t) ∈ [−L,L]× [0, T ]

Cx(L, t) = Cx(−L, t) = 0 t ∈ [0, T ]

(7.2)

Notice that model (7.2) is a linear reaction diffusion equation, which can be fitted

by the proposed method in chapter 5. And model (7.1) is a nonlinear equation, which can

be fitted by extended method in chapter 6. Based on implementation of both methods

described in the corresponding chapters, no matter which method we are using, the first

step is to smooth R(x, t) and C(x, t).

Based on biological understanding, ROP1 and Ca2+ concentration, R(x, t) and

C(x, t) are symmetric around x = 0. In this case, normalized eigenfunction of Laplacian

operator is defined as

ϕn(x) =


1√
2L

n = 0

cos(nπx/L)√
L

n = 1, 2, · · ·
(7.3)
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with eigenvalue λn = (nπ/L)2. For the basis functions used in smoothing across temporal

axis, we choose Fourier basis functions as {1, sin(2mπT/T0), cos(2mπT/T0)}∞m=1, where T0

is period of oscillation, 5.7s. For the number of basis functions, R(x, t) is smoothed with

NX,smooth = 2, NT,smooth = 10, and C(X, t) with NX,smooth = 4, NT,smooth = 10, which are

chosen with cross validation. Thus, we can get smoothed R(x, t) and C(x, t) shown in Fig

7.2.

Figure 7.2: Spatial-temporal pattern of Smoothed R(x, t) and C(x, t)

With smoothed data, we first applied the proposed method on Ct equation of

model (2.15), and obtained the parameter estimators as

k̂ac = 1.28 k̂dc = 1.18 D̂c = −0.05 (7.4)

with the number of ODEs used to estimate Dc, NX,est = 6 chosen by cross validation.

Then we implemented the proposed method on Rt equation of model (2.15), and

obtained the parameter estimators as

k̂pf = 0.0212 k̂nf = 1.0635 k̂c = 1.5680 D̂r = −0.0939 (7.5)
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with the number of ODEs used to estimate Dr, NX,est = 2 chosen by cross validation.

7.2 Model Modification

Results in previous section show that estimators of diffusion rate Dr and Dc are

both negative, which is unreasonable. One possible explanation for unreasonable parameter

estimation is misspecification of our model (2.15). First of all, Ct equation in model (2.15)

can be misspecified because it is established based on our limited understanding of Ca2+

activity in pollen tube. On the other hand, in Rt equation, we modeled inhibition effect of

Ca2+ on ROP1 regulation based on the hypothesis that Ca2+ signaling might down-regulate

ROP1 activity by activating negative regulators of ROP1. However, Yan [40] pointed out

that there might be an alternative hypothesis that Ca2+ promotes the disassembly of the

down-regulation of ROP1 activity by countering its F-actin-mediated positive feedback.

The reason why we choose to express Ca2+ down-regulation effect of ROP1 activity by

activating negative regulators of ROP1 is that experiments show that majority of Ca2+

inhibition effects involves in negative feedback of ROP1. Therefore, both Ca2+ and ROP1

equations might be misspecified in our case. In this section, we intend to give some guides

on refining our model based on current results.

First, we look at Ca2+ model,
Ct = kacR(x, t)− kdcC(x, t) +DcCxx (x, t) ∈ [−L,L]× [0, T ]

Cx(L, t) = Cx(−L, t) = 0 t ∈ [0, T ]

(7.6)

which includes influx of Ca2+ regulated by ROP1 concentration, efflux of Ca2+, and diffu-

sion of Ca2+ along the membrane. In fact, influx of Ca2+ depends not only on activation
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effect of ROP1 on Ca2+ channel but also on influx base level. Moreover, the proposed

model does not include the pumping back and small leak effect of endoplasmic reticulum

(ER) observed by Yang’s group. Therefore, we denote kb as difference between base level

effect of influx and ER effect. Notice that base level effect of influx is involved in positive

feedback of Ca2+ and ER effect acts as negative feedback of Ca2+. So kb can be either

positive or negative. Thus, we proposed a refined model of Ca2+ as
Ct = kb + kacR(x, t)− kdcC(x, t) +DcCxx (x, t) ∈ [−L,L]× [0, T ]

Cx(L, t) = Cx(−L, t) = 0 t ∈ [0, T ]

(7.7)

Applying the proposed parameter estimation procedure on model (7.7) with data,

we obtain parameter estimator as

k̂b = −0.8220 k̂ac = 4.2540 k̂dc = 2.2381 D̂c = 1.7567 (7.8)

In order to test whether the parameter estimator is reasonable for model (7.7), we plug in

smoothed data R(x, t) (see Fig 7.2a) and parameter estimation into model (7.7) and solve

for C(x, t) to check whether it can generate observed spatial-temporal pattern as C(x, t)

(see Fig 7.2b). With R(x, t) as Fig 7.2a and estimator in (7.8), we obtain prediction of

C(x, t) as Fig 7.3. Comparing spatial-temporal pattern of predicted C(x, t) (Fig 7.3) with

smoothed data C(x, t) (Fig 7.2b) and observed data (Fig 7.1b), we can claim that our

refined model (7.7) is a good candidate for potential equation to describe Ca2+ activity

near plasma membrane. Here, though we use a constant kb to represent base level effect

of influx and ER effect, it only shows lack of an additional term that does not depend on

ROP1 and Ca2+ on the plasma membrane. We know that base level of C2+ influx is usually
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Figure 7.3: Spatial-temporal Pattern of Predicted C(x, t) based on model (7.7) with R(x, t)
as Fig 7.2a and estimator in (7.8)

a constant, and that ER effect depends on cytosolic Ca2+. Since estimator of kb is -0.8820,

which is negative, we suggest that the model can be refined by including ER effect.

As for ROP1 equation in model (2.15), there are more modification that can be

made on the equation, such as Ca2+down-regulation for ROP1 activity. Moreover, Rtot,

which is immeasurable but critical from both biological and computational view, is con-

founded with positive feedback of ROP1. In addition, how we include Rtot in Rt equation is

also doubtful. Therefore, more biological input is required to further modify the Rt equation

in model (2.15).
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Chapter 8

Conclusions

Reaction diffusion equation has been widely used in modeling dynamic processes

in physics, chemistry, biology, engineering, and so forth. In this dissertation, a new reaction

diffusion equation is introduced to describe ROP1 and Ca2+ regulation system in pollen

tube tip growth, which incorporates positive and negative feedback of ROP1, influx and

efflux of Ca2+ and lateral diffusive movement of ROP1 and Ca2+. Mathematical analysis

and numerical simulation of the system were carried out at several levels: (1) the non-

spatial model without diffusion and non-local term; (2) the spatial-temporal model with

diffusion and nonlocal effect. The existence of parameter ranges supporting spatially non-

homogeneous time-periodic solutions is revealed from mathematical analysis and numerical

simulation.

In order to investigate quantitative comparison of numerical simulated solutions

and experimental data, model validation using experimental data as well as fine tuning

of the proposed reaction diffusion model, we introduce a parameter estimation procedure
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which incorporates gradient matching procedure and characters of reaction diffusion equa-

tion, and decomposes the solution with eigenfunction of Laplacian operator. The advantage

of incorporating the decomposition of the solution is to avoid nonparamteric estimation of

high order derivative, which can benefit parameter estimation performance in high dimen-

sional reaction diffusion equation. Simulation studies show the consistency and asymptotic

normality of the proposed estimators in both linear and nonlinear reaction diffusion equa-

tions with different examples of the model and the pollen tube model. Moreover, theoretical

proof of large sample behavior in linear reaction diffusion equation case has been provided

in this dissertation. On the other hand, more work is required for the proof of nonlinear

reaction diffusion equation, which can be an extension of linear case with linearization of

nonlinear reaction function by Taylor expansion.

The proposed parameter estimation method has been implemented on pollen tube

model with experimental observation of Arbidopsis pollen tube from Yang’s group to esti-

mate feedback rates and diffusion rates. Based on our pollen tube model, negative diffusion

rates are obtained with the proposed parameter estimation method, which is possibly caused

by misspecification of the reaction diffusion model. With more study of the model and pa-

rameter estimation, we manage to give suggestion on modifying Ca2+ activity equation

with an additional negative feedback term representing ER effect which depends on cytoso-

lic Ca2+. However, more investigation is needed to refine ROP1 activity model. Besides

the set of data used in parameter estimation with spatial temporal pattern which can be

generated by the proposed reaction diffusion equation, another set of data is observed on a

different tube with spatial temporal pattern shown in Fig 8.1. Once we smooth the data to
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Figure 8.1: Special Spatial-temporal pattern of Observed R(x, t) and C(x, t) .

reduce the noise, we can observe a clearer spatial-temporal pattern as Fig 8.2, which shows

a single-peak spatial pattern of ROP1 concentration and a double-peak spatial pattern of

Ca2+ concentration on plasma membrane. On the other hand, our model is only capable to

recover R(x, t) and C(x, t) with the same spatial temporal pattern. Therefore, developing

a model to generate different observed spatial-temporal patterns will be our future work.

Figure 8.2: Special Spatial-temporal pattern of Smoothed R(x, t) and C(x, t) .
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Chapter 9

Appendix

9.1 Proof of Proposition 1

Proof. In this proposition, we study the number of roots of equation (??) with

1 < α < 2. The function f(R) has the properties that

lim
R→0+

f(R) = −∞ and lim
R→∞

f(R) =∞. (9.1)

Also, we have the first derivative of f(R) as

f ′(R) = αRα−1 − (α− 1)Rα−2 + k2
3(α− 2)Rα−3 − k2

3(α− 3)Rα−4. (9.2)

Let

h(R) = αR3 − (α− 1)R2 + k2
3(α− 2)R− k2

3(α− 3). (9.3)

So we have f ′(R) = Rα−4h(R).

Step 1. There exists a unique x2 > 0 such that h′(R) < 0 for 0 < R < x2, h′(R) > 0 for

R > x2, and h(R) reaches the global minimum in (0,∞) at R = x2.
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Note that the function h(R) has the properties that

h(0) = −k2
3(α− 3) > 0 and lim

R→∞
h(R) =∞, (9.4)

and we have the first derivative of h(R) as

h′(R) = 3αR2 − 2(α− 1)R+ k2
3(α− 2). (9.5)

Since α ∈ (1, 2), for (9.5), we have the discriminant 41 = 4(α − 1)2 − 12k2
3α(α − 2) > 0.

In this case, h′(R) = 0 must have two roots in (−∞,∞). Notice that
2(α− 1)

3α
> 0 and

k2
3(α− 2)

3α
< 0 so h′(R) must have one negative root and one positive root. Let x2 be the

positive root of h′(R) = 0. Since h′(0) = k2
3(α− 2) < 0, we have h′(R) < 0 for 0 < R < x2,

h′(R) > 0 for R > x2. Therefore, h(R) decreases for 0 < R < x2, and increases for R > x2.

That is to say, if h(x2) ≥ 0, then h(R) ≥ 0 for any R > 0, while h(R) = 0 has two positive

solutions if h(x2) < 0.

Step 2. There exist k31, k32 > 0 such that

h(x2)


≥ 0, if k31 < k3 < k32.

< 0, if 0 < k3 < k31 or k3 > k32.

(9.6)

Since h′(R) is an quadratic function and the relationship between h(R) and h′(R),

we can have following two facts:

x2 =
(α− 1) +

√
(α− 1)2 − 3k2

3α(α− 2)

3α
, (9.7)

h(x2) =

(
x2

3
− α− 1

9α

)
h′(x2) +

6k2
3α(α− 2)− 2(α− 1)2

9α
x2 +

k2
3(α− 1)(α− 2)− 9k2

3α(α− 3)

9α
.

(9.8)
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Therefore, we have

h(x2) ≥ 0 (9.9)

⇔ x2 ≤
(α− 1)(α− 2)− 9α(α− 3)

2(α− 1)2 − 6k2
3α(α− 2)

k2
3 (9.10)

⇔ (α− 1) +
√

(α− 1)2 − 3k2
3α(α− 2)

3α
≤ (α− 1)(α− 2)− 9α(α− 3)

2(α− 1)2 − 6k2
3α(α− 2)

k2
3 (9.11)

⇔ Ak4
3 +Bk2

3 + C ≥ 0, (9.12)

where

A = α(α− 2)3 < 0, (9.13)

B = 2(α− 1)2(α− 2)2 − 18(α− 1)(α− 2) + 27 > 0, (9.14)

C = (α− 1)3(α− 3) < 0. (9.15)

Notice that the discriminant of the quadratic function Ay2 +By + C is

42 = [2(α− 1)2(α− 2)2 − 18(α− 1)(α− 2) + 27]2 − 4α(α− 1)3(α− 2)3(α− 3) (9.16)

= [2(α− 1)2(α− 2)2 − 18(α− 1)(α− 2) + 27]2 − 4(α− 1)4(α− 2)4 + 8(α− 1)3(α− 2)3

(9.17)

> −18(α− 1)(α− 2)[4(α− 1)2(α− 2)2 − 18(α− 1)(α− 2) + 27] + 8(α− 1)3(α− 2)3

(9.18)

= −2(α− 1)(α− 2)[32(α− 1)2(α− 2)2 − 162(α− 1)(α− 2) + 243]. (9.19)

Since the discriminant of the quadratic function 32y2− 162y+ 243 is 43 = 1622− 4× 32×

243 = −4860 < 0, then 32(α−1)2(α−2)2−162(α−1)(α−2)+243 > 0 for any α. Therefore

42 > −2(α− 1)(α− 2)[32(α− 1)2(α− 2)2 − 162(α− 1)(α− 2) + 243] > 0. (9.20)
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So the quadratic equation Ay2 + By + C = 0 has two real-valued solutions k∗31 < k∗32.

Because k∗31 + k∗32 = −B
A
> 0 and k∗31k

∗
32 =

C

A
> 0, then k∗31 and k∗32 are both positive.

Moreover we can have that Ak4
3 + Bk2

3 + C ≥ 0 if and only if k∗31 ≤ k2
3 ≤ k∗32. Now let

k31 =
√
k∗31 and k32 =

√
k∗32, we reach the conclusion in (9.6).

Step 3. We consider the number of roots of equation f(R) = 0 in (3.9) for each case in

(9.6). In the case where h(x2) ≥ 0, we would have h(R) ≥ 0 for any R > 0 because h(R)

decreases for 0 < R < x2, and increases for R > x2. That is to say, f ′(R) = Rα−4h(R) > 0

for any R > 0. So f(R) increases for all R > 0. According to property (9.1), f(R) = 0 has

one unique positive root.

On the other hand, when h(x2) < 0, h(R) = 0 has two positive solutions. Let

0 < r1 < x2 < r2 be the solutions of h(R) = 0. Then h(R) > 0 if R ∈ [0, r1)∪ (r2,+∞) and

h(R) < 0 if R ∈ (r1, r2). That is to say,

f ′(R) = Rα−4h(R)



> 0, if R ∈ (0, r1),

< 0, if R ∈ (r1, r2),

> 0, if R ∈ (r2,+∞).

(9.21)

Therefore, f(R) increases for 0 < R < r1, decreases for r1 < R < r2, and increases when

R > r2. Then we know that

1. If f(r1)f(r2) > 0, then f(R) = 0 has one unique positive solution.

2. If f(r1)f(r2) = 0, then f(R) = 0 has two positive solutions.

3. If f(r1)f(r2) < 0, then f(R) = 0 has three positive solutions.

Define

l(R) = Rα−3(1−R)(R2 + k2
3). (9.22)
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Then f(r1)f(r2) = [k2− l(r1)][k2− l(r2)]. Since r1 and r2 are solutions of h(R) = 0, r1 and

r2 only depends on α and k3. So there exists k21, k22 which only depends on α, k3 and are

defined as

k21 = rα−3
1 (1− r1)(r2

1 + k2
3), k22 = rα−3

2 (1− r2)(r2
2 + k2

3), (9.23)

such that

1. If k2 < k21 or k2 > k22, then f(R) = 0 has one unique positive solution.

2. If k2 = k21 or k2 = k22, then f(R) = 0 has two positive solutions.

3. If k21 < k2 < k22, then f(R) = 0 has three positive solutions.

We claim that 0 < k21 < k22 for 0 < k3 < k31, while k21 < k22 < 0 for k3 > k32.

This is equivalent to r1 < r2 < 1 for 0 < k3 < k31, while 1 < r1 < r2 for k3 < k32. Notice

that h(1) = 1 + k2
3 > 0, and that h(R) decreases for 0 < R < x2 and increases for R > x2.

So we only need to prove that h′(1) = α+2+k2
3(α−2) < 0 for 0 < k3 < k31, while h′(1) > 0

for k3 > k32. In fact, k2
31 and k2

32 are two positive roots of equation Ay2 + By + C = 0,

where A,B,C are defined as (9.13), (9.14) and (9.15) respectively. Notice that A < 0 and

A

(
2 + α

2− α

)2

+B

(
2 + α

2− α

)
+ C = 32

(
α− 1

4

)2

+ 54
α

2− α
> 0, for 1 < α < 2. (9.24)

So k2
31 <

2 + α

2− α
< k2

32. Therefore, we have

h′(1) = α+ 2 + k2
3(α− 2) > α+ 2 + k2

31(α− 2) > 0, if 0 < k3 < k31, (9.25)

h′(1) = α+ 2 + k2
3(α− 2) < α+ 2 + k2

32(α− 2) < 0, if k3 > k32. (9.26)

So we have proved that 0 < k21 < k22 for 0 < k3 < k31, while k21 < k22 < 0 for k3 > k32.

Therefore we reach the conclusion about number of solution of f(R) = 0.
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9.2 Proof of Proposition 2

Proof. By the Center Manifold Theorem (Page 116 in [25]), we can compute the

center manifold near the equilibrium (0, 0):

C = ϑ(R) =
1

k1(2− α)
R2−α + o(R2−α). (9.27)

Then, by substituting (9.27) into the first equation of the kinetic system (2.5), we obtain

the following scalar system which gives the flow of Eq. (2.5) on the center manifold:

Rt = k1R
α(1−R)− k1k2

Rϑ2(R)

ϑ2(R) + k2
3

> 0, for 0 < R < δ. (9.28)

Thus, we know that the flow on the center manifold is moving away from the origin and it

is an unstable orbit.

Next we show that there is an invariant region near R = 0, C > 0 for equation

(3.6). Define

O =

{
(R,C) : 0 ≤ R ≤

(
k2

2(k2
3 + δ2)

) 1
α−1

C
2

α−1 , 0 ≤ C ≤ δ

}
.

It is obvious that R = 0 is invariant for equation (3.6). Then, if C = δ and 0 ≤ R ≤(
k2

2(k2
3 + δ2)

) 1
α−1

δ
2

α−1 , since 1 < α < 2 then 2
α−1 > 1, so one can choose δ > 0 small

enough so that

(
k2

2(k2
3 + δ2)

) 1
α−1

δ
2

α−1 ≤ δ. By using C = δ, we have C ′ < 0.
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On the boundary R =

(
k2

2(k2
3 + δ2)

) 1
α−1

C
2

α−1 , we have

d

dt

(
R
α−1
2

C

)
=

α−1
2 CR

α−3
2 R′ −R

α−1
2 C ′

C2
=
R
α−3
2

C2

(
α− 1

2
CR′ −RC ′

)

=
R
α−3
2

C2

[
α− 1

2
Ck1

(
Rα −Rα+1 − k2

RC2

C2 + k2
3

)
−R2 + CR

]
≤ R

α−3
2

C

[
α− 1

2
k1

(
Rα − k2

RC2

C2 + k2
3

)
+R

]
≤ R

α−3
2

C

[
(α− 1)k1R

α − (α− 1)k1k2RC
2

2(C2 + k2
3)

]
≤ R

α−3
2

C

[
(α− 1)k1

(
Rα − (α− 1)k1k2RC

2

2(δ2 + k2
3)

)]
= (α− 1)R

α−1
2 k1C

2

[
Rα−1

C2
− k2

2(δ2 + k2
3)

]
= 0,

and the first inequality holds for R small enough: R < α−1
2 k1R

α. The above calculation

implies that the dynamics of (3.6) is inward on R =

(
k2

2(k2
3 + δ2)

) 1
α−1

C
2

α−1 . This shows

that O is an invariant region for Eq. (3.6), and any orbit in O converges to the origin. It

is also clear that when R = 0, C > 0 (the positive C-axis), we have (Rt, Ct) = (0,−C). So

we know that all the solutions starting from R = 0, C > 0 will always stay on this curve

and eventually converge to the origin. One can choose a maximum orbit R = hs(C) so that

all orbits such that 0 ≤ R ≤ hs(C) converge to the origin. Then other trajectories exhibits

saddle behavior near the origin.

9.3 Proof of Theorem 3

Proof. First, we look at the determinant of the Jacobian matrix J(Rj , Rj):

det(J(Rj , Rj)) = k1Rj(f
′
2(Rj) − f ′1(Rj)), where f1, f2 are defined in (3.11). From (3.11),
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we have

f2(R)− f1(R) =
k2R

2

R2 + k2
3

−Rα−1(1−R) (9.29)

⇔f(R) = k2 −Rα−3(1−R)(R2 + k2
3) =

R2 + k2
3

R2
(f2(R)− f1(R)) (9.30)

⇔f ′(R) = −2k2
3

R3
(f2(R)− f1(R)) +

R2 + k2
3

R2
(f ′2(R)− f ′1(R)). (9.31)

From (9.30), we know that f2(R)−f1(R) = 0 when f(R) = 0. Since positive steady

states (Rj , Rj) (j = 1, 2, 3) satisfy f(Rj) = 0, we have f2(Rj) − f1(Rj) = 0. Therefore,

from (9.31), we know

f ′(Rj) > 0⇔ f ′2(Rj)− f ′1(Rj) > 0⇔ det(J(Rj , Rj)) > 0;

f ′(Rj) = 0⇔ f ′2(Rj)− f ′1(Rj) = 0⇔ det(J(Rj , Rj)) = 0;

f ′(Rj) < 0⇔ f ′2(Rj)− f ′1(Rj) < 0⇔ det(J(Rj , Rj)) < 0.

According to the proof of Proposition 1, we have the following result of Det(J(Rj , Rj)):

there exists a constant k31 > 0 such that

1. If 0 < k3 < k31, then there exists r1 and r2, which are two positive solutions of

h(R) = 0, such that

(a) f ′(R) > 0⇒ Det(J(R,R)) > 0 for R ∈ (0, r1) ∪ (r2, 1);

(b) f ′(R) < 0⇒ Det(J(R,R)) < 0 for R ∈ (r1, r2).

2. If k31 < k3, then for any 0 < R < 1, we always have f ′(R) > 0⇒ Det(J(R,R)) > 0.

Here we want to point out that from (9.23), we have k2(r1) = k21 and k2(r2) = k22.
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Next we look at the trace of Jacobian matrix (3.10): Trace(J(Rj , Cj)) = k1Rjf
′
1(Rj)−

1. Define a new function

g(R) = Rf ′1(R) = Rα−1[(α− 1)− αR]. (9.32)

We observe that g(R) has the following properties:

g(0) = 0, g

(
α− 1

α

)
= 0, and lim

R→∞
g(R) =∞. (9.33)

Also we have the first derivative of g(R) as

g′(R) = Rα−2[(α− 1)2 − α2R]. (9.34)

Hence the function g(R) increases for 0 < R <

(
α− 1

α

)2

and decreases for R >(
α− 1

α

)2

. So g(R) achieves its maximum at R =

(
α− 1

α

)2

with g

((
α− 1

α

)2
)

=(
α− 1

α

)2α−1

.

Therefore we conclude that

1. If k1 <

(
α

α− 1

)2α−1

, then

Trace(J(R,R)) = k1g(R)− 1 <

(
α

α− 1

)2α−1(α− 1

α

)2α−1

− 1 = 0. (9.35)

2. If k1 >

(
α

α− 1

)2α−1

, then there exists 0 < R̃1 < R̃2, such that g(R̃1) = g(R̃2) =
1

k1
.

Therefore,

(a) If R̃1 < R < R̃2, then Trace(J(R,R)) = k1g(R)− 1 > k1g(R̃1) = 0.

(b) If 0 < R < R̃1 or R̃2 < R < 1, then Trace(J(R,R)) = k1g(R)−1 < k1g(R̃1) = 0.
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9.4 Proof of Proposition 4

Proof. From the proof of Theorem 3, we can easily get Part 1 in Proposition 4.

So here we only discuss Part 2: the case that 0 < k3 < k31. Since Det(J(R2, C2)) < 0, the

steady state (R2, C2) is always a saddle point. So we focus on the positive steady states

(R1, C1) and (R3, C3). To prove the results in Proposition 4, we need to determine the order

of the possible bifurcation points: r1, r2, R̃1 and R̃2, where r1 and r2 are the steady state

bifurcation points satisfying h(r1) = h(r2) = 0 with h(R) defined in (9.3), and R̃1, R̃2 are

possible Hopf bifurcation points satisfying g(R̃1) = g(R̃2) = 1/k1. Then, by the results of

Theorem 3, we can obtain the stability of each steady state.

First, we prove that g(r1) > g(r2) always holds. From the definition of h(R), we

know that

h(r1) = αr3
1 − (α− 1)r2

1 + k2
3(α− 2)r1 − k2

3(aα− 3) = 0. (9.36)

Multiplying (9.36) by rα−3
1 , we have

αrα1 − (α− 1)rα−1
1 + k2

3(α− 2)rα−2
1 − k2

3(aα− 3)rα−3
1 = 0, (9.37)

which together with g(r1) = −αrα1 + (α− 1)rα−1
1 from (9.32) implies that

g(r1) = k2
3(α− 2)rα−2

1 − k2
3(α− 3)rα−3

1 . (9.38)

Define

G(R) = k2
3(α− 2)Rα−2 − k2

3(α− 3)Rα−3, R ∈ (0, 1), α ∈ (1, 2). (9.39)

By direct calculation, we have G′(R) = k2
3(α − 2)2Rα−3 − k2

3(α − 3)2Rα−4 and G′(R) < 0

for R ∈
(

0,
(
α−3
α−2

)2
)
⊃ (0, 1). Therefore, G(R) is strictly decreasing for R ∈ (0, 1). By the

fact that 0 < r1 < r2 < 1, immediately we reach the conclusion that g(r1) > g(r2).
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Now we consider the case that 0 < k3 < k31 which implies the existence of multiple

steady states. For the convenience of discussion, we define

g̃(R) = g(R)− 1/k1, (9.40)

then we know that g̃ has two zeros R̃1 and R̃2. For the order of r1, r2, R̃1 and R̃2, we have

the following six possible situations:

(i) r1 < r2 < R̃1 < R̃2. We show that this case will not happen. By the property of h(R),

it is not difficult to verify that h
((

α−1
α

)2)
> 0 = h(r2), so we know that

(
α−1
α

)2
< r2.

Because
(
α−1
α

)2
is the maximum point of g̃(R) and R̃1 is the smallest root of g̃(R),

so we have R̃1 < r2 which is a contradiction to the assumption.

(ii) r1 < R̃1 < r2 < R̃2. By the fact that g̃(R) > 0 for R ∈ (R̃1, R̃1) and g(R) < 0

for R ∈ (0, R̃1) ∪ (R̃2, 1), it is easy to obtain that g̃(r1) < 0 since r1 < R̃1, which is

equivalent to k1 < 1/g(r1). Also, by g̃(r2) > 0, we have k1 > 1/g(r2). However, it has

been proved that g(r1) > g(r2), so the set (1/g(r2), 1/g(r1)) is empty, which means

that this case cannot happen.

(iii) R̃1 < r1 < r2 < R̃2 (see Fig. 3.5c). Because that r1, r2 ∈ (R̃1, R̃2), so we have

g̃(r1) > 0 and g̃(r2) > 0, which is equivalent to k1 > 1/g(r2). In this case, by

Theorem 3, we know that Hopf bifurcations occur at both of (R1, R1) and (R3, R3).

(iv) R̃1 < r1 < R̃2 < r2 (see Fig. 3.5d). By similar argument, since r1 ∈ (R̃1, R̃2)

and r2 > R̃2, we can obtain that g̃(r1) > 0 and g̃(r2) < 0 which imply that k1 ∈

(1/g(r1), 1/g(r2)). In this case, from R̃1 < r1 < R̃2 < r2 and Theorem 3, a Hopf

bifurcation only occurs at (R3, R3) and does not occur at (R1, R1).
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(v) r1 < R̃1 < R̃2 < r2 (see Fig. 3.5e). Similarly, we have g̃(r1) < 0 and g̃(r2) < 0, then it

can be inferred that k11 < k1 < 1/g(r1). In this case, no Hopf bifurcation can occur.

Also, we have
(
α−1
α

)2
> r1 in this case, which will be used later.

(vi) R̃1 < R̃2 < r1 < r2 (see Fig. 3.5f). In this case, we still have k11 < k1 < 1/g(r1), but

the difference with case (v) is that
(
α−1
α

)2
< r1. In this case, two Hopf bifurcations

occur at (R1, R1).

So in order to distinguish the last two cases, we define k̃3 to be the value of k3

such that r1 =
(
α−1
α

)2
, and it is easy to calculate that k̃3 is given by (3.21). So case (v)

is for 0 < k3 < k̃3 which is equivalent to r1 <
(
α−1
α

)2
and case (vi) is for k̃3 < k3 < k31

which implies r1 >
(
α−1
α

)2
. Also we must have that k̃3 < k31. Suppose not, then first we

assume that k3 > k32, then h(R) = 0 has two positive solutions, but both of them should

be bigger than 1 and here we have 0 < R < 1 which is a contradiction. If k31 < k3 < k32,

then h(R) = 0 has no roots, so it contradicts with the fact that h(R) = 0 has one of positive

roots at (
α− 1

α
)2 < 1 when k3 = k̃3. Therefore, we can conclude that k̃3 < k31. Finally if

0 < k1 < k11, then g̃(R) has no zeros, (R1, R1) and (R3, R3) are both always linearly stable

and Hopf bifurcation will not occur, which is similar to (v) above.

In summary the case (c) is implied by (iii) above, case (d) is implied by (iv) above,

case (e) is implied by (v) and the case of 0 < k1 < k11, and case (f) is implied by (vi) above.

The proof is completed.
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9.5 Proof of Lemma 5

Proof. By the Fourier expansion, we can write the eigenfunction of (3.22) as

(φ, ψ)T =
∞∑
n=0

(an, bn)Tϕn(x). (9.41)

Substituting (9.41) into (3.22), multiplying both sides by ϕn(x) and integrating the equa-

tions on [−L,L], then by using the orthogonality of ϕn(x), we obtain that

Jn(an, bn)T = µ(an, bn)T , for n ∈ N0.

Note that the nonlocal term

∫ L

−L
φ(x)dx =

∫ L

−L

∞∑
n=0

anϕn(x)dx =


an, n = 0;

0, n = 1, 2, · · ·

,

so J0 is different from other Jn with n ≥ 1. Therefore, we know that the eigenvalues of

(3.22) are identical with those of the matrix Jn (n ∈ N0), so the stability of the constant

equilibrium (R∗, R∗) is determined by the eigenvalues of Jn. By [31, Theorem 8.6], (R∗, R∗)

is locally asymptotically stable when the real parts of all the eigenvalues of Jn (n ∈ N0) are

negative and, it is unstable when there exists a Jn with eigenvalues of positive real part.
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9.6 Proof of Lemma 14

Proof.

S1(θ1, θ2) =

∫ T

0

[
ˆ̇F0(t)− Ĝ0(t)θ1 − F̂0(t)θ2

]2
dt

=|| ˆ̇F0(t)− Ḟ0(t)||2 (9.42)

+ ||θ∗1G0(t) + θ∗2F0(t)− θ1Ĝ0(t)− θ2F̂0(t)||2 (9.43)

+ 2〈 ˆ̇F0(t)− Ḟ0(t), θ∗1G0(t) + θ∗2F0(t)− θ1Ĝ0(t)− θ2F̂0(t)〉 (9.44)

Based on consistency of ˆ̇F0, the first term (9.42) is of orderOp(N
2
T,est/nt+N

−2α+1
T,est +

n−2
x ). As for the second term (9.43), we have

||θ∗1G0(t) + θ∗2F0(t)− θ1Ĝ0(t)− θ2F̂0(t)||2 (9.45)

=||θ1G0(t) + θ2F0(t)− θ1Ĝ0(t)− θ2F̂0(t)||2 (9.46)

+ ||θ∗1G0(t) + θ∗2F0(t)− θ1G0(t)− θ2F0||2 (9.47)

+ 2〈θ1G0(t) + θ2F0(t)− θ1Ĝ0(t)− θ2F̂0(t), θ∗1G0(t) + θ∗2F0(t)− θ1G0(t)− θ2F0(t)〉

Based on consistency of Ĝ0(t) and F̂0(t), the first term (9.46) is of orderOp(NT,est/nt+

N−2α
T,est+n

−2
x ). According to Cauchy-Schwartz inequality, (9.43) is dominate by (9.47), which

is

∫ T

0
[(θ∗1 − θ1)G0(t) + (θ∗2 − θ2)F0(t)]2 dt. Therefore, limit behavior of S1(θ1, θ2) can be

evaluated as

S1(θ1, θ2) =

∫ T

0
[(θ∗1 − θ1)G0(t) + (θ∗2 − θ2)F0(t)]2 dt+Op(N

2
T,est/nt +N−2α+1

T,est + n−2
x )
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9.7 Proof of Lemma 16

Proof. In fact, the logic of proof of Lemma 16 is similar as that of Lemma 14.

NX,est∑
n=1

∫ T

0

[
θ̂1Ĝn(t)− θ∗1Gn(t)

]2
dt =

NX,est∑
n=1

||θ̂1Ĝn(t)− θ̂1Gn(t)||2 +

NX,est∑
n=1

||θ̂1Gn(t)− θ∗1Gn(t)||2

+ 2〈θ̂1Ĝn(t)− θ̂1Gn(t), θ̂1Gn(t)− θ∗1Gn(t)〉

Now we look at each term:

NX,est∑
n=1

||θ̂1Ĝn(t)− θ̂1Gn(t)||2 =

NX,est∑
n=1

[β∗1 +Op(dnx,NTest,nt)]
2||Ĝn(t)−Gn(t)||2 = Op(cnx,NT,est,nt)

NX,est∑
n=1

||θ̂1Gn(t)− θ∗1Gn(t)||2 =

NX,est∑
n=1

||Gn(t)||2(θ̂1 − θ∗1)2 = Op(d
2
nx,NT,est,nt

)

With application of Cauchy-Schwartz inequality, we have

NX,est∑
n=1

∫ T

0

[
θ̂1Ĝn(t)− θ∗1Gn(t)

]2
dt = Op(cnx,NT,est,nt) +Op(d

2
nx,NT,est,nt

) (9.48)

Similarly, we have

NX,est∑
n=1

∫ T

0

[
θ̂2F̂n(t)− θ∗2Fn(t)

]2
dt = Op(cnx,NT,est,nt) +Op(d

2
nx,NT,est,nt

) (9.49)

9.8 Proof of Lemma 18

Proof. According to consistency and normality of smoothed data, we know that

Ĝ0(t) and F̂0(t) converges to true value G0(t) and F0(t). Moreover, we know that

cov(Ĝ0) = Φ(ΦTΦ)−1ΦT s1 cov(F̂0) = Φ(ΦTΦ)−1ΦT s2

cov( ˆ̇F0) = Φ̇(ΦTΦ)−1Φ̇
T
s2 cov( ˆ̇F0,F0) = Φ̇(ΦTΦ)−1ΦT s2
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Therefore, with simple calculation, we have 〈Ĝ0(t)θ∗1 + F̂0(t)θ∗2 −
ˆ̇F0(t), Ĝ0(t)〉

〈Ĝ0(t)θ∗1 + F̂0(t)θ∗2 −
ˆ̇F0(t), F̂0(t)〉


nt

→ T

nt

 Ĝ0
T

F̂0
T

( −θ∗1Int −θ∗2Int Int

)

Ĝ0 − E(Ĝ0)

F̂0 − E(F̂0)

ˆ̇F0 − E( ˆ̇F0)



∼MVN


 0

0

 ,

(
T

nt

)2

B1



where B1 =

 s11 s12

s12 s22

, and

s11 = θ∗
2

1 G0
TΦ(ΦTΦ)−1ΦTG0s1 +

[
θ∗2G0

TΦ−G0
T Φ̇
]

(ΦTΦ)−1
[
θ∗2G0

TΦ−G0
T Φ̇
]T
s2

s22 = θ∗
2

1 F0
TΦ(ΦTΦ)−1ΦTF0s1 +

[
θ∗2F0

TΦ− F0
T Φ̇
]

(ΦTΦ)−1
[
θ∗2F0

TΦ− F0
T Φ̇
]T
s2

s12 = θ∗
2

1 G0
TΦ(ΦTΦ)−1ΦTF0s1 + θ∗

2

2 G0
TΦ(ΦTΦ)−1ΦTF0s2 +G0

T Φ̇(ΦTΦ)−1Φ̇
T
F0s2

− θ∗2G0
T Φ̇(ΦTΦ)−1ΦTF0s2 − θ∗2G0

TΦ(ΦTΦ)−1Φ̇
T
F0s2

With understanding of G0
TΦ(ΦTΦ)−1ΦTG0, we can know the large sample be-

havior of s11, s12 and s22. First, we look at (ΦTΦ)−1.

ΦTΦ =
(
φTi φj

)
NT,est×NT,est

=
nt
T

(∫ T

0
φi(t)φj(t)dt+O(NT,est/nt)

)
NT,est×NT,est

So
(
ΦTΦ

)−1
=

T

nt
[Q+O(NT,est/nt)] where Q is inverse of a NT,est × NT,est matrix, of

which elements on i-th row and j-th column is
∫ T

0 φi(t)φj(t)dt.
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Then, we look at vectors G0
TΦ.

G0
TΦ = nt

[
1

nt
G0

Tφ1

1

nt
G0

Tφ2 · · · 1

nt
G0

TφNT,est

]
=
nt
T

[ ∫ T

0
G0(t)φ1(t)dt+O(n−1

t ) · · ·
∫ T

0
G0(t)φNT,est(t)dt+O(

NT,est

nt
)

]
∆
=
nt
T

[ξG +O(NT,est/nt)] (9.50)

Therefore, we have

G0
TΦ(ΦTΦ)−1ΦTG0

=
{nt
T

[ξG +O(NT,est/nt)]
}{ T

nt
[Q+O(NT,est/nt)]

}{nt
T

[ξG +O(NT,est/nt)]
}T

=
nt
T

[
ξGQξG

T +O(NT,est/nt)
]

(9.51)

Furthermore,

ξGQξG
T = trace(ξGQξG

T ) = trace(QξG
T ξG) (9.52)

If T is multiple of period, thenQ is diagonal with elementsQii =
1∫

φ2
i (t)dt

. The elements on

i-th row and j-th column of ξG
T ξG is

∫
G0(t)φi(t)dt

∫
G0(t)φj(t)dt. According to Parseval

Identity, we have

trace(QξG
T ξG) =

NT,est∑
i=1

(
∫
G0(t)φi(t)dt)

2∫
φi(t)2dt

→ ||G0(t)||2 (9.53)

Hence, G0
TΦ(ΦTΦ)−1ΦTG0 =

nt
T

[
||G0(t)||2 +O(NT,est/nt)

]
. Therefore, we

have

s11 →
nt∆x

T
σ11 =

nt∆x

T

[
θ∗

2

1 ||G0(t)||2σ2
g + ||θ∗2G0(t)− Ġ0(t)||2σ2

f

]
s12 →

nt∆x

T
σ12 =

nt∆x

T

[
θ∗

2

1 〈G0(t), F0(t)〉σ2
g + 〈θ∗2G0(t)− Ġ0(t), θ∗2F0(t)− Ḟ0(t)〉σ2

f

]
s22 →

nt∆x

T
σ22 =

nt∆x

T

[
θ∗

2

1 ||F0(t)||2σ2
g + ||θ∗2F0(t)− Ḟ0(t)||2σ2

f

]
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Thus,

(
T

nt

)2

B1 →
T∆x

nt
B1
∗, which means

 〈Ĝ0(t)θ∗1 + F̂0(t)θ∗2 −
ˆ̇F0(t), Ĝ0(t)〉

〈Ĝ0(t)θ∗1 + F̂0(t)θ∗2 −
ˆ̇F0(t), F̂0(t)〉


is multivariate normally distributed with mean zero and variance-covariance matrix B1 →

T∆x

nt
B1
∗.

9.9 Proof of Lemma 20

Proof. Since, in practice, the inner products are approximated by summation of

smoothed data. Based on consistency of smoothed data, we have

NX,est∑
n=1

〈 ˆ̇Fn(t)− θ̂1Ĝn(t)− θ̂2F̂n(t) + λnF̂n(t)D∗,−λnF̂n(t) >nt

=
T

nt

NX,est∑
n=1

[
−λnF̂n

T
](
−D∗Int Int

) −λnF̂n + E(λnF̂n)

ˆ̇Fn − θ̂1Ĝn − θ̂2F̂n − E( ˆ̇Fn − θ̂1Ĝn − θ̂2F̂n)



→ T

nt

NXest∑
n=1

[
−λnFnT

](
−D∗Int Int

)

 −λnInt 0 0

−θ∗2Int Int −θ∗1Int




F̂n − E(F̂n)

ˆ̇Fn − E( ˆ̇Fn)

Ĝn − E(Ĝn)




(9.54)

+
T

nt

NX,est∑
n=1

[
−λnFnT

](
−D∗Int Int

)

 −λnFn 0 0

Ḟn −Gn −Fn




1

θ̂1 − E(θ̂1)

θ̂2 − E(θ̂2)




(9.55)

Since θ̂1 and θ̂2 only depends on F̂0(t), Ĝ0(t) and D̂F 0(t), which is indepen-

dent with F̂n(t), Ĝn(t) and D̂Fn(t), variance of
∑NX,est

n=1 〈
ˆ̇Fn(t) − θ̂1Ĝn(t) − θ̂2F̂n(t) +
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λnF̂n(t)D∗,−λnF̂n(t)〉nt is sum of two component

(
T

nt

)2

B21 and

(
T

nt

)2

B22, which are

variance of term (9.54) and (9.55), respectively.

First, we look at B21, which is variance of term (9.54). With simple calculation,

we have B21 =

NX,est∑
n=1

(bxxn21 + bxyn21 + byyn21 ), where

bxxn21 = D∗2λ4
nFn

TΦ(ΦTΦ)−1ΦTFns2

bxyn21 = −2D∗λ3
n

[
θ∗2Fn

TΦ(ΦTΦ)−1ΦTFns2 − FnTΦ(ΦTΦ)−1Φ̇
T
Fns2

]
byyn21 = λ2

n

[
θ∗

2

2 Fn
TΦ(ΦTΦ)−1ΦTFns2 + Fn

T Φ̇(ΦTΦ)−1Φ̇
T
Fns2

+θ∗
2

1 Fn
TΦ(ΦTΦ)−1ΦTFns1 − 2θ∗2Fn

TΦ(ΦTΦ)−1Φ̇
T
Fns2

]
With similar logic as that of derivation in proof of Lemma 18, we have

bxxn21 →
nt∆x

T
λ4
n||Fn(t)||2σ2

f =
nt∆x

T
bxxn∗21

bxyn21 → −
nt∆x

T
2D∗λ3

n

[
θ∗2||Fn(t)||2σ2

f − 〈Fn(t), Ḟn(t)〉σ2
f

]
=
nt∆x

T
bxyn∗21

byyn21 →
nt∆x

T
λ2
n

[
θ∗2||Fn(t)||2σ2

f + ||Ḟn(t)||2σ2
f + θ∗21 ||Fn(t)||2σ2

g − 2θ∗2〈Fn(t), Ḟn(t)〉σ2
f

]
=
nt∆x

T
byyn∗21

Therefore,

B21 →
nt∆x

T

NX,est∑
n=1

(
bxxn∗21 + bxyn∗21 + byyn∗21

)
=
nt∆x

T
B∗21 (9.56)

Now we look at B22, which is variance of term (9.55). Based on results of asymp-

totic normality of θ̂1 and θ̂2 (Theorem 19), with simple calculation, we have
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B22 =

( ∑NX,est
n=1 λnFn

TGn
∑NX,est

n=1 λnFn
TFn

)
cov

 θ̂1

θ̂2



∑NX,est

n=1 λnFn
TGn∑NX,est

n=1 λnF
T
n Fn



→ nt
T∆x


∑NX,est

n=1 λn〈Fn(t), Gn(t)〉∑NX,est
n=1 λn||Fn(t)||2


T

Σ∗


∑NX,est

n=1 λn〈Fn(t), Gn(t)〉∑NX,est
n=1 λn||Fn(t)||2


=

nt
T∆x

b22
∗Σ∗b22

∗T =
nt
T∆x

B∗22 (9.57)

Therefore, according to results (9.56) and (9.57), we have

NX,est∑
n=1

〈 ˆ̇Fn(t)− θ̂1Ĝn(t)−

θ̂2F̂n(t)+λnF̂n(t)D∗,−λnF̂n(t)〉 is asymptotically normally distributed with mean zero and

variance
T∆x

nt
(B∗21 +B∗22).
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