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Abstract

This dissertation explores the potential of machine learning in the swine industry, which faces

numerous challenges such as disease outbreaks, antimicrobial resistance, and the need for efficient

decision-making for optimal production processes. Traditional methods may not be scalable, accurate,

or timely enough to meet the demands. Machine learning provides data-driven solutions that enhance

decision-making, improve disease prediction, optimize antimicrobial usage, and enhance overall

production efficiency. The dissertation consists of six chapters. Chapter 1 presents an introduction

and overview of the remaining chapters. Chapters 2, 3, and 4 present machine learning applications

to the swine industry. Chapters 5 and 6 present the development and understanding of deep learning

models, specifically for novelty detection and synthetic tabular data generation.

Chapters 2, 3, and 4 address real-world problems in the swine industry using machine learning

methods with real-world data. Each Chapter focuses on a specific issue: virus classification,

antimicrobial resistance (AMR) prediction, and Minimal Inhibitory Concentration (MIC) prediction.

Specifically, Chapter 2 aims to classify the Porcine Reproductive and Respiratory Syndrome Virus,

a highly infectious disease of pigs, into four different sublineages via amino acid scores from Open

Reading Frame 5 gene sequences. Chapter 3 focuses on predicting the future AMR burden of the

bacterial pathogen through time series analysis. The goal of Chapter 4 is to predict MIC values for

12 antibiotics using Random Forest based on k-mer counting data processing approach for whole

gene information of Streptococcus suis.

Chapters 5 and 6 investigate the improvement of training data quality for machine learning

applications through the use of deep generative models. These models, such as Generative Adversarial

Networks and Autoencoders, are employed for novelty detection and synthetic tabular data generation.

Specifically, Chapter 5 proposes a new method based on Adversarial Autoencoders for detecting

novelties in multi-modal normality cases. Chapter 6 provides a systematic and comprehensive

assessment of how label noise influences synthetic tabular data generation using deep generative

model-based synthesizers.
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CHAPTER 1

Introduction

The swine industry, as a critical component of global food production and public health, faces

numerous challenges that require innovative approaches for effective management [7,69]. One such

approach is the integration of machine learning techniques, which have gained prominence in recent

years for their ability to leverage data-driven methodologies to tackle complex problems [59,62,104].

In this dissertation, we explore the applications of machine learning in the swine industry, addressing

diverse perspectives and presenting original research papers that contribute to advancing the field.

The swine industry operates in a dynamic and evolving environment, facing challenges such

as disease outbreaks [19, 51, 73], antimicrobial resistance [5, 7, 128], and the need for efficient

decision-making to optimize production processes [62,116]. Traditional approaches to addressing

these challenges often rely on labor-intensive and time-consuming manual methods, which may not

be scalable, accurate, or timely enough to effectively manage the industry’s demands [11,120]. In

this regard, machine learning, a subset of artificial intelligence, offers the potential to revolutionize

the swine industry by providing data-driven solutions that can enhance decision-making, improve

disease detection and prediction, optimize antimicrobial usage, and enhance overall production

efficiency.

One of the key reasons why machine learning approaches are crucial in the swine industry is the

complexity and variability of the data generated from various sources such as genetics, environment,

health records, and production practices. Machine learning algorithms can effectively process and

analyze large volumes of data, uncovering hidden patterns, identifying correlations, and extracting

valuable insights. These data-driven approaches can provide a better understanding of disease

dynamics, identify risk factors, and support evidence-based decision-making for disease prevention,

diagnosis, and control. Moreover, machine learning techniques can facilitate the identification

of antimicrobial resistance patterns, predict optimal antimicrobial usage, and contribute to the

development of sustainable and responsible antibiotic stewardship practices in the swine industry.
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In addition, machine learning can enhance the efficiency of swine production processes through

predictive modeling, optimization, and automation. For instance, by leveraging machine learning

algorithms, swine producers can make data-driven decisions on optimal feed formulations, vaccination

strategies, and production management practices. This can lead to improved production outcomes,

reduced costs, and enhanced overall operational efficiency. Furthermore, machine learning can enable

early detection of disease outbreaks, which can prevent or mitigate potential economic losses and

public health risks. This can be achieved through real-time monitoring of various data sources,

such as sensor data, animal health records, and environmental data, and using machine learning

algorithms to detect abnormal patterns or changes in the data, providing timely alerts to enable

prompt intervention.

In conclusion, the swine industry can greatly benefit from the applications of machine learning,

which have the potential to revolutionize disease detection and prediction, optimize antimicrobial

usage, enhance production efficiency, and support evidence-based decision-making. This dissertation

aims to contribute to the growing body of knowledge in the field of machine learning applications

in the swine industry through a series of original research papers that address critical challenges

and present novel methodologies. Through these efforts, we aim to advance the field and provide

valuable insights for the swine industry to effectively manage its complex demands.

The rest of the dissertation has five Chapters falling into two different parts: Chapters 2, 3, and

4 cover machine learning applications in the swine industry using real-world data. Chapters 5 and 6

focus on developing and understanding deep learning models for novelty detection and synthetic

tabular data generation, respectively. Below is a brief overview of the chapters.

Overview of Chapter 2

This chapter explores machine learning applications for virus classification. Specifically, we aim

to classify strains of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), a highly

infectious disease of pigs, into four clades using amino acid scores based on Open reading frame 5

(ORF5) gene sequence information. This study is of great significance as PRRSV causes reproductive

failures in sows and respiratory disease in pigs of all ages, resulting in substantial economic losses

in the swine industry worldwide, including the United States (US), where annual losses have been

estimated at $664 million [40]. We specifically utilized the ORF5 gene as it is known to be a
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crucial resource for classifying field PRRSV strains [15,53]. Traditionally, there are two methods

that have been widely used in literature for strain classification: Restriction Fragment Length

Polymorphism (RFLP) typing and phylogenetic tree analysis. However, both methods have their

limitations: RFLP provides quick results with unstable accuracy [120], while phylogenetic trees

return high accuracy but require excessive computational power [101]. To overcome these limitations,

we employed machine methods including random forest, k-nearest neighbor, support vector machine,

and multilayer perceptron, as they can offer rapid and accurate classification results compared to

the traditional approaches. In this study, we used amino acid sequences of ORF5 gene from 1931

field PRRSV strains collected in the US from 2012 to 2020. Phylogenetic analysis was used to label

field PRRSV strains into one of four clades: Lineage 5 or three clades in Lineage 1. We measured

the accuracy and time consumption of classification, two key metrics, using four machine learning

approaches with different sizes of gene sequences. We found that all four algorithms classify a large

number of field strains in a very short time (< 2.5 seconds) with very high accuracy (> 0.99 Area

Under the curve of the Receiver of Operating Characteristics curve). Furthermore, the random

forest approach identified a total of 4 key amino acid positions that were crucial for the classification

of field PRRSV strains into four clades. Our findings provide insights for developing a rapid and

accurate classification model using genetic information, which can enable real-time or semi-real-time

handling of large genome datasets for data-driven decision-making and more timely surveillance.

Overview of Chapter 3

In this Chapter, we aim to predict the future Antimicrobial resistance (AMR) burden of bacterial

pathogens via time series analysis. AMR poses significant health and economic challenges in our

society. Detecting the emergence and spread of AMR in food animal production is crucial for

effective mitigation, but current methods such as Minimum Inhibitory Concentration (MIC) testing

using genotypic information can be costly and time-consuming due to bacterial growth rates. To

address this issue, we employed time series approaches to predict the future burden of AMR in

bacterial pathogens because they use only historical records of AMR without the need for genotypic

information. We collected comprehensive pathogen and antimicrobial data from over 600 farms in

the United States spanning from 2010 to 2021 to generate AMR time series data. Our prediction

focused on five bacterial pathogens, namely Escherichia coli, Streptococcus suis, Salmonella sp.,
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Pasteurella multocida, and Bordetella bronchiseptica. Among the various models evaluated, Seasonal

Auto-Regressive Integrated Moving Average (SARIMA) outperformed five baseline models, including

Auto-Regressive Moving Average (ARMA) and Auto-Regressive Integrated Moving Average (ARIMA).

Our findings provide valuable tools for predicting the AMR burden not only for the pathogens

assessed in this study but also for other bacterial pathogens. This approach has the potential to

significantly improve the accuracy and efficiency of AMR surveillance, enabling timely detection and

intervention to mitigate the spread of AMR in food animal production. This research contributes

to addressing the urgent need for rapid and accurate AMR detection to combat this critical global

health challenge.

Overview of Chapter 4

As an extension of the study from Chapter 3, this study aims to predict MIC values explicitly using

phenotypic data, i.e., whole genome information of the pathogen. Specifically, 203 Streptococcus

suis whole genome sequences are utilized for prediction. In this study, the main challenges lie in

the data itself such as limited data samples, incomplete feature information, and imbalanced data

class. To tackle these issues and process whole genome information data, k-mer counting methods

were adopted because 1) it has shown great performances in similar studies [83,110,126], 2) it is

sensitive to the genomic features such as nucleotide composition, which is crucial in our situation

where the data sample is very limited, and 3) it is scalable by simply adjusting the k-mer size (k

value) according to the desired level of resolution and analysis complexity. After processing data,

we utilized Random Forest regression to predict phenotypic data using genotypic information. To

evaluate our regression results comprehensively, three different metrics were used: Accuracy (ACC),

Major Error (ME), and Very Major Error (VME). To be specific, VME indicates the proportion of

wrong prediction for resistant samples, i.e., the proportion of the resistant genomes that have been

assigned susceptible MICs by the model. Food and Drug Administration (FDA) standards [27,79]

for the VME rates indicate that the lower and upper 95% confidence limits should be 1.5% and 7.5%,

respectively. Similarly, the ME indicates the proportion of wrong prediction for susceptible samples,

i.e., the proportion of the susceptible genomes that have been assigned resistant MICs by the model.

For this metric, FDA standards recommend a ME rate 3%. Our results show competitive outcomes
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with a very limited data sample size compared to similar studies. With a larger data sample size

close to that in similar studies, better outcomes are expected to be achieved.

Overview of Chapter 5

In this study, we aim for novelty detection using deep generative models, specifically, Autoencoder

(AE) [30]. Novelty detection is significant for machine learning applications as novelty detection can

help improve the quality of training data for machine learning tasks by identifying and potentially

removing outliers or anomalous data points that could negatively impact model performance. In

most similar studies, image reconstruction error has been used as a novelty score function. However,

image data, high dimensional as it is, contains a lot of different features other than class information

which makes models hard to detect novelty data properly. The problem gets even more difficult in

multi-modal normality cases. To address this challenge, we propose a new way of measuring novelty

scores in multi-modal normality cases using orthogonalized latent space. Specifically, we employ

orthogonal low-rank embedding in the latent space to disentangle the features in the latent space

using mutual class information. With the orthogonalized latent space, the novelty score is defined by

the change of angle in each latent vector. The proposed algorithm was compared to state-of-the-art

novelty detection algorithms using Generative Adversarial Networks (GAN) [30] such as RaPP [52]

and OCGAN [89], and experimental results show that ours outperforms baseline algorithms. This

study can potentially help to detect novelty/outliers in swine data as it is practically possible to

acquire noisy information when collecting data such as farm-level sensor data.

Overview of Chapter 6

This Chapter focuses on the evaluation of the impact of label noise on synthetic data generation. This

task aids in enhancing training data quality for machine learning tasks by potentially identifying and

mitigating the effects of label noise on generated samples. In many practical machine learning-based

application cases including the swine industry, data shortage is an issue as real data is not acquired

easily due to many reasons such as budget and privacy. Synthetic data has been actively used

for various machine learning-based tasks due to its benefits such as massive re-productivity and

privacy enhancement compared to using the original data. The quality of the generated synthetic

dataset crucially depends on the quality of the original data, which, in practice, is usually, corrupted

by label noise. While there have been studies on feature noise, how label noise affects synthetic
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data generation is under-explored. In this paper, we evaluate the impact of the label noise label

on synthetic data generation with a focus on tabular data. One challenge is how to evaluate the

quality of synthetic data under label noise. To this end, we design comprehensive experiments to

measure the impact of label noise on synthetic data generation in different aspects: synthetic data

quality, data utility, and convergence rate for training synthesizers, and machine learning models for

downstream tasks. The empirical results cover wide aspects of synthetic data generation under label

noise. Along with the study in Chapter 5, this study can help increase performance enhancement by

improving data quality for machine learning models.
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CHAPTER 2

Applications of Machine Learning for the Classification of Porcine

Reproductive and Respiratory Syndrome Virus Sublineages Using

Amino Acid Scores of ORF5 Gene

Published in Frontiers in Veterinary Science (July 2021).

Edited for this dissertation.

Joint work with:

Kyuyoung Lee, Ruwini Rupasinghe, Beatriz Martínez-López

Department of Medicine and Epidemiology, Center for Animal Disease Modeling and Surveillance

(CADMS), School of Veterinary Medicine, University of California, Davis, Davis, CA, United States

{pvmlee, rkrupasinghe, beamartinezlopez}@ucdavis.edu

Shahbaz Rezaei, Xin Liu

Department of Computer Science, University of California, Davis, Davis, CA, United States

{srezaei, xinliu}@ucdavis.edu

2.1. Abstract

Porcine reproductive and respiratory syndrome is an infectious disease of pigs caused by PRRS

virus (PRRSV). A modified live-attenuated vaccine has been widely used to control the spread of

PRRSV and the classification of field strains is a key for successful control and prevention. Restriction

fragment length polymorphism targeting the Open reading frame 5 (ORF5) genes is widely used

to classify PRRSV strains but showed unstable accuracy. Phylogenetic analysis is a powerful tool

for PRRSV classification with consistent accuracy but it demands large computational power as

the number of sequences gets increased. Our study aimed to apply four machine learning (ML)

algorithms, random forest, k-nearest neighbor, support vector machine, and multilayer perceptron, to

classify field PRRSV strains into four clades using amino acid scores based on ORF5 gene sequence.
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Our study used amino acid sequences of the ORF5 gene in 1931 field PRRSV strains collected in the

US from 2012 to 2020. Phylogenetic analysis was used to label field PRRSV strains into one of four

clades: Lineage 5 or three clades in Lineage 1. We measured the accuracy and time consumption

of classification using four ML approaches with different sizes of gene sequences. We found that

all four ML algorithms classify a large number of field strains in a very short time (< 2.5 seconds)

with very high accuracy (> 0.99 Area under the curve of the Receiver of operating characteristics

curve). Furthermore, the random forest approach detects a total of 4 key amino acid positions for

the classification of field PRRSV strains into four clades. Our finding will provide an insightful idea

to develop a rapid and accurate classification model using genetic information, which also enables us

to handle large genome datasets in real time or semi-real time for data-driven decision-making and

more timely surveillance.

2.2. Introduction

Porcine reproductive and respiratory syndrome is one of the most important infectious diseases

of pigs caused by PRRS virus (PRRSV), an enveloped RNA virus in the genus arterivirus. The virus

causes reproductive failures in sows and respiratory disease in pigs of all ages, resulting in significant

economic losses in the swine industry worldwide including in the United States of America (US),

in which the annual losses have been estimated at $664 million [40]. PRRSV strains diverged into

multiple lineages globally and two major genotypes were reported in distinct geographical regions:

Type 1 PRRSV in Europe and type 2 in North America [105]. A modified live-attenuated vaccine

(MLV) developed for type 2 PRRSV (e.g. Ingelvac PRRS® MLV by Boehringer Ingelheim Vetmedica,

Inc. for lineage 5) has been widely used to control PRRSV in the US Porcine industry for more than

20 years [78]. However, the generation and spread of novel strains and/or the virulence reversion of

vaccine strains [56] have an impact on the efficacy of MLV and consequent spread of PRRSV type

2 in the US swine population. Consequently, the classification of field PRRSV strains played an

important role of successful control and prevention measures of PRRSV type 2 in the US using MLV,

especially for monitoring the effectiveness of vaccination as well as the development of new vaccines

such as vaccine lineage selection. (e.g. Prevacent® by Elanco Inc. for lineage 1, PrimePac™ by

Merck, Inc. for lineage 7, Fostera® by Zoetis and Ingelvac ATP by Boehringer Ingelheim Vetmedica,
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Inc. for lineage 8) [86]. The PRRSV genome consists of ten open reading frame (ORF) genes (1a,

1b, 2a, 2b, 3, 4, 5, 5a, 6, 7), and the ORF5 gene encodes the GP5 protein; a hypervariable and

immunogenic domain of PRRSV. The genetic information of the ORF5 gene in PRRSV is a key

target to classify field PRSSV strains and evaluate the cross-protection induced by MLV [15,53].

Restriction fragment length polymorphism (RFLP) typing has been widely used to classify field

strains due to relatively low experimental cost and short time consumption [120]. However, current

experimental verification of RFLP typing casted doubt on the stability and accuracy in PRSSV

classification considering continuous mutation in the ORF5 gene even among field PRRSV strains

with very close genetic relatedness [11]. Corresponding to the current use of viral genome sequencing

and open-source genomic data repositories, phylogenetic analysis has been increasingly employed to

classify PRRSV strains due to consistent accuracy. However, phylogenetic analysis posed a challenge

to estimate the phylogeny with a large number of genetic sequences because of the exponential

increase of computational power for the calculation of likelihoods of possible combination phylogenies.

Machine learning (ML) has been widely used for classification and prediction in computer vision and

natural language processing [107]. ML is preferred for highly complex classification including multi-

dimension and multi-class datasets rather than the regression model because ML has the strength to

find the best-fit decision boundaries among discrete values and output class labels. A variety of ML

algorithms have been developed for classification. Specifically, four ML algorithms, random forest

(RF), support vector machine (SVM), k-nearest neighbors (KNN), and multilayer perceptron (MLP)

are widely applied because of high accuracy, applicability, and adaptability [22,108]. Despite of

the great potential, ML has not been easily applied for the classification using genetic information

such as DNA, RNA or amino acid sequences. Genome data are coded in long strings of alphabetic

letters describing unique biochemical components (e.g., Adenine (A), Guanine (G), Cytosine (C),

and Thymine (T)). Therefore, a simple transformation of the genome data in the numeric form

possibly leads to significant information loss. Atchley WR et al (2005) presented the approach to

transform the amino acid sequence into five numerical scores describing physicochemical properties

(e.g. polarity, secondary structure, molecular volume, codon diversity, and electrostatic charge) [4].

The amino acid score provided availability to use ML algorithms for prediction and classification of

phenotypic characteristics based on genetic information [92]. The present study aimed to classify
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US field PRRSV stains into four clades using four ML approaches based on amino acid scores of the

ORF5 gene. Second, we will also detect key amino acid positions for the classification. To the best

of our knowledge, our work is the first attempt to apply four ML algorithms for the classification

of field PRRSV strains. Our study will provide an insightful idea to develop a rapid and accurate

classification model using genetic information of infectious pathogens, which also enables us to

handle large datasets in real-time or semi-real time for data-driven decision-making and more timely

surveillance or intervention strategies.

2.3. Materials and methods

2.3.1. Data collection and phylogenetic analysis. We collected ORF5 genome sequences

and RFLP types of 1931 field PRRSV strains isolated from 328 porcine premises managed by two

US pork production systems from 2012 to 2020. Multiple sequence comparison by log-expectation

was used to align ORF5 nucleotide sequences on AliView [Version 1.26] [57]. Homogeneity over

alignment was evaluated, and common almost-pure-gap sites and the last three sites of stop codon

were removed. The best-fit nucleotide substitution model and the among site rate variation were

determined by ModelFinder [46] based on the Bayesian information criterion (BIC). The best-fit

model including among site rate variation and the partition scheme corresponding to codon positions

were used to estimate the phylogeny of the 1931 ORF5 gene through the maximum likelihood

approach on IQ-TREE multicore [Version 2.1.1] in CIPRES Science Gateway [Version 3.3] [80].

Bootstrap values were assessed using the ultrafast bootstrap approximation method with 5000

replicates. The phylogenetic tree was visualized by the interactive Tree of Life (iTOL) tool [60]. All

1931 ORF5 gene sequences of US field PRRSV samples were labeled into one of four clades: Lineage

5 (L5 clade) or three clades in Lineage 1 (L1A clade: Sublineage 1.5, L1B clade: Sublineage 1.6, and

L1C clade: Sublineages 1.7, 1.8 and 1.9) based on the topology of phylogeny with high bootstrap

values (>95%) according to the global PRRSV classification systems [106]

2.3.2. Data transformation for the classification using four ML algorithms. The

nucleotide alignment of the ORF5 gene of 1931 PRRSV samples with 600 nucleotide base pairs were

converted into the alignment of amino acid sequences with 200 amino acids long based on genetic

code using AliView. Each amino acid sequence transformed to a 5×1 vector including five numerical
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Figure 1: The phylogeny of 1936 Porcine reproductive and respiratory syndrome virus (PPSSRV)
field strains estimated by maximum likelihood approach based on the nucleotide sequences of open
reading frame 5 (ORF5) gene.

scores of physiochemical amino acid properties (e.g. polarity, secondary structure, molecular volume,

codon diversity, and electrostatic charge) [4]. The 200 (amino acid sequences) × 5 (numeric score)

matrix of each PRRSV ORF5 gene was changed to the 1000×1 matrix for technical convenience.

Finally, we built 1931 matrices with 1000 features (1000x1) of PRRSV ORF5 gene sequence for

the classification into four clades by four machine learning algorithms (Figure 2). The distribution

of 1000 multivariate features and their clusters by four clades were visualized in two-dimension by

principal component analysis (PCA).

2.3.3. Machine learning algorithms. Our study used four ML algorithms, random forest

(RF), support vector machine (SVM), k-nearest neighbors (KNN), and multilayer perceptron (MLP),
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          M L G  · · ·   T R : Wild
Following Atchley et al. (2005) [17], 
convert 200 amino acid sequence into 
200 X 5 matrix using five factor solution.

Label (Class) of each 
amino acid sequence

< 200 length  Amino Acid Sequence >

Position #1 Position #200

M = [−0.663 −1.524 2.219 −1.005 1.212]
L = [−1.019 −0.987 −1.505 1.266 −0.912]

T = [0.032  0.326  2.213  0.908  1.313]
R = [1.538 −0.055  1.502  0.440  2.897]

...

< 200 x 5 matrix >

−0.663 −1.524 2.219 −1.005 1.212
−1.019 −0.987 −1.505 1.266 −0.912

0.032  0.326  2.213  0.908  1.313
1.538 −0.055  1.502  0.440  2.897

Each component in matrix: Feature. 
(i.e., each position has five features)

[−0.663 −1.524 2.219 −1.005 1.212 −1.019 −0.987 −1.505 1.266 −0.912 · · ·  
 0.032  0.326  2.213  0.908  1.313 1.538 −0.055  1.502  0.440  2.897]’

< 1000 x 1 matrix (vector) >

Five features from M, position #1 Five features from R, position #200

.

.

.

Figure 2: Flow chart of data preprocessing from an amino acid sequence into five numeric scores.

to classify field PRRSV strains among four clades based on the five amino acid score of ORF5 gene.

Additionally, information on theoretical time complexity using big-O-notation were provided.

2.3.3.1. Random Forest (RF). RF is a supervised ML algorithm that is used for both classification

and regression [9]. RF creates several decision trees using training samples and obtains a class

prediction from each of the decision trees, and it outputs the final class by majority voting at

inference time to achieve high accuracy. RF also provides the importance scores in classification for

all features (i.e., 1000 attributes for each sequence), which indicates the importance of each feature

for RF classification, by using entropy and information gain. The importance score is the value

between 0 to 1; the greater this value is, the more important in classification corresponding feature is.

The information on importance scores in classification for all features was used in feature selection

in experiments. The training time complexity of RF is O(n*log(n)*d*k) where k is the number of

the decision tree, n is the number of samples, and d is the number of dimensions (features) [65].

2.3.3.2. Support vector machine (SVM). SVM is one of the supervised ML algorithms finding

decision boundaries, so-called “a hyperplane”, for the classification of data points in N-dimensional
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space (e.g. N variable) [16]. SVM determines one hyperplane with the maximum margin among

many possible hyperplanes based on the maximum distance between the hyperplane and data points

in both classes. For data with non-linear and complex features, a non-linear kernel (e.g., polynomial

and Radial Based Function) is often used to map the input into a high-dimensional feature space.

However, the present study achieved a good classifier without using any non-linear kernel. The

training time complexity for SVM is between O(n) and O(n2.3) where n is the number of the training

sample [121].

2.3.3.3. k-nearest neighbors (KNN). KNN is one of the supervised ML algorithms using the

proximity of data points for classification based on the assumption, “Similar things are near to each

other” [17]. Proximity is generally defined by a distance function. The distance function finds k

neighbor data points in the training set nearest to the input. Then, the majority vote is performed

over the label of the k data points to predict the label of the input. Therefore, a higher value of k

often makes the model less sensitive to noise at the cost of more computation. The present study

used Euclidean distance as a distance function. The k is a hyperparameter of our KNN algorithm.

Our data achieved good performance when k = 5. The training time complexity of KNN is O(1),

and the prediction time complexity is O(k*n*d) where n and d are the numbers of training samples

and dimensions (features), respectively.

2.3.3.4. Multilayer perceptron (MLP). MLP is one of the fundamental feedforward neural network

architectures used for classification [76]. MLP uses one or more hidden layers consisting of many

nodes between input and output layers. The MLP architecture takes input data, returns some

outputs, and improves the accuracy by repeating three steps: each node (1) takes a weighted sum of

its inputs on the connected nodes in the previous layer, (2) performs a non-linear operation (called

activation function), and (3) passes the output to some connected nodes in the right next layer. The

present study used backpropagation for the training of MLP to obtain optimal weights and bias [55].

To reach an approximated solution, the tough time complexity of MLP is O(E*n*d*N) where E is

the number of epochs, n is the number of training samples, d is the number of dimensions (features),

and N is the number of neurons (nodes) in the architecture.

2.3.4. Evaluation of classification into four clades using four ML algorithms by

accuracy and time consumption.

13



2.3.4.1. RF classification and detection of key amino acid positions. We employed RF to classify

1931 US field PRRSV samples into four clades based on the matrix of 1000 features. RF returned

the importance scores for all 1,000 features. The importance score for one amino acid position was

the sum of five importance scores for five features describing the physiochemical properties of one

amino acid in the position. For example, the importance score of the amino acid position 1 was the

sum of the five importance scores of feature 1 to 5 in the matrix of 1000 features because feature 1

to 5 are the five physiochemical amino acid properties of features of the position 1 amino acid.

2.3.4.2. Classification accuracy and time consumption of four ML algorithms by the number of

amino acid sequences. We evaluated the accuracy and time consumption for field PRRSV classification

into four clades using four ML algorithms (RF, SVM, KNN, and MLP). We first measured the

accuracy and time consumption of four ML algorithms using 200 amino acid positions. To evaluate

how the number of amino acid sequences affected the performance of four ML algorithms, we

measured the accuracy and time consumption of four ML algorithms using one amino acid position

with the highest RF importance score and sequentially added amino acids from the position with

the second highest RF importance score. The 10-fold cross-validation was assigned, and training

and test data were randomly split in each run. Each experiment conducted 100 different runs, and

for each run accuracy and time consumption including training and test were outputted. The area

under the curve (AUC) of the receiver of operating characteristics curve (ROC) [35] was used to

evaluate the accuracy of classification as well as precision, recall, and f1-score [114]. Precision, recall,

and f1-score are outputted for each class and class-wise weighted averaged results were provided to

take class imbalance into account. All experiments were conducted on Python [Version 3.7.6].

2.3.4.3. Training details with parameter tuning. There were hyperparameters for each ML

algorithm that could affect its accuracy and performance. Hyperparameters were tuned for optimal

performance. The training details for each ML algorithm experiment were as follows: 1) RF

experiments. 100 trees were used, and a max of depth was not assigned, which means nodes were

expanded until all leaves were pure or all leaves contained less than the minimum sample split

samples (fixed as 2 in our experiments). 2) SVM experiments. Linear kernel, a main hyperparameter,

was adopted and 0.0001 was used as a learning rate, and also max iteration was not determined. 3)

KNN experiments. k=5 was selected after comparison with other integers. 4) MLP experiments.
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Figure 3: Principal component analysis (PCA) visualizations of random forest prediction results.
Yellow and blue dots represent wild and vaccine type PRRSV strains, respectively. Two different
types of PRRSV strains belonged to distinct clusters with a huge margin in between.

One hidden layer with 128 nodes followed by the ReLU activation function was used, and the softmax

function was used for the output layer.

2.4. Results

2.4.1. Phylogenetic analysis for labeling and RF classification and detection of key

amino acid positions. The phylogenetic analysis of 1931 field PRRSV strains using the ORF5

gene showed two distinct clades involving 438 L5 clade (22.6%) and 1498 L1 clade (77.4%) (Figure

1). Field PRRSV strains in L1 clade were further classified into one of three Sublineages (L1A clade:

Sublineage 1.5, L1B clade: Sublineage 1.6, and L1C clade: Sublineages 1.7, 1.8 and 1.9). PCA

visualization of the classification presented the clear margin between clusters of L1 and L5 clades

(Figure 3). However, we observed contiguous margins for the classification among L1A, L1B, and

L1C clades. Importance scores of RF classification in each amino acid position were outputted by RF.

RF found that highly right-skewed distribution of importance score in amino acid positions (Figure 4)

and four amino acid positions showed notably higher importance scores than other positions (> 0.06)
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Figure 4: Distribution of importance scores for random forest differentiation of field PRRSV strains
between the vaccine and wild types. (A) The importance scores in decreasing order for 200 amino
acid positions with three cut-off thresholds; (B) Importance scores by the amino acid sequences.

Amino acid
position

Importance
Score

Amino acid in
L5 clade (%)

(n=438)

Amino acid in
L1A clade (%)

(n=1225)

Amino acid in
L1B clade (%)

(n=69)

Amino acids in
L1C clade (%)

(n=199)

26 0.145

A(98.4)
V(0.9)
T(0.7)

V(98.3)
I(1.6)
A(0.2)

V(94.2)
A(5.8)

A(96.5)
D(0.5)
V(3.0)

170 0.071
E(99.5)
G(0.5)

E(98.1)
G(1.6)
K(0.3) N(100) G(100)

137 0.070
A(99.8)
X(0.2)∗ S(100) S(100) S(100)

191 0.063

R(99.5)
Q(0.2)
X(0.2)∗

K(99.8)
X(0.2)∗ K(100)

R(64.8)
K(34.7)
S(0.5)

X∗ is sequencing errors.

Table 2.1: Top 4 key amino acid positions in open reading frame 5 genes with the highest random
forest importance scores for the 1931 field PRRS strain classification [Importance score > 0.06].

[26th, 170th, 137th, and 191st] (Table 2.1). The 26th position showed significant heterogeneity of

amino acid sequences between L5 (A: 98.4%) and L1A (V: 98.3%) clades. The amino acid sequence
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# of Pos.
ML RF SVM KNN MLP

200 0.99/0.99/0.99 0.99/0.99/0.99 0.99/0.99/0.99 0.99/0.99/0.99
4 0.99/0.99/0.99 0.99/0.99/0.99 0.99/0.99/0.99 0.99/0.99/0.99
3 0.99/0.99/0.99 0.99/0.99/0.99 0.99/0.99/0.99 0.99/0.99/0.99
2 0.99/0.99/0.99 0.99/0.99/0.99 0.98/0.98/0.98 0.99/0.98/0.98
1 0.75/0/85/0.79 0.75/0/85/0.79 0.73/0/83/0.77 0.73/0/83/0.77

Table 2.2: The class-wise averaged approximated precision/recall/f1-score values for the corresponding
four machine learning (ML) algorithms by five experiments.

of L5 (E: 99.5%) and L1A (E: 98.1%) clades in the 170th position was also heterogenous compared

to L1B (N: 100%) and L1C (G: 100%) clades. The 137th amino acid position was a key site to

classify between L5 (A: 99.8%) and three L1 (S: 100%) clades (Table 2.1).

RFLP analysis classified our 1931 field PRRSV strains into 43 types [Supplement 1]. The RFLP

type classified all 1931 PRRSV strains into either L5 (7 types) or L1 (36 types) clades correctly.

Almost all strains in L5 clades were classified into 2-5-2 RFLP type (93.6%, 410/438). PRRSV

strains in one of three L1 clades were classified into either 1-8-4 (59.3%, 888/1498), 1-7-4 (19.9%

298/1498), or 1-4-4 (6.8% 102/1498) RFLP type. However, for the classification of three L1 clades,

field PRRSV strains in 9 RFLP types (1-3-2, 1-3-4, 1-4-3, 1-4-4, 1-7-4, 1-8-3, 1-8-4, 1-12-4, & 1-16-4)

belonged to two L1 clades at the same time (L1A L1C clades or L1B & L1C clades) [Supplement 1].

2.4.2. The Accuracy and time consumption of classification using four ML algorithms

by the number of amino acid sites. We performed five ML experiments including 1) the data

fully utilizing 200 amino acid positions, and 2) the four data sequentially adding amino acids from

the position with the highest RF score (26th ) to the fourth highest RF score (191st) [Table 2.1]. All

five ML experiments showed high accuracy for the classification of field PRRSV strains except one

experiment using only the 26th amino acid position (Figure 5). In the four experiments with 2 or

more than 2 amino acid positions (2/3/4/200), all four ML approaches showed approximately 100%

accuracy in terms of AUC, precision, recall, and f1-score (Table 2.2). However, in the experiment

using one amino acid sequence with the highest importance score, the 26th amino acid position,

the accuracy decreased drastically to approximately 80% in all ML four methods. KNN showed

a high variability in accuracy but the other three ML approaches had relatively low variability.

In the subsequent experiment adding one additional amino acid sequence with the second highest
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Figure 5: Experimental results of four machine learning algorithms using boxplot with two different
ratio of training and test data size. For each of (A) and (B), Top: area under the curve (AUC)
values. Bottom: Time consumption (seconds). Orange lines are mean values over 100 runs.

importance score, 170th position, all ML four methods showed very high accuracy of classification,

as the experiment using all 200 amino acid positions did. Four ML algorithms classified field

PRRSV strains in very short time consumption (< 2.5 seconds). RF showed consistently short time
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consumption even with the changes in the number of amino acid sequences used. However, SVM and

KNN required higher time consumption when they worked with all 200 amino acid sequences. MLP

showed high variability in the time consumption with consistency as the number of used positions

changed (Figure 5).

2.5. Discussion

The present study demonstrated that ML algorithms enabled to classify US field PRRSV strains

into four clades accurately using five amino acid scores transformed from the ORF5 gene sequences

with short time consumption. Furthermore, one of four ML algorithms, specifically RF, was used

to detect key amino acid positions potentially associated with biological characteristics of PRRSV

strains.

In the present study, all four ML approaches accurately classified four clades even using small

genetic information. Although each field PRRSV strain involved high-dimensional genome data

including 1000 features (5 scores x 200 amino acids), PCA visualization depicted that the genetic

difference of field PRRSV strains between L5 and three L1 clades were distinctly distinguished. How-

ever, the genetic contiguity among L1A, L1B and L1C clades posed a challenge for the classification

of field PRRSV strains. In the classification using one amino acid sequence in the 26th position with

the highest RF importance score, all ML approaches showed fairly high AUC value (> 0.79), and, RF,

SVM, and MLP classified field PRRSV strains stably compared to KNN. Considering the significant

heterogeneity of amino acid composition, the 26th position played a key role as a classifier between

L5 and three L1A clades which constituted 83.9% of our PRRSV samples. Interestingly, after we

additionally included one amino acid sequence in the 170th position, all four ML algorithms showed

stable and very high accuracy for the classification (AUC > 0.99). Although the 170th amino acid

position showed homogeneity between L5 and L1A, this position showed significant heterogeneity

among L1A, L1B, and L1C clades. Consequently, the combination of 26th and 170th amino acid

sequences provided sufficient information for all ML approaches to identify the best-fit decision

boundaries of classification among four clades. In the perspective of the accuracy of classification,

any of the four ML approaches outperformed the RFLP typing. Specifically, considering the very

high stability of classification accuracy using all 200 amino acid sequences, RF might be a prioritized
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option to handle the high-dimensional genome data because RF, an ensemble ML algorithm, builds

sufficiently a large number of decision trees and minimizes overfitting.

ML algorithms also have a great benefit in the time consumption compared to the phylogeny

estimation. Generally, the classification using the phylogenetic analysis of infectious pathogen

based on a large number of genome sequences requires high computational power and subsequent

time consumption because the phylogeny estimation searches the unrooted phylogeny with the

highest likelihood among possible unrooted phylogenies and the number of unrooted phylogenies

gets exponentially increased by the number of sequences. However, all four ML approaches require a

very short amount of time for model training and classification of test data even with a very large

number of PRRSV sequences (< 2.5 seconds). Specifically, RF and MLP showed high consistency in

time consumption regardless of the number of features. Even with the small number of features,

RF requires a fair amount of time to generate a large number of decision trees for stable model

training. MLP also needs many computational steps to catch the underlying characteristics of the

data. However, considering the consistency of short and constant time consumption, RF and MLP

could be well-adapted for the classification of large genome data with high complexity rather than

SVM and KNN.

The RF algorithm was used to detect key amino acid substitutions potentially associated with

the biochemical characteristics of PRRSV. The 26th and 137th amino acid positions had high

importance score with significant heterogeneity between L5 and three L1 clades. The 26th position

of the ORF5 gene showed the highest importance score and was located in one of two cleavage sites

in the decoying epitope of the GP5 protein [111]. A previous study found that the amino acid

substitution in the 26th position influenced on the host antibody response against PRRSV infection

and characterized the infectivity of a PRRSV strain [84]. In the 137th position with the third

highest importance score, all L5 clade strains had Alanine and three L1 clade strains substituted

to Serine. Alaine in the 137th position of the ORF5 gene is generally monitored as a marker of

Ingelvac PRRS Type 2 MLV in the L5 (Boehringer Ingelheim Vetmedica Inc., St. Joseph, Missouri,

USA) because the substitution of Alaine to Serine in the 137th position of ORF5 gene considerably

reduced the susceptibility of viral neutralization against VR2332 anti-serum, the reference strain of

Ingelvac MLV6,23.
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Although all four ML approaches showed very high accuracies in the classification of field PRRSV

strains, strong genetic homogeneity within clades compared to heterogeneity among clades possibly

inflated the accuracy of this study. The present study observed significant genetic heterogeneity

among four clades of PRRSV strains, especially in the key 4 amino acid positions of ORF5 gene.

Consequently, all four ML approaches led to nearly perfect accuracy for the classification even

including two key amino acid sequences. It implies that our ML approaches potentially showed

lower accuracy and longer time consumption in the multi-class classification with high-complexity

genome data. In future research, we will explore ML approaches for more complex classification using

larger genetic information such as the prediction of multiple phenotypic and antigenic characteristics

classification to evaluate the accuracy and time consumption of ML approaches and the detection of

key substitutions related to unique biological characteristics by each clade of field PRRSV strains.

In the modern livestock industry, genome sequencing enables to obtain of high-quality and large

genetic information on infectious pathogens and is widely applied to the genome-based diagnostics

of infectious pathogens. This study exemplified the use of high-quality genetic information for

the classification of phenotypic characteristics of infectious pathogens. Once ML algorithms were

sufficiently trained for classification, all ML algorithms accurately classified the genetic characteristics

in a very short time and detected key amino acid sites, specifically for the rapid vaccine lineage

selection based on genetic relatedness at a pig farm level (e.g. Prevacent® for lineage 1 and

Ingelvac for lineage 5). We believe that our ML approaches using the amino acid scores for the

classification of field PRRSV strains can be applied as a powerful tool in the digitalized surveillance

system considering its very short time consumption and high accuracy. Furthermore, the use of ML

approaches coupled with genetic information as we presented may inform decision-makers in the US

pig industry to have a better understanding of PRRSV evolution and transmission dynamics and

establish cost-effective control and preventive measures of PRRSV using MLV at farm or production

system level.

2.6. Conclusion

This study proposed the use of ML algorithms for the classification of field PRRSV strains

into four clades and the detection of the key amino acid substitutions in the ORF5 gene. Our
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ML approaches showed very high accuracy and short time consumption compared to conventional

approaches of PRRSV classification. We believe that our ML approaches based on amino acid score

could be a powerful alternative to handle large genome datasets in real time or semi-real time to

classify field PRRSV strains as well as other infectious pathogens and support decision-making or

design more timely surveillance or intervention strategies.

2.7. Supplements

Supplement 1. The classification of 1931 field PRRSV strains into four clades (L1A, L1B, L1C

and L5 clade) using the RFLP analysis of ORF5 gene.

RFLP
L1A

(n=1225)
L1B

(n=69)
L1C

(n=199) Total
1-1-1 1 1
1-1-2 30 30
1-10-2 1 1
1-10-4 9 9
1-12-4 3 4 7
1-16-2 1 1
1-16-4 6 1 7
1-18-2 2 2
1-18-3 1 1
1-19-4 3 3
1-2-2 2 2
1-2-4 11 11
1-21-4 5 5
1-24-2 2 2
1-26-2 28 28
1-26-4 2 2
1-3-1 1 1
1-3-2 1 1 2
1-3-3 1 1
1-3-4 8 1 9
1-30-4 1 1
1-33-3 3 3
1-33-4 1 1
1-4-1 6 6
1-4-3 1 6 7
1-4-4 35 67 102
1-45-4 1 1

RFLP
L5

(n=438)
L1A

(n=1225)
L1C

(n=199) Total
1-5-2 10 10
1-6-2 1 1
1-6-4 3 3
1-7-2 15 15
1-7-4 297 297
1-8-1 1 1
1-8-2 10 10
1-8-3 27 3 30
1-8-4 788 100 888
1-8-8 1 1
1-45-4 1 1
2-1-2 9 9
2-5-1 3 3
2-5-2 410 410
2-5-4 2 2
2-6-2 3 3
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3.1. Abstract

Antimicrobial resistance (AMR) is arguably one of the major health and economic challenges

in our society. A key aspect of tackling AMR is rapid and accurate detection of the emergence

and spread of AMR in food animal production, which requires routine AMR surveillance. However,

AMR detection can be expensive and time-consuming considering the growth rate of the bacteria

and the most commonly used analytical procedures, such as Minimum Inhibitory Concentration

(MIC) testing. To mitigate this issue, we utilized machine learning to predict the future AMR

burden of bacterial pathogens. We collected pathogen and antimicrobial data from >600 farms in

the United States from 2010 to 2021 to generate AMR time series data. Our prediction focused on

five bacterial pathogens (Escherichia coli, Streptococcus suis, Salmonella sp., Pasteurella multocida,

and Bordetella bronchiseptica). We found that Seasonal Auto-Regressive Integrated Moving Average

(SARIMA) outperformed five baselines, including Auto-Regressive Moving Average (ARMA) and

Auto-Regressive Integrated Moving Average (ARIMA). We hope this work provides valuable tools to

predict the AMR burden not only of the pathogens assessed in this study but also of other bacterial

pathogens.

3.2. Introduction

The discovery of antimicrobials is one of the best advances in therapeutic medicine in humans

and animals. Over time microbes have evolved and developed resistance mechanisms against these

antimicrobial compounds. Increasing resistance to the available antimicrobials and stagnation

of developing novel antimicrobials limit treatment options for patients with infectious diseases.

Therefore, the emergence, dissemination, and persistence of microbes that are resistant to existing

antimicrobials pose an enormous threat to public and animal health. Antimicrobials are extensively

used in the food animal industry to treat bacterial infections and promote health, welfare, and

production. According to Food and Drug Administration (FDA), approximately 80% of all antibiotics

sold in the United States in 2011 were sold for use in animal husbandry, and around 70% of them

belonged to the antibiotic classes used in human medicine (medically-important antibiotics) [28].

Pig farming is one of the leading sectors using antimicrobials. Thus, increased levels of AMR are

24



anticipated in swine farms due to the selective pressure of these antimicrobials and can spread via

pork, direct contact with pigs, or discharge of swine waste into the environment.

A key to preventing AMR emergence and spread is early and accurate detection of potential

AMR, which promotes selecting appropriate antimicrobials and facilitating the prompt investigation

of drug-resistant disease outbreaks. Routine monitoring and surveillance can enable exemplary

stewardship by detecting AMR emergence, tracing AMR patterns, and effectively targeting antimi-

crobial interventions and mitigation strategies. Currently, antimicrobial susceptibility testing (AST)

is the primary method for detecting AMR and selecting effective antimicrobials against bacterial

pathogens, which involves culturing the bacteria in the presence of a panel of various antimicrobials.

Effective antimicrobials can be determined by detecting Minimum Inhibitory Concentration (MIC),

where antimicrobials with lower MIC values are considered more effective (susceptible) because

less of the drug is needed to inhibit bacterial growth. However, these procedures can be expensive

and time-consuming, depending on the growth rate of the bacteria and MIC testing procedures.

Alternative methods, such as DNA sequencing technologies, are increasingly used to detect AMR at

the molecular level, but they require robust bioinformatics tools to evaluate the genomic structure of

the microbial resistomes. Thus, most clinical laboratories still depend primarily on conventional AST

to conduct clinical therapy and observe AMR over time. Nevertheless, most farms may not have the

resources (e.g., time and budget) to perform routine testing to detect AMR and quantify the AMR

burden in field settings. Therefore, developing a tool to predict AMR burden based on available

data, such as prior AMR information (susceptible/resistance) against common antimicrobials, could

be very useful to better inform decision-making about antimicrobial use at the farm level, which

consequently helps mitigate AMR.

Machine learning has been widely employed for studying AMR, highlighting its importance

in predicting resistance levels mainly using features directly from genotypes [72,81,82,90,118].

However, there are situations where we do not obtain genomic data to predict AMR levels but only

preserve historical phenotype information. Time series analysis is a great solution to relevant tasks

for such situations. Time series has shown great performances in studying AMR [2,33,42,44,64,109]

and sometimes their methods are limited to Auto-regressive Integrated Moving Average (ARIMA) [12]

or it subcategory methods that cannot properly incorporate seasonal behavior of AMR levels. Among
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many time series approaches, the Seasonal Auto-regressive Integrated Moving Average (SARIMA) [12]

has received significant attention because of its outstanding performance in time series forecasting.

SARIMA shows its usefulness when some degrees of seasonality-periodic fluctuations occur repeatedly

in the time series.

In this study, we used the SARIMA algorithm to predict the future burden of AMR (AMR

proportions) of five bacterial pathogens (Escherichia coli, Streptococcus suis, Salmonella sp., Pas-

teurella multocida, and Bordetella bronchiseptica) prevalent in the studied swine farms using the

prior resistance information. The data included the number of tested pathogens with confirmed

resistance (based on MIC interpretations) to their corresponding antimicrobials. Instead of direct

use of binary (susceptible and resistance) classified data, we generated integrated time series data,

i.e., quarterly-based AMR proportions for each of the study pathogens. This approach enabled

us to overcome the limitations of missing data over time. We also compared the performance of

SARIMA to that of Auto-Regressive Moving Average (ARMA) [122], Auto-Regressive Integrated

Moving Average (ARIMA) [12], and three other forecasting baseline methods: Naïve, Seasonal

Naïve, and one-lagged prediction [96,99]. These three baselines were selected as benchmarks in

our study because they are often used in forecasting tasks and are simple yet effective. We believe

that predicting AMR proportions using time series models can provide valuable information to

facilitate the selection of appropriate antimicrobials against pathogens and the prompt investigation

of drug-resistance disease outbreaks.

3.3. Materials and Methods

In this section, we discuss the workflow, time series analysis methods, and experimental design.

Workflow after data collection includes data processing (irregular binary data to quarterly time

series data) and time series analysis (model parameter selection and model train/test) (Figure 1)

3.3.1. Data Collection. In this study, we used pathogen and antimicrobial information from

>600 farms owned by two swine production systems in the United States. The samples were

collected from pigs infected with one of five bacterial pathogens (Escherichia coli, Streptococcus

suis, Salmonella sp., Pasteurella multocida, and Bordetella bronchiseptica) from 2010 to 2021 and

tested for AMR against a panel of antimicrobials (Table 3.1). The resistance level of each pathogen
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Escherichia
coli

Streptococcus
suis

Salmonella
sp.

Pasteurella
multocida B. bronchiseptica

Clindamycin 1.0/0.0 0.8/0.18 1.0/0.0 1.0/0.01 1.0/0.0
Tiamulin 0.99/0.03 0.16/0.1 1.0/0.01 0.58/0.29 1.0/0.01
Tylosin - - - 0.98/0.06 -
Ampicillin 0.71/0.22 0.03/0.06 0.58/0.27 0.03/0.07 1.0/0.02
Gentamicin 0.32/0.16 - 0.51/0.39 - 0.04/0.1
Oxytetracycline 0.88/0.13 0.93/0.1 - 0.23/0.26 0.03/0.1
Penicillin 1.0/0.0 0.18/0.13 1.0/0.0 0.19/0.28 1.0/0.0
Spectinomycin 0.9/0.22 - - - -
Tilmicosin 0.99/0.03 0.73/0.21 1.0/0.0 0.21/0.31 -
Chlortetracycline 0.88/0.13 0.93/0.1 - 0.03/0.07 0.04/0.11
Sulphadimethoxine - 0.61/0.22 - - 0.97/0.08
Ceftiofur - 0.04/0.06 - 0.0/0.02 -
Enrofloxacin 0.34/0.25 0.07/0.07 0.29/0.38 0.0/0.02 -
Florfenicol 0.84/0.09 0.03/0.07 0.9/0.14 0.02/0.07 0.83/0.17
Neomycin 0.34/0.25 0.73/0.17 0.57/0.39 0.07/0.14 -
TRIMETHSULFA 0.26/0.27 - 0.32/0.32 - 0.89/0.14
Tulathromycin - - - 0.0/0.01 0.04/0.1

Table 3.1: Used antimicrobials and pathogens pairs for analysis. Provided number indicates the
mean and standard deviation of the dataset (i.e., an indicator for averaged AMR proportions and
how dynamically (uncertain) the time series is changing, respectively).

against antimicrobials was detected by determining MIC and classified into two groups: susceptible

(S) and resistant (R), based on an interpretation report received from the American Association of

Veterinary Laboratory Diagnosticians (AAVLD) accredited laboratory in the United States.

3.3.2. Data Processing for Time Series Analysis. For each pathogen, different groups

of antimicrobials were employed for experiments (see Table 3.1). One challenge is that there were

missing data points between certain time periods. To tackle this, we constructed quarterly time

series dataset by integrating the data points every quarter. We converted our data points to the

quarterly basis dataset and define Res(Pathogen,Antimicrobial) the resistance time series for each

pathogen and antimicrobial as below.

(3.1) Res(Pathogen,Antimicrobial) = (r1, r2, · · · , rn),

where ri = Proportion(R) = # of R
# of (R + S) over the ith quarter (R and S stand for resistant and

susceptible, respectively). Figure 1 shows how we processed our dataset. Figure 2 shows examples of

quarterly-based time series constructed for pathogens and antimicrobials and all of the time series
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Figure 1: Workflow Chart. Data processing example (from irregular binary data to quarterly based
time series: Res(Pathogen,Antimicrobial)) and time series analysis.

Figure 2: Examples of our processed quarterly-based AMR proportions time series. (A)
Res(Escherichia coli, Ampicillin), (B) Res(Escherichia coli, Gentamicin), (C) Res(Escherichia
coli, Tiamulin) and (D) Res(Escherichia coli, Sulfamethoxazole/trimethoprim )

examples are presented as solid lines in Supplementary Figure 1 - Figure 5. With the constructed data,

we focused on predicting AMR proportions in times series for each Res(Pathogen,Antimicrobial)

in our data.

We also output the mean and the standard deviations of Res(Pathogen,Antimicrobial) which

can be an indicator for the averaged AMR proportions and dynamics of each time series. (Ta-

ble 3.1). We also observed different degrees of fluctuation in the processed dataset. For example,
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Res(Escherichia coli, Ampicillin) changes more dynamically than Res(Escherichia coli, T iamulin)

(Figure 2 and Table 3.1)

3.3.3. AR(I)MA, SARIMA, and Three Baselines.

3.3.3.1. ARMA and ARIMA. ARMA model consists of two parts: autoregressive (AR) and

moving average (MA) part [122]. The model is usually referred to as ARMA(p, q) where p and q

are the order of the AR and MA part, respectively [115]. AR part takes previous observations as

inputs to predict future values. MA part uses previous errors between predicted and observed as

predictors for future values. ARIMA model consists of three parts: AR, MA, and the integrated (I)

part [12]. The model is usually referred to as ARIMA(p, d, q) where p and q are the same as for

the ARMA model, and d is the degree of differencing. The integrated part refers to the differencing

of observations to allow time series to become stationary.
3.3.3.2. SARIMA. SARIMA model [12], as an advanced method of ARIMA with a seasonal

component, overcomes the limitation that ARIMA cannot tackle data with periodic behavior properly.

In this study, we employed SARIMA to predict AMR proportions for bacterial pathogens considering

AMR proportions vary over time with a potential seasonality.

A typical SARIMA model has seven parameters, referred as SARIMA(p, d, q)(P,D,Q)S where

(p, q) and (P,Q) are the order of the non-seasonal and seasonal (autoregressive, moving) models,

respectively, d and D are the numbers of non-seasonal and seasonal differences, respectively, and

S is the periodic seasonality term. Choosing appropriate parameters is a key process for optimal

SARIMA performance. Autocorrelation function and partial autocorrelation function to this end. To

be precise, we first determine non-seasonality components (p, d, q) and then we find proper seasonal

parameters (P,D,Q)S using the autocorrelation function and partial autocorrelation function. Time

series datasets often have trends in time series and changes in the statistical structure of the series,

which means non-stationarity. To find non-seasonality parameters, trend, and seasonality in time

series should be removed using differencing techniques. After the removal of trend and seasonality, the

autocorrelation function and partial autocorrelation function help determine non-seasonal parameters.

Additionally, we also check the p-value between time series data and its lagged time series, and the

number of lags with the lowest p-value determines seasonality parameter S for the SARIMA model.

However, these steps do not always guarantee finding a specific set of parameters for the optimal
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SARIMA model. In many cases, parameter exploration using grid search is required, which means

that we set some possible candidates for parameters and check the SARIMA model performance to

find sets of parameters with the best performance.
3.3.3.3. Three baselines. Naïve method is the simplest time series forecasting method where all

remaining forecast is set equal to the observation made in the last timestamp as below.

(3.2) FT+t = YT for t > 0,

where F and Y are forecastings and observed times series, respectively. T and T + t are the

timestamps of the last observation and the forecast time, respectively.

Seasonal Naïve method is an extension of the Naïve method with a seasonality. It predicts the

forecasts based on the same timestamp in the previous cycle as below.

(3.3) FT+t = YT+t−s(k−1) for t > 0,

where s is seasonality and k is completed cycles.

One-lagged prediction methods rely on the most recent acquired data [99]. One-lagged prediction

utilizes the data from the previous timestamp to forecast the current timestamp as shown below.

(3.4) FT+1 = YT for t > 0.

3.3.4. Experiments.

3.3.4.1. Parameter selection for SARIMA.. For accurate AMR time series prediction, it is crucial

to find appropriate SARIMA parameters [68]. We selected Escherichia coli and Neomycin because

Res(Escherichia coli,Neomycin) provides the largest number of data points to work with, and

it shows visible seasonality. We have seven parameters to determine: (p, d, q), (P,D,Q), and

S. After using the differencing method to find parameter d and to remove trend component in

Res(Pathogen,Antimicrobial), autocorrelation function, partial autocorrelation function, p-value

analysis, and parameter exploration were attempted to assess SARIMA parameters. We choose

optimal SARIMA parameters that predict Res(Escherichia coli,Neomycin) with the lowest error.

3.3.4.2. ARMA and ARIMA Parameter Selection. Similar to SARIMA, we also employed parame-

ter exploration to find the optimal parameters for ARMA and ARIMA. Res(Escherichia coli,Neomycin)
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were utilized for this process. We conducted two experiments for ARMA and ARIMA independently

because ARMA does not take parameter d into account while ARIMA considers it.

3.3.4.3. Time series-based AMR proportions prediction. We selected seven combinations of

parameters from previous analysis on Res(Escherichia coli,Neomycin), and applied the chosen

seven combinations of parameters to other Res(Pathogen,Antimicrobial) to predict the AMR

proportions. Specifically, for each Res(Pathogen,Antimicrobial), seven experiments with different

parameter sets were conducted. Each experiment returned a rooted mean squared error as a

performance measurement. We also used three baselines: Naïve, Seasonal Naïve (we set 4 as the

seasonality period), and One-lagged prediction. All baselines also outputted the rooted mean squared

error values for each Res(Pathogen,Antimicrobial). All experiments were conducted in Python

(Version 3.7.6).

Figure 3: Autocorrelation function and partial autocorrelation function analysis for parameter
selection. (A) autocorrelation function plot, (B) partial autocorrelation function plot and (C) AMR
time series for Escherichia coli and Neomycin, i.e., Res(Escherichia coli, Neomycin).

3.4. Results

3.4.1. Seven Selected Sets of SARIMA Parameters. As shown in Figure 3, the autocor-

relation function and partial autocorrelation function provided information on choosing the right

parameters for SARIMA. P-value analysis for the Res(Escherichia coli,Neomycin) and its lagged
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Methods SARIMA ARMA ARIMA
Parameters p d q P D Q S p d q p d q

1 1 1 4 1 0 1 12 3 0 2 3 2 1
2 2 2 3 1 0 1 12 3 0 0 2 2 3
3 3 0 4 1 0 1 12 3 0 1 2 2 1
4 3 1 4 1 0 1 12 1 0 0 3 2 2
5 4 0 0 1 0 1 12 1 0 1 3 1 0
6 4 3 4 1 0 1 12 1 0 2 2 1 0
7 4 2 4 1 0 1 12 1 0 3 2 2 2

Table 3.2: Seven selected parameters of SARIMA, ARMA, and ARIMA used for overall AMR
proportions prediction acquired from Res(Escherichia coli, Neomycin) analysis.

time series with different numbers of lags was also used to find the seasonal parameter S. From

these, we can determine our parameter S = 12 but other parameters were not found properly from

autocorrelation function and partial autocorrelation function analysis. There were no significant

patterns of gradual decay or recurring cycles observed in either the autocorrelation or partial auto-

correlation plots 3. Specifically, there is no data point with a lag value greater than zero that fell

outside the confidence interval (blue shade area) in either plot 3, resulting in making it unable to

estimate the appropriate parameters for a moving average (MA) or autoregressive (AR) models.

From these analyses, the parameters of the time series model could not be satisfactorily determined

without a parameter search.

In this regard, we explore the set of parameters that output the lowest error estimation mea-

sured by rooted mean squared error. In other words, we conducted trial and error for finding

appropriate undetermined parameters remained. Our parameter exploration includes integers from

0 to 5 for three parameters p, d, q, and from 0 to 6 for the other three parameters P , D, Q,

which we end up having 6373 combination to attempt. For each attempt with a combination of

parameters, SARIMA predicted Res(Escherichia coli,Neomycin), i.e., tried to predict the 10% of

the last values in Res(Escherichiacoli,Neomycin) after being trained with first 90% percent of the

Res(Escherichia coli,Neomycin) and, a prediction error for was reported. With outputted errors,

we selected seven parameter combinations that return the lowest rooted mean squared error values

because the next best one after these seven has a relatively big gap in the errors from the first seven

parameters, and interestingly, our three parameters (P,D,Q)S are fixed as (1, 0, 1)12 while seven

different (p, d, q) are acquired from (Table 3.2).
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Figure 4: Rooted mean squared errors for five pathogens with corresponding antimicrobials. (A)
Escherichia coli, (B) Streptococcus suis (C) Salmonella sp., (D) Bordetella bronchiseptica and (E)
Pasteurella multocida.

3.4.2. Seven parameter sets for ARMA and ARIMA. To find the parameter sets that

predicted Res(Escherichia coli,Neomycin) with the lowest errors, we explored integers from 0

to 5 for all parameters (p, q) and (p, d, q) for ARMA and ARIMA, respectively. Each experiment

requires 63 and 62 iterations to search independently. In the end, seven sets of (p, d, q) and (p, q)

that outputted the lowest rooted mean squared error was selected (Table 3.2).

3.4.3. Error estimation for AMR proportions Prediction. For each Res(Pathogen, An-

timicrobial) time series prediction using SARIMA, the seven previously selected SARIMA parameter

sets were applied. Each experiment outputted a rooted mean squared error value which represents

how good the prediction is, i.e., the lower the rooted mean squared error value, the more accurate
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the method (Figure 4). The lowest error value was provided among seven errors from seven experi-

ments of SARIMA for each Res(Pathogen, Antimicrobial). For each of ARMA and ARIMA, seven

parameters were conducted, and the lowest rooted mean squared error values were outputted among

seven different experiments. We observed that our SARIMA method showed lower rooted mean

squared error values compared to ARMA, ARIMA, and the other three baselines in general. The

rooted mean squared error gap between SARIMA and three baselines became bigger when the AMR

proportions time series (Res(Pathogen,Antimicrobial)) has greater deviation values (equivalently,

more dynamical). This is because higher deviation implies more fluctuation in AMR proportions time

series that are harder to predict. For example, rooted mean squared error values were similar between

SARIMA and three baselines for Res(Escherichia coli, T ilmicosin) (standard deviation: 0.03)

while the rooted mean squared error gap became bigger for Res(Escherichia coli, Enrofloxacin)

(standard deviation: 0.03)). (Figure 4 and Table 3.1).

3.5. Discussion

This study investigated the plausibility of executing data-driven forecasting of the future

AMR burden using the available resistance data in >600 swine farms in the United States from

2010 to 2021. AMR burden was quantified quarterly by calculating the proportions of resistant

strains of five crucial bacterial pathogens (Escherichia coli, Streptococcus suis, Salmonella sp.,

Pasteurella multocida, and Bordetella bronchiseptica) against their corresponding antimicrobials.

The bacterial species assessed in this study were the most prevalent swine bacterial pathogens

dispersed within the studied farms, significantly affecting their health, welfare, and productivity.

These pathogens can cause various infections in pigs, including respiratory, gastrointestinal, and/or

systemic infections, and antimicrobials are the primary mode of therapy and prevention of these

infectious diseases [98]. Therefore, early and accurate detection of potential AMR of these pathogens

is essential to determine the appropriate antimicrobials to use against and monitor for drug-resistant

disease outbreaks. In this study, we used three machine learning-based time series analyses to predict

the future AMR proportions in the studied farms and compared their performances to select the

most efficient and accurate approach for future use. According to our findings, SARIMA predicted

AMR proportions accurately and outperformed ARMA, ARIMA, and three baselines according to
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the rooted mean squared error value. However, parameter exploration remains a light limitation

due to the potential computational burden because the key to prediction using SARIMA was to

find appropriate parameters which cannot always be acquired from the general process using partial

autocorrelation function.

According to this study, we observed distinct temporal trends in AMR proportions for the five

pathogens against their corresponding antimicrobials during the study period (Supplementary Figure

1-5). For example, pathogens, such as Escherichia coli and Salmonella sp., showed very high or in-

creasing trends of AMR proportions against Enrofloxacin, Neomycin, Sulfamethoxazole/trimethoprim,

and Clindamycin, etc., while Streptococcus suis exhibited low resistance to Ampicillin, Ceftiofur,

Enrofloxacin, Florfenicol, and Tiamulin. Most of the studied antimicrobials are effective against

Pasteurella multocida, whereas Bordetella bronchiseptica displayed higher resistance levels against

most antimicrobials assessed in our study. Nevertheless, these quarterly based-AMR proportions

showed frequent fluctuations in most pathogens against their corresponding antimicrobials throughout

the study period (Supplementary Figure 1-5). Yet, our SARIMA models were able to correctly

capture all these individual trends and predict the future AMR proportions with high accuracy.

Specifically, our work demonstrated that SARIMA works well for dynamic time series, such as AMR

proportion time series for the studied five pathogens even if it is difficult to fairly compare our results

to those from other relevant studies as each system has its unique data samples and methods. Also,

this method could be applied to predict other unexplored pathogens unless the available data is

limited. In other words, this work can be generalized to AMR proportions time series for any pairs

of pathogens and antimicrobials. Furthermore, our SARIMA model can also be applied to other

time series analyses in the domain, such as swine mortality rate, etc.

Early detection of emerging AMR and future prediction of AMR burden and trends are vital to

comprehend the extent of the threat and implement appropriate antimicrobial interventions and

mitigation strategies. Numerous studies have explored various ML algorithms to study AMR using

available phenotypic data [2,33,42,44,64,109] and genotypes [72,81,82,90,118]. Specifically,

the recent advancements in affordable and rapid DNA sequencing technologies (e.g., whole genome

sequencing) combined with ML approaches have drastically transformed AMR surveillance and

prediction prospects. Forecasting pathogens that have AMR based on genomics data has shown
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promising for the real-time detection of AMR determinants. However, this process requires robust

bioinformatics tools and advanced analytical skillsets to assess the microbial genomic structure and

the resistomes, and these limitations still preclude cost-effective, user-friendly, and rapid antimicrobial

resistance surveillance. Besides, phenotyping approaches provide direct visual evidence of interaction

between a bacterial strain and an antimicrobial. Thus, most clinical laboratories, to date, rely mainly

on traditional AST to guide clinical therapy and monitor AMR over time. Therefore, the SARIMA

model we proposed in our study will be an efficient and practical alternative to predict AMR burden,

especially for situations where we do not have genomic data but only have historical phenotype

information.

There are a few limitations to our study. The AMR data used for prediction was comprised of

data from multiple swine farms within the United States. Although these farms were managed under

two major swine production systems, individual farms can have different management practices,

biosecurity measures, treatment protocols, etc. Previous studies disclosed various factors, such as

transportation, farm management, housing conditions, metals consumption, feeding strategies, and

antimicrobial usage that can affect the spread of antimicrobial-resistant bacteria and the AMR

levels in a farm [21,67,74,75]. However, we did not incorporate these factors in our study. Thus,

the future AMR burden (proportions) can vary from the predicted levels due to the variations in

these farm factors. Since the AMR predictions were made using a limited number of swine farms

in the United States, Therefore, we cannot generalize our findings to the entire swine population

in the United States. Yet, our results depict the potential of using time series analysis to predict

AMR levels within a farm or geographical region. In this study, we transformed the AMR data

into a binary variable (susceptible/resistance) using breakpoints acquired from the interpretation

report from AAVLD-accredited laboratories in the United States. Some of these breakpoints were

extrapolated from other species (e.g., humans) if swine-specific breakpoints were not available for a

pathogen-antimicrobial combination [66,119]. Breakpoint MICs depend on the clinical pharmacology

of antimicrobials and are generally specific for bacterial-antimicrobial-host-disease-dosing regimen

combinations [66,119], thus, different testing laboratories may use different standards for resistance

classifications, which may cause misclassifications of pathogens. Nevertheless, predicting AMR
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burden directly from MIC values will minimize these misclassifications or classification errors. Hence,

future studies are suggested to perform time series analysis based on the raw MIC data.

3.6. Conclusion

This study proposed to use time series methods for the prediction of future AMR burden by

constructing the quarterly-based AMR proportions times series. The SARIMA approach showed

low errors in terms of rooted mean squared error compared to ARMA, ARIMA, and three other

forecasting baselines, and it worked even for highly dynamic time series. We believe that our time

series prediction can help to advise using appropriate antimicrobials and reduce the risk related

to AMR events by predicting anticipation of AMR occurrences in farms or geographical regions.

Further, our study may also contribute to the analysis of similar problems and scenarios.
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3.7. Supplements

Supplement 1. Prediction results on E. Coli. time series data samples based on the SARIMA

(e.g. of 9 antibiotics). Solid and dotted lines are observed and predicted values, respectively, and

grey area is 95% prediction intervals.
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Supplement 2. Prediction results on S. suis time series data samples based on the SARIMA (e.g.

of 9 antibiotics). Solid and dotted lines are observed and predicted values, respectively, and grey

area is 95% prediction intervals.
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Supplement 3. Prediction results on Salmonella sp. time series data samples based on the SARIMA

(e.g. of 9 antibiotics). Solid and dotted lines are observed and predicted values, respectively, and

grey area is 95% prediction intervals.
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Supplement 4. Prediction results on Pasteurella multocida time series data samples based on

the SARIMA (e.g. of 9 antibiotics). Solid and dotted lines are observed and predicted values,

respectively, and grey area is 95% prediction intervals.

41



Supplement 5. Prediction results on B. bronchiseptica time series data samples based on the

SARIMA (e.g. of 9 antibiotics). Solid and dotted lines are observed and predicted values, respectively,

and grey area is 95% prediction intervals.
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CHAPTER 4

Predicting Minimal Inhibitory Concentration Values for 12

Antibiotics using 203 Streptococcus suis Whole Genome Sequences
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4.1. Materials and Methods

4.1.1. Data Summary: Collection and Processing. Our study utilized whole genome

information for 203 Streptococcus suis samples, each sample had Minimal Inhibitory Concentration

(MIC) values for 21 antibiotics as summarized in Table 4.2. The sample size in our study is relatively

limited compared to similar studies [83,110,126] and each sample has varying nucleotide lengths

due to the missing information at unknown locations. The largest nucleotide length difference

between the two samples was approximately a million, making data alignment for pre-processing

challenging. Initial MIC values were in various forms (x, <=x, >=x, >x, <x) where x is an

integer. To ensure consistency, we converted non-integer MIC values into integers following the rules

outlined in Table 4.3. Furthermore, we logged MIC values with base 2, which were then utilized

as expected target values for our empirical study. Additionally, each MIC value was categorized
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as Resistant, Intermediate, or Susceptible. Out of 21 antibiotics in our initial data, we selected

12 antibiotics for our experiments, as breakpoints (resistant + intermediate vs susceptible) were

available for these antibiotics but not for the remaining eight antibiotics. Note that samples were

significantly imbalanced for some antibiotics, with most samples being either mostly resistant or

mostly susceptible. For example, out of 203 samples, 192 samples were found to be resistant to

Ampicillin. Throughout this paper, we used abbreviations of antibiotics as described in Table 4.1

Ampicillin AMP
Ceftiofur CEF
Chlortetracyline CHL
Clindamycin CLI
Danofloxacin DAN
Enrofloxacin ENR
Florfenicol FLO
Gentamicin GEN
Gamithromycin GAM
Neomycin NEO
Oxytetracyline OXY
Penicillin PEN
Sulfadimethoxine SUL
Spectinomycin SPE
Tetracycline TET
Tiamulin TIA
Tilmicosin TILM
Tildipirosin TILD
TrimethoprimSulphamethozazole TRI
Tulathromycin TUL
Tylosin TYL

Table 4.1: Antibiotics name abbreviations

4.1.2. K-mer Counting. To predict phenotypic data using genotypic information, in our

study, we utilized k-mer counting method [97] because 1) k-mer counting method has shown

great performances in MIC prediction [83,110,126], 2) our current data samples do not allow

for reassembling the fragments of the missing information on genome information, which requires

alignment-free method that k-mer counting method falls in, 3) its sensitivity to the genomic features

such as nucleotide composition, which is crucial in our situation where the data sample is very

limited, and 4) its scalability by simply adjusting the k-mer size (k value) according to the desired

level of resolution and analysis complexity. In our study, we explored k values of 10 and 11 to strike a
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Streptococcus suis (203 samples in total)
Sample size
(Res./Sus.)

Res. decision
(Res. + Int.)

Susceptible
decision Resistant Intermediate Susceptible

AMP 203 (11/192) >=0.5 <=0.25 16 0.5, 1, 2, 4 <=0.25
CEF 203 (22/182) >=4 <=2 8, >8 4 0.5, <=0.25, 2, <=1
CHL 32 (29/3) >=1 <=0.5 >8 8 <=0.5, <=0.25
CLI 203 (170/33) >=4 <=2 16, >16, 4, 8 2 <=0.25
ENR 203 (18/185) >=1 <=0.5 0.5, 1, >2 1 0.5, <=0.12, <=0.25
FLO 203 (2/201) >=4 <=2 - 4 0.5, 1.0, 2.0, 0.25
OXY 32 (31/1) >=1 <=0.5 8, >8 1 <=0.5
TET 172 (165/7) >=4 <=2 >8 4 <=0.5, 1, 2
TIA 203 (41/162) >16 <=16 32, >32, >16 - 1, 2, 4, 8, 16, <=0.5

TILM 203 (160/43) >16 <=16 >16, >64 - 4, 8, <=2, <=4
TILD 171 (164/7) >=8 <=4 16, 8, >16 - 4
TUL 203 (160/43) >=32 <=16 >64 - <=2, <=8

Table 4.2: Initial Data summary. Data size is the number of samples used in experiments.

Conversion Rule
>x 2*x
<x x/2

>=x or <=x x

Table 4.3: Conversion of non-integer MIC values.

balance between maximizing the utility of genomic information and avoiding excessive computational

burden. Once the k value is selected, the occurrences of each k-mer in the genome are counted,

resulting in a frequency distribution of k-mer occurrences. Subsequentially, we dropped columns

where the difference between maximum and minimum counts was less than or equal to 10, based

on the assumption that such corresponding columns would not significantly contribute to our final

machine learning regression for MIC prediction. By doing this, we can reduce the number of features

used in the regression phase as summarized in Table 4.4, resulting in saving our processing time

and mitigating potential overfitting issues. Additionally, we utilized k-mer presence along with

k-mer counting. Specifically, we converted all our nonzero k-mer counts into 1, while keeping all

zero values unchanged. Similarly, after generating k-mer presence feature set, we dropped columns

where all values were the same (either 0 or 1). As a result, we obtained four different datasets, each

corresponding to two k values for k-mer counting and k-mer presence.
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K-mer counting generated K-mer counting reduced K-mer presence reduced
K=10 410 = 128740 128740 (12%) 57589 (5.5%)
K=11 411 = 4194304 391551 (9.33%) 379865 (9.05%)

Table 4.4: The number of columns used for each experiment. The percentage is a proportion of
features used in each experiment compared to the original number of features generated by k-mer
counting method.

4.1.3. Regression. In our study, we utilized machine learning regression to predict phenotypic

data using genotypic information. Machine learning has been actively used in similar studies

[43,77,126]. Among various machine learning regression methods, we employed the Random Forest

(RF) method [9] due to several following reasons: 1) RF is an ensemble machine learning model that

has shown great performances in similar studies [34,127], 2) its ability to handle high dimensional

data, which is especially applicable in our case as the value of k (k-mer size) is large, and 3) its

benefit of reducing overfitting issue, which is suitable for our study as we have a limited sample size

and may face overfitting issue. To implement the regression, we used features extracted from k-mer

counting/presence and logged MIC values as feature and target variable sets, respectively. We train

and test RF by splitting samples.

4.1.4. Evaluation Metrics. To evaluate our regression results comprehensively, we used four

different metrics: Mean Squared Error (MSE), Accuracy (ACC), Major Error (ME), and Very Major

Error (VME). MSE is a standard machine learning regression error estimation, calculated as a mean

value of squared errors between true and predicted MIC values. Lower MSE values indicate better

performance. ACC is an indicator of the precision of regression results in terms of the resistant

and susceptible decision as it is computed based on their resistant and susceptible decision made

using predicted MIC values. A prediction is considered correct when the difference between the

predicted and true MIC values is within ± 1 two-fold dilution. VME indicates the proportion of

wrong prediction for resistant samples, i.e., the proportion of the resistant genomes that have been

assigned susceptible MICs by the model. Food and Drug Administration (FDA) standards [27,79]

for VME rates indicate that the lower and upper 95% confidence limits should be 1.5% and 7.5%,

respectively. Similarly, ME indicates the proportion of wrong prediction for susceptible samples, i.e.,

the proportion of the susceptible genomes that have been assigned resistant MICs by the model. For

this metric, FDA standards recommend a ME rate 3%.

46



Figure 1: The number of samples for each MIC value. ‘nan’ MIC value means there is no MIC
value in the data, i.e. no sample to be used for experiments. Red vertical lines are breakpoints for
resistance and susceptibility. Resistant and susceptible samples are on the right and left sides of the
red lines, respectively.

4.2. Numerical Results

Our numerical results include four metrics: MSE, ACC, VME and ME. To compare our results to

other similar studies, we found that the proportion of antibiotics that return acceptable VME and ME

is a significant measurement, as there are FDA standards for VME and ME, not for MSE and ACC

considering each data from each study has its own unique features to be compared. We observed that

there are a few antibiotics that do not meet FDA standards for VME and ME in any experimental

setting for different k values and counting/presence as shown in Table (Perf) and Supplementary

Figure 1. Specifically, CEF and TIA have imbalanced data samples biased towards susceptible

samples, with 89.1% (181 out of 203) and 79.8% (162 out of 203) susceptible samples, respectively,

resulting in overfitting of the model to the susceptible data and low prediction for resistant samples,
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leading to violation of FDA standards for VME. For ME, ME, CLI, TIA, and TUL have ME values

larger than 3%, indicating a proportion of wrong predictions on susceptible data, which can be

attributed to the fact that CLI and TUL have mostly resistant data samples, making it difficult for

the regression model to learn information about susceptible samples. Despite these wrong predictions,

our results for the proportion of antibiotics that do not meet FDA standards for VME/ME are

competitive with similar studies [83,110,126]. Additionally, we observed that ACC values for most

antibiotics are very high but CEF, CLI, TIA and TILM have relatively lower ACC outputs due to

their imbalanced sample sizes as shown in Figure 2 and Figure 1. The best performance for each

antibiotic is observed in both values of k and both counting/presence approaches.

4.3. Discussion

In the discussion section, we acknowledge some limitations of our study. Firstly, the inherent

challenges from the dataset itself, including limited sample size (only 203 samples) compared to

similar studies [83,110,126], diverse lengths of genome information among samples, and unknown

location of missing data, which makes data alignment difficult. An imbalance in the dataset with

biased samples towards either resistance or susceptibility further enhances the overfitting issue.

Additionally, the breakpoints for resistant and susceptible decisions were manually determined based

on our own dataset and could not be cross-validated with other resources, potentially introducing

some incorrect information. Furthermore, the k-mer counting data processing approach, although

showing good performance in our study, has a possible overfitting issue due to a large number of

features compared to the limited number of samples, especially with larger values of k that incorporate

rich information from whole genome sequences. Implementing more efficient k-mer counting methods

and finding an appropriate value of k could be explored in future studies. There have been other

studies that have explored optimal k-mer counting methods for similar applications [25,97]. Overall,

while our study has some limitations, including the inherent challenges from the dataset itself and

potential overfitting issues with the k-mer counting approach, our results are competitive with similar

studies in terms of the proportion of antibiotics meeting FDA standards for VME/ME and provide

insights into the performance of our regression model for antibiotic resistance prediction.
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Figure 2: Overall performance estimation plot. Each represent results using either k-presence or
k-count with two k values (10 and 11). Each subfigure represents different metric with detailed
information including mean and standard deviation of the vales.
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5.1. Abstract

Novelty detection using deep generative models such as autoencoder and generative adversarial

networks mostly takes image reconstruction error as a novelty score function. However, image data,

high dimensional as it is, contains a lot of different features other than class information which makes

models hard to detect novelty data. The problem gets harder in multi-modal normality cases. To

address this challenge, we propose a new way of measuring novelty scores in multi-modal normality

cases using orthogonalized latent space. Specifically, we employ orthogonal low-rank embedding in

the latent space to disentangle the features in the latent space using mutual class information. With
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the orthogonalized latent space, the novelty score is defined by the change of each latent vector. The

proposed algorithm was compared to state-of-the-art novelty detection algorithms using GAN such

as RaPP and OCGAN, and experimental results show that ours outperforms those algorithms.

5.2. Introduction

Novelty detection, also called anomaly detection from a broader perspective, is regarded to be

a task of recognizing the test data that differs in some respect from the data that are previously

seen. Novelty detection has been actively researched since the demand has been increasing due to

its significance and broad applications in security, AI safety, the healthcare industry.

Deep learning has recently shown tremendous performances in learning distribution and represen-

tations of various complicated data such as high-dimensional data and time series data. Deep

learning for novelty detection aims to learn feature representations and output novelty scores through

the neural network to detect data, which has different feature representations from the previously

observed data. Many deep learning algorithms for novelty detection have been proposed recently,

showing significantly better performances than traditional novelty detection methods. Deep gen-

erative models such as AutoEncoder (AE), Generative Adversarial Networks (GANs), and their

variational models are recognized as one of the biggest breakthroughs in deep learning. Since they

show great performances in pattern recognition in general, they are adopted for novelty detection in

deep learning frameworks frequently. Deep generative models-based novelty detection algorithms

such as OCGAN [89], RaPP [52], AnoGAN [103], [3], and [102] usually takes image reconstruction

error or extension of it as a novelty score function. The key in novelty detection is to differentiate

whether the input data is normal or novelty. However, as image data itself has a lot of inherent

traits, e.g. rotations and thickness of the digit in images in the MNIST dataset, image reconstruction

error can be magnified by those factors, which eventually increases the wrong novelty detection

cases potentially as shown in Figure 1. This gets worse in the multi-modal normality case, which

we aim to tackle. To the best of our knowledge, there has not been any precedent deep generative

approaches to tackle novelty detection in multi-modal normality cases.

In this paper, we propose a new framework for the novelty score function using orthogonalized

latent space. Detection of novelty class in latent space has several benefits. Latent space is a lower
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Figure 1: Limitation of novelty detection using image reconstruction error. Top: Input images.
Middle: Output images of adversarial autoencoder (AAE). Bottom: mean squared error (MSE) of
all images. We set the images of digits of 0-8 and 9 as normal and novelty, respectively. Since mean
of novelty scores among the image of digit 9 (novelty class) is 7.4, MSE values of normal image
bigger than 7.4 lead to wrong novelty detection.

dimensional space with the feature information than the original high dimensional data, which is

easier to be handled. Furthermore, features in latent space can be disentangled and highlight the

class information to detect novelty class well. The low dimensional trait of latent space enables us

to handle the features in the data easier. In this regard, we propose a novelty function using the

change of angle in latent vectors by embedding input data in latent space orthogonal to each class

using mutual class information.

5.3. Related work

One-class Novelty Detection. In recent years, one-class novelty detection has received

tremendous attention as a traditional representation of learning research problems. There have been

many classical approaches to tackle this problem such as Principal Component Analysis (PCA).

Deep learning, which has shown great performances in a variety of fields such as computer vision,

cybersecurity, medical assistance, etc., finds a way to learn representation and detect the based on

previously seen representation. AE-based novelty detection mostly put reconstruction errors such

as mean squared error as a novelty detection function after learning the representation of the data.

GAN-based novelty detection usually takes the discriminator’s prediction in the image space as a

tool for measuring reconstruction error. One-Class novelty detection using GAN (OCGAN) shows

great performances in novelty detection in uni-modal normality data.
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Approaches on Novelty Score Function. There have been other approaches to determine novelty

scores other than reconstruction error or discriminator’s prediction. Generative Probabilistic Novelty

Detection with adversarial autoencoders (GPND) [91] identifies novelty data by considering it to be

an inlier or an outlier. GPND has done this by utilizing a probabilistic approach and computing

how likely it is that new data was generated by the normal distribution effectively. RaPP: Novelty

Detection with Reconstruction along Projection Pathway (RaPP) [52] introduces a new way to

quantify novelty scores using values in hidden space activation obtained from a deep autoencoder.

RaPP compares input and its autoencoder reconstruction both in the input space and in all of the

hidden spaces. However, in order to enforce their metrics, RaPP network is required to be symmetric,

which makes designing network architecture and training networks a very expensive work. As the

data becomes more complicated, it becomes more expensive due to fully-connected layers in the

encoder and decoder caused by its structural problem. RaPP also showed a great performance in

multi-modal normality cases.

5.4. Proposed Method: OAAE

In this section, We propose a new AAE novelty detection algorithm using orthogonalized latent

space (OAAE) for multi-modal normality cases. The key idea is to disentangle latent space using

mutual class information by employing orthogonal low-rank embedding (OLE) loss [61], which

enables us to achieve minimizing the variance of latent vectors in intra-class as well as maximizing

margins of inter-class latent vectors (in terms of angle; equivalently orthogonalize inter-class latent

vectors). With such an orthogonalized latent space, we estimate a novelty score by quantifying the

change of angle in each latent vector.

5.4.1. Orthogonal Latent Embedding. OLE is carried out using rank function [61]. Mathe-

matical formulations of OLE begin with the following equation:

(5.1) argmin
T

C∑
c=1

rank(TXc)− rank(TX), s.t. ||T||2 = 1,

where X denotes the input dataset, Xc denotes the set of data points with class c in a subspace of Rd,

T is a linear transformation on the data (i.e., the feed-forward network for deep learning framework),

|| · ||2 is the matrix Euclidean norm. We interpret this formulation term by term intuitively [93].
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Minimizing the first term
∑C

c=1 rank(TXc) keeps the transformed data from the same subspace a

consistent representation, and maximizing the second term rank(TX) encourages the transformed

data from different subspace to represent a diverse representation. Additionally, the normalization

constraint ||T||2 = 1 avoids the trivial solution, i.e., T = 0. Since it is known that the nuclear norm

(||A||⋆; the sum of the singular values of the matrix A) is the convex envelop of rank(A) over the

unit ball of matrices [26], and due to efficiency of optimization [10,95], we reformulate the equation

using the nuclear norm as follows:

(5.2) argmin
T

C∑
c=1

||TXc||⋆ − ||TX||⋆, s.t. ||T||2 = 1.

Following [61], (5.2) becomes the following loss using minibatch as below to be applied to the deep

learning framework:

LOLE(Y) :=
C∑
c=1

max(∆, ||Yc||⋆)− ||Y||⋆(5.3)

=
C∑
c=1

max(∆, ||Φ(Xc; θ)||⋆)− ||Φ(X; θ)||⋆.(5.4)

To optimize (5.3) using backpropagation, the projected subgradient for the nuclear norm and the

descent direction for (5.3) are obtained in by using SVD decomposition on matrix A, i.e., A = UΣVT ,

and zero filling matrix Zc as follows:

(5.5) g||A||⋆(A) = U1V
T
1 ,

(5.6) gLOLE
(Y) =

C∑
c=1

[
Z(l)
c |Uc1U

T
c1|Z(r)

c

]
−U1V

T
1 .

where U1 and V1 be the first s columns of U and V, respectively, corresponding to eigenvalues

larger than a small threshold value δ. Similarly, Uc1 and Vc1 be left and right singular vectors of

Yc where their corresponding singular values are greater than the threshold δ. Using LOLE loss,

we embed our high dimension dataset in orthogonalized latent space with the two main benefits:

reduced variance of intra-class, maximized angle margins of clusters of inter-class as shown in Figure

2.
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Figure 2: Embedding of trained latent space using t-SNE. Left: AAE without OLE loss. Right:
AAE with OLE loss. The reduced variance of intra-class clusters of latent vectors was observed.

5.4.2. Architecture. The architecture of the proposed network is based on AAE [71] and a

classifier was added to use mutual class information in OLE loss shown in Figure 3. Each encoder

and decoder in our model has five layers with three convolutional layers and two fully-connected

layers at the end. Details of training of our algorithm are described in Algorithm1. The main key in

our algorithm is to adopt OLE loss to use mutual information and disentangle features in latent

space and returns novelty score using the change of angles in latent vectors.

5.5. Experiment

5.5.1. Datasets. MNIST. The MNIST database, which stands for Modified National Institute

of Standards and Technology database, consists of a large number of 28×28 grayscale images of

handwritten digits (10 classes; 0∼9). The MNIST dataset is commonly and widely used for various

computer vision and image processing research due to its simplicity. In our experiments, we choose

images of one handwritten digit and every other image of the remaining nine different handwritten

digits as a novelty class, and normal class data, respectively.

Fasion MNIST (f-MNIST). The fashion-MNIST is a dataset of 28×28 grayscale images 10

different classes (T-shirt; TS, Trouser; TR, Pullover; PO, Dress, Coat, Sandals, Shirt, Sneaker,

Bag, Ankle boots). It shares the same image size with the original MNIST dataset but f-MNIST

is regarded as a harder data to learn in general because of the complexity that semantic images

have. Similar to the previous experiments on MNIST dataset, we choose images with one class (e.g.,
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Figure 3: OAAE architecture

Table 5.1: AUROC of OAAE and the baselines
MNIST

0 1 2 3 4 5 6 7 8 9 Mean
OCGAN 0.91 0.08 0.76 0.81 0.77 0.72 0.87 0.37 0.923 0.46 0.67
RaPP 0.99 0.89 0.98 0.95 0.92 0.97 0.98 0.97 0.96 0.89 0.95
OAAE 0.98 0.97 0.97 0.95 0.95 0.97 0.975 0.97 0.98 0.97 0.97

f-MNIST
TS TR PO Dress Coat Sandals Shirt Sneaker Bag Boots Mean

OCGAN 0.58 0.75 0.59 0.72 0.56 0.80 0.55 0.77 0.88 0.73 0.69
RaPP 0.70 0.78 0.65 0.82 0.57 0.85 0.58 0.61 0.98 0.82 0.74
OAAE 0.92 0.88 0.82 0.85 0.85 0.72 0.79 0.79 0.97 0.79 0.84

CIFAR10
AP AM Bird Cat Deer Dog Frog Horse Ship Truck Mean

OCGAN 0.54 0.71 0.40 0.52 0.31 0.58 0.40 0.61 0.44 0.69 0.52
RAPP 0.469 0.654 0.416 0.578 0.357 0.604 0.382 0.579 0.553 0.681 0.527
OAAE 0.706 0.777 0.579 0.713 0.660 0.742 0.620 0.683 0.652 0.786 0.692

T-shirt) and every other image of the remaining nine different classes as a novelty class, and normal

class data, respectively.
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Algorithm 1 Novelty Detection algorithm
1: Input : Image x with class c, N Epochs, K Iteration
2: Training phase
3: for epochs 0 to N do
4: for iteration 0 to K do
5: n← N (0, I)
6: z ← N (0, I)
7: Discriminator training phase
8: Llatent ← Dlatent(z, 1) +Dlatent(Enc(x+ n), 0)
9: Limage ← Dimage(x, 1) +Dimage(Dec(z), 0)

10: Back-propagate and update
11: Encoder, Decoder and Classifier training phase
12: if K%5 == 0 then
13: Lrecon ← ||x−Dec(Enc(x+ n))||22
14: LEnc ← Dlatent(Enc(x+ n), 1)
15: LDec ← Dimage(Dec(z), 1)
16: Lole ← OLE(Enc(x+ n), c)
17: Lcls ← CrossEntropy(C(Enc(x+ n)), c)
18: Back-propagate and update
19: end if
20: end for
21: end for
22: Test phase
23: Test image x
24: z0 ← Enc(x)
25: z1 ← Enc(Dec(Enc(x)))
26: Novelty_Score← angle(z0, z1)

CIFAR10. The CIFAR10 dataset consists of 60000 32×32 colored images with evenly distributed

10 classes (airplane; AP, automobile; AM, bird, cat, deer, dog, frog, horse, ship, truck). This dataset

was selected due to its complexity. CIFAR10 dataset is usually treated as harder data to train than

MNIST or f-MNIST in general due to its multi-channel trait.

5.5.2. Architectures of Baseline Algorithms. We compare the performance of our models

to that of two state-of-the-art GANs-based novelty detection algorithms: OCGAN and RaPP. We

briefly explain how those two algorithms work in the following sections.

OCGAN. OCGAN solves the classical one-class novelty detection problem and aims to determine

whether the new input is from the same class or not. The key idea of OCGAN is to learn latent

representations of normal class data using a denoising autoencoder network and to directly force
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the latent space to entirely represent the given class. OCGAN is particularly focused on learning

uni-modal normality data.

RaPP. A new methodology for novelty detection is proposed in RaPP by adopting values in hidden

space activation obtained from a deep AE. RAPP compares input and its AE or VAE reconstruction

in the hidden spaces as well as in the input space. RaPP introduces two metrics combining those

hidden activated values to measure novelty scores. In order to achieve this, RaPP requires the model

to be symmetric to enforce its evaluation methodologies, which causes its structural limitation, and

the training model becomes very expensive work as the data becomes more complicated due to

fully-connected layers in the encoder and decoder caused by their structural problem.

5.5.3. Training Details. All of our experiments were conducted by Python 3.6.9. Adam

optimizer was adopted to train our model. For stable adversarial learning, the encoder is trained

with one iteration after every five iterations for the discriminator. Each experiment is carried out

with 100 epochs with batch sizes as much as 64, and we set the learning rate as 0.0004. Gaussian

noises with a standard deviation of 0.02 were added to the input image data during the training

phase.

5.5.4. Experimental Results. We evaluate the performances of all experiments using Area

Under the Receiver Operating Characteristic curve (AUROC) as shown in Table 5.1.

5.6. Discussion

Our methods showed a better performance than other previous GAN-based state-of-the-art

novelty detection algorithms such as OCGAN, RaPP. Specifically, our approach provides much

higher AUROC values for experiments on more complicated data such as f-MNIST, and CIFAR-10.

It supports that as a tool of novelty score measurement, change of latent vector is more reasonable

than image reconstruction errors since image reconstruction error can be more escalated in more

complicated data. At the training level, our approach leverages class labels in a normal dataset,

which is sometimes expensive work. An unsupervised learning framework without using normal class

labels can be considered potentially.
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5.7. Conclusion

We proposed a new novelty detection framework using deep generative models. Instead of

evaluating novelty class using image reconstruction error, the change of angle in the latent vector is

regarded as a tool for novelty detection quantity. We adopt OLE loss using mutual class information

to achieve disentanglement of latent vectors to maximize the effect of class information. Our new

approach shows a greater performance in multi-modal normality scenarios than previously existing

GAN-based state-of-the-art novelty detection algorithms.
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6.1. Abstract

Synthetic data has been actively used for various machine learning-based tasks due to its benefits

such as massive re-productivity and privacy enhancement compared to using the original data. The

quality of the generated synthetic dataset crucially depends on the quality of the original data,

which, in practice, is usually, corrupted by label noise. While there have been studies on feature

noise, how label noise affects synthetic data generation is under-explored. In this paper, we evaluate

the impact of the label noise label on synthetic data generation with a focus on tabular data. One

challenge is how to evaluate the quality of synthetic data under label noise. To this end, we design

comprehensive experiments to measure the impact of label noise on synthetic data generation in

different aspects: synthetic data quality, data utility, and convergence for training synthesizers and

machine learning models for downstream tasks. The empirical results cover wide aspects of synthetic

data generation under label noise and they show quality and utility degrades with higher noise levels

while there is no significant effect on the synthesizer convergence observed.
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6.2. Introduction

Synthetic data has become an increasingly popular choice for machine learning training due to its

advantages such as potential massive data re-productivity and privacy preservation compared to the

original data. It has been used for many practical applications such as healthcare/medicine [14,20]

and manufacturing [85]. In practice, synthesizers can generate various data types such as image,

time series data, and tabular data. In this work, we focus on tabular data generation because tabular

data is quite prevalent in many practical scenarios, such as electronic health records [38], patient

data [6], and hiring/loan decisions [41], and also tabular datasets have more diverse data types

for features such as categorical and numerical features while image data has only numerical values.

Generating useful quality synthetic datasets is largely dependent on the quality of the training data

for synthesizers. In this regard, it is significant to investigate the factors affecting the quality of

training data for synthesizers and how those factors influence synthetic data generation eventually.

Label noise has been extensively studied in literature due to its critical effect on machine learning

tasks, and it has been shown that label noise degrades machine learning performance in downstream

tasks. While it is important to consider label noise for synthetic data generation, it has not been

well investigated enough, especially on the tabular datasets. There have been a few studies that

discuss the vulnerability of synthesizers on label noise [48,112], which, however, is limited to image

datasets. To our best knowledge, there has been no such work to comprehensively investigate the

impact of label noise on synthetic tabular data generation and quantify their effects. Our work aims

to fill this gap.

Previous studies showed from a rather coarse perspective that label noise lessens model per-

formance. [45]. This paper attempts to proceed from a much more systematic and finer-grained

perspective on how label noise affects synthetic tabular data generation. We are particularly

interested in answering the following research questions:

• Question 1: How does label noise affect the convergence rate for training synthesizers?

• Question 2: How does label noise affect the quality, e.g., fidelity/diversity/generalization

power, of the synthetic tabular data?

• Question 3: How does generated synthetic data affect downstream tasks? More specifically,

· How useful can generated synthetic tabular data be as training data for downstream tasks?
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· How does generated synthetic data affect downstream machine learning models such as

training and validation performance?

To answer Question 1, we conduct numerical experiments on training synthesizers using training

data with generated label noise. Interestingly, we found that the effects of label noise on synthesizer

convergence are not significant such as overfitting or convergence failure, regardless of the noise

level. To answer Question 2, we conduct numerical experiments to measure the quality of generated

synthetic data using several metrics (which will be discussed in detail later in Section 3.3 B). Our

choice of metrics enables a comprehensive understanding of the quality of generated data. Our results

show that the quality of synthetic data decreases with the higher noise levels. We also observed that

two different label noise generation approaches affect the synthetic data quality a bit differently.

Even though there is a clear quality degradation of synthetic data with the higher noise level, the

qualities of generated data are still high compared to the real data. Finally, to answer Question 3,

we conduct numerical experiments on training machine learning models on classification tasks using

generated synthetic data and testing them on real data. We found that synthetic data utility and

the performance of machine learning models decrease with higher levels of label noise. We observe

relatively high variances in synthetic data utility for the two label noise generation approaches used.

Additionally, we observe that synthetic data itself caused an overfitting problem for downstream

machine learning tasks and larger noise levels outputted a high gap between training and validation

accuracies.

The key contributions of this paper are summarized below:

• To the best of our knowledge, this is the first comprehensive empirical study that analyzes

the impact of label noise on synthetic tabular data generation. Our empirical study reveals

important implications for the use of synthetic data in machine learning applications,

particularly when dealing with noisy or unreliable labels.

• Numerical experiments are systemically conducted with different synthesizer algorithms

and different label noise generation settings with various levels of noise. As the evaluation

of the quality of the generated data is challenging, we utilized multiple metrics to touch on

it in various aspects.
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• Our study provides several interesting observations and insights: 1) label noise generally

degrades in quality and utility of generated synthetic tabular data, 2) interestingly, label

noise has little impact on the convergence of training synthesizers, 3) sometimes we observed

that there is performance increase at random places with higher levels of noise, 4) synthetic

data generated from larger noise levels cause larger gaps in training and validation accuracies

for the downstream task, and 5) there is no seemingly significant differences in performances

between different label noise generations.

The remaining of the paper is organized as follows. In Section 2, we provide the preliminaries. In

Section 3, we present our experiments. In Section 4, numerical results are provided. In Sections 5

and 6, we discuss and conclude our study.

6.3. Preliminaries

6.3.1. Synthetic Tabular Data Generation. Generative Adversarial Networks (GAN) [31],

a class of deep learning models, has been extensively used for synthetic data generation. GAN

consists of two neural networks: a generator and a discriminator. The generator learns to produce

synthetic data that is similar to the real data, while the discriminator learns to distinguish between

real and synthetic data. The two networks are trained simultaneously in a min-max game process.

The generator is expected to produce diverse data that the discriminator cannot easily identify from

real data. Additionally, the training process is known to be able to be unstable, resulting in low

quality synthetic data and failure of model convergence [54].

Among many variations of GAN models, we discuss synthetic tabular data generation algorithms

relevant to our study. CTGAN (Modeling Tabular data using Conditional GAN), TVAE (VAE-

based Deep Learning data synthesizer) [125], CopulaGAN (Apply Copula flow [47] to CTGAN).

GAN-based methods have shown great performances in generating synthetic data in general, and

especially these three methods are specialized in generating tabular data with both categorical and

numerical columns. To be specific, CTGAN, one of the most frequently used synthetic tabular

data generation methods, uses a conditional approach to GAN [31] to generate the tabular data

more realistically. Similar to CTGAN, TVAE utilizes VAE (Variational Auto Encoder) structure

and generates synthetic tabular data. CopulaGAN apply Gaussian copulas [47] to CTGAN to
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generate high-fidelity synthetic data. These three models are frequently used in synthetic tabular

data generation algorithms as baselines in recent literature [8] as they share a similar structure but

have shown different performances.

While GAN-based synthesizer has shown a great performance in synthetic data generation,

we face a few challenges [58] such as overfitting and handling diverse data types, especially for

tabular datasets. For this reason, it is significant to study the convergence of the synthesizer and the

quality of generated data in synthetic data generation. Recently, there have been GAN-based data

generation studies that tackle feature noise in data [94,100]. There is no study on the systemical

impact of label noise on synthetic tabular data generation. Our study aims to fill in this gap through

empirical experiments touching on different aspects of the influence.

6.3.2. Noisy Data Generation. In our experiments, we have a label with binary classes to

work with and consider label corruption from one label to the other label. In this section, we discuss

two different ways to generate noisy labels used in our study: random flipping (instance-independent)

and instance-dependent label noise. We describe the noisy label generation process in Figure 1.

A. Random flipping (instance-independent) noise label generation.

Random flipping noise, an instance-independent noise, is a benchmark where a label is flipped to

another class at random [32]. It does not take into account the feature sets. More specifically, Each

label is flipped into the other class with a probability pi. Workflow with this instance-independent

random flipping label generation method is described in Figure 1.

B. Instance-dependent noise label generation.

Instance-dependent noise is a more realistic noise type that incorporates feature sets. To do this, we

used a pre-trained machine learning model to classify the samples and followed the decision made.

The model simulates how human generates noisy labels. From there, we collected the set of samples

where the predicted label is not identical to their original label. From the previously obtained set, we

randomly select samples with a probability that we actually flip the label with different noise levels

(10% - 50%). Workflow with instance-dependent label generation method is described in the top

Figure in Figure 1. It has been used actively in literature in various domains [117,124,129]. This

approach is more targeted and is able to generate more consistent label noise in data for multiple

generation attempts than random flipping.

64



Figure 1: Workflows with two different label noise generation approaches. (A) Random flipping
noise. (B) Instance-dependent noise

6.4. Experiments

6.4.1. Dataset. To assess the impact of label noise on the synthetic tabular data generation,

we utilize Adult data from the UCI dataset repository [24]. Adult data consists of approximately

32000 samples, each with 14 attributes (columns or features), including nine categorical and four

numerical columns. Our downstream machine learning task is to classify the adult tabular data and

determine whether the income level is more than $ 50,000/year or not, based on the remaining 13

attributes. A few samples are described in Table

Sample # age education-num · · · education race sex · · · income
1 39 13 · · · Bachelors White Male · · · <=50K
2 50 13 · · · Bachelors White Male · · · <=50K
3 38 9 · · · HS-grad White Male · · · <=50K
4 53 7 · · · 11th Black Male · · · <=50K
5 28 13 · · · Bachelors Black Female · · · <=50K

Table 6.1: Five data samples in UCI Adult dataset with attributes (bold columns names). Two (out
of six) continuous columns and four (out of nine) categorical columns including binary class annual
income column are presented.

6.4.2. Experimental Workflow. Our experiments aim to examine the impact of label noise

on synthetic tabular data generation and involve three main components: (1) generating data with

varying levels of label noise, (2) training synthesizers and using them to generate synthetic tabular
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data and (3) evaluating the quality of generated data. To carry out these experiments, we divided

our samples into two sets: a training set with 22k samples, which we used to train the synthesizer,

and an evaluation set with 10k samples, which we used to assess the utility of the synthetic tabular

data.

A. Label noise generation.

To evaluate the impact of label noise on synthetic tabular data generation, we use two methods:

random flipping and instance-dependent noise generation. For random flipping, we flip the label of

each sample in the training set with a specified probability (i.e., noise level) ranging from 0% to

50% For instance-dependent noise generation, we first train a logistic regression classifier (binary

classification for annual income; over 50K or not) on the 23k samples. We then identify all samples

with different predicted outputs compared to their original labels, and randomly select 4600 samples,

a subset of roughly 20% of the training samples, as candidates for label flipping. From this group,

we randomly select samples with varying noise levels ranging from 10% to 50% similar to random

flipping.

B. Training and generating the synthetic data.

Training synthesizers from scratch using noisy labels can be very unstable so it is essential to stabilize

the synthesizer. Also, we want to minimize the impact of synthesizers (deep generative models), e.g.,

training instability, and focus on how the label noise affects synthetic data generation. To this end,

we first pre-train the synthesizer with clean data (approximately 18400 samples; 80% of training

data (22k)). After pre-training the synthesizer, we fine-tune the model with noisy data with different

noise levels (0% - 50%) [37]. With the trained generator component of the trained synthesizer, we

generate the synthetic tabular adult dataset with 20k samples.

C. Synthetic data evaluation.

To comprehensively measure the impact of label noise on synthetic tabular data generation, we

evaluate it from various aspects, which will be detailed in Section 3.3.

6.4.3. Evaluation Metrics. To comprehensively understand the impact of label noise on

synthetic tabular data generation, our study uses various metrics. We first provide an overview of

the metrics and then discuss them in detail.
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• Convergence analysis: synthesizer training and downstream classification task.

· Generator and discriminator loss.

· Learning curve for machine learning methods.

• Data quality: how good synthetic data is compared to real data.

· Statistical Similarity with two different methods: Chi-squared (CS) test and Total Variation

(TV).

· Sample-level similarity [1]: fidelity, diversity, and generalization.

· Label accuracy: measure how correctly synthetic labels are generated with label noise.

• Data utility: how well synthetic data can be used as training data for downstream tasks.

· Machine learning efficacy.

A. Convergence analysis.

For convergence analysis, we observe the behaviors of generator and discriminator loss functions for

synthesizers and learning curves for downstream machine learning models. It has been observed

that label noise causes harmful effects on training neural networks such as overfitting [23,50] and

convergence failure [70]. This motivates us to study how label noise affects the convergence of

training synthesizers. First, to evaluate the convergence rate for the training synthesizer, we observe

the loss function behavior for both the generator and the discriminator in GAN-based synthesizers

and analyze the stability and convergence rate in the training phase. Similar to this, we observe

learning curves to estimate the training stability, performance saturation, and under/overfitting for

downstream machine learning models.

B. Data quality.

To assess this part more comprehensively, we adopt three different aspects as follows.

1) Statistical similarity. This metric measures how similar the generated synthetic data is to the

real clean data statistically. To this end, we use three different column-wise distribution comparison

methods: Chi-squared (CS) test [88], Total Variation (TV) [29] and the Kullback–Leibler(KL)

Divergence [18]. For the CS test, averaged p-value between 0 and 1 across the columns is outputted

using the equation below:

(6.1) CS(Ri, Si) = χ2(Ri, Si) =
∑
k

(Rk
i − Sk

i )
2

Sk
i

for 1 ≤ i ≤ 15.
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where R and S are real and synthetic data, respectively. Rk
i and Sk

i are the kth element of ith

column for real and synthetic tabular data, respectively. Using the distribution of χ, we obtain a

p-value and an averaged p-value between 0 and 1 across the columns. A higher p-value represents

high similarity to the real data. TV method returns the averaged value of (1-(TV distance)) across

the columns using the following equation.

(6.2) TV (Ri, Si) =
1

2

∑
c∈Ci

|Freqc(Ri), F reqc(Si)| for 1 ≤ i ≤ 15.

where c that represent all possible categories in a column set Ci and Freq is a frequency count

function for c in either Ri or Si. Note that a higher score indicates higher similarity. An averaged

KL divergence value across all columns is returned after normalization following the equation below.

(6.3) KL(Ri, Si) =
∑
i

DistRi ln
DistRi

DistSi

for 1 ≤ i ≤ 15.

where Dist represents a distribution of each column. We conducted 10 runs and reported the

mean/standard deviation of all runs, and for each run, we generated 20k synthetic samples and

compute the similarities.

2) Sample level analysis. A 3-dimensional evaluation metric named (α-Precision, β-Recall,

Authenticity), is proposed [1] where α-Precision, β-Recall are a generalization of precision and recall,

respectively. The metric provides information on fidelity, diversity, and generalization, respectively.

Fidelity here indicates how realistic the synthetic samples are. Diversity value represents how diverse

the generated outputs are, i.e., a variety of generated samples. Generalization indicates whether

generated samples are direct copies of the real data to measure overfit of the model by observing the

probability that synthetic samples are duplicated from the real training data. This metric has been

used in many recent studies and measures the quality of the synthetic data. [63]

3) Label accuracy. This metric measures how accurately synthesizers generated synthetic labels.

To this end, we train machine learning models using original data and test them on generated

synthetic data. This metric is usually adopted in the synthetic image generations [113] because

synthetic image generation has a separate feature set (image) and label. In our case, this is also a

valid metric because machine learning models trained on synthetic data can be very unstable which

can result in high variance output as inconclusive results.
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Figure 2: Generator and discriminator loss behavior analysis for GAN-based synthesizers: CTGAN
and CopulaGAN with two noise label generation approaches. (A) CTGAN with random flipping
noise. (B) CopulaGAN with random flipping noise. (C) CTGAN with instance-dependent noise. (D)
CopulaGAN with instance-dependent noise.

C. Data utility.

We adopt machine learning efficacy to measure data utility. This metric measures how effectively

generated synthetic data can be used as training data for downstream machine learning tasks because

synthetic data is often used to train machine learning models before they are tested on the real data.

In our experiments, we train various machine learning models (Logistic Regression; LR, Decision

Tree; DT, random Forest; RF and Multi-Layer Perceptron; MLP) on synthetic samples and test on

real data for classifying adult data into binary classes (annual income >50k vs <=50k). To conduct

this, we generated 20k synthetic samples 10 times independently from trained synthesizers and used

them for training downstream machine learning models to evaluate accuracy on real 10k samples.

6.5. Numerical Results

We present experiments to study the impact of noisy labels on synthetic tabular data generation

from different perspectives: convergence rates for training synthesizer (Section 4.1), synthetic data

quality (Section 4.1; similarity and label accuracy), downstream classification machine learning tasks

(Section 4.3; utility and learning curves of machine learning models ()).
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Figure 3: Three statistical similarity comparison metrics plots (CS Test, TV Complement and KL
Divergence) with two different noise label approaches. (A) CTGAN with random flipping. (B) TVAE
with random flipping. (C) CopulaGAN with random flipping. (D) CTGAN with instance-dependent.
(E) TVAE with instance-dependent. (F) CopulaGAN with instance-dependent.

6.5.1. Impacts on the convergence for training synthesizer. Empirical results on be-

haviors of training synthesizers are presented in Figure 2. Our findings observed that there is

no significant delay in training synthesizer with higher noise levels even though overfitting and

convergence failure are observed in some similar studies [23,50,70]. With higher label noises, the

generator and discriminator loss converge similarly to the lower noise levels. For the CopulaGAN

model with random flipping noise type, there is a visible delay when the noise level is 40%, but it

is still not a significant delay compared to other noise levels. Note that this can be explained that

our loss plots are for fine-tuning with noisy data after pre-training and it is possible that the model

is stabilized enough in the pre-training phase with the original data as in similar studies such as

pre-trained language model [123], it is observed that fine-tuning the model with a little noise after

pre-training can help the stabilizing the model better.

6.5.2. Synthetic data quality. Empirical results on data quality of synthetic data are presented

in Figure 3. We observed that statistical similarity between the generated synthetic data and original

data decreases relatively coherently in terms of p-values from the CS test, TV complements, and
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Figure 4: Label accuracy (mean value from 10 runs) for three synthesizers with two different noisy
label generation methods. (A) CS test with random flipping. (B) TV Complement with random
flipping. (C) KL Divergence with random flipping. (D) CS test with instance-dependent. (E) TV
Complement with instance-dependent. (F) KL Divergence with instance-dependent.

KL divergence values. There are a few cases where similarity increases for larger noise levels, e.g.,

level 40% to 50% for CTGAN for instance-dependent noise type. This has been observed in other

similar studies [49,87,112]. Note that this happens rarely and overall behavior has decreasing trend

in general. We also observe that random flipping label noise affects the quality degradation more

linearly in general compared to the instance-dependent label noise approach. Specifically, the CS

test and TV complement, with instance-dependent label noise, decrease more dynamically compared

to the random flipping noise.

Additionally, synthetic label accuracy decreases as higher noise levels are used as shown in

Figure 4. More comprehensive results including the standard deviation values are described in

Supplementary Table 6.3. Compared to the standard deviation results from machine learning efficacy

estimation (Supplementary Table 6.2), it shows relatively small variances. This can be explained

that the machine models are trained with real clean data, which makes the results more stable than

training with synthetic data.
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Figure 5: Machine learning efficacy (mean value from 10 runs) for three synthesizer with two noise
label generation approaches. (A) CTGAN with random flipping. (B) TVAE with random flipping.
(C) CopulaGAN with random flipping. (D) CTGAN with instance-dependent. (E) TVAE with
instance-dependent. (F) CopulaGAN with instance-dependent.

Figure 6: RF learning curves (training curve and test curve) for three synthesizers with two noise
label generation approaches. (A) CTGAN with random flipping. (B) TVAE with random flipping.
(C) CopulaGAN with random flipping. (D) CTGAN with instance-dependent. (E) TVAE with
instance-dependent. (F) CopulaGAN with instance-dependent.
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Random Flipping Label Noise
2*Synthesizers 2*ML models Noise Level

0.0 0.1 0.2 0.3 0.4 0.5
4*CTGAN LR 0.79/0.01 0.68/0.22 0.56/0.28 0.56/0.29 0.67/0.24 0.66/0.24

DT 0.79/0.0 0.63/0.08 0.55/0.13 0.55/0.11 0.57/0.08 0.58/0.12
RF 0.83/0.01 0.68/0.11 0.58/0.16 0.56/0.16 0.57/0.08 0.59/0.15

MLP 0.68/0.09 0.59/0.11 0.59/0.13 0.47/0.08 0.49/0.06 0.55/0.05
4*TVAE LR 0.73/0.01 0.7/0.03 0.7/0.07 0.52/0.19 0.53/0.24 0.38/0.04

DT 0.78/0.03 0.73/0.01 0.64/0.08 0.51/0.04 0.49/0.07 0.46/0.06
RF 0.82/0.01 0.81/0.0 0.71/0.09 0.5/0.1 0.48/0.1 0.44/0.1

MLP 0.71/0.04 0.66/0.06 0.65/0.03 0.5/0.09 0.46/0.13 0.39/0.07
4*CopulaGAN LR 0.79/0.01 0.77/0.0 0.56/0.29 0.43/0.27 0.45/0.29 0.34/0.24

DT 0.79/0.01 0.67/0.07 0.53/0.13 0.44/0.13 0.53/0.13 0.45/0.09
RF 0.82/0.0 0.73/0.07 0.55/0.17 0.44/0.14 0.55/0.14 0.46/0.11

MLP 0.69/0.03 0.53/0.16 0.53/0.12 0.41/0.1 0.5/0.06 0.52/0.1

Instance-dependent Label Noise
2*Synthesizers 2*ML models Noise Level

0.0 0.1 0.2 0.3 0.4 0.5
4*CTGAN LR 0.77/0.01 0.66/0.24 0.33/0.24 0.56/0.3 0.45/0.3 0.67/0.24

DT 0.78/0.01 0.63/0.09 0.47/0.14 0.51/0.11 0.5/0.12 0.58/0.12
RF 0.81/0.01 0.69/0.11 0.47/0.14 0.52/0.14 0.52/0.15 0.6/0.14

MLP 0.68/0.08 0.53/0.17 0.49/0.06 0.48/0.03 0.47/0.17 0.57/0.06
4*TVAE LR 0.76/0.02 0.77/0.01 0.72/0.16 0.38/0.16 0.45/0.28 0.48/0.22

DT 0.77/0.01 0.77/0.03 0.61/0.09 0.47/0.04 0.48/0.11 0.52/0.06
RF 0.81/0.01 0.8/0.01 0.66/0.13 0.43/0.05 0.47/0.16 0.53/0.08

MLP 0.67/0.05 0.75/0.04 0.53/0.12 0.53/0.08 0.5/0.16 0.51/0.04
4*CopulaGAN LR 0.78/0.02 0.77/0.0 0.45/0.3 0.65/0.25 0.55/0.3 0.46/0.3

DT 0.76/0.01 0.72/0.03 0.51/0.16 0.55/0.13 0.55/0.14 0.5/0.11
RF 0.81/0.01 0.77/0.02 0.52/0.2 0.56/0.13 0.56/0.15 0.5/0.13

MLP 0.63/0.08 0.6/0.08 0.48/0.12 0.54/0.15 0.51/0.1 0.52/0.06

Table 6.2: Machine learning efficacy with two different noisy label generation methods. The mean
and standard deviation values of accuracy are reported in each cell.

6.5.3. Impacts on downstream classification tasks. Empirical results on impacts on

downstream tasks are presented in Figure 5 and Table 6.2. We observed this aspect using two

different metrics: machine learning efficacy and learning curve in training. We observe that machine

learning efficacy in terms of accuracy decreases as higher noise levels are used in generating synthetic

data as shown in Figure 5. Detailed results with standard deviation are displayed in Supplementary

Table 6.2. There are some interesting situations 1) both accuracy and noise level increase together,

e.g., level 30% - 50% in TVAE for an instance-dependent noise generation system, and 2) high
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variance in performances (Table 6.2). High variances are observed in both random flipping and

instance-dependent noises similarly and results from random flipping show relatively more consistent

behavior than instance-dependent noise generation. High variances can be partially explained by

fluctuations possibly caused by 1) noise label generation, 2) instability of training synthesizer, and

3) training machine learning models with synthetic data, as each situation has chances to affect the

randomness when we work with label noise in the beginning. We also observe that performance

gaps between different machine learning methods are not very significant. We also observed the

training/validation analysis in machine learning downstream models using learning curves. It is

observed from learning curves on training data (synthetic data) and validation data (real data) have

accuracy gaps, i.e., overfitting and convergence delay. Also, even though it is not very significant,

larger noises outputted larger gaps in accuracy as shown in Figure 6. Additionally, Sometimes

learning curves on training data with larger noise levels show better performance than those with

smaller noise levels, e.g., CopulaGAN with random flipping noise type but performance behaviors

become coherent with the noise levels in the learning curve on validation data. Such behaviors are

observed more in the instance-dependent label noise approach.

6.6. Discussion

We provide the first comprehensive study to investigate the effects of label noise when generating

a synthetic tabular dataset. To end this, we adopt four different aspects: synthesizer convergence

rate, data quality (statistical and sample-level similarity, label accuracy) data utility (machine

learning efficacy). Adult data that consists of 32k samples with 14 attributes including the label is

utilized for experiments including downstream binary classification tasks, i.e., annual income level;

over 50k or not. Our extensive numerical analysis of the impact of label noise on synthetic tabular

data generation provides valuable insights into the understanding of label noise. By examining the

effects of label noise on various aspects of data generation, researchers and practitioners can gain

potential mitigating strategies associated with noisy labels. Furthermore, this analysis can serve as

a foundation for the development of more robust models and techniques for dealing with label noise

in synthetic data generation, ultimately improving the quality and reliability of machine learning

applications.
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In our experiments, training the synthesizer component involves two phases: pre-training with

real data and fine-tuning with noisy data. This is crucial for stabilizing deep generative-based

synthesizers, as without pre-training, the synthesizer may become unstable and impact all subsequent

components, leading to inconclusive results regarding the sole effect of label noise on synthetic

tabular data generation.

Despite our best efforts to isolate the impact of label noise, our study’s limitation lies in the

various factors that can affect the metrics. Even though we employ pre-training synthesizers to

enhance their stability, there is a still chance that the metrics for generated synthetic data can be

affected by intermediate steps such as noise generation, the instability of the training synthesizer, and

training downstream machine learning models with synthetic data. Regarding this issue, we employ

label accuracy as a metric because we observe high variances in machine efficacy measurements,

which can possibly be caused by a chance that noisy data influenced machine learning training for

downstream classification tasks. Therefore, identifying the specific impact of label noise in each

step, such as training synthesizers and downstream tasks within the entire framework, remains a

challenging task and an important next step.

Numerous studies have emphasized the privacy concerns related to synthetic data generation [1,

2, 3]. In order to further improve privacy in synthetic data generation, it is significant to examine

the influence of label noise on privacy aspects [13,36,39]. Conducting such investigations helps us

develop more robust strategies to address privacy concerns in synthetic data generation methodologies.

By gaining a deeper understanding of the relationship between label noise and privacy, we can

contribute to the development of secure and reliable synthetic data generation techniques, ultimately

benefiting the broader research community and the applications that rely on these methods.

6.7. Conclusion

In this study, we explore the influence of label noise on synthetic tabular data generation. Our

primary objectives are to evaluate the quality and utility of the synthetic tabular data and its

associated labels, as well as to estimate the impact on synthesizer convergence. To this end, we

conduct a series of comprehensive experiments that assess the performance of the synthetic data

generation process under varying levels of label noise.
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Our findings demonstrate that label noise significantly undermines the quality and utility of the

generated tabular data, as well as the accuracy of the synthetic labels. Interestingly, we also observe

that synthesizer convergence is not substantially affected by label noise. These results highlight the

complex relationship between label noise and data generation, particularly in the context of tabular

data. By examining these nuanced effects, researchers can gain valuable insight into the factors that

influence the quality and reliability of synthetic tabular data generated amidst label noise.

Through our examination of the influence of label noise on synthetic tabular data generation,

this study contributes to a more profound understanding of the challenges and limitations inherent

in creating high-quality data in the presence of label noise. The knowledge derived from this

research can potentially inform the development of more effective denoising strategies and algorithms,

ultimately enhancing the privacy and utility of synthetic data in real-world applications.
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Random Flipping Label Noise
2*Synthesizers 2*ML models Noise Level

0.0 0.1 0.2 0.3 0.4 0.5
4*CTGAN LR 0.78/0.0 0.72/0.0 0.71/0.0 0.43/0.0 0.5/0.0 0.41/0.0

DT 0.79/0.01 0.72/0.0 0.66/0.01 0.46/0.0 0.51/0.0 0.45/0.0
RF 0.83/0.0 0.75/0.0 0.68/0.0 0.45/0.0 0.51/0.0 0.43/0.0

MLP 0.56/0.3 0.55/0.23 0.71/0.01 0.49/0.1 0.5/0.0 0.49/0.11
4*TVAE LR 0.77/0.0 0.79/0.0 0.78/0.0 0.78/0.0 0.52/0.0 0.7/0.0

DT 0.83/0.0 0.84/0.0 0.8/0.01 0.78/0.01 0.57/0.01 0.61/0.01
RF 0.85/0.01 0.86/0.0 0.82/0.0 0.8/0.01 0.57/0.01 0.63/0.0

MLP 0.69/0.16 0.67/0.25 0.67/0.25 0.67/0.25 0.52/0.0 0.69/0.02
4*CopulaGAN LR 0.82/0.0 0.78/0.0 0.47/0.0 0.6/0.0 0.52/0.0 0.46/0.0

DT 0.79/0.0 0.74/0.0 0.49/0.0 0.58/0.0 0.52/0.0 0.47/0.0
RF 0.85/0.0 0.78/0.0 0.49/0.0 0.6/0.0 0.52/0.0 0.47/0.0

MLP 0.69/0.29 0.66/0.25 0.49/0.03 0.53/0.11 0.52/0.01 0.46/0.0

Instance-dependent Label Noise
2*Synthesizers 2*ML models Noise Level

0.0 0.1 0.2 0.3 0.4 0.5
4*CTGAN LR 0.72/0.0 0.73/0.0 0.62/0.0 0.56/0.0 0.48/0.0 0.6/0.0

DT 0.75/0.0 0.73/0.0 0.63/0.0 0.55/0.0 0.5/0.0 0.56/0.0
RF 0.79/0.0 0.76/0.0 0.64/0.0 0.56/0.0 0.49/0.0 0.56/0.0

MLP 0.72/0.0 0.61/0.2 0.62/0.0 0.51/0.06 0.49/0.02 0.52/0.1
4*TVAE LR 0.81/0.0 0.82/0.0 0.79/0.0 0.84/0.0 0.55/0.0 0.27/0.0

DT 0.82/0.0 0.81/0.0 0.8/0.0 0.8/0.0 0.59/0.01 0.32/0.01
RF 0.85/0.0 0.83/0.0 0.83/0.0 0.82/0.0 0.6/0.0 0.31/0.0

MLP 0.69/0.28 0.56/0.36 0.79/0.01 0.84/0.0 0.53/0.05 0.36/0.21
4*CopulaGAN LR 0.76/0.0 0.83/0.0 0.71/0.0 0.68/0.0 0.37/0.0 0.4/0.0

DT 0.77/0.0 0.78/0.0 0.67/0.0 0.65/0.01 0.41/0.0 0.45/0.0
RF 0.82/0.0 0.81/0.0 0.7/0.0 0.66/0.0 0.4/0.0 0.44/0.0

MLP 0.76/0.0 0.83/0.0 0.63/0.19 0.53/0.19 0.37/0.0 0.44/0.09

Table 6.3: Label accuracy with two different noisy label generation methods. The mean and standard
deviation values of accuracy are reported in each cell.
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Random Flipping Label Noise
2*Synthesizers 2*Metrics Noise Level

0.1 0.2 0.3 0.4 0.5
3*CTGAN α-precision 1.02/0.08 0.39/0.98 0.34/1.02 -0.9/0.01 0.37/1.11

β-recall 1.06/0.01 0.82/0.21 0.81/0.22 0.68/0.04 0.84/0.23
Authenticity 0.0/0.0 0.24/0.38 0.24/0.37 0.69/0.01 0.24/0.39

3*TVAE α-precision 0.58/0.85 0.51/0.85 0.57/0.87 0.02/0.91 0.64/0.61
β-recall 0.87/0.34 0.88/0.31 0.87/0.35 0.68/0.33 0.54/0.65

Authenticity 0.23/0.39 0.24/0.42 0.24/0.41 0.46/0.4 0.15/0.19
3*CopulaGAN α-precision 0.32/1.03 0.35/1.09 0.3/1.07 0.32/0.97 0.99/0.12

β-recall 0.82/0.37 0.77/0.5 0.73/0.33 0.82/0.37 1.05/0.02
Authenticity 0.22/0.36 0.19/0.33 0.24/0.36 0.22/0.36 0.0/0.0

Instance-dependent Label Noise
2*Synthesizers 2*Metrics Noise Level

0.1 0.2 0.3 0.4 0.5
3*CTGAN α-precision 0.98/0.08 1.02/0.08 0.46/0.99 1.02/0.08 -0.15/0.93

β-recall 1.02/0.04 1.06/0.01 0.73/0.36 1.02/0.05 0.57/0.4
Authenticity 0.01/0.01 0.0/0.0 0.23/0.36 0.01/0.01 0.43/0.36

3*TVAE α-precision 1.02/0.08 0.55/0.9 1.07/0.0 0.26/0.7 0.64/0.63
β-recall 1.05/0.02 0.81/0.43 1.06/0.02 0.59/0.38 0.84/0.39

Authenticity 0.01/0.0 0.22/0.38 0.0/0.0 0.44/0.38 0.22/0.38
3*CopulaGAN α-precision 0.39/1.06 0.35/0.99 0.97/0.08 -0.3/1.07 -0.81/0.03

β-recall 0.82/0.39 0.74/0.34 0.9/0.21 0.57/0.41 0.31/0.0
Authenticity 0.22/0.36 0.23/0.36 0.03/0.04 0.42/0.35 0.63/0.01

Table 6.4: Sample-Level comparison with two different noisy label generation methods. The mean
and standard deviation values of accuracy are reported in each cell.
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