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Abstract

Individuals vary greatly in their ability to select one item or response when presented with a

multitude of options. Here we investigate the neural underpinnings of these individual differences.

Using magnetic resonance spectroscopy, we found that the balance of inhibitory versus excitatory

neurotransmitters in pFC predicts the ability to select among task-relevant options in two language

production tasks. The greater an individual’s concentration of GABA relative to glutamate in the

lateral pFC, the more quickly he or she could select a relevant word from among competing

options. This outcome is consistent with our computational modeling of this task [Snyder, H. R.,

Hutchison, N., Nyhus, E., Curran, T., Banich, M. T., O’Reilly, R. C., et al. Neural inhibition

enables selection during language processing. Proceedings of the National Academy of Sciences,

U.S.A., 107, 16483–16488, 2010], which predicts that greater net inhibition in pFC increases the

efficiency of resolving competition among task-relevant options. Moreover, the association with

the GABA/glutamate ratio was specific to selection and was not observed for executive function

ability in general. These findings are the first to link the balance of excitatory and inhibitory neural

transmission in pFC to specific aspects of executive function.

INTRODUCTION

Left lateral pFC is critical for executive functions, which are the cognitive processes

required for goal-oriented and self-directed behavior (e.g., Banich, 2009; Miller & Cohen,

2001). One critical aspect of executive function is the ability to select one particular

representation among multiple task-relevant options, such as when we must select a product

to purchase (e.g., Iyengar & Lepper, 2000; Tversky & Shafir, 1992) or make a decision

when there is no clear best option (e.g., Sethi-Iyengar, Huberman, & Jiang, 2004; Diederich,

2003; Redelmeier & Shafir, 1995). This process is particularly pervasive during language

production, in which we constantly choose among competing words to express thoughts. For

example, we might choose the words “the building was positioned on a hilltop” or “the
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house sat at the pinnacle of a ridge,” which both communicate the same thought, but do so

using different words. Although we normally can deploy executive function to quickly select

among words, this ability is impaired by lateral prefrontal damage (e.g., Novick, Kan,

Trueswell, & Thompson-Schill, 2009) and many psychiatric and neurodegenerative

disorders (Snyder et al., 2010; e.g., Tippett, Gendall, Farah, & Thompson-Schill, 2004).

Even in healthy adults, selecting among responses activates left lateral pFC, and responding

is slowed when there are more competitors (e.g., Snyder, Banich, & Munakata, 2011;

Crescentini, Shallice, & Macaluso, 2010; Nelson, Reuter-Lorenz, Persson, Sylvester, &

Jonides, 2009; Thompson-Schill, D’ Esposito, Aguirre, & Farah, 1997).

Among healthy people, there are large differences in executive function, which are

influenced by genetics (Friedman et al., 2008), and have been linked to a variety of real-

world outcomes, such as educational attainment (St Clair-Thompson & Gathercole, 2006).

However, there has been relatively little research on the extent to which these individual

differences in executive abilities and selection in particular are related to specific neural

mechanisms in pFC (e.g., Braver, Cole, & Yarkoni, 2010). What aspects of neural function

give rise to these important individual differences in selection abilities?

One aspect of neural function that may influence selection abilities is the relative balance of

excitatory to inhibitory neural activation. Simulations of a language production task in our

neurobiologically plausible computational model suggest that selection is likely influenced

by lateral inhibition in the left lateral pFC, which has been shown to be highly involved in

selection. The model predicts that the balance of excitation and inhibition in this brain

region influences individual differences in selection efficacy (Munakata et al., 2011; Snyder

et al., 2010). Specifically, our model demonstrates how competitive, inhibitory dynamics

among neurons in prefrontal cortical networks could serve to sharpen cognitive

representations by amplifying activity in the most active, task-relevant representations (e.g.,

the most appropriate word to complete a sentence) and by suppressing competing

representations (e.g., for the many other word possibilities; Snyder et al., 2010).

Our model demonstrates how reduced inhibitory (i.e., GABAergic) function could lead to

reduced competitive dynamics in prefrontal cortical networks, allowing non-winning

competitors (alternative responses that are not selected) to become more active and to

compete over a longer period, which impairs selection and increases time for the model to

settle, a measure akin to RT in humans. In contrast, greater inhibition allows the most active

representation to more quickly suppress less active alternative responses and thus be quickly

selected for production (Figure 1A; Snyder et al., 2010). Conversely, our preliminary

extensions to these neural network simulations suggest that reduced glutamatergic function,

which results in reduced excitation, can improve selection by reducing activation of

competing responses. In contrast, increased excitation allows these alternative responses to

become more active and to compete over a longer period, which impairs selection (Figure

1B). Thus, our model predicts that the relative balance of inhibition to excitation in pFC will

play a significant role in individual differences in selection ability (Figure 1C).

Previous work from our group is consistent with this theoretical model, suggesting increased

GABA, the primary inhibitory neurotransmitter, improves the speed of selection. In a
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double-blind placebo controlled study, administration of the GABA agonist, midazolam,

specifically reduced selection cost: the time needed to generate a verb when there were

many competing responses (high selection demand, e.g., ball, associated with throw, hit,

bounce, etc.) versus few competing responses (low selection demand, e.g., knife, associated

with cut; Snyder et al., 2010). Conversely, individuals with high levels of anxiety, who have

reduced GABAergic function (e.g., Kalueff & Nutt, 2007), showed increased selection cost

and reduced BOLD signal in ventrolateral pFC (Snyder et al., 2010), a cortical area key for

selection (e.g., Snyder et al., 2011; Nelson et al., 2009; Thompson-Schill, 2005).

Although this prior work provided support for a role of GABA in selection, it did not

provide direct evidence that individual differences in selection depend on inhibition in pFC.

First, the effects of midozalam are widespread in cortex and not limited to prefrontal

regions. Second, individual differences in GABA concentration were not directly measured:

Anxiety and pharmacological manipulations were used as indirect proxies. Thus, more direct

measurement of inhibitory and excitatory neurotransmitter function is necessary to

investigate if they play an important role in determining individuals’ selection abilities.

However, there is converging evidence to suggest that GABAergic inhibition may play an

important role in aspects of executive function. For example, GABAergic inhibition has also

been found to be important for performance in other tasks that are related to executive

function, including motor control in the face of distractors (Boy et al., 2010; Sumner, Edden,

Bompas, Evans, & Singh, 2010) and working memory (Durstewitz, Seamans, & Sejnowski,

2000; Rao, Williams, & Goldman-Rakic, 2000). In particular, blockade of GABAA in

monkeys diminishes working memory performance by disrupting the spatial tuning of

neurons, suggesting that inhibition plays a general role in selecting representations

throughout the brain (Rao et al., 2000). Our model makes the prediction that GABA

improves performance in these tasks by allowing efficient selection of the relevant

representations through lateral inhibition (e.g., selecting the motor representation for the

target response vs. the distractor). However, these improvements could also be attributed to

increased efficacy in other common executive processes, such as the maintenance of task-

relevant goals. Thus, to disentangle the contribution of GABA to common executive

processes and selection specifically, performance in both processes must be measured across

individuals in whom we have measures of GABA concentration.

Another limitation of our prior work is that, although our studies implicated the inhibitory

neurotransmitter GABA, they did not address the potential that the main excitatory

neurotransmitter, glutamate, may have an opposite effect on selection. In our prior studies,

we did not pharmacologically attempt to alter glutamate levels, as glutamate agonists

increase the potential for the onset of seizures. In addition, fMRI BOLD signal reflects a

mixture of inhibitory and excitatory activation, making it impossible to study their relative

balance (e.g., Logothetis, 2008). Thus, to test our model’s hypothesis that the relative

balance of inhibition to excitation is the most powerful predictor of individual difference in

selection, both neurotransmitters must be measured across individuals.

To address these issues, in this study we test the hypothesis that the relative balance of

inhibitory and excitatory neurotransmitters in left lateral pFC, as measured using magnetic
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resonance spectroscopy (MRS) predicts individual differences in selection ability. Using

MRS, we directly measured concentrations of the major inhibitory and excitatory

neurotransmitters in the brain, GABA (GABA+) and glutamate/glutamine (Glx) in left

lateral pFC in an unselected sample of young adults. We examined individual differences in

selection abilities using two well-validated selection tasks. In addition, we assessed common

executive function (common EF) abilities to test the hypothesis that the balance of inhibition

to excitation specifically improves the ability to select among competing representations and

not executive function more generally. Finally, we used a LASSO regression technique to

test which of our neurotransmitter measures—GABA+ as a measure of inhibitory function,

Glx as a measure of excitatory function, or the ratio of inhibition to excitation (GABA+/Glx)

—is the best predictor of selection abilities.

METHODS

Participants

Participants were 32 University of Colorado Boulder undergraduates (average age = 21, 14

men) and gave informed consent. Seven participants were excluded from certain analyses:

One participant had missing data for the verb generation task and two had missing data for

the sentence completion task because of a computer problem. In addition, four participants’

GABA concentration could not be calculated because of excessive motion. To maximize

power, all participants who had relevant data for a given analysis were used even if they had

missing data relevant to a different analysis.

MRS

Voxel Location and Placement—We measured neurotransmitter concentration in two

voxels in left lateral pFC. We centered a ventral voxel on inferior frontal gyrus (pars

opercularis) and a dorsal voxel on middle frontal gyrus (Figure 2). The voxels were angled

to align with gyri to avoid deviating into other gyri and were placed as close to the cranium

as possible without imaging fatty tissue to ensure maximum coverage of gray matter. We

used two separate voxels because it would be difficult to use one large rectangular voxel to

cover dorsal and ventral pFC without also imaging a large amount of white matter and

cerebrospinal fluid. Furthermore, we were interested in possible differences between dorsal

and ventral pFC and having two separate measurements allowed for this exploratory aim.

Care was taken to avoid imaging further posterior than the frontal sulcus to avoid motor

cortex and further anterior than the intermediate frontal sulcus to avoid OFC. However, we

also prioritized using the largest volume per voxel possible consistent with the above

restrictions to ensure reasonable signal-to-noise ratio; hence, the voxels in participants with

smaller brains sometimes exceeded those boundaries by a small amount. To avoid this

problem, we did not recruit participants with particularly small heads. Average dimensions

for dorsal voxels (RAS coordinates) were 23.6 mm × 34.4 mm × 25.4 mm = 20620.7 mm3 =

20.63 cm3, whereas the average dimensions for the ventral voxels were 24.3 mm × 35.6 mm

× 22.7 mm = 19637.9 mm3 = 19.64 cm3. Both a GABA-specific sequence and a standard

spectroscopy sequence were run on each voxel.
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Acquisition—Data were acquired using an eight-channel phased-array head coil in a GE

3T scanner while participants watched a movie. First, we acquired anatomic information

using a T1-weighted sequence (3-D IR-SPGR). Next, to localize spectroscopy voxels, we

used a three-plane scout, followed by sagittal and coronal 3-D SPGRs. These localizer scans

prescribed two T2 weighted FSE acquisitions angled through left ventral and dorsal lateral

pFC, respectively, to delineate the ROIs.

We measured glutamate using GE’s standard PROBE-P (PRESS) sequence. GABA was

measured using a “J-editing” technique (MEGA-PRESS; Mescher, Merkle, Kirsch,

Garwood, & Gruetter, 1998) implemented in-house by modification of GE’s standard

PROBE-P sequence (presscsi) with the addition of two spectrally selective 180° Gaussian

pulses of 16-msec duration, centered at 1.9 ppm, as previously described (Rojas, Singel,

Steinmetz, Hepburn, & Brown, 2013). Using standard spectroscopy, GABA resonances at

3.02 ppm are masked by the creatine peak as they have similar resonance frequencies. J-

pulses can “edit out” the GABA signal. Using the J-difference method, we acquired two

spectra, one with the J-editing pulses on and one with them off, and obtained the GABA

spectrum by subtracting the two acquisitions. We interleaved J-editing on and off

acquisitions to minimize misregistration. We also obtained two reference frames (16

averages) without water suppression.

MR-compatible goggles and headphones (Resonance Technology, Inc., Northridge, CA)

were used to minimize participant motion. Parameters for 3-D IR-SPGR technique were

matrix = 2562, field of view = 22 cm, repetition time (TR)/echo time (TE)/IR = 10/3/450

msec, NEX = 1, no gap, resulting in 138, 1.2 mm thick axial slices with an in-plane

resolution of .86 mm2. Parameters for T2-weighted FSE acquisitions were field of view = 22

cm, TE/TR = 102/2000 msec, echo train length = 26, slice thickness/gap = 3/0 mm, 1 slice,

matrix = 256 × 224, NEX = 1, time = 16 sec. Parameters for PROBE-P (PRESS)

spectroscopy sequence were TR/TE = 2500/30, 128 averages, phase cycling NEX = 8, time

= 432 sec.

In the MEGA-PRESS sequence, the “edit-off” acquisition were actually done by centering

the editing pulses at 7.5 ppm (symmetrically on the other side of the water resonance) to

avoid differences in baseline artifacts (Bogner et al., 2010) rather than completely turning

the editing pulses off. No eddy current or baseline artifact differences were noted between

the edit-on and edit-off data. Acquisition parameters used were TR/TE = 2500/70 msec, 512

total averages (256 edit-on and 256 edit-off, time = 1300 sec).

Preprocessing and Analysis—We analyzed glutamate using LCModel version 6.2-1Q

(Provencher, 1993) and used the unsuppressed water signal as a reference to obtain

metabolite concentrations given in “institutional units” (nominally millimolar concentrations

uncorrected for relaxation) as described in the LCModel software manual. We used the

glutamate + glutamine concentration, directly from LCModel, as the Glx metric. LCModel

software uses Bayesian analysis starting with solution spectra basis sets to provide estimates

of metabolite concentrations without operator bias. LCModel also provides error estimates

for each metabolite (given as % SDs but actually Cramer-Rao lower bounds). LCModel

estimates with errors higher than 20% are generally not considered reliable. Typical errors
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for glutamate + glutamine (Glx) were 6–10%. Figure 3 shows the raw spectra and the

overlaid fit by LCModel for representative ventral (A) and dorsal (C) volumes.

To produce GABA difference spectra, we used GE’s SAGE spectroscopy analysis software

version 7.6.2 (GE Healthcare, Waukesha, WI) to separate the J-edit “on” and “off” frames,

reconstruct them into the frequency domain, and subtract them from each other. GE’s SAGE

spectroscopy processing software was used to analyze GABA data because LCModel is not

capable of separating the edit-on and edit-off frames of data, and also suitable basis sets for

analysis of the subtraction (edited) spectra were not available. First, the edit-on and edit-off

frames were separated using the “Remove Frames” function under the “Processing” menu.

Then for each set of frames, the following steps were performed: (1) The residual water

signal in each frame, referenced to the unsuppressed water frames, was used to correct for

phase, frequency, and residual eddy currents (internal water referencing); (2) a high-pass

filter (bandwidth = 20 Hz) was applied; (3) a 2.0-Hz Gaussian line broadening filter was

applied; (4) zero-filling once; and (5) Fourier transformation into frequency domain edit-on

and edit-off spectra. The SAGE “SVQ” recon function was used for these steps. No baseline

correction was used, as the offsets for edit-on and edit-off were the same and were removed

by the subtraction. No attempts were made to correct for possible coedited macromolecular

resonances, and as such, we henceforth refer to the GABA signals as GABA+. Although

some have argued for using the creatine resonance as a frequency reference (Waddell,

Avison, Joers, & Gore, 2007), we found the internal water referencing used here worked

well for this purpose.

We fit the GABA+ peak area using Levenberg–Marquardt least squares (Press, Teulkolsky,

Vetterling, & Flannery, 1997). We assumed Gaussian line shapes, with frequency, line

width, and amplitude as the fitted parameters. Because the “true” line shape of the edited

GABA+ has been characterized as a “pseudo doublet” (Waddell et al., 2007) with fine

structure from three lines we fit GABA+ signals at ~3.02 ppm in the spectrum using three

Gaussians. Mullins et al. (2012) recommend using a single Gaussian for these fits; however,

we have found that the three Gaussian approach results in lower chi-square values and better

fits visually. The initial starting points for these three lines were 3.09, 3.02, and 2.95, with

the SAGE “Create Pick Table” function used to refine the initial estimates for the fits. Over

parameterization of each fit was checked by using a correlation matrix (obtained by

inversion of the covariance matrix generated by the Marquardt–Levinson least squares

routine; Brown, 1996) to check that correlations between parameters were less than 0.5. If

the correlation matrix revealed that the GABA fit was overparameterized, the number of

lines fit was reduced to two (which only occurred for four spectra total). All fits were

visually inspected for deviations by generating a FID (assuming Gaussian lines) using the

fitted values followed by Fourier transformation to produce a synthesized spectrum. This

generated spectrum was then overlaid on the experimental spectrum to check for

inaccuracies and errors in the fits. Figure 3 shows the generated spectrum and the overlaid

fit in red for representative ventral (B) and dorsal (D) volumes. The GABA+ signals were

also quantitated using an integration routine in SAGE, which was used as a further check on

the fitted values.
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Although the creatine signal in the edit-off spectra is sometimes used to create GABA+/

creatine ratios, the creatine peak at TE = 70 msec contains contributions from the J-

modulated GABA+ resonances and separating those contributions using least squares is

problematic. In addition, many arguments have been made against using the creatine

resonance as an intensity standard. Thus, we divided the sum of the three fitted line areas for

the GABA signals by the integrated water peak area at 4.7 ppm from the water reference

frames to yield a GABA+/H2O ratio.

Gray Matter Estimation—In all analyses, we included gray matter volume as a covariate

to account for individual differences in voxel alignment and baseline gray matter volume.

We submitted full brain structural images to FAST (FMRIB’s Automated Segmentation

Tool), resulting in estimates for three classes of tissue—gray matter, white matter, and CSF

(spatial smoothness = 0.1, bias field smoothing extent = 20 mm, main-loop iterations during

bias-field removal = 4). We then calculated the mean percentage of gray matter within each

spectroscopy voxel. In the results, when we present a result of a combined measure of

metabolites across voxels, we use the average percentage of gray matter volume across the

two voxels as the covariate. All results presented are after controlling for gray matter

volume except where otherwise noted.

Statistical Analyses

All statistical analyses were performed using R Project for Statistical Computing (www.R-

project.org). We performed our analyses using linear models with standardized variables (z-

scored) to produce standardized coefficients (betas).

Model Selection Using LASSO—We used LASSO (Tibshirani, 1996), a regression

method that penalizes the addition of extra predictors into a linear model. Such penalization

discourages the use of excessive predictors in a model and can help in variable selection by

shrinking less important variables to zero. This method is akin to stepwise regression but

avoids many of its recently derided problems such as multiple comparisons (Mundry &

Nunn, 2009; Whittingham, Stephens, Bradbury, & Freckleton, 2006). The parameter lambda

determines the extent of the penalization with greater values resulting in very sparse models.

To select a lambda parameter, one can choose the lambda parameter that results in the

minimal mean square error for the regression. We selected lambda using fivefold cross-

validation, a method that trains the model on 4/5 of the data and tests on the remaining 1/5,

to avoid overfitting. We used the GLMNET implementation in the R statistical language.

Cognitive Tasks

To test the association between neurotransmitter levels and cognitive function, we assessed

performance on two sets of tasks outside of the magnet: (1) those used to specifically assess

the ability to select among alternative responses relevant to the current goals and (2) tasks to

assess executive function more broadly (Friedman et al., 2008), which served as comparison

measures. On average, performance on cognitive tasks was assessed 12.3 days before the

MRS session.
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Selection Tasks—These tasks measure the ability to select an appropriate word in

response to a specific verbal context. For both tasks, selection demand for the stimuli was

calculated as in previous work (Snyder et al., 2010, 2011; Snyder & Munakata, 2008) using

latent semantic analysis (Landauer, Foltz, & Laham, 1998). Participants responded using a

microphone that recorded voice-triggered RTs and advanced the computer to the next trial.

Trial order was randomized for each participant.

Sentence completion: Materials were 100 normed sentences with the final word missing

(Snyder & Munakata, 2008; Bloom & Fischler, 1980) in two conditions: high selection

demand and low selection demand. For the high selection demand sentences, there was high

competition among alternative responses because the sentence could have many possible

endings (e.g., There is something grand about the _____.). For the low selection demand

sentences, there was low competition because there were few possible endings (e.g., He

mailed the letter without a______.). Participants were instructed to complete each sentence

with the first word that came to mind that could end the sentence. They completed four

practice sentences followed by two blocks of 50 trials each. A fixation point appeared on the

left side of the screen for 1500 msec (where the first word of the sentence would appear),

followed by the sentence. To control reading speed, sentences appeared in four segments of

one to three words each (1000 msec/segment, with previous segments remaining visible).

The final segment always contained only the last word, followed by a blank.

Verb generation: Materials were 100 normed nouns in two conditions: high selection

demand and low selection demand (Snyder et al., 2010, 2011; Snyder & Munakata, 2008).

For the high selection demand nouns, there was high competition among alternative

responses because the nouns had many verb associates (e.g., Ball, associated with throw, hit,

bounce, etc.). For the low selection demand nouns, there was low competition because there

were few verb associates (e.g., Scissors, associated with cut). High and low selection

demand conditions were matched on retrieval demand (association strength, as determined

by latent semantic analysis; Snyder et al., 2010, 2011; Snyder & Munakata, 2008), with half

high and half low retrieval nouns. Participants were instructed to say the first verb that came

to mind when presented with a noun and were given an example and eight practice trials

before completing the task. A fixation-cross appeared for 500 msec, followed by a noun.

Selection task preprocessing: For both selection tasks, microphone errors (e.g., failing to

trigger) were excluded, and nonverb errors were removed from the verb generation task.

RTs < 200 msec, >10,000 msec, or greater than three standard deviations above the

participant’s mean RT were trimmed. RTs were log transformed to remove skew and z-

transformed within participants to remove baseline differences in RT. Selection cost was

calculated by subtracting the high-demand and low-demand condition z-score averages. For

the verb generation task, we used selection cost during the low retrieval condition as

previous work has shown this to be a particularly sensitive measure in individual differences

analyses (Snyder et al., 2010). We combined selection cost measures from the two tasks (r

= .43, p = .02, two-tailed) to produce a robust measure less sensitive to task-specific

variance. To generate our selection composite measure, we averaged z-scored measures of

selection cost from each selection task.
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General Executive Function Tasks—To assess other aspects of executive function, we

used three tasks that have been found in prior research to load highly on a factor common to

all executive function tasks (Friedman et al., 2008). This factor is hypothesized to be the

ability to maintain a task goal online (Friedman et al., 2008) and is distinct from selection

processes. z Scores on the three tasks were averaged to create a composite score of common

EF.

Antisaccade (Friedman et al., 2008): Participants focus on a central fixation cross (lasting

1–4 sec). When the fixation cross disappears, an initial cue flashes a fixed distance either to

the right or left of fixation. Next, the cue disappears, and the target (a digit, 1 through 9)

appears for 150 msec a fixed distance from fixation and then is masked with gray cross-

hatching. Participants report the target verbally. On prosaccade trials, the cue indicates the

location at which the target will appear (e.g., the cue appears on the left of the screen and is

followed by the target on the left). On antisaccade trials, the cue appears contralateral to the

target location. The task begins with a block of 32 prosaccade trials to establishing an

automatic association between the cue and target occurring on the same side of the screen.

Next, a block of 130 antisaccade trials is presented to test the ability to override the

automaticity of the established response. The dependent measure is the average accuracy for

antisaccade trials.

Keep track (Friedman et al., 2008): In each trial, a stream of 15–25 words is presented,

one at a time. The words belong to six categories: relatives, countries, colors, animals,

metals, and distances, with six words in each category. Participants are asked to keep track

of the most recent word presented from each of two to five categories and report their

answer verbally at the end of the trial. After two practice trials with two categories to

remember, there are 16 trials with two to five categories to remember, randomly ordered.

Each trial begins with the list of categories, which remain at the bottom of the screen until

the final recall. Each word appears for 2000 msec, followed by the next word. The

dependent measure is the percentage of correctly maintained items.

Category switch (Mayr & Kliegl, 2000): In each trial, participants see a word that could be

categorized in terms of (a) whether it described a living or nonliving thing or (b) whether it

described a thing that is smaller or larger than a soccer ball. A symbol appearing above the

word cues which categorization to use. After two blocks of 32 trials categorizing along a

single dimension, participants complete two blocks of 64 trials that contain a mixture of

trials with judgments along the living and size dimensions. Trials in which participants made

an error are excluded from calculation. The dependent measure is switch cost (average RT

for nonswitch trials–switch trials), calculated such that higher scores correspond to better

performance for consistency with the other general EF tasks in the study.

RESULTS

Measure Characteristics

Consistent with previous research, participants on average had significant selection costs for

the verb generation task, t(29) = 6.09, n = 30, p < .001, and the sentence completion task,
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t(27) = 15.72, n = 28, p < .001, suggesting our selection tasks appropriately measured

selection abilities across participants. Moreover, performance on the two tasks correlated

across participants (r = .42, n = 27, p < .05).

Measures of Glx across ventral and dorsal voxels trended toward being correlated (r = .31, n

= 30, p = .10) with Glx concentrations being greater in the ventral than dorsal voxel (Mdiff =

1.02, t(29) = 3.54, n = 30, p = .001). Levels of GABA+ between these two voxels were

correlated (r = .47, n = 27, p = .01) but not significantly different in concentration (Mdiff =

4.48e–0.6, t(26) = 0.79, n = 27, p = .43). The relatively high correlations between the two

voxels, especially given the inherent noise in MRS measurement, led us to use measures for

Glx and GABA+ that were averaged across both voxels for our main analyses.

Effects of GABA+ and Glx on Selection—Consistent with a critical role of the balance

of inhibition and excitation in selection, we found that a higher GABA+ to Glx ratio

(GABA+/Glx) predicted decreased selection cost (β = −0.49, t(21) = −2.48, n = 23, p = .02),

This relationship was in the same direction, but of marginal significance, without controlling

for gray matter volume (β = −0.40, t(22) = −2.00, n = 23, p = .06; Figure 4A) but remained

significant when controlling for voxel size (β = −0.59, t(19) = −2.7, n = 22, p = .01), which

can be viewed as a proxy for brain size. Individually, concentration of GABA+ (β = −0.18,

t(23) = −0.74, n = 24, p = .47) and Glx (β = 0.34, t(24) = 1.78, n = 25, p = .09) did not

significantly predict selection cost. However, the direction of each of these effects was

consistent with our predictions—increased Glx predicted slower selection RT, whereas

increased GABA+ predicted faster selection performance. Together these results suggest that

it is the balance between inhibition and excitation, rather than either alone, that is most

predictive of selection ability.

Next, we performed exploratory analyses to examine potential differences in this effect

across ventral and dorsal pFC. Selection cost was significantly predicted by GABA+/Glx in

the dorsal voxel (β = −0.62, t(21) = −3.56, n = 23, p < .01) but did not reach statistical

significance in the ventral voxel (β = −0.20, t(23) = −0.88, n = 25, p = .39). However, the

difference between the relationship of GABA+/Glx and selection cost was not significantly

different between the two voxels (β = −0.23, t(20) = −1.02, n = 23, p = .32). Given the lack

of statistical evidence of a difference between voxels, the fact that the two voxel’s

GABA+/Glx measures are correlated, and the inherent noise in spectroscopy measurements,

we continue to focus on the more robust measures that average values across voxels.

Specificity of Effects to Selection—To verify the cognitive specificity of our findings,

we controlled for common EF, which is not hypothesized to depend on net inhibitory

dynamics. Rather, the ability to hold material online has been suggested to rely on recurrent

excitatory function in pFC (e.g., O’Reilly & Frank, 2006). We calculated a common EF

composite using three tasks found to load on a common factor: an antisaccade task, a

working memory task, and a switching task (e.g., Friedman et al., 2008). Higher GABA+

marginally predicted lower common EF (β = −0.34, t(24) = −1.61, n = 26, p = .07), with a

trend in the same direction for GABA+/Glx (β = −0.34, t(24) = −1.61, n = 26, p = .12) and

with no effect of Glx (β = 0.01, t(26) = 0.02, n = 28, p = .98)1 (Figure 4B). Importantly,

when controlling for common EF, the relationship between GABA+/Glx and selection
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remains significant (β = −0.56, t(20) = −2.77, n = 23, p = .01; Figure 4C), demonstrating that

the relationship between GABA+/Glx and selection is not driven by effects on common EF.

Model Selection Using LASSO—To further verify the specificity of our findings given

the number of comparisons performed, we employed LASSO to perform variable selection.

We entered GABA+, Glx, GABA+/Glx, common EF, and gray matter volume into a LASSO

model predicting selection cost. In the sparsest nonempty model produced (λ = 0.37),

GABA+/Glx and gray matter volume2 were the only two variables selected.3 The results

suggest that the ratio of GABA+ to Glx is a more powerful predictor of selection than the

concentration of either alone and including common EF is not necessary to bolster the

model.

DISCUSSION

Our results demonstrate that the ability to select among competing options is linked to

individual differences in the balance of inhibitory and excitatory neurotransmitters in left

lateral pFC. Importantly, these individual differences in this aspect of executive function are

because of differences in neurobiological dynamics at the neurochemical level, are specific

to selection abilities, and confirm predictions from our computational modeling of executive

functions.

Notably the current findings provide important new support for predictions from our

computational modeling and build substantially upon prior empirical research that had less

directly suggested a role for GABA in selection (Snyder et al., 2010). In particular, our

findings support the idea that the level of inhibitory to excitatory dynamics in left lateral

pFC influences selection. In the model, greater levels of inhibitory dynamics result in faster

resolution of competition and in turn faster RTs. Both greater inhibition and decreased

excitation result in faster selection in the model, leading to the prediction that humans with a

greater ratio of GABA to glutamate will exhibit faster selection abilities. Previous studies,

however, did not directly measure neurotransmitter concentrations in individuals and instead

relied on spatially unspecific pharmacological manipulations and individual differences in

anxiety as proxies for GABA concentration. Moreover, prior studies lacked the ability to

measure excitatory neurotransmitters that may have a complimentary role with GABA in

determining the balance of inhibition and excitation in cortex and thus the ability to resolve

competition to select a response.

In the current study, we eliminated these problems by directly measuring neurotransmitters

using noninvasive MRS techniques and demonstrated that the balance of inhibition to

excitation, as measured by the ratio of GABA+ to Glx, is a critical determinant of individual

differences in selection. We also controlled for general executive function abilities to

1Not controlling for gray matter volume yields similar results for GABA+ (β = −0.36, t(25) = −1.85, n = 26, p = .08), Glx (β = −0.05,
t(29) = −0.24, n = 30, p = .81), and GABA+/Glx (β = −0.33, t(25) = −1.69, n = 26, p = .10).
2Gray matter is not a significant predictor of selection alone (β = 0.15, t(24) = 0.80, p = .43) and is likely selected because it reduces
residual error in the model.
3The next variable added to the model when lambda was decreased was common executive function (λ = 0.34). LASSO did not add
more variables to the model until λ was substantially decreased (λ = 0.1), at which point the shrinkage is minimal and more akin to a
regular linear model, suggesting that extra variables were not necessary to explain selection cost.
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demonstrate the specificity of GABA+/Glx as a determinant of individual differences in

selection abilities and not executive function more generally. Finally, we used model

selection techniques to show that the ratio of GABA+ to Glx is a more powerful predictor of

selection than either neurotransmitter alone.

Moreover, the differentiation between selection and common EF in our study suggests a

reinterpretation of studies showing a role of GABA in executive function tasks. For

example, our findings suggest that improved motor control with increased GABA (Sumner

et al., 2010) might be better explained by improved selection of the relevant motor

representation in that task, rather than improved common EF necessary to maintain the task

goals. Similarly, the finding that GABA is important for working memory performance (Rao

et al., 2000) may also be explained by a role for GABA in selection of working memory

representations. Previous computational models have suggested GABA is important for

working memory performance because inhibition reduces spontaneous activity of distracting

irrelevant items (Durstewitz et al., 2000; Rao et al., 2000). Our finding is compatible with

such models, as the GABAergic sharpening of working memory representations via

inhibition of competing irrelevant items is likely analogous to the selection of words during

speech, albeit with different underlying representations.

Importantly, the differentiation between selection and other executive functions in our data

is consistent with the claim by such models that the sharpening or selection of working

memory representations is separate from their maintenance (Durstewitz et al., 2000; Rao et

al., 2000). Our findings support these claims as the relationship between GABA+/Glx and

selection remained significant even after controlling for common EF, which has been

hypothesized to reflect the maintenance of task-relevant goals (e.g., Miyake & Friedman,

2012). Moreover, common EF and selection were uncorrelated, further supporting the idea

that these processes are relatively independent. Unlike selection of representations,

maintenance of representations is not thought to depend on inhibitory mechanisms. Rather,

working memory maintenance is hypothesized to occur via sustained neural firing of

neurons in pFC (e.g., Miller & Cohen, 2001) and thus could in fact be negatively impacted

by neural inhibition. Indeed, the trend in our data for higher levels of GABA+/Glx and

GABA+ (but not Glx) to predict poorer general executive function suggests that inhibition

may interfere with working memory maintenance, and this issue is ripe for further

investigation.

Within the broader context of understanding how the brain implements selection, we can

speculate on how the inhibitory prefrontal selection mechanism we studied differs from

other selection mechanisms, such as those implemented by the BG (e.g., van Schouwenburg,

den Ouden, & Cools, 2010; Frank, Loughry, & O’Reilly, 2001). BG gating mechanisms can

be thought of as invoking a form of selection, as the BGs are proposed to select which

posterior brain representations are gated into pFC for maintenance in working memory.

Using dopaminergic reward signals, the BGs learn over time to gate representations that

have led to a positive outcome in similar previous experiences. In contrast, prefrontal

inhibitory selection is used to choose among competing representations already present in

working memory when task demands (e.g., select a single word) make the response

underdetermined. This stage of selection is especially important when prior experience is not
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sufficient for selecting a response because all of the candidate representations are estimated

to be similarly likely to result in a reward. Although lateral inhibition and BG gating

mechanisms are thus distinct, there may be points of intersection between them. For

example, active maintenance of representations in dorsolateral pFC may play an important

role in each—by maintaining representations gated into working memory by the BG (e.g.,

Frank et al., 2001) and maintaining task goals that can bias the lateral inhibition process in

VLPFC toward task-relevant representations (Snyder, Banich, & Munakata, 2011). A

promising direction for future work will be to more carefully examine the interaction

between selection processes implemented by the VLPFC and those implemented by the BG.

In addition, our study speaks more broadly to a recently voiced idea that, when studying the

role of GABA, the tightly intertwined role of glutamate must also be taken into

consideration (Stagg, Bachtiar, & Johansen-Berg, 2011). Glutamate and GABA are closely

related in the brain because of their opposing effects on brain dynamics and because GABA

is metabolized from glutamate. However, many studies ignore the role that glutamate may

play in modulating the effects of GABA on behavior, and vice versa. Our findings support

the idea that looking at the concentration of both of these neurotransmitters is beneficial

when investigating neurotransmitter–behavioral relationships.

Despite the important new additional information provided by the current study, there are

some limitations and questions for future research. As with all MRS studies, we could not

distinguish between pre- and postsynaptic neurotransmitter concentrations (Stagg et al.,

2011). Hence, weare unable to address the specific role that GABA plays in the synaptic

cleft to improve selection. To resolve this limitation of MRS, further investigation of the

constituents of the MRS signal using in vitro samples is needed. Another issue that remains

unclear is the degree as to which different specific aspects of GABAergic function are

responsible for the effects we observe. It would be helpful to try to distinguish the

contribution of the fast acting GABAA and slow acting GABAB to the MRS signal. GABAB

is thought to be more readily engaged in local circuit activity (Mann, Kohl, & Paulsen,

2009), making it possible that it is more important for resolving competition among options

via lateral inhibition. An approach that could further specify the relationship between GABA

receptor subtypes and selection would be to use TMS techniques that specifically modulate

tonic and phasic inhibitory activity (Stagg et al., 2011; Werhahn, Kunesch, Noachtar,

Benecke, & Classen, 1999). Paired-pulse TMS approaches could be used to measure

GABAA activity in left lateral pFC, and this could be tested as a predictor of selection

efficacy. Additionally, comparing the effects of pharmacological agonists specific to

GABAA and GABAB would help develop a more fine-grained model of the neurobiological

processes underlying selection.

Although the current study addressed the psychological specificity of our effect, showing

that it relates to selection and not executive function in general, it would be useful in future

studies to examine issues of anatomical specificity in more detail. Recent evidence suggests

that GABAergic levels in the brain are not uniform being higher, for example, in occipital

regions than medial pFC (van der Veen & Shen, 2013). Hence, although we have good

reason to believe that our results are likely to be specific to pFC, it would be helpful in

future studies to examine the ratio or inhibitory and excitatory neurotransmitter levels in
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posterior brain regions, such as visual cortex or temporal cortical areas involved in semantic

processing, to serve as comparison regions. Such a contrast would help to determine whether

the relationship between selection abilities and GABA+/Glx ratio is specific to lateral pFC

(as we hypothesize) or to neurotransmitter concentration across the brain more generally.

In summary, our findings highlight the crucial role of the balance of excitation and

inhibition in lateral pFC in influencing the ability to select among competing options.

Moreover, our study advances our understanding of executive function by showing that

individual differences in neurotransmitter levels and net inhibitory dynamics play an

important role in the variation in selection abilities within a nonclinical population.

Characterizing the neural dynamics underlying individual differences is crucial for fully

understanding the nature of highly complex executive function traits; these traits play

critical roles in day-today activities such as selecting products at the grocery store, making

decisions when there is no clear right choice, and fluently expressing our ideas.
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APPENDIX A

Original LCModel output for ventral and dorsal volumes. Figure 3 (A and C) was altered for

aesthetic purposes. Unaltered output is included here with accompanying LCModel output

table.
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Figure 1.
Neural network simulations of the effects of inhibition and excitation in lateral pFC on

selection. See Snyder et al. (2010) for details of the model. (A) Effect of inhibition with

excitation held constant (e = 1). Higher levels of inhibition allow competing responses to be

more quickly suppressed and thus allow a response to be more quickly selected. (B) Effect

of excitation with inhibition held constant (kWTA pt. = 0.62). Higher levels of excitation

lead to greater activation of competing responses and thus slow selection of a response. (A,

B) Note that lower levels of excitation can compensate for lower levels of inhibition and

vice versa, thus (C) selection costs are predicted by the ratio of inhibition and excitation.
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Figure 2.
Two lateral prefrontal regions, a dorsal (red) and ventral (blue) voxel, were localized using

structural landmarks and magnetic resonance spectra were acquired. Average dimensions

and coordinates were used to visualize voxel localization.
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Figure 3.
Example of MRS methodology. (A) Ventral short echo PRESS spectrum LCmodel output

used for Glx concentration estimation. (B) Ventral J-edited spectrum for GABA estimation

with the overlaid fit in red. (C) Dorsal short echo PRESS spectrum LCmodel output used for

Glx concentration estimation. (D) Dorsal J-edited spectrum for GABA estimation with the

overlaid fit in red.
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Figure 4.
Relationships between neurotransmitter concentrations in left lateral pFC and behavioral

measures of executive function. (A) Selection RT cost (z-score composite) decreases as left

lateral GABA/Glx increases. (B) common EF (z-score composite) does not show a

significant relationship with GABA/Glx controlling for gray matter volume. (C) After

regressing out shared variance with general executive function and gray matter volume,

relationship between increased GABA/Glx and decreased selection cost remains, indicating

the increases in selection performance are not driven by increases in common EF

performance. (B, C) Residuals from a linear model regressing out GM (B, C) and/or

common EF (C) are plotted on the x axis.
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