
UC Riverside
UC Riverside Previously Published Works

Title
Outlier detection and robust mixture modeling using nonconvex penalized likelihood

Permalink
https://escholarship.org/uc/item/8vw5m7q9

Journal
Journal of Statistical Planning and Inference, 164(1)

ISSN
0378-3758

Authors
Yu, Chun
Chen, Kun
Yao, Weixin

Publication Date
2015-09-01

DOI
10.1016/j.jspi.2015.03.003
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8vw5m7q9
https://escholarship.org
http://www.cdlib.org/


Outlier Detection and Robust Mixture Modeling Using1

Nonconvex Penalized Likelihood2

Chun Yu, ∗ Kun Chen,† Weixin Yao, ‡3

Abstract4

Finite mixture models are widely used in a variety of statistical applications. However,5

the classical normal mixture model with maximum likelihood estimation is prone to the6

presence of only a few severe outliers. We propose a robust mixture modeling approach7

using a mean-shift formulation coupled with nonconvex sparsity-inducing penalization, to8

conduct simultaneous outlier detection and robust parameter estimation. An efficient it-9

erative thresholding-embedded EM algorithm is developed to maximize the penalized log-10

likelihood. The efficacy of our proposed approach is demonstrated via simulation studies11

and a real application on Acidity data analysis.12

Key words: EM algorithm; Mixture models; Outlier detection; Penalized likelihood.13

1 Introduction14

Nowadays finite mixture distributions are increasingly important in modeling a variety of15

random phenomena (see Everitt and Hand, 1981, Titterington, Smith and Markov, 1985,16
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McLachlan and Basford, 1988, Lindsay, 1995, and Böhning, 1999). The m-component finite17

normal mixture distribution has probability density18

f(y;θ) =
m∑
i=1

πiφ(y;µi, σ
2
i ), (1.1)

where θ = (π1, µ1, σ1; . . . ;πm, µm, σm)T collects all the unknown parameters, φ(·;µ, σ2) denotes19

the density function of N(µ, σ2), and πj is the proportion of jth subpopulation with
∑m

j=1 πj =20

1. Given observations (y1, . . . , yn) from model (1.1), the maximum likelihood estimator (MLE)21

of θ is given by,22

θ̂mle = arg max
θ

n∑
i=1

log


m∑
j=1

πjφ(yi;µj , σ
2
j )

 , (1.2)

which does not have an explicit form and is usually calculated by the EM algorithm (Dempster23

et al. 1977).24

The MLE based on the normality assumption possesses many desirable properties such as25

asymptotic efficiency, however, the method is not robust and both parameter estimation and26

inference can fail miserably in the presence of outliers. Our focus in this paper is hence on27

robust estimation and accurate outlier detection in mixture model. For the simpler problem28

of estimating of a single location, many robust methods have been proposed, including the M-29

estimator (Huber, 1981), the least median of squares (LMS) estimator (Siegel 1982), the least30

trimmed squares (LTS) estimator (Rousseeuw 1983), the S-estimates (Rousseeuw and Yohai31

1984), the MM-estimator (Yohai 1987), and the weighted least squares estimator (REWLSE)32

(Gervini and Yohai 2002). In contrast, there is much less research on robust estimation of33

the mixture model, in part because it is not straightforward to replace the log-likelihood in34

(1.2) by a robust criterion similar to M-estimation. Peel and McLachlan (2000) proposed a35

robust mixture modeling using t distribution. Markatou (2000) and Qin and Priebe (2013)36

proposed using a weighted likelihood for each data point to robustify the estimation procedure37

for mixture models. Fujisawa and Eguchi (2005) proposed a robust estimation method in38

normal mixture model using a modified likelihood function. Neykov et al. (2007) proposed39

robust fitting of mixtures using the trimmed likelihood. Other related robust methods on40
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mixture models include Hennig (2002, 2003), Shen et al. (2004), Bai et al. (2012), Bashir and41

Carter (2012), Yao et al. (2014), and Song et al. (2014)42

We propose a new robust mixture modelling approach based on a mean-shift model for-43

mulation coupled with penalization, which achieves simultaneous outlier detection and robust44

parameter estimation. A case-specific mean-shift parameter vector is added to the mean struc-45

ture of the mixture model, and it is assumed to be sparse for capturing the rare but possibly46

severe outlying effects caused by the potential outliers. When the mixture components are47

assumed to have equal variances, our method directly extends the robust linear regression ap-48

proaches proposed by She and Owen (2011) and Lee, MacEachern and Jung (2012). However,49

even in this case the optimization of the penalized mixture log-likelihood is not trivial, espe-50

cially for the SCAD penalty (Fan and Li, 2001). For the general case of unequal component51

variances, the variance heterogeneity of different components complicates the declaration and52

detection of the outliers, and we thus propose a general scale-free and case-specific mean-shift53

formulation to solve the general problem.54

2 Robust Mixture Model via Mean-Shift Penalization55

In this section, we introduce the proposed robust mixture modelling approach via mean-shift56

penalization (RMM). To focus on the main idea, we restrict our attention on the normal57

mixture model. The proposed approach can be readily extended to other mixture models,58

such as gamma mixture and logistic mixture. Due to the inherent difference between the case59

of equal component variances and the case of unequal component variances, we shall discuss60

two cases separately.61

2.1 RMM for Equal Component Variances62

Assume the mixture components have equal variances, i.e., σ21 = · · · = σ2m = σ2. The proposed63

robust mixture model with a mean-shift parameterization is to assume that the observations64
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(y1, . . . , yn) come from the following mixture density65

f(yi;θ, γi) =

m∑
j=1

πjφ(yi − γi;µj , σ2), i = 1, . . . , n, (2.1)

where θ = (π1, µ1, . . . , πm, µm, σ)T , and γi is the mean-shift parameter for the ith observation.66

Apparently, without any constraints, the addition of the mean-shift parameters results in an67

overly parameterized model. The key here is to assume that the vector γ = (γ1, . . . , γn) is68

sparse, i.e., γi is zero when the ith data point is a normal observation with any of the m69

mixture components, and only when the ith observation is an outlier, γi becomes nonzero to70

capture the outlying effect. Therefore, the sparse estimation of γ provides a direct way to71

accommodate and identify outliers.72

Due to the sparsity assumption of γ, we propose to maximize the following penalized

log-likelihood criterion to conduct model estimation and outlier detection,

pl1(θ,γ) = l1(θ,γ)−
n∑
i=1

1

wi
Pλ(|γi|) (2.2)

where l1(θ,γ) =
∑n

i=1 log
{∑m

j=1 πjφ(yi − γi;µj , σ2)
}

, wis are some prespecified weights, Pλ(·)73

is some penalty function used to induce the sparsity in γ, and λ is a tuning parameter con-74

trolling the number of outliers, i.e., the number of nonzero γi. In practice, wis can be chosen75

to reflect any available prior information about how likely that yis are outliers; to focus on the76

main idea, here we mainly consider w1 = w2 = . . . = wn = w, and discuss the choice of w for77

different penalty functions.78

Some commonly used sparsity-inducing penalty functions include the `1 penalty (Donoho

and Johnstone, 1994a; Tibshirani, 1996, 1997)

Pλ(γ) = λ|γ|, (2.3)
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the `0 penalty (Antoniadis, 1997)

Pλ(γ) =
λ2

2
I(γ 6= 0), (2.4)

and the SCAD penalty (Fan and Li, 2001)

Pλ(γ) =


λ|γ| if |γ| ≤ λ,

−
(
γ2−2aλ|γ|+λ2

2(a−1)

)
if λ < |γ| ≤ aλ,

(a+1)λ2

2 if |γ| > aλ,

(2.5)

where a is a constant usually set to be 3.7. In penalized estimation, each of the above penalty79

forms corresponds to a thresholding rule, e.g., `1 penalization corresponds to a soft-thresholding80

rule, and `0 penalization corresponds to a hard-thresholding rule. It is also known that the81

convex `1 penalization often leads to over-selection and substantial bias in estimation. In-82

deed, as shown by She and Owen (2011) in the context of linear regression, `1 penalization in83

mean-shift model has connections with M-estimation using Huber’s loss and usually leads to84

poor performance in outlier detection. Similar phenomenon is also observed in our extensive85

numerical studies. However, if there are no high leverage outliers, the `1 penalty works well86

and succeeds to detect the outliers, see for examples, Dalalyan and Keriven (2012); Dalalyan87

and Chen (2012); Nguyen and Tran (2013).88

We propose a thresholding embedded EM algorithm to maximize the objective function89

(2.2). Let90

zij =


1 if the ith observation is from the jth component,

0 otherwise,

and zi = (zi1, . . . , zim). The complete penalized log-likelihood function based on the complete91

data {(yi, zi), i = 1, 2, . . . , n} is92

plc1(θ,γ) =

n∑
i=1

m∑
j=1

zij log
{
πjφ(yi − γi;µj , σ2)

}
−

n∑
i=1

1

w
Pλ(|γi|). (2.6)
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Based on the construction of the EM algorithm, in the E step, given the current estimate93

θ(k) and γ(k) at the kth iteration, we need to find the conditional expectation of the complete94

penalized log-likelihood function (2.6), i.e., E{plc1(θ,γ) | θ(k),γ(k)}. The problem simplifies to95

the calculation of E(zij |yi;θ(k),γ(k)),96

p
(k+1)
ij = E(zij | yi;θ(k),γ(k)) =

π
(k)
j φ(yi − γ(k)i ;µ

(k)
j , σ2

(k)
)∑m

j=1 π
(k)
j φ(yi − γ(k)i ;µ

(k)
j , σ2

(k)
)
.

In the M step, we then update (θ,γ) by maximizing E{plc1(θ,γ) | θ(k),γ(k)}. There is no

explicit solution, except for the πjs,

π
(k+1)
j =

n∑
i=1

p
(k+1)
ij

n
.

We propose to alternatingly update {σ, µj , j = 1, . . . ,m} and γ until convergence to get

{µ(k+1)
j , j = 1, . . . ,m;σ(k+1),γ(k+1)}. Given γ, µjs and σ are updated by

µj ←
∑n

i=1 p
(k+1)
ij (yi − γi)∑n
i=1 p

(k+1)
ij

, σ2 ←
∑m

j=1

∑n
i=1 p

(k+1)
ij (yi − γi − µj)2

n
.

Given µjs and σ, γ is updated by maximizing97

n∑
i=1

m∑
j=1

p
(k+1)
ij log φ(yi − γi;µj , σ2)−

n∑
i=1

1

w
Pλ(|γi|),

which is equivalently to minimizing98

1

2

γi −
m∑
j=1

p
(k+1)
ij (yi − µj)


2

+
1

w
σ2Pλ (|γi|) , (2.7)

separately for each γi, i = 1, . . . , n. A detailed derivation is presented in the Appendix. For99

either the `1 or the `0 penalty, w−1σ2Pλ (|γi|) = σPλ∗ (|γi|), where λ∗ = σ√
w
λ. Therefore, if100

λ is chosen data adaptively, we can simply set w = 1 for these penalties. However, for the101

SCAD penalty, such property does not hold and the solution may be affected nonlinearly by102
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the ratio σ2/w. In order to mimic the unscaled SCAD and use the same a value as suggested103

by Fan and Li (2001), we need to make sure that σ2/w is close to 1. Therefore, we propose to104

set w = σ̂2 for SCAD penalty, where σ̂2 is a robust estimate of σ2 such as the estimate from105

the trimmed likelihood estimation (Neykov et al. 2007) or the estimator using the `0 penalty106

assuming w = 1.107

As shown in Proposition 1 below, when the `1 penalty is used, (2.7) is minimized by a soft108

thresholding rule, and when the `0 penalty is used, (2.7) is minimized by a hard thresholding109

rule. When the SCAD penalty is used, however, the problem is solved by a modified SCAD110

thresholding rule, which is shown in Lemma 1.111

Proposition 1. Let ξi =
∑m

j=1 p
(k+1)
ij (yi−µj). Let w = 1 in (2.7). When the penalty function112

in (2.7) is the `1 penalty (2.8), the minimizer of (2.7) is given by113

γ̂i = Θsoft(ξi;λ, σ) = sgn(ξi) (|ξi| − σλ)+ , (2.8)

where a+ = max(a, 0). When the penalty function in (2.7) is the `0 penalty (2.9), the minimizer114

of (2.7) is given by115

γ̂i = Θhard(ξi;λ, σ) = ξiI(|ξi| > σλ), (2.9)

where I(·) denotes the indicator function.116

Lemma 1. Let ξi =
∑m

j=1 p
(k+1)
ij (yi − µj). Let w = σ̂2 in (2.7), a robust estimator of σ2.117

When the penalty function in (2.7) is the SCAD penalty (2.5), the minimizer of (2.7) is given118

by119

1. when σ2/σ̂2 < a− 1,120

γ̂i = Θscad(ξi;λ, σ) =



sgn(ξi)
(
|ξi| − σ2λ

σ̂2

)
+
, if |ξi| ≤ λ+ σ2λ

σ̂2 ,

σ̂2

σ2
(a−1)ξi−sgn(ξi)aλ
σ̂2

σ2
(a−1)−1

, if λ+ σ2λ
σ̂2 < |ξi| ≤ aλ,

ξi, if |ξi| > aλ.

(2.10)
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2. when a− 1 ≤ σ2/σ̂2 ≤ a+ 1,121

γ̂i = Θscad(ξi;λ, σ) =


sgn(ξi)

(
|ξi| − σ2λ

σ̂2

)
+
, if |ξi| ≤

a+1+σ2

σ̂2

2 λ,

ξi, if |ξi| >
a+1+σ2

σ̂2

2 λ.

(2.11)

3. when σ2/σ̂2 > a+ 1,122

γ̂i = Θscad(ξi;λ, σ) = ξiI(|ξi| >
√
σ2(a+ 1)

σ̂2
λ). (2.12)

The detailed EM algorithm is summarized in Algorithm 1. For simplicity, we have used123

Θ(ξi;λ, σ) to denote a general thresholding rule determined by the adopted penalty function,124

e.g., the modified SCAD thresholding rule Θscad(ξi;λ, σ) defined in Lemma 1. The convergence125

property of the proposed algorithm is summarized in Theorem 2.1 below, which follows directly126

from the property of the EM algorithm, and hence its proof is omitted.127

Theorem 2.1. Each iteration of E step and M step of Algorithm 1 monotonically non-decreases128

the penalized log-likelihood (2.2), i.e., pl1(θ
(k+1),γ(k+1)) ≥ pl1(θ(k),γ(k)), for all k ≥ 0.129

2.2 RMM for Unequal Component Variances130

When the component variances are unequal, the naive mean-shift model (2.1) can not be131

directly applied, due to the scale difference in the mixture components. To illustrate further,132

suppose the standard deviation in the first component is 1 and the standard deviation in the133

second component is 4. If some weighted residual ξi, defined in Proposition 1, equals to 5, then134

the ith observation is considered as an outlier if it is from the first component but should not be135

regarded as an outlier if it belongs to the second component. This suggests that the declaration136

of outliers in a mixture model shall take into account both the centers and the variabilities of137

all the components, i.e., an observation is considered as an outlier in the mixture model only138

if it is far away from all the component centers judged by their own component variabilities.139

We propose a general scale-free mean-shift model to incorporate the information on com-140
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Algorithm 1 Thresholding Embeded EM Algorithm for Equal Variances Case

Initialize θ(0) and γ(0). Set k ← 0.
repeat

E-Step: Compute the classification probabilities

p
(k+1)
ij = E(zij |yi;θ(k)) =

π
(k)
j φ(yi − γ(k)i ;µ

(k)
j , σ2

(k)
)∑m

j=1 π
(k)
j φ(yi − γ(k)i ;µ

(k)
j , σ2

(k)
)
.

M-Step: Update (θ,γ) by the following two steps:

1. π
(k+1)
j =

∑n
i=1 p

(k+1)
ij /n, j = 1, . . . ,m.

2. Iterating the following steps until convergence to obtain {µ(k+1)
j , j =

1, . . . ,m;σ2
(k+1)

,γ(k+1)}:

(2.a) γi ← Θ(ξi;λ, σ), i = 1, . . . , n, where ξi =
m∑
j=1

p
(k+1)
ij (yi − µj),

(2.b) µj ←
∑n

i=1 p
(k+1)
ij (yi − γi)∑n
i=1 p

(k+1)
ij

, j = 1, . . . ,m,

(2.c) σ2 ←
∑m

j=1

∑n
i=1 p

(k+1)
ij (yi − γi − µj)2

n
.

k ← k + 1.
until convergence.
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ponent variability,141

f(yi;θ, γi) =

m∑
j=1

πjφ(yi − γiσj ;µj , σ2j ), i = 1, . . . , n, (2.13)

where with some abuse of notation, θ is redefined as θ = (π1, µ1, σ1, . . . , πm, µm, σm)T . Given

observations (y1, y2, . . . , yn), we estimate the parameters θ and γ by maximizing the following

penalized log-likelihood function:

pl2(θ,γ) = l2(θ,γ)−
n∑
i=1

1

wi
Pλ(|γi|), (2.14)

where l2(θ,γ) =
∑n

i=1 log
{∑m

j=1 πjφ(yi − γiσj ;µj , σ2j )
}

. Since the γis in (2.14) are scale free,142

we can set w1 = w2 = . . . = wn = 1 when no prior information is available.143

We again propose a thresholding embedded EM algorithm to maximize (2.14). As the144

construction is similar to the case of equal variances, we omit the details of its derivation.145

The proposed EM algorithm is presented in Algorithm 2, and here we shall briefly remark the146

main changes. Unlike in the case of equal variances, the update of σ2j in (2.17), with other147

parameters held fixed, does not have explicit solution in general and requires some numerical148

algorithm to solve, e.g., the Newton-Raphson method; as the problem is one dimensional, the149

computation remains very fast. In the case of unequal variances, the problem of updating γ,150

with other parameters held fixed, is still separable in each γi, i.e., at the (k + 1)th iteration,151

γ̂i = arg min
γi

−
m∑
j=1

p
(k+1)
ij log φ(yi − γiσj ;µj , σ2j ) + Pλ(|γi|)

 .

It can be readily shown that the solution is given by simple threhsolding rules. In particular,

using the `1 penalty leads to γ̂i = Θsoft(ξi;λ, 1) and using the `0 penalty leads to γ̂i =

Θhard(ξi;λ, 1), where Θsoft and Θhard are defined in Proposition 1, and here in the case of

unequal variance, ξi becomes

ξi =
m∑
j=1

p
(k+1)
ij

σj
(yi − µj).
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Algorithm 2 Thresholding Embeded EM Algorithm for Unequal Variances Case

Initialize θ(0) and γ(0). Set k ← 0.
repeat

E-Step: Compute the classification probabilities

p
(k+1)
ij = E(zij |yi;θ(k)) =

π
(k)
j φ(yi − γ(k)i σ

(k)
j ;µ

(k)
j , σ2

(k)

j )∑m
j=1 π

(k)
j φ(yi − γ(k)i σ

(k)
j ;µ

(k)
j , σ2

(k)

j )
.

M-Step: Update (θ,γ) by the following two steps:

1.

π
(k+1)
j =

∑n
i=1 p

(k+1)
ij

n
, j = 1, . . . ,m.

2. Iterating the following steps until convergence to obtain {µ(k+1)
j , σ2

(k+1)

j , j =

1, . . . ,m,γ(k+1)}:

(2.a) γi ← Θ(ξi;λ, 1), where ξi =
m∑
j=1

p
(k+1)
ij (yi − µj)/σj , (2.15)

(2.b) µj ←
∑n

i=1 p
(k+1)
ij (yi − γiσj)∑n
i=1 p

(k+1)
ij

, (2.16)

(2.c) σ2j ← arg max
σj

n∑
i=1

p
(k+1)
ij log φ(yi − γiσj ;µj , σ2j ). (2.17)

k ← k + 1.
until convergence

11



As the γis become scale free, the thresholding rule for solving SCAD becomes much simpler,

and it is given by (2.10) when setting the quantity σ2/σ̂2 = 1, i.e.,

γ̂i = ΘSCAD(ξi;λ, 1) =


sgn(ξi)(|ξi| − λ)+, if |ξi| ≤ 2λ,

(a−1)ξi−sgn(ξi)aλ
a−2 , if 2λ < |ξi| ≤ aλ,

ξi, if |ξi| > aλ.

Similar to Theorem 2.1, it is easy to check that the monotone non-decreasing property152

remains hold for Algorithm 2. We note that in both algorithms, we have used an iterative153

algorithm aiming to fully maximize the expected complete log-likelihood under penalization.154

It can be seen that in this blockwise coordinate descent algorithm, each loop of (2.a) − (2.c)155

monotonically non-decreases the objective function. Therefore, an alternative strategy is to156

run (2.a) − (2.c) only a few times or even just once in each M-step; the resulting generalized157

EM algorithm continues to possess the desirable convergence property. Based on our limited158

experience, however, this method generally does not lead to significant saving in computation,159

because the iterations in the M-step only involve simple operations and partially solving M-160

step may slow down the overall convergence. Nevertheless, it is worthwhile to point out this161

strategy, as it can be potentially useful when more complicated penalization methods are162

required.163

2.3 Tuning Parameter Selection164

When using robust estimation or outlier detection methods, it is usually required to choose a165

“threshold” value, e.g., the percentage of observations to eliminate, or the cutoff to declare ex-166

treme residuals. In our method, selecting “threshold” becomes the tuning parameter selection167

problem in penalized regression (2.2) and (2.14). As such, many well-developed methodologies168

including cross validation and information criterion based approaches are all applicable, and169

the turning parameter λ can be selected in an objective way, based on predictive power of170

the model or the balance between model goodness of fit and complexity. Here, we provide171

a data adaptive way to select λ based on a Bayesian information criterion (BIC), due to its172

12



computation efficiency and proven superior performance on variable selection,173

BIC(λ) = −l∗j (λ) + log(n)df(λ), (2.18)

where j = 1 or 2, l∗j (λ) = lj(θ̂(λ), γ̂(λ)) is the mixture log-likelihood evaluated at the estimator174

(θ̂(λ), γ̂(λ)) obtained by maximizing the penalized likelihood criterion (2.2) or (2.14) with λ175

being the tuning parameter, and df(λ) is the model degrees of freedom which is estimated by176

the sum of the number of nonzero γ values and the number of mixture component parameters.177

In practice, the optimal tuning parameter λ is chosen by minimizing BIC(λ) over a grid of178

100 λ values, equally spaced on the log scale between λmin and λmax, where λmax is some179

large value of λ resulting in all zero values in γ̂, corresponding to the case of no outlier, and180

λmin is some small value of λ resulting in roughly 40% nonzero values in γ̂, since in reality181

the proportion of outliers is usually quite small. The models with various λ values are fitted182

sequentially. The previous solution is used as the initial value for fitting the next model to183

speed up the computation. As such, our proposed method is able to search conveniently over184

a whole spectrum of possible models.185

In mixture model, it is a foremost task to determine the number of mixture component186

m. The problem may be resolved based on prior knowledge of the underlying data generation187

process. In many applications where no prior information is available, we suggest to conduct188

the penalized mixture model analysis with a few plausible m values, and use the proposed BIC189

criterion to select both the number of component m and the amount of penalization λ.190

3 Simulation191

3.1 Setups192

We conduct simulation studies to investigate the effectiveness of the proposed approach and193

compare it with several existing methods. We consider both the case of equal variances and the194

case of unequal variances. In each setup to be elaborated below, we first generate independent195

observations from a normal mixture distribution; a few outliers are then created by adding196
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random mean-shift to some of the observations. The sample size is set to n = 200, and we197

consider two proportions of outliers, i.e., pO = 5% and pO = 10%. The number of replicates is198

200 for each simulation setting.199

Example 1: The samples (y1, y2, . . . , yn) are generated from model (2.1) with π1 = 0.3, µ1 =200

0, π2 = 0.7, µ2 = 8, and σ = 1. That is, the size of the first component n1 is generated201

from a binomial distribution with n1 ∼ Bin(n, p = 0.3), and consequently the size of the202

second component is given by n2 = n − n1. To create 100pO% outliers, we randomly203

choose 3npO/10 many observations from component 1, and each of them is added a204

random mean shift γ ∼ Unif([−5,−7]). Similarly 7npO/10 outliers are created by adding205

random mean shift γ ∼ Unif([5, 7]) to observations from component 2.206

Example 2: The samples (y1, y2, . . . , yn) are generated from model (2.13) with π1 = 0.3, µ1207

= 0, σ1 = 1, π2 = 0.7, µ2 = 8, and σ2 = 2. All other settings are the same as in208

Example 1, except that when generating outliers, we add an amount Unif([−5σ1,−7σ1])209

to observations from component 1 and Unif([5σ2, 7σ2]) to observations from component210

2.211

In the above simulation examples, the majority of data points form two well-separated212

clusters. There are very few extreme observations (5% or 10%), which are far away from both213

the cluster centers. As such, it is appropriate to model these anomaly observations as outliers214

in a two-component mixture model.215

3.2 Methods and Evaluation Metrics216

We use our proposed RMM approaches with several different penalty forms including `0, `1 and217

SCAD penalties, denoted as Soft, Hard and SCAD, respectively. For each penalty, our approach218

efficiently produces a solution path with varying numbers of outliers. The optimal solution is219

selected by the BIC criterion. To investigate the performance of BIC and to better understand220

the true potential of each penalization method, we also report an “oracle” estimator, which is221

defined as the solution having the best outlier detection performance along the fitted solution222
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path. When there are multiple such solutions on the path, we choose the one gives the best223

parameter estimates. These oracle estimators are denoted as SoftO, HardO and SCADO. We224

note that the oracle estimators rely on the knowledge of the true parameter values, and thus225

they are not feasible to compute in practice. Nevertheless, as we shall see below, they provide226

interesting information about the behaviors of different penalty forms. We also compare our227

RMM approach to the nonrobust maximum likelihood estimation method (MLE) and the228

robust trimmed likelihood estimation method (TLE) proposed by Neykov et al. (2007), with229

the percentage of trimmed data α set to either 0.05 (TLE0.05) or 0.10 (TLE0.1). TLE methods230

require a cutoff value η to identify extreme residuals; following Gervini and Yohai (2002), we231

set η = 2.5.232

To evaluate the outlier detection performance, we report (1) the proportion of masking233

(M%), i.e., the fraction of undetected outliers, (2) the proportion of swapping (S%), i.e., the234

fraction of good points labeled as outliers, and (3) the joint detection rate (JD%), i.e., the235

proportion of simulations with 0 masking. Ideally, M% ≈ 0%, S% ≈ 0% and JD% ≈ 100%.236

To evaluate the performance of parameter estimation, we report both the mean squared errors237

(MSE) and the robust median squared errors (MeSE) of the parameter estimates.238

A very important usage of mixture model is for clustering. From the fitted mixture model,239

the Bayes classification rule assigns the ith observation to cluster j such that j = arg maxk pik,240

where pik, k = 1, . . . ,m, are the set of cluster probabilities for the ith observation directly241

produced from the EM algorithm. We thus compute the average misclassification rate (Mis%)242

to evaluate the clustering performance of each method. We note that for mixture models, there243

are well-known label switching issues (Celeux, et al., 2000; Stephens, 2000; Yao and Lindsay,244

2009; Yao, 2012a, 2012b). Roughly speaking, the mixture likelihood function is invariant to the245

permutation of the component labels, so that the component parameters are not identifiable246

marginally since they are exchangeable. As a consequence, the estimation results from different247

simulation runs are not directly comparable, as the mixture components in each simulation run248

can be labeled arbitrarily. In our examples, the component labels in each simulation are aligned249

to the reference label of the true parameter values, i.e., the labels are chosen by minimizing250

the distance from the resulting parameter estimates to the true parameter values.251
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3.3 Results252

The simulation results are summarized in Tables 1 to 4. Not surprisingly, MLE fails in all the253

cases. This demonstrates that robust mixture modeling is indeed needed in the presence of254

rare but severe outliers.255

In case of equal variances, both Hard and SCAD perform very well, and their performance256

on outlier detection is very similar to their oracle counterparts. While the Soft method per-257

forms well in outlier detection when pO = 5%, its performance becomes much worse when258

pO = 10% mainly due to masking. The observed nonrobustness of Soft is consistent with259

the results in She and Owen (2011). In terms of parameter estimation, Hard and HardO per-260

form the best among the RMM methods. On the other hard, SCADO performs better than261

SoftO and they are slightly outperformed by SCAD and Soft, respectively. This interesting262

phenomenon reveals some important behaviors of the penalty functions. When using the `0263

penalty, the effect of an outlier is completely captured by its estimated mean-shift parameter264

whose magnitude is not penalized, so once an observation is detected as an outlier, i.e., its265

mean-shift parameter is estimated to be nonzero, it does not affect parameter estimation any266

more. However, when using `1 type penalty, due to its inherit shrinkage effects on the mean-267

shift parameters, the model tries to accommodate the effects of severe outliers in estimation.268

Even if an observation is detected as an outlier with a nonzero mean-shift, it may still partially269

affects parameter estimation as the magnitude of the mean-shift parameter is shrunk towards270

zero. As a consequence, the oracle estimator which has the best outlier detection performance271

does not necessarily leads to the best estimation. Since the SCAD penalty can be regarded as272

a hybrid between `0 and `1, it exhibits behaviors that are characteristics of both of `0 and `1.273

Further examination of the simulation results reveals that SoftO (SCADO) tends to require274

a stronger penalty than the Soft (SCAD) estimator in order to reduce false positives, which275

induces heavier shrinkage of γ, and consequently the former is distorted more by the outliers276

than the latter. The TLE method leads to satisfactory results when the trimming proportion277

is correctly specified. It loses efficiency when the trimming proportion is too large and fails278

to be robust when the trimming proportion is too small. Our RMM methods can achieve279
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comparable performance to the oracle TLE that assumes the correct trimming proportion.280

In case of unequal variances, the behaviors of the RMM estimators and their oracle counter-281

parts are similar to those in the case of equal variances. Hard still performs the best among all282

feasible estimators in both outlier detection and parameter estimation. SCAD and Soft work283

satisfactorily when pO = 5%. However, when pO = 10%, the two methods may fail to detect284

outliers and their average masking rates become 18.72% and 55.67%, respectively. Again, this285

can be explained by the shrinkage effects on the mean-shift parameters induced by the penalty286

forms. Nevertheless, SCAD is affected much less and thus performs much better in parameter287

estimation then Soft.288

We have investigated the problem of selecting the number of mixture components using289

the proposed BIC criterion. In Example 2 with unequal variances and pO = 5%, we use the290

RMM method to fit models with 2, 3, and 4 mixture components. The two-component model291

is selected 100%, 98% and 63% of the time when using Hard, SCAD and Soft, respectively,292

based on 200 simulated datasets. The results are similar using Example 1 and/or pO = 10%.293

These results again suggest that RMM works well with nonconvex penalty forms. In Table 5,294

we compare the average computation times. As expected, RMM tends to be slightly slower295

than TLE and MLE, mainly because the M-step has to be solved by an iterative procedure. In296

general, the computation time of RMM increases slightly as the proportion of outliers increases,297

and the case of unequal variances needs slightly longer time to compute than the case of298

equal variances. Nevertheless, the proposed RMM method remains to be very computationally299

efficient and the speed can be further improved with more careful implementation. (A user-300

friendly R package for RMM will be made available to the public).301

In summary, our RMM approach using nonconvex penalization, together with the proposed302

BIC criterion, achieves the dual goal of accuracy outlier detection and robust parameter esti-303

mation. In practice, the proportion of extreme outliers is usually very small in mixture model304

setup, and we suggest to use either the `0 or the SCAD penalty. Other nonconvex penalty305

forms such as the minimax concave penalty (MCP) (Zhang, 2010) can also be used.306
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4 Acidity Data Analysis307

We apply the proposed robust procedure to Acidity dataset (Crawford, 1994; Crawford et al.,308

1992). The observations are the logarithms of an acidity index measured in a sample of 155309

lakes in north-central Wisconsin. More details on the data can be found in Crawford (1994),310

Crawford et al. (1992), and Richardson and Green (1997). Figure 1 shows the histogram of311

the observed acidity indices.312

Following Richardson and Green (1997), we fit the data by a three-component normal313

mixture model with equal variances, using both the raditional MLE method and the proposed314

RMM approach with `0 penalty. The tuning parameter in RMM is selected by BIC. Table315

6 shows the parameter estimates. In the original data, there does not appear to be outliers,316

and the proposed RMM approach results in very similar parameter estimates to that of the317

traditional MLE. This shows that RMM does not lead to efficiency loss when there is no outlier,318

and its performance is as good as that of MLE.319

Following Peel and McLachlan (2000), to examine the effects of outliers, we add one outlier320

(y = 12) to the original data. While RMM is not influenced by the outlier and gives similar321

parameter estimates to the case of no outliers, MLE leads to very different parameter estimates.322

Note the first and second components are estimated to have the same mean based on MLE,323

thus the model essentially has only two components. We then add three identical outliers324

(y = 12) to the data. As expected, RMM still provides similar estimates as before. However,325

MLE fits a new component to the outliers and gives drastically different estimates comparing326

to the case of no outliers. In fact, in both cases, RMM successfully detects the added extreme327

observations as outliers, so that the parameter estimation remains unaffected. This example328

shows that our proposed RMM method provides a stable and robust way for fitting mixture329

models, especially in the presence of severe outliers.330

5 Discussion331

We have developed a robust mixture modelling approach under the penalized estimation frame-332

work. Our robust method with nonconvex penalizaton is capable of conducting simultaneous333
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outlier detection and robust parameter estimation. The method has comparable performance334

to TLE that uses an oracle trimming proportion. However, our method can efficiently produce335

a solution path consisting of solutions with varying number of outliers, so that the proportion336

of outliers and the accommodation of them in estimation can both be efficiently determined337

data adaptively.338

There are many directions for future research. It is pressing to investigate the theoretical339

properties of the proposed RMM approach, e.g., the selection consistency of outlier detection.340

As RMM is formulated as a penalized estimation problem, the many established results on341

penalized variable selection may shed light on this problem; see. e.g., Khalili (2007) and342

Stadler (2010). Our proposed general scaled-dependent outlier detection model shares similar343

idea with the reparameterized model proposed by Stadler (2010), and our model can be written344

as a penalized mixture regression problem. However, their approach for establishing the oracle345

properties of the penalized estimator is not directly applicable to our problem, as in our case346

the design matrix associated with the mean-shift parameters becomes a fixed identity matrix of347

dimension n. We have mainly focused on normal mixture model in this paper, but the method348

can be readily extended to other mixture models, such as mixtures of binomial and mixtures349

of Poisson. It would also be interesting to extend the method to multivariate mixture models350

and mixture regression models.351
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Appendix356

Derivation of Equation (2.7)357

The estimate of γ is obtained by maximizing358

n∑
i=1

m∑
j=1

p
(k+1)
ij log φ(yi − γi;µj , σ2)−

n∑
i=1

1

w
Pλ(|γi|).

The problem is separable in each γi, and thus each γi can be updated by minimizing359

−
m∑
j=1

p
(k+1)
ij log φ(yi − γi;µj , σ2) +

1

w
Pλ(|γi|).

Using the from of the normal density, the solution has the following form,360

γ̂i = arg min
γi

m∑
j=1

pij

{
1

2
log
(
σ2
)

+
(yi − γi − µj)2

2σ2

}
+

1

w
Pλ (|γi|) .

Note that
∑m

j=1 pij log
(
σ2
)

does not depend on γ, and

m∑
j=1

pij
(yi − γi − µj)2

2σ2
=

1

2σ2

γi −
m∑
j=1

pij(yi − µj)


2

+ const

 .
It follows that361

γ̂i = arg min
γi

1

2σ2

γi −
m∑
j=1

pij(yi − µj)


2+

1

w
Pλ (|γi|) .

Proof of Lemma 1362

The penalized least squares has the following form:363

g(γ) =
1

2
(ξ − γ)2 +

σ2

σ̂2
Pλ(γ) (5.1)

20



where ξ = {
∑m

j=1 pij(yi − µj)}/(
∑m

j=1 pij). For simplicity, we have omitted the subscripts in364

γi and ξi. The first derivative of g(γ) with respect to γ is365

g′(γ) = γ − ξ + sgn(γ)
σ2

σ̂2
P ′λ(γ).

We first discuss some possible solutions of (5.1) in three cases.366

Case 1: when |γ| ≤ λ, the problem becomes an `1 penalized problem, and the solution, if367

feasible, is given by γ̂1 = sgn(ξ)
(
|ξ| − σ2λ/σ̂2

)
+

.368

Case 2: when λ < |γ| ≤ aλ, g′′(γ) = 1 − σ2/σ̂2/(a− 1). The second derivative is positive if

σ2/σ̂2 < a− 1. The solution, if feasible, is given by

γ̂2 =
σ̂2

σ2 (a− 1)ξ − sgn(ξ)aλ
σ̂2

σ2 (a− 1)− 1
.

Case 3: when |γ| > aλ, g′′(γ) = 1. The solution, if feasible, is given by γ̂3 = ξ.369

The above three cases indicate that the solution depends on the value σ2/σ̂2 and ξ. Since370

equation (5.1) is symmetric about ξ and Θ(−ξ;λ) = −Θ(ξ;λ), we shall only discuss the case371

ξ ≥ 0.372

We now derive the solution γ̂ in the following scenarios.373

Scenario 1: σ2/σ̂2 < a− 1.374

1. When ξ > aλ, γ satisfies Case 3. Then γ̂ = γ̂3.375

2. When λ+ σ2λ/σ̂2 < ξ ≤ aλ, γ satisfies Case 2. Then γ̂ = γ̂2.376

3. When ξ ≤ λ+ σ2λ/σ̂2, γ satisfies Case 1. Then γ̂ = γ̂1.377

Scenario 2: a− 1 ≤ σ2/σ̂2 ≤ a+ 1. Case 2 is not feasible.378

1. When ξ ≤ aλ, based on Case 1, γ̂ = γ̂1.379

2. When aλ ≤ ξ ≤ λ+σ2λ/σ̂2. As |γ̂1| ≤ λ and |γ̂3| ≥ aλ, they are both possible solutions.380

Define d = g(γ̂1) − g(γ̂3). Then γ̂ = γ̂3 if d > 0 and γ̂ = γ̂1 if d < 0. It can be verified381
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that d > 0 if ξ >
a+1+σ2

σ̂2

2 λ, and d < 0 if ξ <
a+1+σ2

σ̂2

2 λ. When ξ =
a+1+σ2

σ̂2

2 λ, both γ̂1 and382

γ̂3 are minimizers; in (2.11) we have taken γ̂ = γ̂1.383

3. When ξ > λ+ σ2λ/σ̂2, then ξ > aλ. Based on Case 3, γ̂ = ξ.384

Scenario 3: σ2/σ̂2 > a+ 1. Case 2 is not feasible.385

1. When ξ > σ2λ/σ̂2, it is easy to see that γ̂ = ξ.386

2. When 0 ≤ ξ ≤ σ2λ/σ̂2, γ̂1 = 0 and d = g(γ̂1) − g(γ̂3) = ξ2/2 − σ2(a+ 1)λ2/(2σ̂2). It387

follows that d > 0 if ξ >
√

σ2(a+1)
σ̂2 λ, d < 0 if ξ <

√
σ2(a+1)
σ̂2 λ. When ξ =

√
σ2(a+1)
σ̂2 λ,388

both γ̂1 = 0 and γ̂3 = ξ are minimizers; in (2.12) we have taken γ̂ = γ̂1 = 0.389

Combining the three senarios leads to the modified SCAD thresholding rule in Lemma 1. We390

note that in practice, as σ2/σ̂2 is close to one, Senarios 2 and 3 are highly unlikely tp occur.391
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Table 1: Simulation results for the case of equal variances with n = 200 and pO = 5%.
Hard HardO SCAD SCADO Soft SoftO TLE0.05 TLE0.10 MLE

M% 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.06 −
S% 0.27 0.02 0.99 0.03 0.42 0.03 1.04 3.34 −
JD% 100.00 100.00 100.00 100.00 100.00 100.00 99.44 99.44 −
Mis% 0.26 0.02 0.94 0.02 0.40 0.03 0.07 5.01 15.53
MeSE(π) 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002
MSE(π) 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.030
MeSE(µ) 0.018 0.017 0.035 0.052 0.055 0.065 0.017 0.031 0.293
MSE(µ) 0.023 0.022 0.041 0.063 0.061 0.071 0.022 0.038 11.150
MeSE(σ) 0.009 0.010 0.067 0.191 0.176 0.231 0.008 0.064 0.952
MSE(σ) 0.016 0.016 0.088 0.191 0.198 0.242 0.012 0.071 25.478
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Table 2: Simulation results for the case of equal variances with n = 200 and pO = 10%.
Hard HardO SCAD SCADO Soft SoftO TLE0.05 TLE0.10 MLE

M% 0.00 0.00 0.00 0.00 12.11 0.00 24.53 0.00 −
S% 0.32 0.04 2.89 0.04 0.80 0.04 0.19 1.19 −
JD% 100.00 100.00 100.00 100.00 72.78 100.00 2.78 100.00 −
Mis% 0.29 0.05 2.61 0.03 1.93 0.04 5.94 0.09 22.28
MeSE(π) 0.001 0.001 0.001 0.001 0.001 0.001 0.004 0.001 0.003
MSE(π) 0.002 0.002 0.002 0.002 0.002 0.002 0.009 0.002 0.053
MeSE(µ) 0.020 0.019 0.061 0.183 0.171 0.212 0.840 0.019 0.918
MSE(µ) 0.023 0.024 0.066 0.209 0.230 0.231 1.093 0.023 14.125
MeSE(σ) 0.012 0.010 0.120 0.700 0.590 0.815 9.164 0.010 2.648
MSE(σ) 0.016 0.014 0.139 0.698 0.742 0.809 6.345 0.012 12.599

Table 3: Simulation results for the case of unequal variances with n = 200 and pO = 5%.
Hard HardO SCAD SCADO Soft SoftO TLE0.05 TLE0.10 MLE

M% 0.00 0.00 0.00 0.00 0.00 0.00 0.94 0.06 −
S% 0.13 0.04 1.12 0.23 1.32 0.29 0.73 3.12 −
JD% 100.00 100.00 100.00 100.00 100.00 100.00 93.89 99.44 −
Mis% 0.51 0.44 1.48 1.35 2.24 1.87 3.88 6.22 44.82
MeSE(π) 0.001 0.001 0.001 0.003 0.004 0.006 0.001 0.001 0.024
MSE(π) 0.002 0.002 0.002 0.005 0.004 0.007 0.008 0.002 0.148
MeSE(µ) 0.038 0.042 0.051 0.081 0.063 0.087 0.042 0.056 77.214
MSE(µ) 0.048 0.051 0.068 0.115 0.080 0.134 3.060 0.073 141.426
MeSE(σ) 0.022 0.019 0.149 0.730 1.121 2.133 0.026 0.112 7.711
MSE(σ) 0.028 0.024 0.177 1.474 1.121 2.345 0.172 0.121 10.154

Table 4: Simulation results for the case of unequal variances with n = 200 and pO = 10%.
Hard HardO SCAD SCADO Soft SoftO TLE0.05 TLE0.10 MLE

M% 0.08 0.00 18.72 1.70 55.67 1.90 24.44 1.11 −
S% 0.10 0.07 2.49 0.83 0.20 0.94 0.06 0.77 −
JD% 98.33 100.00 66.67 68.67 5.56 65.33 1.11 83.89 −
Mis% 0.46 0.42 6.14 4.35 11.48 4.82 23.96 7.65 47.99
MeSE(π) 0.001 0.002 0.002 0.019 0.030 0.023 0.024 0.002 0.112
MSE(π) 0.002 0.003 0.008 0.019 0.032 0.025 0.066 0.049 0.168
MeSE(µ) 0.036 0.037 0.095 0.165 0.212 0.193 10.861 0.044 79.288
MSE(µ) 0.044 0.046 0.136 0.222 0.265 0.239 17.001 21.439 193.846
MeSE(σ) 0.029 0.024 0.613 7.306 11.553 7.734 11.059 0.028 13.128
MSE(σ) 0.035 0.033 3.416 6.088 11.396 7.482 10.261 0.917 16.203

27



Table 5: Comparison of average computation times in seconds. To make fair comparison,
each reported time is the average computation time per each tuning parameter and simulated
dataset.

Example pO Hard SCAD Soft TLE0.05 TLE0.1 MLE

1 5% 0.039 0.041 0.042 0.041 0.042 0.016
1 10% 0.043 0.043 0.046 0.089 0.045 0.025
2 5% 0.081 0.128 0.166 0.083 0.076 0.008
2 10% 0.084 0.112 0.201 0.179 0.088 0.007

Table 6: Parameter estimation in Acidity data analysis.
#outlier π1 π2 π3 µ1 µ2 µ3 σ

MLE 0 0.589 0.138 0.273 4.320 5.682 6.504 0.365
1 0.327 0.324 0.349 4.455 4.455 6.448 0.687
3 0.503 0.478 0.019 5.105 5.105 12.00 1.028

Hard 0 0.588 0.157 0.255 4.333 5.720 6.545 0.336
1 0.591 0.157 0.252 4.333 5.723 6.548 0.334
3 0.597 0.157 0.246 4.333 5.729 6.553 0.331
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Figure 1: Histogram for Acidity data

29




