
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Reconstructing 3D Geometries for Scientific Applications: An Image to Simulation Pipeline

Permalink
https://escholarship.org/uc/item/8vw6m1d7

Author
Ramirez de Chanlatte, Marissa

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8vw6m1d7
https://escholarship.org
http://www.cdlib.org/

Reconstructing 3D Geometries for Scientific Applications:
An Image to Simulation Pipeline

by
Marissa Isabella Ramirez de Chanlatte

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy
in

Applied Science & Technology
and the Designated Emphasis

in
Computational and Data Science and Engineering

in the
Graduate Division

of the
University of California, Berkeley

Committee in charge:
Professor Phillip Colella, Co-Chair
Professor Trevor Darrell, Co-Chair

Associate Professor Angjoo Kanazawa

Spring 2024

Reconstructing 3D Geometries for Scientific Applications: An Image to Simulation Pipeline

Copyright 2024
by

Marissa Isabella Ramirez de Chanlatte

Abstract
Reconstructing 3D Geometries for Scientific Applications: An Image to Simulation Pipeline

by
Marissa Isabella Ramirez de Chanlatte

Doctor of Philosophy in Applied Science & Technology
and the

Designated Emphasis in Computational and Data Science and Engineering
University of California, Berkeley
Professor Phil Colella, Co-Chair

Professor Trevor Darrell, Co-Chair

Numerical simulation is a powerful tool that aids scientists in the understanding of the
physics of the world around them, but to achieve an understanding of the physics, we must
start with a representation of the geometry. Embedded Boundary (EB) simulation provides
robust, automatic handling of complex geometries, enabling large scale physics simulations,
but it still depends on an initial 3D implicit function representation of said geometry. These
geometries are typically user-supplied through 3D design specifications, but for many domains
of interest (i.e. outdoor scenes such as cities or forests) no such design specifications exist.
This means that simulations of this nature rely on expensive, time consuming, and often
noisy measurements from LiDAR or other sources, and because of the cost and lack of quality
in the results, there have been relatively few 3D, large scale EB simulations of outdoor scenes.

Recent advances in computer vision, such as Neural Radiance Fields (NeRFs) and their
corresponding Neural Signed Distance Functions (NeuS) have made producing 3D implicit
functions from images much easier, but they have not yet been studied from the view point
of numerical simulation. In this thesis, we present for the first time a 3D simulation using
the Embedded Boundary method on a neural-SDF learned from images. In the process, we
identify several challenges in bridging the two methods, including differences in how the
computer vision community measures error/uncertainty and what types of error/uncertainty
actually matter in an EB simulation, and present appropriate alternatives. In the following
chapters, we describe several methods for learning 3D geometries from RGB images, discuss
their suitability for scientific tasks, and do an in-depth analysis of their error and uncertainty
and how those affect a physics simulation. We finally discuss this pipeline through the lens
of a high-impact, real-world application: forest management. We reconstruct a forest scene
using NeRF that is visibly much more appropriate for simulation than previous examples. We
also discuss what challenges this real-world data presents and how the technology presented
in this thesis can be used to answer real scientific questions.

1

Acknowledgments
This thesis marks the end of a thirteen year career as a student at UC Berkeley. Accordingly,
there are dozens, if not hundreds, of people who have improved my time here in ways both
big and small. I will attempt to name many of them here, but know that this list is not
comprehensive.

I have to start with my day one, my freshman roommate, Bridget Vaughan. Thank you
for joining me in our quest for eternal student-hood and all of the study sessions, application
reviews, and commiseration that came with that. Looking forward to the next degree!

To my various undergraduate mentors: Dr. Daniel Greengard, who very patiently helped
me through my first numerical analysis class, I know I said I just wanted to pass and never
think about numerics again, but here we are. Thank you for giving me the base on which I
built the rest of my career. Juan Francisco Esteva, Dr. Joyce Onyenedum, and the rest of
the McNair Scholars Program. When I applied to the program, I was ready to give up on
my dream of a PhD. You two were the first to tell me I could do it and have continued to
support me every step of the way. Thank you to the program more broadly for providing
mentorship, community, and financial support. I’m looking forward to the day that we can
bring it back to campus to support future generations of Berkeley students.

To the community that formed in my undergraduate years and has supported me to
this day: My roommates, Cecile Basnage, Emma Latham Jones, and Erika Cruz, my dear
friends Alexis Flores-Betancourt, Areidy Beltrán-Peña, Amada Beltrán de Cornet, and Dr.
Alexandra McCleary, and my homes away from home, the Berkeley Institute (Dr. Dena
Fehrenbacher, Prof. Jonathan Shelley, Dr. Monica Mikhail, Prof. Karl van Bibber, and many
more) and the Oakland Catholic Worker (Prof. Bob Lassalle-Klein, Luly Aranda McEtchin,
Barbara Zavala, Chepe Zavala, Tulio Serrano, the late and greatly missed Tom Webb, and
many more), and Chestnut Center (Marissa Ebora, Mia Ricafort, Mia Antonia, Dr. Helen
Kwan, Carole DeCosse, Fr. Leo and everyone else) - thank you for giving meaning and joy
to my life, for the laughter, the tears, and the long conversations and philosophical debates.
You made Berkeley into a place that could feed my soul, not just my mind.

To my first research advisors: Prof. Per-Olaf Persson who introduced me to discontinuous-
Galerkin methods, Dr. Rachel Slaybaugh who gave me my first software development
opportunity on PyNE (and Ryan Feng who allowed me to drag him to that first hackathon),
set me up with my first formal research experience at Oak Ridge, advised my master’s thesis
and introduced me to the world of supercomputing, and Dr. Bob Grove, Dr. Tom Evans, Dr.
Tara Pandya, Dr. Steven Hamilton, and the rest of the ORNL Radiation Transport Group.
While my current research interests have deviated a bit from those days, you all set me up
the with fundamental skills in scientific computing that made this work possible.

To my mentors in AI & computer vision: Dr. Ethan van Andel, Dr. Mary Cameron, and

i

Kachi Okoronkwo from Hivemapper Inc. - thank you for giving me my first opportunity in
computer vision. Not many were willing to take a chance on a computational physics student
who barely understood what a neural net was. Thank you for giving me that chance. Dr.
Radomir Mech, Dr. Matheus Gadelha, Dr. Thibault Groueix, and Shanayvia Lattimore from
Adobe Research - thank you for your mentorship and support, and to the researchers more
specifically for their contributions to Chapter 2 of this thesis. The LXAI mentorship program
and my mentor Dr. Georgios Pavlakos - thank you for the coffee chats and support. Finally
to my co-advisor Prof. Trevor Darrell - thank you for seeing something in this little research
project bringing 3D vision to science that wasn’t quite sure where it fit and shepherding it to
this point. I’m looking forward to seeing how far we can go.

To the mathematicians: My co-advisor Prof. Phil Colella and the rest of the Applied
Numerical Methods Group at Lawrence Berkeley National Lab (especially Dr. Dan Martin,
Dr. Hans Johansen, Dr. Dan Graves, and Dr. Terry Ligocki). Thank you for your endless
patience, understanding and support. Most of all thank you for keeping me honest, pushing
me to critically think through my ideas, and never letting me get away with any hand-waving,
AI magic.

To the many other professors and researchers I have had the privilege of crossing paths
with: Prof. Jon Wilkening and Prof. Jonathan Shewchuk who sat on my qualifying exam and
were very understanding as we had to last minute make it virtual in April 2020; Prof. Angjoo
Kanazawa who is serving on the committee of this thesis and deserves credit for the initial
push to combine BayesRays and NeuS which turned into Chapter 4; Dr. Derek Young from
UC Davis who is my collaborator on forest reconstruction and contributed much to Chapter
5; Prof. Lee Bernstein who taught me everything I know about physics and believed in me at
my lowest point; Prof. Oscar Dubón, Dr. Armando Fox, Prof. Ken Ribet, and Prof. Karl
van Bibber (who deserves a place in quite a few of these paragraphs, but will get another
shout-out here) who were always ready with a word of advice; and Dr. Natarajan Shankar
who was generous enough to give me a chance and admit me to his Formal Methods Summer
School despite my utter lack of experience, while I never pursued much formal methods after
that, you arguably had the biggest impact of them all by introducing me to my now husband
– Thank you all for your contributions big and small. Each of these relationships, while some
of them shorter than others, have each had an outsized impact on my research path.

To my many peers and colleagues: Dr. Ben Caulfield and the residents of 1833 Cedar; Dr.
Samantha Lewis, Dr. Emily Vu, Jessica Chow, and the Computational Neutronics Group
(Dr. Mario Ortega, Dr. Vanessa Goss, Dr. Jessica Rehak, Dr. Sam Olivier, and the rest!);
My ANAG office mates (Dr. Chris Bozhart, Dr. Colin Wahl, and Will Thatcher); The Vision
& Language Group, my BAIR colleagues (especially Sarah Barrington, Neerja Thakkar, and
Carlo Bosio), Dr. Frederick Warburg who collaborated with me on many of the ideas and
software development in Chapter 4; Dr. Jane Wu and our undergraduate research assistants

ii

(in particular Arjun Rewari for his contributions to the paper that served as the basis for
Chapter 5, and Rushil Desai for his work on NeuS uncertainty) – Thank you for your ideas,
challenges, questions, support, and friendship.

To my Berkeley heroes: I would be remiss to forget the staff members who make this
university run and most importantly (to me) helped make sure I didn’t get caught in the
cogs. Sara Harmon, Roxana Infante, Meltem Errol, Catalina Estrada, and most of all Ariana
Castro - thank you for your infinite patience with every deadline reminder, email exchange,
and special exception form. I was a non-traditional student who seemed to bump up against
Berkeley’s bureaucracy at every turn, without your creativity and persistence I know we
would have never gotten here. And to my union UAW 2865 - thank you for picking up the
cause when we ran out of options. I may not have been able to get university sanctioned
maternity leave, but thanks to our union, future students shouldn’t face that particular
struggle.

To my village: The other big project of these past few years has been the birth and care
of my daughter Zoraida (Zoey). Thank you to my strong village of people who aid me in her
care: Rosa Top, Monica Vega, the lovely teachers at Imagina and Bowman. A very extra
big thank you goes to those who cared for me as a child that now give that same love and
attention to Zoey: Mary Beth Ricks, Erin Knight, Dr. Aimee Blaustein, Dr. Christina Kong,
Dianna Zupp, A-ling Santiago, the late and dearly missed Dr. Fidelia Butt, and my childhood
best friend Krista Abela. Being able to surround my daughter with the same exceptional
love and support I had growing up has been such a privilege. I would not have had the time
or peace of mind to focus on this research if not for all you.

To my mom, Andrea Ramirez – thank you for patience and willingness to pick up the
phone to be with me in celebrating every win and overcoming every challenge. Thank you
for picking up Zoey every time I have to work late, showing up at every school event I’ve
had to miss, cleaning my apartment while I was in labor, and cooking for me while I healed.
Thank you for all of your sacrifices to invest in my education and your encouragement and
unwaivering support.

To my husband, Dr. Marcell Vazquez-Chanlatte, my partner in all senses of the word –
Thank you for being my lab partner in countless classes. While I hope we never pair-program
again, I will admit that you have made me a better engineer. Thank you for being my
partner in research - the first person I bounce an idea off of, my harshest critic, and my
biggest champion, and for agreeing to put a whiteboard on our wedding registry and be sys
admin for our home compute resources. I am grateful for our constant flow of ideas, and the
knowledge that whether I stay in academia or not, you have ensured that I will never be
want for research support or stimulation. Thank you for being my partner in life, for setting
an example as you wrote your dissertation and began your post-grad research career, and for
holding down the fort at home while it’s been my turn. Thank you for being my partner in

iii

parenting, my favorite collaboration by far. Thank you for healing my heart and making the
journey everything I dreamed it could be. Most of all thank you for being my best friend.
I’m so lucky we get to do this together.

To my daughter, Zoraida – You have brought endless joy to our lives. Your morning
cuddles and good night kisses are the best parts of my day, and your curiosity and kindness
inspire me. I hope you pick this up many years from now and remember not the times that I
couldn’t play because I was too busy writing, but that your ideas have power, and when you
put them to paper they can change the world. Thank you for letting me be your mom.

iv

Contents

1 Introduction 1
1.1 Implicit Functions & Level Sets . 4
1.2 The Embedded Boundary Method . 5
1.3 Neural Networks . 10
1.4 3D Reconstruction from Images . 13

1.4.1 Structure from Motion . 13
1.4.2 Neural Methods . 14

2 Learning SDFs from Single Images 17
2.1 Single View Reconstruction . 18
2.2 Monocular Depth Estimation . 19
2.3 Projecting Disparity to 3D . 20
2.4 Recovering Detail in 3D Shapes Using Disparity Maps 22
2.5 Experimental Results . 23

2.5.1 Disparity Projection Sensitivity Studies 23
2.5.2 Full-Method Validation . 24

2.6 Discussion & Limitations . 30
2.6.1 Limitations of The Models Used . 30
2.6.2 Limitations of SVR for Scientific Use Cases 31

2.7 Related Work . 32
2.7.1 Monocular Depth Estimation . 32
2.7.2 Single View Reconstruction . 33
2.7.3 3D Diffusion and Shape Completion 34

3 Simulating Physics with NeuralSDFs 35
3.1 Learning SDFs for Scientific Simulation . 35
3.2 Methodology for Evaluating NeuralSDFs in EB Simulation 37

3.2.1 Geometry Quality Metrics . 38

v

3.2.2 NeuralSDF Convergence . 41
3.3 Image to Simulation on Complex Geometries 46
3.4 Conclusions . 46

4 Uncertainty in NeuralSDFs 50
4.1 Uncertainty in NeRF . 50

4.1.1 Intuition . 51
4.1.2 Spatial Deformation . 51
4.1.3 Laplace’s Approximation . 53
4.1.4 Computing the Hessian . 54

4.2 BayesRays with NeuralSDFs . 56
4.2.1 Rendering Uncertainty . 57
4.2.2 Uncertainty and Geometric Error . 59

4.3 Future Work: Propagating Uncertainty in Embedded Boundary Simulation . 61

5 Applications to Forestry 62
5.1 Forest Mapping . 63

5.1.1 Structure-from-Motion (SfM) . 63
5.2 Introducing NeRFs to the OFO . 66
5.3 Climate and Environmental Impacts . 68
5.4 Uncertainty in Forest Renderings . 69
5.5 Future Work . 70

6 Final Words 72

vi

Chapter 1

Introduction

Numerical simulation is an incredibly powerful tool that enables much of modern life. Con-
structing a new aircraft, planning a new city, preparing for a natural disaster, deciding where
to plant crops, and so much more, often begin with a physical simulation of the scene or object
of interest. Foundational to all of these simulations is some representation of the geometry.
Much of the numerical methods literature takes for granted that the geometry is represented
accurately. Given there are no perfect 3D computer models of most of the world around
us, an accurate geometry seems like a big assumption, but up until recently, it was difficult
to get even imperfect 3D representations of outdoor scenes. Also, even if high-quality 3D
geometries were available, performing high-fidelity, 3D physics simulations is computationally
intensive. For those reasons, much of the historical 3D numerical methods literature focused
on simulations of smaller man-made objects where access to an accurate geometry can be
reasonably assumed. For simulation of large-scale outdoor scenes simplifying assumptions
were often made to reduce the geometry to 2D or otherwise simplify the problem.

However, significant progress in computer vision, high-performance computing, and
numerical PDEs is finally coming together to make large scale, 3D, high-fidelity physics
simulation of the natural world practical. Imagine driving a car with a dash-cam through
a city, uploading that footage and then performing an earthquake simulation, or flying
a drone over a forest, capturing video, and then simulating a wildfire through it. While
this exact dream is not yet a reality, all of the building blocks are there. High quality
3D reconstruction models, semantic segmentation and material classification models, high-
performance computing architectures, and 3D numerical PDE solvers are all improving
rapidly, and with time I believe a robust version of this pipeline will be possible. But while
each of these areas of research are being thoroughly studied and improved individually, what
has not yet been fully explored, is how all of these methods will interact together.

To compute solutions to a PDE in complex geometries, there are three essential components:

1

(1) A method for constructing a mathematical representation of the geometry from data; (2)
A method for constructing discretizations given the representation of the geometry in (1);
(3) A method for constructing robust and efficient solvers for the discretizations in (2). The
Embedded Boundary method (EB) provides robust, automatic handling of steps (2) and (3)
as demonstrated in the Cart3D code [1] which is used to simulate aerodynamics for realistic
geometries in a completely automated fashion and in the work in [14, 18, 83, 84] which
provide examples of constructing robust solvers given an implicit function representation of
the geometry. A significant open problem in the EB methodology is step (1), mainly because
the data that is the starting point for generating the required mathematical representation of
discretizations is so diverse. In [1], this problem is solved for the case of surface triangulations
coming from CAD systems. In the other methods cited here, the generation of discretizations
and robust solvers is solved by generating in step (1) implicit function representations of
geometry from whatever data is available. Notably, in [83] 2D boundaries were determined
from images via level set methods, but there has not yet been work performing an Embedded
Boundary simulation on a 3D geometry learned from images.

This thesis represents the first exploration of a pipeline from RGB images to 3D Embedded
Boundary PDE simulation using neural networks. In the following chapters, we explore several
tools from the AI and computer vision community that learn 3D implicit functions from
RGB images. While most of these tools were developed with visual reconstruction quality in
mind, we instead probe their suitability for scientific tasks, and do an in-depth analysis of
their error and uncertainty and how those affect a physics simulation. Through experiments,
we demonstrate the failings of Chamfer Distance, a commonly used 3D reconstruction metric,
to capture simulation error, and instead present our own metric which combines the two
qualities most relevant to EB simulation: SDF fidelity and surface smoothness. This opens up
a new class of application domains where such image data is the best, or even the only data
available from which to derive geometric information. We more deeply explore one of these
high-impact domains, forest management, use neural methods to reconstruct a forest scene,
improving on the current forest 3D models available, discuss what challenges this real-world
data presents and how the technology presented in this thesis can be used to answer real
scientific questions.

As this is a highly interdisciplinary work, in the rest of chapter 1, we provide a quick
background (as well as references for additional reading) on several of the methods that
will be discussed. In chapter 2, we start the original content with how to obtain 3D
computer geometries of the world around us. Methods such as LiDAR and Structure-from-
Motion [81] have long been used for this purpose, but they are often noisy and can at times be
impractical. More recently, work has emerged using neural networks to predict 3D geometry
from images [59, 100]. Images are much easier to obtain through existing satellite imagery,
lightweight video drones, or even an individual with a smart phone, so reliably being able to

2

derive 3D geometries from these images greatly opens up the world of possibilities. The most
successful neural image-to-3D techniques use implicit functions to represent the 3D geometry.
In chapter 2, we describe one such method for learning 3D SDFs from single images.

But despite the rich literature and progress made by the computer vision community, we
have not yet seen widespread adoption of these neural geometries in numerical PDEs. There
are many possible reasons for this, but one appears to be the lack of rigorous study around the
accuracy of these methods, particularly how that accuracy affects the accuracy and stability
of numerical solvers. Neural-implicit representations have inherent uncertainty. In graphics
and other visual applications one can easily inspect with their eyes if a reconstruction is
suitable enough for use, but in scientific applications it is not so easy.

In chapter 3, we explore how neural SDFs interact with a numerical PDE solver. What
kinds of errors do these methods make in the representation of the geometry? How do
numerical solvers react to these errors? How should an applied mathematician understand
these tools in the context of an image-to-simulation pipeline? What would such a pipeline
even look like? There are many methods to create 3D geometries of the real world, and
even more methods to solve PDEs on 3D geometries, so it is difficult to make claims about
the interaction of the two classes of methods more broadly, but the boom in neural implicit
methods for 3D reconstruction provides a suitably interesting and narrow lens to begin
to study the issue. Implicit functions have nice geometrical properties that can result in
higher quality 3D surface representations. They also have properties that can facilitate
discretization for numerical methods. The Embedded Boundary method [39] is an approach
for finite-volume discretization that uses implicit surface representations as geometric inputs.
Using the implicit surface function intersected with a Cartesian grid, we can calculate to
high accuracy the volume fractions and centroids of the cells cut by the boundary of the
geometry and use that information to perform a finite-volume fluid simulation. Chapter 3 of
this thesis addresses the questions posed at the beginning of this paragraph by providing a
systematic analysis of error measurements in 3D reconstruction, proposing a new metric that
is more correlated with physical simulation error; describing for the numerical analyst the
various parameters that can be tuned in NeuS reconstruction and analyzing the convergence
properties of these parameters in both geometry and in PDE solution; and providing a full
workflow of the image to simulation pipeline on a complex geometry.

In Chapter 4, we explore and define uncertainty in neuralSDFs. Exploring the effect
of geometric error in the numerics pipeline leads us to wonder if there is a way to better
understand and control those errors before we begin simulation. Of course, without a ground
truth to compare to, it is difficult to have a concept of “error,” so we instead try to quantify
some estimation of uncertainty. An uncertainty estimate of a geometry is a powerful tool
that combined with our earlier understanding of the effect of geometric error on simulation
can provide insight into a simulation’s quality and alert scientists if a geometry is going to

3

be suitable for their needs or if additional data or other remediation is necessary. Chapter
4 discusses in detail uncertainty quantification for neural-implicit methods and presents a
novel method for predicting uncertainty in NeuralSDFs.

In Chapter 5 we describe how these methods can be applied in real-world application. We
chronicle the collaboration with the Open Forest Observatory in their effort to create a freely
available 3D library of forests in the Western United States. This project is a perfect example
of why applications research, translating state-of-the-art computational methods to scientific
problems, is vital. Real world data presents difficulties often overlooked by initial methods
research. This chapter serves both as a proof of concept of the power and feasibility of our
image-to-simulation pipeline as well as a how-to manual for applying neural reconstruction
methods to large-scale outdoor datasets.

This thesis presents and walks the reader through the image-to-simulation pipeline; first
presenting a novel method in using neural networks to learn 3D signed-distance functions
from single images, next exploring how neural signed distance functions interact with physical
simulation through the Embedded Boundary method, then exploring uncertainty in neural
signed distance functions, and finally exploring how all three classes of methods (NeuralSDFs,
Embedded Boundary simulation, and uncertainty prediction) can be used together in a
real-world setting, the Open Forest Observatory, to answer pressing scientific questions. We
synthesize methods from the computer vision, scientific computing, and applied science
communities, identifying unexplored gaps at the intersections. We also present new methods
to fill some of these gaps and give a blueprint for a new interdisciplinary tool chain that
could make the simulation of real-world scenes much easier.

1.1 Implicit Functions & Level Sets

Figure 1.1: An
illustration of the signed

distance function of a
circle.

In both 3D reconstruction and simulation we are interested in rep-
resenting a surface in 3D Euclidean space. Before we delve into
deeper discussion of how to generate these surfaces, let us briefly
define some useful geometric concepts. Fundamentally, all surfaces
are subsets of E3, however not all subsets are surfaces - they must
also be smooth and two-dimensional. We can also define a surface
with an implicit function. For example the equation x2 + y2 + z2 = 1
implicitly defines the spherical surface of radius 1.

Some types of implicit surface functions have other special prop-
erties. The work contained in this thesis primarily involves implicit
signed distance functions (SDFs) 1.1. A signed distance function
returns the shortest distance to a surface given a point, along with a
sign indicating whether the point is inside or outside the surface. In the example of a sphere

4

of radius 1, the equation f(x, y, z) = x2 + y2 + z2 − 1 would be the implicit signed distance
function, with the zero level set of that function, x2 + y2 + z2 − 1 = 0 representing the surface.
A useful property of SDFs is that where differentiable, their gradients always satisfy the
Eikonal equation: |∇f | = 1. While not all implicitly defined functions are Signed Distance
Functions (for example, one could implicitly define a geometry with sharp corners where the
gradient is undefined), there exist algorithms to smooth such geometry into a signed distance
function [18].

Implicit functions have been well explored as a tool for numerical analysis of surfaces
and shapes. First introduced in [67] for computing the dynamics of propagating fronts,
level-set methods provide a framework for performing numerical computations involving
curved surfaces on a Cartesian grid. This method has been used for a variety of applications,
including numerical PDEs, computational geometry, and shape/surface reconstruction from
images. We will discuss in greater detail a specific numerical method of this flavor called the
Embedded Boundary method in the following section, but make note of the level set work here,
to emphasize that the current popular methods in numerical PDEs and 3D reconstruction
that we are exploring in this thesis are rooted in the same mathematical theory.

1.2 The Embedded Boundary Method
Signed distance functions have many uses, one being in numerical simulation of partial
differential equations (PDEs) via the Embedded Boundary Method [39]. The Embedded
Boundary is a finite volume method that involves intersecting a complex geometry (represented
by an implicit signed distance function) with a Cartesian grid. The two are laid on top of
each other resulting in “cut cells" at the surface (shown in Fig. 1.2), where the boundary
function “cuts" the Cartesian grid cells. For this reason, it is also referred to as a cut-cell
method.

From there, the volume information necessary for a finite volume computation can be
recursively constructed (as seen in Fig. 1.4), starting by calculating where the geometry
intersects the grid on the 1D cell edges, then calculating the centroid or moment of the
covered part of the geometry, and then using that information to build up to the 2D cell
faces and then the 3D volume.

The input geometry always takes the form of an implicit function (and often an implicit
signed distance function), but that function can be derived from a variety of sources: Some-
times we know the function analytically (i.e. shapes such as a sphere or cube), sometimes
we can also use those shapes to construct more complicated geometries, other approaches
include ray casting towards a surface mesh and calculating the SDF that way. In this thesis
we focus on learning the SDF from input images. Earlier work [83] has been done inferring a
2D surface from a single image for use with EB, but this is the first time we have explored

5

Figure 1.2: Control volume formation on a 2D example. The gray geometry represents some
object, and we are interested in simulating the mechanics of fluid flowing around it in the white

region. The EB method intersects the more complicated grey geometry, with a simpler Cartesian
grid, so that we may use the finite volume method to calculate the physics solution. But instead of
performing a finite volume calculation on the entire volume of the cell centered at the black circles,
we perform the calculation on just white region of the cell whose centers of mass are represented by

the x’s. In cells that are completely white, those two centers of mass line up, so no additional
computation is needed, but in the boundary cells we must use the machinery outlined below to

calculate the correct center of mass.

3D surfaces from images.
In this section we will describe the process of calculating an EB geometry as outlined

in [84]. The Embedded Boundary method starts by intersecting an irregular geometry of
interest, Ω, with a Cartesian mesh with cells i. We define that mesh as:

Υi = [(i − 1
2u)h, (i + 1

2uh)], i ∈ ZD (1.1)

where D represents the dimensional of the problem, h is the grid spacing, and u is a
vector whose entries are all one. We then obtain control volumes Vi = Υi ∩ Ω and faces
Ai,d± = Ai±ed/2. We can use the divergence theorem to model the divergence of the field as
the surface flux which is approximately equal to the balance of the various cell-edge fluxes
and the flux through the boundary.

∫
V

∇ · FdV =
D∑

d=1

(∫
Ad+

FddA−
∫

Ad−
FddA+

∫
AB

Fdnd(x)dA
)
. (1.2)

6

Figure 1.3: An example of a single boundary cell showing flux in and flux out in addition to the
various face and boundary aperatures and normals. Here we have all the geometric quantities

necessary for Eq. 1.4. The red x’s represent the midpoints (or centroids) of the one-dimensional
boundaries, the arrows are the normals, and the black dot is the centroid of the volume.

We can discretize this equation via the midpoint rule to obtain:

∫
V

∇ · FdV ≈ 1
κih

 ∑
±=+,−

d∑
s=1

±αi± 1
2 es
F s(xi± 1

2 es
) + αB

i nB
i · F⃗ (xB

i)
 (1.3)

where κi = |Vi|h−d are the volume fractions, αi+ 1
2 es

= |Ai+ 1
2 es

|h−(d−1) are the face
apertures, αB

i = |AB
i |h−(d−1) are the boundary aperatures, nB

i = 1
|AB

i
|
∫

AB
i

nBdA is the average
outward normal to the boundary, and nB is the outward normal to ∂Ω defined for each point
on ∂Ω. Each of these quantities are illustrated in Fig. 1.3.

The midpoint rule provides a second-order accurate approximation. We can extend this
to high orders of accuracy. Given a sufficiently smooth function ψ,

ψ(x) =
∑

|q|<Q

1
q!ψ

(q)(x)(x − x)q +O(hQ) (1.4)

we can use a Taylor expansion to approximate F in the neighborhood of x to arbitrary order

7

Q:
∫

v
(∇ · F)dV =

∑
|q|<Q

D∑
d=1

1
q!

F (q)
d (xd+)

∫
Ad+

(x − xd+)qdA

− F
(q)
d (xd−)

∫
Ad−

(x − xd−)qdA+ F
(q)
d (xB)

∫
AB

(x − xB)qnd(x)dA
+O(hQ+D−1)

(1.5)

Given a point in space x and a D-dimensional integer vector p, we define the p-th moment
of the faces Ad± and the boundary AB relative to the point x

mp
d± =

∫
Ad±

(x − xd±)pdA (1.6)

mp
B,d =

∫
AB

(x − xB)pnd(x)dA (1.7)

Using the moment definitions,∫
v
(∇ · F)dV =

∑
|q|<Q

D∑
d=1

1
q! (F

(q)
d+m

q
d+ − F

(q)
d−m

q
d−

+ F
(q)
B mq

B,d) +O(hQ+D−1). (1.8)

This equation provides a relationship between the divergence and the moments, but it
also gives us a path towards calculating the moment values. We do this by considering a
volume V at cell i and letting x be some point in the cell (we will set x = 0 without loss of
generality). If we choose F = xqed, we get D equations of the form

qd

∫
V

xq−eddV =
∫

Ad+
xqdA−

∫
Ad−

xqdA+
∫

AB

xqnddA. (1.9)

These face integrals are the moments shown in the picture in Fig. 1.3. We approximate the
last integral using a Taylor series to order of accuracy S:∫

AB

xqnd(x)dA =
∑

|s|<S

1
s!∂

snd(0)mq+s
B +O(h|q|+D+S−1). (1.10)

Combining, we use the following equation to calculate the moments mv, mB, and md±.

qdm
q−ed
v − nd(0)mq

B = mq
d+ −mq

d− +
∑

|s|<S

1
s!∂

snd(0)mq+s
B +O(h|q|+D+S−1). (1.11)

We can calculate these values recursively as shown in Fig. 1.4. Each moment can be
written in terms of the lower dimensional moments, going down to 1D which are easily
calculated via numerical root finding.

8

Figure 1.4: Recursive moment building from 1D [51]. For a 3D finite-volume simulation, we need
to compute the 3D control volume on the left. We do this recursively, using Eq. 1.11 to build up a
system of equations based on the 2D moments that can be solved via least squares to determine the

3D moments. The 2D moments are in turn dependent on the 1D moments, which can be easily
found via a simple root-finding algorithm. It is important to note that accuracy is lost as we move
to higher dimensions, so we must calculate lower dimensions to higher order of accuracy than we

will need for the higher dimensional moments.

9

1.3 Neural Networks
In this work, the signed distance functions we consider are not only different because they are
derived from images, but because they are represented not as a traditional implicit function,
but as a neural network which predicts what the output of the signed distance function would
be given a point as input. There are a variety of ways in which these networks can be trained
(via supervised learning on matching 2D images and 3D ground truth SDFs, by rendering
images and comparing to ground truth images, by looking at a base point-cloud, and more),
but all the neural networks we will talk about in this thesis share the same basic structure.
Because neural networks are not yet widely used in combination with numerical methods,
we give a quick introduction to the basics following Hastie, Tibrshirani, and Friedman’s
exposition in The Elements of Statistical Learning [38].

A multilayer perceptron (MLP) is a function mapping X ∈ Rninput to Rnoutput parameterized
by m linear maps, m-vectors, and m+ 1 non-linear maps. Each linear map is called a linear
layer and is parameterized by a matrix of real numbers. Specifically, for the i-th linear
layer, weight matrix Ai ∈ Rdi×di+1 maps Rdi → Rdi+1 . The i-th linear layer is associated
with a bias vector, bi ∈ Rdi+1 and non-linear map (also known as an activation function),
σi : Rdi+1 → Rdi+1 , that applies a non-linear function, such as a sigmoid, element-wise. The
final non-linear map, g, maps Rdm+1 → Rnoutput . Examples for g include the identity function,
the softmax function, and the max function. A MLP, f , composes these maps as follows:

f(X) = g(zm+1)
zi+1 = σi(Aizi + bi)
z1 = X

(1.12)

The linear layer plus its corresponding non-linear layer (i.e. the function producing zi) are
together referred to as a single perceptron layer. Layers whose output is not directly consumed
by g are referred to as hidden layers. The output of a hidden layer, zi, is referred to as a
latent variable.

MLPs are often visualized as directed acyclic graphs (see Fig. 1.5) where each incoming
edge is weighted by entries in the corresponding weight matrix, Ai, and each node represents
the variable produced by summing the inputs weighted by the edges, applying the bias and
non-linearity. Linear layers correspond to collections of edges feeding into nodes of the same
depth. A hidden layer corresponds to a collection of interior nodes at the same depth along
with their edges. For example, in Fig. 1.5 the red nodes correspond to the latent variables
of a single hidden layer. Eq. 1.13 expands Eq. 1.12 for a single hidden layer to make the
node-level semantics explicit:

10

Figure 1.5: A schematic of the multilayer perceptron [38].

f(X) = g(T)
T = β0 + βTZ0

Z0m = σ0(α0
0m + α0

m
T
Z1),m = 1, . . . ,M

Z1n = σ1(α1
0n + α1

n
T
X), n = 1, . . . , N,

(1.13)

where f(X) is the function mapping inputs to outputs (for example a signed distance function),
(Z0 = (Z00, Z01, . . . , Z0m) and Z1 = (Z00, Z01, . . . , Z0n), σ0, σ1 are activation functions, and
αi and βi are biases of the neural network (e.g. elements of bi from above). T corresponds to
zm+1 (e.g. the last latent variable to which g is applied).

Neural networks such a MLPs are typically created by a process called “training”. When
“training" the neural network, we search for weights that best fit the training data. The
complete set of weights is denoted by θ which in the single layer case consists of,

α0m, αm;m = 1, 2, . . . ,M M(p+ 1) weights, (1.14)
β0, β (M + 1) weights (1.15)

Next, a loss function L(θ) is selected. This is some measure of the error between the
training data Y and the result of the network f(X). An example loss function is the
sum-of-squared errors:

11

L(θ) =
N∑

i=1
(yi − f(xi))2, (1.16)

Typically to minimize L(θ) one uses a variant of gradient descent. The gradient of the loss
with respect to the neural network weights is typically computed via automatic differentiation.
For exposition, we symbolically illustrate back propagation on a single layer MLP, a common
automatic differentiation algorithm. Let zmi = σ(α0m + αT

mxi) and let zi = (z1i, z2i, . . . , zMi).
The derivatives of R(θ) are

∂Li

∂βm

= −2(yi − f(xi))g′(βT zi)zmi, (1.17)

∂Li

∂αmℓ

= −2(yi− f(xi))g′(βT zi)βmσ
′(αT

mxi)xiℓ. (1.18)

A gradient descent update at the (r + 1)-st iteration looks like

β(r+1)
m = β(r)

m − γr

N∑
i=1

∂Li

∂β
(r)
m

, (1.19)

α
(r+1)
mℓ = α

(r)
mℓ − γr

N∑
i=1

∂Li

∂α
(r)
mℓ

. (1.20)

where γr is the learning rate.
Define a quantity δi = −2(yi − f(xi))g′(βT

k zi) which represents the loss at the output
layer. This can be used to define another quantity

smi = σ′(αT
mxi)βmδi (1.21)

which is the loss at the hidden layer. These are also known as the back-propagation equations
and can be used to rewrite the derivatives as

∂Li

∂βm

= δizmi (1.22)

∂Li

∂αmℓ

= smixil. (1.23)

With the back-propagation equations we can implement the gradient descent step shown
above in a two pass algorithm. First we perform a forward pass where the current weights
are fixed and the predicted values f̂(xi) are computed using Eq. 1.13. In the backwards pass
the δis are computed and then put into Eq. 1.21 to get smi. Then both losses are used to
compute the desired gradients for the next step of gradient descent.

12

1.4 3D Reconstruction from Images
The problem of constructing a 3D geometry from multiple images has been long-studied
in the computer vision literature. For use with the embedded boundary method, we are
particularly interested in producing 3D implicit signed distance functions from several images,
and we will briefly summarize several categories of approaches for obtaining 3D implicit
SDFs. The first involves uses only classical techniques, constructing a 3D point-cloud using
structure-from-motion (SfM), meshing that point-cloud, and then calculating a signed distance
function from that mesh. The second category encompasses neural approaches which involve
learning the SDF directly from the input images. The neural approaches can be further
divided into two categories: large-data supervised methods and self-supervised methods.
Large-data supervised methods require large datasets of image and 3D ground truth pairs to
train on. In Chapter 2, we discuss many of these methods. For many scenes and objects of
interest in scientific computing, we do not have access to this kind of data, so we turn to
methods that use only information obtained in the input images themselves as supervision.
Neural Radience Fields (NeRFs) are one such methods, so we introduce NeRF and its various
SDF-based derivatives in detail, as they are currently the best suited for this type of work.

1.4.1 Structure from Motion
Structure-from-Motion (SfM) [81] is probably the best known reconstruction method in the
scientific community. It is based on the principle that humans perceive information about
3D structure by moving around an object. Given a set of 2D images of an object or scene,
matching features are tracked in each image. These features are often things like corners
or line segments. Using these features we can triangulate to estimate camera locations and
orientations and produce a 3D point-cloud of (x, y, z) coordinates of these features. There
are several open-source implementations and variations on this technique, but in this paper
we use COLMAP [81] as our SfM library.

There exists some work in the community using SfM to reconstruct a scene of scientific
interest and use that to answer scientific questions [110], yet to our knowledge, there has
not been much work doing full scale PDE simulations with these geometries. This is likely
because high fidelity PDE simulations often require higher fidelity geometries than we usually
get from SfM. For example, with a drone flying over a forest capturing images SfM might
be able to produce a good canopy map, but it cannot fill in novel views below the canopy.
There is also noise present in SfM generated point-clouds that can create sharp corners and
changes in surface geometry that are particularly challenging to handle in EB simulation.
We will discuss this problem in more depth in Chapter 3.

SfM produces a 3D point cloud. To convert a point-cloud to an SDF, the classical approach

13

Figure 1.6: An illustration of feature mapping as implemented in the MATLAB SfM package.

is to first mesh the point-cloud and then ray-cast to calculate the SDF. There are many
standard point-cloud to surface-mesh algorithms such as Poisson Surface Reconstruction
[42]or Ball-Pivot [5]. All of these methods are very useful in creating geometries for simulation,
but they each introduce new error and biases, that need to be tracked and better understood.

1.4.2 Neural Methods
Neural Radiance Fields (NeRFs)

A Neural Radiance Field (NeRF) is a neural network, f , trained on a set of input images,
I, with parameters, θ. The trained network acts as a function that when given a 3D point
location in space, x, and a viewing direction, d, returns a color, Ĉ:

fθ(x, d) = Ĉ (1.24)

That color is determined using volume rendering. For any given point, the volume density
σi and color ci are predicted using a coordinate MLP and the color of the pixel viewed at a
particular angle is predicted by summing along the viewing-angle ray.

Ĉ =
n∑

i=1
wici (1.25)

where the weights are wi = Tiαi, the opacity of the i-th ray segment is αi = 1 − exp(−σiδi),
the distance between adjacent samples δi = ti+1 − ti, and the accumulated transmittance
is Ti = ∏i−1

j=1(1 − αj). The parameters are determined by minimizing the loss between the
predicted color, Ĉ, and the true color seen in the input images, Cgt.

L = ||Ĉ − Cgt||22 (1.26)

14

Figure 1.7: A visual explanation of the NeRF training process from [60]

Fig. 1.7 provides a visual explanation of the NeRF process. A collection of input images
are given along with the viewing angle from which they were taken (often determined using
SfM). The NeRF is an interpolation function that allows us to realize new views not included
in the initial input data. NeRF, and it’s numerous derivatives have experienced widespread
adoption in 3D rendering, but NeRF by itself is a 2D rendering of views, not truly a 3D
geometry. Using marching cubes, we can derive where the surface of the object is and obtain
a mesh or a point-cloud, but these geometries are often not of the same high visual quality
as the NeRF.

Neural Signed Distance Functions

NeuS [100] was developed to address the problem of poor-quality meshes being derived from
NeRFs. They add in a signed-distance function prediction network and then render the
surface of that SDF in the loss. While this method was designed to produce higher quality
mesh, and is typically studied and used for that purpose (in experiments with these methods,
the SDF is always rendered and it is the mesh accuracy that is discussed, not the SDF), we
see great value in directly predicting the SDF.

NeuS uses the same color function (Eq. 3.2), but re-defines the weights as the normalized
s-density, ϕs:

w(x) = ϕs(f(x))∫+∞
0 ϕs(f(x))dx

(1.27)

where f(x) is the signed-distance function. The s-density is a probability density function
also known as the logistic density distribution

ϕs(x) = e−x

(1 + e−x)2 (1.28)

15

The s-density is the derivative of the Sigmoid function, Φs(x), i.e. ϕs(x) = Φ′
s(x).

Φs(x) = (1 + e−x)−1 (1.29)

For ease of computation, we can also think of the weights as the product of the transmittance,
Ti, and opacity, αi as defined in NeRF, wi = Tiαi. In this case transmittance is defined to be
the same as in NeRF, but the opacity comes out to

αi = max

(
Φs(f(xi)) − Φs(f(xi+1))

Φs(f(xi))
, 0
)
. (1.30)

The full derivation of this equation is provided in the supplementary material of the NeuS
paper [100].

For supervision, NeuS uses the same color loss equation as NeRF (Eq. 4.1), but they
add in a regularization term, the Eikonal term ||∇f(x)||2 = 1, which is applied to points
randomly sampled near the surface, enforcing that the predicted distances locally form a
signed distance field. When it was released, NeuS was shown to produce better meshes on
sets of test objects than NeRF, the major disadvantage at the time was the speed. Two
variants, Neus2 [101] and NeuralAngelo [49] were released later that follow the same rendering
scheme, but take advantage of the new neural graphics primitives in instant-ngp [63] and
other computational tricks to greatly improve speed. In this thesis, we perform experiments
on the neus-facto and neus-angelo implementations in nerfstudio [92], but results should be
generalizeable to all methods in the NeuS family.

16

Chapter 2

Learning SDFs from Single Images

Figure 2.1: Our method projects the output of a monocular depth estimator to 3D, using it to
improve the appearance of a 3D geometry from a single view reconstruction model.

In this chapter, we present a novel method1 for improving the detail in signed-distance
1This work was conducted from mid-2021 to mid-2022 (roughly three years before the writing of this

17

functions of objects learned from single images. We start with an SDF of an object learned
from an image that is unsatisfactory in its result. See Fig. 2.1 as an example. From the
SDF we can visualize a 3D mesh of the chair, but we see it is lacking all of the detail of
the legs and wheels. Our method fixes this problem, using the output of two different types
of neural networks: A point-cloud sampled from the SDF of a single-view reconstruction
network, Λ, and disparity map, d given by a monocular depth estimation network. We then
learning camera parameters ω = s, t, fov, zt, d which allow us to project the disparity map
into a 3D point cloud, Ψ. To approximate the parameters we fix the disparity map, d, and
use stochastic gradient descent to minimize the Chamfer distance (defined below) between
the projected point-cloud, Ψ, and the visible portion of the SVR-generated point-cloud, Λvis.

Lfitting = 1
|Ψ|

∑
x∈Ψ

min
y∈Λvis

||x − y||22 + 1
|Λvis|

∑
y∈Λvis

min
x∈Ψ

||x − y||22

x and y are 3D points in the point-cloud Λvis.
The intuition for the approach comes from the assumption that the initial prediction is

roughly the right general shape and size as the desired object, and is only lacking in detail.
By fitting the disparity map to the initial visible points, we should recover camera parameters
that lead to a point cloud of roughly the right shape.

We next describe in detail the various component parts, including the two neural-networks
we use black-box, and then present an overview of our method. We provide experiments
showing that the method did improve shape on two datasets, and conclude with a discussion of
the limitations of the method, particularly as it relates to generating geometries for scientific
computing.

2.1 Single View Reconstruction
Single View Reconstruction (SVR) networks are thus named because they reconstruct a 3D
geometry (in this case a signed distance field) from a single image. For each image input, we
want an implicit function f̂(x) : R3 → R, that represents the 3D geometry of the object in
the image as the output. To train the network, we gather ground truth example pairs {I, f̂}
of input images and their matching ground-truth SDF evaluated at grid points. Using this
data, we fit parameters θ of Multi-Layer Perceptron (MLP), f(x; θ), where f : R3 → R, so
that it approximates a signed distance function that matches the input image. To achieve
this, we minimize a loss function that computes the distance between the predicted SDF

thesis) and was presented at the ECCV 2022 Workshop on Learning to Generate 3D Shapes and Scenes,
co-authored by Thibault Groueix, Matheus Gadelha, and Radomir Mech [70] The motivation and discussion
of related works reflects the state of the field at the time, which has since progressed significantly.

18

values, f̂ near the surface and the ground truth SDF values, f .

LSDF = ||f − f̂ ||22 (2.1)

As we want not just any implicit surface function, but a signed distance function in particular,
many add an additional loss term known as the Eikonal regularization term [33].

Leik = (||∇xf(x; θ)|| − 1)2 (2.2)

This term encourages the gradients ∇xf to be of unit 2-norm, satisfying the Eikonal
equation ||∇xf(x)|| = 1. A solution f to the Eikonal equation, where f vanishes on X , with
gradients N , will be a signed distance function [15]. Together these two terms yield the
complete loss function:

LSVR = λ1LSDF + λ2Leik (2.3)

where each term is weighted by weights λ1, λ2 of the user’s choosing. In our method, we use
the SVR network to predict a signed distance field of the object of interest at all points on a
3D grid. We then use marching cubes to convert the SDF to a surface mesh, and then sample
points on the surface to create a point-cloud, Λ. While learning the SDF in the SVR network
leads to a better shape, a point-cloud is easier to manipulate, particularly in combination
with the disparity map which is also converted to a 3D point-cloud.

While this training procedure is sound, in practice SVR methods are biased because of
where the training data tends to come from. SVR networks need 3D ground truth data which
is hard to come by, so many networks rely on the same dataset, ShapeNet [8], a synthetic
3D mesh dataset with tens of thousands of shapes. They then synthetically render the 2D
images to match the 3D data. These images are often limited in their realism, so the resulting
networks often do not perform very well on real photos with varied lighting conditions and
backgrounds. This domain gap between the synthetic training data and the real images of
interest is a known limitation of these SVR models. Unlike 3D signed-distance functions,
depth data is easier to access in the real world, so monocular depth estimation networks do
not tend to suffer from the same biases, which is why we wish to leverage them to improve
SVR.

2.2 Monocular Depth Estimation
Depth estimation refers to the problem of inferring depth from RGB images. The word
monocular is often put in front of it to specify that we are only inferring depth from one
single image. In the literature, people often discuss the task of “depth" prediction of a single

19

image, but in most cases what is being predicted is disparity, or the difference between two
matching points in two stereo images. In these models, an image, I, is the input, and a 2D
disparity map Idisp indicating a normalized disparity value for each pixel, is the output.

A simple monocular depth estimation network can be achieved with supervised learning.
In this case, we have a set of input images, Itrain, of size m × n paired with ground truth
disparity maps D : m× n → R. We use this data to learn weights of a network g(x; θ) where
g : R2 → R that predicts a disparity value given a pixel location. We learn those weights by
minimizing the loss between the predicted depth and the ground truth.

Ldisp = ||Ipred
disp − Igt

disp||22 (2.4)

2.3 Projecting Disparity to 3D
What we are given after passing the image through the black-box monocular depth estimation
network is a normalized disparity map. To use this information to improve the point-cloud
obtained from the SVR method, we need to convert it into a 3D point cloud as well. This is
a two step process which involves first converting the disparity map to a depth map and then
projecting the depth into 3D. We describe our novel approach to this process in detail in this
section.

Disparity is used in monocular depth estimation [98, 73, 109] for several reasons. The
first being the availability of disparity data and the difficulty of converting disparity to depth.
In mixed datasets it is easier to convert depth maps to disparity maps than the other way
around, so disparity maps are popular training sets. Second, because of its relationship to
inverse depth, using a disparity map for training effectively weights the loss function by depth,
biasing towards objects in the foreground. As these networks predict normalized disparity, d,
rather than depth, we must find a way to convert Idisp to depth values. Disparity is related
to depth Z by an affine transformation:

1
Z

= d− (cR
x − cL

z)
fb

, (2.5)

where b is the camera baseline, f is the focal length, and cR
x , c

L
x are the horizontal coordinates

of the principal points from the stereo camera pair. For simplicity, we rewrite this equation as
1
Z

= s ∗ d+ t, (2.6)

where s = 1
fb

and t = − (cR
x −cL

z)
fb

.
In our method, we take a normalized disparity map and convert it to a partial 3D

point-cloud of the visible points of the object, Ψ. Eq. 2.6 is used to convert disparity to

20

depth, but to get the partial point-cloud, we must also convert depth coordinates (u, v) to
3D coordinates (X, Y, Z). To do this, we invert the perspective projection equation in the
pinhole camera model: uv

1

 = 1
Z

fx 0 u0
0 fy v0
0 0 1

XY
Z

 (2.7)

where (fx, fy) is the focal length and (u0, v0) is the optical center of the image plane.
Solving for (X, Y, Z) we get

u = f

Z
X + u0 =⇒ X = (u− u0)

fx

Z (2.8)

v = f

Z
Y + v0 =⇒ Y = (v − v0)

fy

Z (2.9)

where f is the focal length defined as f = x
2tan(fov/2) and fov is the field of view and x is the

diagonal of the image. We assume (u0, v0) to be (0, 0). When we are given only a normalized
disparity map, s, t, and fov are all unknown, so we must find acceptable approximations of
these parameters in order to get the desired 3D point cloud.

The pinhole camera model assumes the origin of the coordinate system to be the camera
position, while most view-centered reconstruction models assume the reconstructed geometry
to be placed at the origin. To relate the two coordinate systems, we need to predict
an additional parameter, a translation constant zt. We translate our projection to get
Z ′ = Z + zt where Z ′ is aligned with the initial object reconstruction. In total this gives a
set four parameters, ω = {s, t, fov, zt} that we must predict.

Note that if the single-image predictor were object-centric, we would have to predict a
rotation to relate a view-centric coordinate-system with an object-centric one. Predicting
this rotation is subject to local minima. In cases where a canonical coordinate system is
important, we argue that it is better to learn this rotation during training of the single-view
predictor rather than optimize it in post-processing, since learning on a data collection might
help alleviate these minima from the loss landscape.

The two-step process of using the equations above can be thought of as a function
f(s, t, fov, zt, d) = Ψ which takes a normalized disparity map along with other parameters
and transforms it into the corresponding 3D point cloud, Ψ. To approximate the parameters
ω, we fix the disparity map, d, and use stochastic gradient descent to minimize the Chamfer
distance between the projected point-cloud, Ψ, and the visible portion of the SVR-generated
point-cloud, Λvis via Eq. 2.1. The parameters that minimize Eq. 2.1 are used to create the
final point cloud used throughout the rest of the fine-tuning procedure.

21

It is important to note that this is an under-determined function. There are infinite
choices of ω that will result in the same point cloud. There are also many local minima. This
makes this approach very sensitive to initialization. To improve robustness, we perform the
fitting several times, each time randomly initializing, and then choosing ω that resulted from
initialization with best loss as the final parameters.

2.4 Recovering Detail in 3D Shapes Using Disparity
Maps

Now that we understand each of the component parts, we can combine them together. We
start with an off-the-shelf and pre-trained single-view reconstruction network that produces
an unsatisfactory result and aim to use disparity to improve that result to better match the
input image. Take the image of a chair shown in Fig. 2.1. The single-view reconstruction
network produces a geometry that looks like the body of the chair, but the legs are missing.
Our method takes that initial prediction and uses a disparity map to improve the appearance
of the geometry.

The fine-tuning procedure is as follows:

1. Input an image, I into a SVR network yielding a 3D SDF of the object.

2. Convert that SDF into a point cloud, Λ, representation of the initial prediction.

3. Split Λ into two sub-pointclouds of points that are visible, Λvis, and occluded, Λocc,
from the camera viewpoint of the input image.

4. Obtain a 2D disparity map, Idisp, of image I using a monocular depth estimation
network

5. Given Idisp find the focal length, scale, displacement, and translation constants,
ω = {fov, s, t, zt}, necessary to convert Idisp into Ψ, the 3D point cloud most closely
resembling Λvis.

6. Combine Λocc and Ψ and remove any points from Λocc that are now visible. Call this
cleaned and combined final point cloud Ψ′.

In step 1, we start by inputing an image, I, into a SVR network to get a 3D SDF of the
object. We define an image, I, to be a real-valued matrix of size m× n× 3 where m and n
are the pixel dimensions, and for every pixel value there is defined a size 3, real-valued vector
representing the red, blue, and green (RGB) components of that pixel. Next, we obtain point

22

cloud representation from the mesh of the SDF. Note that while we use an SDF as our initial
prediction in this method, one could use another method to obtain a point-cloud of the object
and start at step 2.

After we have our initial prediction, we split the point cloud into visible and occluded
points. The idea here is to leverage the information we have from the disparity map while
keeping the points for which we have no disparity information (the occluded points) the same.

In step 4, we use a monocular depth estimation network to predict a normalized disparity
map for I. This map is a real-valued m by n matrix with a normalized disparity value for
each pixel (u, v). We take the predicted 2D disparity map, Idisp, and convert it into a 3D
point cloud, Ψ, that will replace the visible part of the object. This is the most technically
challenging step and our key contribution that we discuss in section 2.3.

The final step is to combine the occluded point cloud, Λocc from the initial prediction with
the projected disparity points, Ψ. Then a final cleaning is performed, to remove any occluded
points that are no longer occluded by the new visible geometry. This is done by iteratively
removing points from Λocc that are not occluded by the projected disparity points, Ψ. This is
to account for errors in the initial prediction. Imagine looking at the back of a chair that is
mostly open, connected only by spokes. If the initial prediction erroneously reconstructed
the chair with a solid back, replacing the visible points with the projected disparity map
should restore this detail, but only on the visible side of the back of the chair. The other side
will still be solid. We must also remove extraneous points from the original set of occluded
points, Λocc. The final result is the point cloud Ψ′.

For simplicity, we leave the geometry as a point cloud in the experiments, but it can easily
be transformed into a mesh [41] or an implicit function [3] as desired because Ψ′ is dense.
This meshing step will also get rid of any discontinuity between the previous occluded points
and the new visible points added from the depth map.

2.5 Experimental Results

2.5.1 Disparity Projection Sensitivity Studies
Before discussing full-scale experiments, we first present two studies to examine the sensitivity
of our method to errors in the disparity map and the initialization of parameters. To examine
the effect of error in disparity prediction, we simulate error by uniformly adding noise to
ground truth disparity maps. Using our disparity projection method, we estimate camera
parameters. We then use those camera parameters to project the ground truth disparity and
measure the Chamfer distance from the ground truth object. As can be seen in Fig. 2.2, the
Chamfer distance stays pretty small for small amounts of noise, but as more noise is added,
the Chamfer distance increases, indicating some level of sensitivity to errors in prediction.

23

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Max Noise Added

0.000

0.005

0.010

0.015

0.020

0.025

Ch
am

fe
r D

ist
an

ce
 (G

T
De

pt
h

Pr
oj

 to
 G

T
Po

in
t C

lo
ud

)
Sensitivity of Loss to Noise

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Absolute Distance from True Value

0.000

0.002

0.004

0.006

0.008

0.010

0.012

Lo
ss

Initial Guess Sensitivity

Figure 2.2: Left: our 3D projection is robust to some amount of noise in the input disparity map,
but deteriorates if the noise level goes beyond 0.05. Right: the error in the projection grows as a
function of the distance between the initial guess and the true camera parameters, because of local

minima in our optimization problem. We address this issue by randomly choosing multiple
initializations.

However, it is important to remember that errors in disparity prediction are often not uniform.
The more common failure mode is that errors are concentrated in one area (i.e. the back leg
predicted to be closer than it actually is, or fading into the background completely).

The second case of sensitivity we examine is sensitivity to initialization. To measure
this we pick a case in which the initial parameters are known and perturb the initial guess
steadily further away from the known value. As can be seen in Fig. 2.2, the final loss grows
exponentially with distance from the initial value, indicating a significant sensitivity. This
finding motivates the random initialization seen in our algorithm. We run the fitting multiple
times and pick the final result with the lowest lost.

2.5.2 Full-Method Validation
To validate our method, we perform experiments on two different off-the-shelf reconstruction
networks that were trained on two different data sets. The first dataset is a synthetic dataset
formed by rendering ShapeNet objects in different poses and lighting conditions. The second
is Pix3d, a real-world data set. In both cases we focus on the category of chairs.

We evaluated the final result using two metrics: f-score and Chamfer distance.

24

Method f-score CD

Baseline (3DShapeGen)
Min. 0.0577 0.0239
Max. 0.5653 0.2629
Mean 0.2250 0.1086

GT Depth
Min. 0.2639 0.0156
Max. 0.7824 0.1702
Mean 0.4938 0.0640

GT Disparity
Min. 0.0331 0.0216
Max. 0.7060 0.2444
Mean 0.2827 0.0944

Baseline Projected GTDepth

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ch
am

fe
r D

ist
an

ce
 fr

om
 G

ro
un

d
Tr

ut
h

Figure 2.3: We compare a baseline SVR model, 3DShapeGen [95], with two oracle versions of our
approach using ground truth depth, and projected ground truth disparities, on synthetic renderings

of ShapeNet chairs. Using ground truth depth yield a 180% improvement in the f-score@1 in
average. Despite not knowing camera parameters perfectly, our method still provides a 32%

improvement in the f-score@1 in average.

Synthetic Images

We present two oracle experiments on synthetic data to clarify the sources of errors in
our approach. In this section, we use a dataset of renderings of ShapeNet [8] objects
from 3DShapeGen authors [95]. We use their image-only network to perform single-image
reconstruction.

First, we try merging the visible points of the ground truth to the 101 initial predictions
provided by 3DShapeGen [95]. This achieves the maximum benefit possible with a perfect
disparity map and a perfect projection of this map to 3D. On average, each object saw an
average improvement of 180% in the f-score at 1 and a 40% improvement in Chamfer distance.
This result demonstrates the potential for depth maps to improve the overall appearance and
detail of a reconstructed object by an SVR method.

As was discussed in section 2.3, the challenge is that in most cases, monocular depth
estimation does not predict absolute depth maps, but instead normalized disparity maps.
We use ground truth maps to eliminate any confusion about the source of error. We further
test our parameter fitting method on ground truth disparity maps, assuming an oracle
monocular depth estimation. We took the same 101 object predictions from 3DShapeGen,
applied our method on the ground truth normalized disparity maps and merged the initial
prediction and projected disparity maps. We found a 32% improvement in f-score at 1 and
a 12% improvement in Chamfer distance. While the magnitude of the improvement is not

25

as large as with the ground truth, there is still a significant improvement. Figure 2.3 com-
pares the performance of the baseline 3DShapeGen prediction, the oracle with ground truth
depth and the oracle with ground truth disparity. We show qualitative examples in Figure 2.4.

26

Input Image 3DShapeGen (Baseline) Baseline Rotated Fine-Tuning (Ours) Fine-Tuning Rotated

Figure 2.4: Selected qualitative results from study on synthetic images with ground truth
normalized disparity. Our method successfully adds much needed detail to the baseline

reconstruction. That detail is preserved not just from the view of the image, but upon rotation as
well.
27

Real Images

Method f-score CD

Baseline (Mesh R-CNN)
Min. 0.0074 0.0680
Max. 0.2857 0.7242
Mean 0.1410 0.1458

Predicted Disparity
Min. 0.0068 0.0642
Max. 0.3632 0.6536
Mean 0.1319 0.1476

Baseline Finetuned
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ch
am

fe
r D

ist
an

ce
 fr

om
 G

ro
un

d
Tr

ut
h

Figure 2.5: We compare the performance of Mesh R-CNN [28] with and without our fine-tuning,
on real images from the Pix3d dataset [88]. We use AdelaiDepth [109] to predict disparities. See

section ?? for a detailed discussion on performance.

We proceed to test our method on real images. We use 88 images of chairs from Pix3D
[88] as our dataset and Mesh R-CNN [28] as our initial method. In this experiment, we use
AdelaiDepth [109] to predict disparity, but use ground truth segmentation masks, again to
isolate error. In Figure 2.5, we show the distribution of Chamfer distances among the objects
in the dataset. After application of our method you can see a slight overall improvement in
Chamfer distance.

We found that 44% of objects improved in Chamfer distance from the ground truth with
application of our method. In cases that did not see improvement, it was most often from
clear errors in the depth estimation. We show qualitative examples in Figure 2.6.

28

Input Image Mesh R-CNN (Baseline) Baseline Rotated Fine-Tuning (Ours) Fine-Tuning Rotated

Figure 2.6: Selected qualitative results from the study on real images from Pix3D with estimated
normalized disparity.

29

2.6 Discussion & Limitations
The experiments demonstrate the great potential of depth for fine-tuning 3D geometries
and the success of our disparity projection approach. In particular, our method is good
for recovering fine detail that SVR models often miss. An example is shown in Fig. 2.4.
Take a look at the chairs in the first and fourth rows. The single-view reconstruction model,
reconstructs two fairly similar looking chairs with rounded back and no arms, roughly accurate
in shape, but missing most of the detail. Applying our fine-tuning method restores the fine
detail that is necessary to distinguish the two chairs.

Another great use case is fine detail in the legs. Again looking at Fig. 2.4, rows two, five,
six, and seven are all examples of chairs with very thin, short, or otherwise unusual legs that
the single view reconstruction model failed to reconstruct. Our model was able to reconstruct
these legs, creating a more complete and distinctive object.

2.6.1 Limitations of The Models Used
The objects that fail to see significant improvement in appearance after our fine tuning
method tend to fall into two categories: insurmountable errors in the initial prediction and
insurmountable errors in depth estimation. Both of these errors are ones that we could expect
to improve as base SVR and Monocular Depth Estimation models get better.

(a) Input Image (b) Baseline (c) Fine-Tuning (2 views)

Figure 2.7: An example of a flattened projection due to errors in the initial prediction.

Fig. 2.7 shows a typical example of an insurmountable error in the initial prediction,
where the network creates a blobby initial prediction. Because of this blobby shape, the
visible points of the initial prediction are mostly flat and the estimated disparity is thus
projected to a flat point cloud even though the actual visible pixels are not flat.

The second major source of errors lies in the disparity estimation. Our method is fairly
robust to minor errors which will occur in any depth estimation method, but there are large

30

(a) Input Image (b) Predicted Disparity

Figure 2.8: An insurmountable mistake in disparity prediction: the legs a treated as background.

fundamental errors that are insurmountable with our approach. An example is the chair
in Fig. 2.8 where the monocular depth estimation failed to detect the legs of the chair, so
they blend in with the background. Even with perfect segmentation and camera parameter
estimation, the legs of the chair would be placed in the background away from the chair.
These types of errors account for most of the objects in our dataset that failed to improve, as
evidenced by the difference in performance between the ground truth normalized disparity
maps and the predicted ones. As monocular depth estimation continues to improve, these
errors will become less common.

2.6.2 Limitations of SVR for Scientific Use Cases
Even if SVR and Monocular Depth Estimation methods are greatly improved, there are
limitations with how they could be used in a scientific simulation workflow. The main
motivation of this method when it was developed was for photo editing. One can imagine a
situation where one has a single image that he or she would like to edit. Perhaps he or she
would like to rotate an object in the image or change the lighting (and thus the shadows). In
order to do this, we must infer a reasonable understanding of that object’s shape from one
single image. This type of problem does not occur often in scientific situations. Typically,
if a scene or object is important enough for us to perform a simulation on, we are able to
capture more than one image. Also, a “reasonable" estimation of the rest of the object is
not usually good enough for simulation. We typically want a better guarantee that it is a
true reconstruction. Additionally, we simply do not have enough 3D ground truth geometries
of scenes of interest in scientific simulation to perform a supervised learning approach. If
we could reasonably obtain 3D geometries in the first place, there would be less motivation
to infer them from images. For these reasons, the rest of this thesis focuses on multi-view

31

NeuralSDF methods that are supervised on images, not 3D ground-truth geometries.
Despite these objections, there are many concepts addressed in this work that are relevant

for scientific work flows (which is why it is included in this thesis):
(1) This class of methods were some of the first to embrace neuralSDFs in learning 3D

geometries from images, and was what gave us the initial inspiration to pair neural SDFs with
the Embedded Boundary method. The original multi-view neuralSDF method NeuS[100],
which will be featured heavily in the coming chapters, was developed concurrently with this
method and took inspiration from many of the related works cited. Most notably, it makes
use of the Eikonal regularization loss term that was used in many SVR methods.

(2) The main idea of this method is leveraging depth/disparity information to aid in
reconstruction from images. While we implement it in a single view reconstruction method,
there is no reason that the broader concept must be limited to single view reconstruction.
Depth information can be useful in other reconstruction settings as well. In chapter 5, we will
discuss on-going work that uses depth information in a tree canopy to help scale a geometry
generated from many images of a forest.

(3) While it is true that for scientific applications, we prefer to have images of all angles
of the geometry to reconstruct from, rather than taking an educated guess based on the class
of objects, that is not always possible. An example will be discussed in further detail in
chapter 5, of a forest where the tops of trees can be imaged very well, but the understory
(where the trunk connects with the ground) is not visible. While this is not a case of single
view reconstruction, there is significant overlap because certain angles of the geometry are
simply not visible, so we must look to other information (such as other examples of trees) to
complete the geometry.

2.7 Related Work

2.7.1 Monocular Depth Estimation
In their seminal work make3D, Saxena et al. [80] cast depth estimation as a supervised
learning problem trained on a dataset of laser scans. Several subsequent papers have
improved the architectures [20, 45, 77, 53, 47], the losses [19, 87, 24] and post-processing
steps [6, 58]. We organize our discussion around the training data since the robustness and
generality of monocular depth estimation approaches stems from the diversity of the training
datasets [72]. Laser scanners [82, 27, 37] based on time-of-flight as well as sensors based
on structured light [44, 22] provide ground truth depth but sparse annotations for dynamic
scenes. Structure-from-motion can also be used to obtain sparse 3D ground-truth, up to
scale, from multi-view images of a static scene [50]. Garg et al. [26] propose to use rectified
stereo pairs as supervision [29, 30, 55] but the corresponding datasets are not all calibrated,

32

providing disparity up to scale and shift. Chen et al. created a dataset where ordinal
relationships between pixels are manually annotated [10]. MidasNet [72] pioneered leveraging
those diverse sources of data by estimating normalized disparity and achieving breakthrough
results in generalization capabilities of monocular depth estimation. Recent monocular depth
estimation models [109, 58] show remarkable performance in various scenarios. Those models
can capture the visible part of the scene geometry but have little knowledge about shapes.
For example if three legs of a chair are visible, the depth estimation models will not be very
helpful for completing the shape and generating the remaining leg.

2.7.2 Single View Reconstruction
Computational approaches to SVR date back to at least Roberts’ PhD thesis [76] in 1963.
Most related to our work are recent deep learning approaches which currently present state-of-
the-art results for this problem. There are two main strategies in SVR to target performance
on real images. The first one is through the training data i.e. to have real images in the
training set. Existing datasets with associated ground truth 3D model have clear limitations.
Pix3D [88] does not have good diversity in terms of shapes (only about 700) and mostly
contains furniture. ObjectNet [4] and Pascal3D [106] do not have good image-shape alignment.
Some approaches aim to learn SVR using image-only datasets using differentiable reprojection
losses [97, 48, 40, 31, 96, 52, 108], though this is an extremely challenging task. Another
strategy is to use domain adaption techniques to bridge the gap between synthetic renderings
and real images, for instance by imposing depth and normal as an intermediate representation
between RGB images and the full 3D geometry [103, 105, 114, 85]. These techniques show
some improvement on real images but within the scope of the categories spanned by the
3D dataset. They thus do not fully leverage the generality of monocular depth estimation
methods. Whereas those approaches perform better than vanilla models trained only on
ShapeNet or Pix3D, they still fail to generalize to real scenarios. The choice of 3D data
representation is one of the main discriminating factors to analyze deep learning approaches
for SVR. Choy et al. [13] propose a volumetric representation using 3D voxel-grids [61, 104], as
a natural extension to 2D pixel grids on which to perform 3D convolutions. Several solutions
have been explored to mitigate the prohibitive memory consumption of using 3D grids in deep
learning. Previously, these solutions were focused on occupancy grids [36, 74, 93], but several
more recent radiance fields alternatives using hash tables and tensor decomposition [60,
63, 79, 9] were also proposed. Instead of using grids, three papers [68, 57, 11] concurrently
pioneered the use coordinate-based Multi-Layered Perceptrons to model a 3D volume [95].
Several other approaches model a surface instead of a volume. Fan et al. [21] pioneered an
approach to generate point clouds on a surface [25, 54]. Other techniques model 3D surfaces
via parametric deformations from a reference surface [34, 99, 28]. Despite a lot of progress in

33

representing shapes, all the aforementioned SVR methods suffer when applied to real images.

2.7.3 3D Diffusion and Shape Completion
While not strictly single-view reconstruction, there is another line of research that has exploded
since this method was initially developed that is very relevant to this work. Diffusion models
are a class of generative AI models that were initially introduced to produce very high quality
2D images. They have since been applied to 3D and are very popular for shape completion.
At its core, single view reconstruction is a shape completion problem. We are given one
view of an object and wish to reconstruct the occluded portion. Diffusion models have been
combined with SDFs [12] and NeRF [17, 35, 107] to complete shapes from single views.

34

Chapter 3

Simulating Physics with NeuralSDFs

Now that we have seen how SDFs can be learned from images, we wonder, how do those
neuralSDFs perform when used in numerical simulation? Because they are learned rather than
calculated via traditional methods, we expect them to have different errors and convergence
properties. In this chapter we explore how neuralSDFs perform with the Embedded Boundary
method. We discuss what types of neuralSDF methods are most suitable for scientific problems
and introduce a complete image-to-simulation workflow. We next analyze the various failure
modes and convergence properties of these neuralSDFs, connecting how geometric error relates
to simulation error. We finally present results of the pipeline end-to-end, demonstrating
how we can go from a set of images to a 3D physics simulation while understanding and
controlling for error.

3.1 Learning SDFs for Scientific Simulation
In the previous chapter, we discussed methods for learning SDFs from images that involve
3D (or 2.5D) supervision. In these methods, we pair images with their corresponding 3D
SDFs, or depth maps, or other 3D geometries and learn a network that best fits the data.
This involves gathering thousands of these pairs as training data. Unfortunately, this data
is not readily available for many scenes and objects of scientific interest. Imagine you are
interested in simulating a wildfire through a particular forest, it is not feasible to gather
data of thousands of other forests to train on. If gathering such data were easy, we would
simply use that method to obtain our 3D geometry. This motivates the need for some sort of
“self-supervision." In other words, in these cases, we would much prefer to use information
already in the input images to determine if the network accurately represents the geometry.

In recent years, methods have been developed that take such an approach. Neural
Radiance Fields (NeRF) [59] predict the color of an object, given a location and a viewing

35

angle. The parameters of the NeRF network are determined by minimizing the loss between
the predicted color, Ĉ, and the true color seen in the input images, Cgt,

L = ||Ĉ − Cgt||22, (3.1)

so only the input images themselves are needed in the training process. While NeRF was
developed to render novel views of an object given a set of input images, being able to render
infinite 2D views gives some sense of 3D structure. NeRF can easily be converted into a 3D
mesh using the Marching Cubes algorithm.

While you can get a 3D mesh from NeRF, derivative methods have been developed that
improve on the quality of the geometry. One such method, that then spawned derivatives of
its own, is Neural Surface reconstruction (NeuS) [100]. NeuS has very similar architecture to
NeRF, including the same loss function, but also predicts an SDF value in addition to the
pixel color, feeding the two networks into each other, ultimately improving the quality of the
geometry.

Recall that in NeRF, the pixel color, C, given a viewing angle is determined by the
following function:

Ĉ =
n∑

i=1
wici. (3.2)

where the weights are wi = Tiαi, the opacity of the i-th ray segment is αi = 1 − exp(−σiδi),
the distance between adjacent samples δi = ti+1 − ti, and the accumulated transmittance is
Ti = ∏i−1

j=1(1 − αj).
NeuS introduces the SDF function, f(x), into the color prediction, by changing the

definition of α to

αi = max

(
Φs(f(xi)) − Φs(f(xi+1))

Φs(f(xi))
, 0
)
. (3.3)

where Φs is called the s-density defined as

Φs(x) = (1 + e−x)−1. (3.4)

NeuS has been shown to produce a higher quality 3D mesh than vanilla NeRF, but not
much as been studied of the SDF itself. In many graphics applications, a signed-distance
function is merely an intermediary to obtaining a high quality 3D surface mesh, but in
Embedded Boundary PDE simulation, the SDF provides the geometry representation. In this
chapter, we study neuralSDFs generated by the NeuS family of methods (including neus-facto
and NeuralAngelo, two methods with identical loss and opacity functions to NeuS that
have been modified for faster performance using NVIDIA’s new neural graphics primatives,
instantNGP[63]) as inputs to the Embedded Boundary method for numerical PDE simulation.

36

3.2 Methodology for Evaluating NeuralSDFs in EB
Simulation

Implicit representations have long played a role in representing complex geometries for numer-
ical partial differential equations (PDEs). Level set methods are useful in tracking complex
moving fronts. The Embedded Boundary method[39] uses implicit geometry representations
as the basis for solving partial differential equations via finite volumes.

While the work of implicit functions in physical simulation and implicit functions in
3D geometry reconstruction have largely been independent from each other, we see a great
opportunity to bring these methods together to solve one of the great challenges in scientific
computing: obtaining high quality geometries of complex scenes. Most work thus far in
3D reconstruction has focused on the visual quality of the reconstructed scenes, assuming
applications in virtual reality or graphics, but there are also many scientific inquiries that
rely on 3D geometries of natural scenes. Forests, glaciers, sea-floors, and city-scale urban
environments all have complex geometries that are difficult to model. Performing an accurate
3D simulation of these environments typically requires expensive scanning techniques that
often yield noisy results that do not easily pair with existing numerical PDE packages. We
see the rise of neural implicit geometries as an opportunity to greatly increase computational
scientists’ access to high quality geometries, but as of now there hasn’t been an in-depth
study of these geometries’ suitability for scientific simulation.

Like most numerical methods, there are several sources of error in the EB approximation.
Assuming the implicit signed distance function that represents the initial geometry is exact,
the relevant geometric information could be calculated to arbitrarily high order of accuracy,
but in practice there is truncation and floating point error in the moment calculation. Even
assuming moments were calculated exactly, the finite volume discretization introduces error
depending on the mesh size of the Cartesian grid. These methods are also sensitive to sharp
changes in geometry [18]. Previous work has shown that when there is a sharp corner in the
geometry, errors in the final simulation can be produced. Slightly smoothing those corners
results in a more accurate solution. Counter-intuitively, a less accurate geometry can aid
in producing a more accurate final solution. Smoothness of geometry (i.e. differentiability
across the surface) is also an important factor in performance for EB simulation. While this
fact is implicitly included in most neuralSDF reconstruction methods (most of these methods
include an Eikonal regularization term which enforces this property), it is not accounted for
in most popular measures of 3D reconstruction quality.

There are also several input attributes that have great effect on output. These include
the number of input images, the locations of those images, lighting conditions, geometry
conditions (e.g. convexity, occlusions, symmetry etc.) and grid spacing of the predicted SDF.
Some of these attributes have fairly obvious effects. If part of and object is occluded or there

37

are no input images of that section, the reconstruction will likely be less accurate in that
section. As the method is using a type of interpolation to fill in novel views, if the uncertain
region is more similar to the regions that surround it, it is more likely to have a more accurate
reconstruction. NeRF has been particularly popular in computer graphics applications where
lighting and relighting are of particular interest, so it has been well studied in many lighting
conditions. As would be expected, non-lambertian materials such as reflective glass pose
some difficulties, but methods have been developed to provide better performance in complex
lighting conditions and to allow for relighting of scenes [86]. In the following section, we
further explore the effect of these various input attributes, both on geometry quality and
on PDE solution quality. Because of the plethora of input configurations and the inherent
stochasticity of the network, the experiments that follow are not intended to demonstrate
any hard “rule” about neural-implicit methods, but are designed to illustrate the impact of
the various factors that go into the creation of these geometries and provide some intuition
for how to understand them.

3.2.1 Geometry Quality Metrics
First, a note on how to measure error in 3D reconstruction. There are several approaches
to measuring similarity between two 3D geometries. Which metric is best depends on the
downstream application of the geometry. Depending on the application there are certain
geometric characteristics that might be more important to get right than others. Two common
metrics in the computer vision literature are the Chamfer Distance, CD, which measures the
similarity of two point clouds. It is defined as,

CD =
∑
a∈A

|a− bnn| +
∑
b∈B

|b− ann|, (3.5)

the sum of the distances between all points in point cloud A and their nearest neighbors bnn

in point cloud B and the distances of all points in point cloud B with their nearest neighbors
ann in point cloud A. While this measures point cloud similarity, it is also used to evaluate
error in SDFs and surface meshes by sampling points on those surfaces to form a point cloud.
Another popular metric is IoU or intersection over union:

IoU = A ∩B

A ∪B
. (3.6)

It measures the volume of intersection of two geometries A,B divided by the volume of their
union.

While 3D reconstruction quality numbers are reported for most methods, the commonly
accepted metrics in the computer vision literature are also commonly accepted to be flawed [94],

38

so they are typically accompanied by significant qualitative results as well. This works well in
the computer vision literature because results are most often reported with the main intent
of communicating visual quality, not suitability for simulation. When discussing geometry in
the context of suitability for Embedded Boundary simulation, new metrics are needed.

In this chapter, we propose our own geometry quality metric that more accurately assesses
geometry quality for EB simulation. Importantly it measures accuracy of the SDF directly
(not a by-product such as the mesh) and includes a measure of smoothness which is essential
for a successful EB simulation.

err =

√√√√√mean
(f ∗

i,j,k − fi,j,k

h

)2
+ λK (3.7)

where f ∗
i,j,k is the predicted SDF, fi,j,k is the ground truth SDF, h is the grid spacing, λ is a

scaling factor, and K is a measure of the noise on the scale of h

K = max(f ∗
i+1,j,k + f ∗

i−1,j,k + f ∗
i,j+1,k + f ∗

i,j−1,k + f ∗
i,j,k+1 + f ∗

i,j,k−1 − 6f ∗
i,j,k). (3.8)

We illustrate these metrics on a benchmark problem. All methods start with 482 input
images of a globe and we compare three different SDF reconstruction methods: (1) Structure-
from-Motion generated point cloud, meshed with Poisson meshing, and then ray-casting to
determine the SDF (2) Structure-from-Motion generated point cloud with neural network
approach NeuralPull[3] to learn the SDF (3) Neural network NeuralAngleo[49] which learns
the SDF directly from images. Finally, we also add in an ellipsoid generated manually as a
control comparison.

Visually, we can see that NeuralAngelo provided the best reconstruction, but it was
not necessarily a fair comparison as NeuralAngelo had the exact camera locations as input.
However, the point of this experiment is not to judge the best method, but to find the best
metric. What gives us more insight into this question are the two methods that relied on a
SfM generated point cloud as an intermediary. In both methods, once can see errors in the
same region of the sphere, where the Pacific Ocean was represented on the globe. This is
because it is a large expanse of a single color, so the method has less distinct visual cues to
distinguish between. However the secondary methods, Poisson meshing and NeuralPull, took
very different approaches to handling that region. As NeuralPull learns a signed distance
function, it is biased towards smootheness, so it smoothed out that region resulting in an
indent in the sphere. The Poisson mesh created surface triangles between all of the noisy
points in that region and resulting in a bumpy and complicated geometry that from far away
is more sphere-like, but up close has significant complexity. Depending on the application, one
could imagine scenarios in which one would prefer one versus the other, but in EB simulation
the choice is obvious. As EB is an SDF based solver, it also prefers smoothness and attempting

39

to solve a PDE on an SDF of the Poisson Mesh resulted in a forced termination of the code
due to failure to converge. This is a significant error that a good error metric must be able
to convey.

(a) Input Image
(b) Poisson

Mesh (c) NeuralPull (d) Ellipsoid
(e)

NeuralAngelo

Figure 3.1: Input image with meshses produced by two different toolchains and ellipsoid as
control.

In the following table we compare Chamfer Distance, IoU, our SDF error metric, and the
error of the PDE simulation. In this case we are solving Poisson’s equation and comparing
point-wise to the EB computed solution on a perfect sphere and taking the mean.

CD ↓ IoU ↑ SDF Error (Ours) PDE Error Mean
NeuralAngelo 0.0039 0.83 1.837e-3 5.947e-05

NeuralPull 0.024 0.63 2.138e-3 1.231e-4
Ellipsoid 0.052 0.60 9.066e-3 4.057e-4

Poisson Mesh 0.039 0.14 3.817e-2 NC

Table 3.1: A comparison of our four geometries by two traditional 3D reconstruction metrics
(Chamfer Distance and IoU) and our SDF metric. From a simulation perspective, the Poisson Mesh

is by far the worst as it causes the PDE solver to fail, but this is not obvious from the Chamfer
Distance. Both IoU and the SDF error more accurately capture the PDE performance with ours

more directly tied to the quantities of interest in EB simulation.

Chamfer Distance really does a poor job of predicting performance with EB. It ranks the
Poisson mesh as fairly similar in quality to the NeuralPull SDF and better than the Ellipsoid
when in fact, the Poisson geometry results in no convergence in the PDE solver. Because
Chamfer Distance focuses on the locations of points along the surface, this makes sense. IoU
gives a better understanding of the whole geometry, so it is intuitive that it would be a
better indication of suitability for simulation. It gets the ranking right and shows the Poisson

40

Mesh as far worse than the other three options. The only quibble would be that it ranks
the NeuralPull and Ellipsoid geometries as closer in quality than they actually are. There is
around a 300% difference in the PDE error, but only a 5% difference in the IoU. In this case,
we believe our combination of curvature and SDF error does the best job at predicting what
the PDE error will be, clearly showing the Poisson Mesh as an outlier and roughly spacing the
other three along with their respective errors. While this method of geometry error analysis
worked well in this case, it is important to understand that there is no post-facto analysis
of just the geometry alone that will perfectly predict error for any PDE. Simulation error
depends heavily on what PDE is being simulated and more practically, what question are
scientists trying to answer with that question. If you are trying to understand if a levee in
San Francisco is going to break during a flood, it may not matter if the top of the skyscraper
next to it is reconstructed perfectly, but if you’re doing an earthquake simulation on the same
geometry, the top of the building might be very important. We will discuss this problem in
more detail in the next chapter which extends this question how to deal with not just error
(which is only obtainable when we have some sense of ground truth), but uncertainty?

3.2.2 NeuralSDF Convergence
To better understand the performance of neural-SDF methods under various conditions,
we vary several parameters an analyze how they affect solution accuracy. For this set of
experiments we use a sphere as our test shape as it has a very simple SDF that is easy
to compare against, but please note that while these tests are designed to give general
intuition around the performance of neural-SDF methods, these results will not necessarily
generalize to different geometries. In particular, these methods are known to experience more
challenges with non-convex shapes and non-lambertian materials, but based on testing the
cube and other shapes, we do expect these results to extend to simple convex geometries
with lambertian materials. We are also assuming camera viewpoints and intrinsics are known,
as the purpose of this experiment is not to test the camera pose estimation methods that are
often paired with neural-SDF methods.

Grid Spacing At evaluation-time Neuralangelo predicts SDF values at discrete grid-points.
In this experiment, we refine the grid and measure the SDF error on grid points near the
surface. We see linear convergence towards the solution. Similarly when running each of those
geometries through an EB simulation of the Poisson Equation, looking at the error we see it
approaching linear convergence as we increase the number of cells (although interestingly
this behavior is not immediately present in the regime of fewer grid cells.) We see similar
behavior on a cube geometry as well.

Input Images In this experiment we vary the number of input images, testing Neu-

41

(a) Average error in signed distance value for grid
points near the surface as we increase the number of

grid cells in each dimension.

(b) Max error in signed distance value for grid
points near the surface as we increase the number of

grid cells in each dimension.

(c) Mean error in the PDE solution between the
manually generated sphere and the learned sphere as
we increase the number of grid cells in each direction.

ralAngelo’s ability to reconstruct novel views. We then measure the SDF error from a
manually generated sphere. All images are taken from evenly spaced points on a larger sphere
encompassing the sphere of interest. We would expect radically different results if images
were clustered in one location. We generally see convergence towards the true solution as we
increase the number of input images given to the network, but there is slight deviance from
that trend when there are relatively few input images. We take this to be a reminder of the
stochastic nature of the network, indicating that reconstructions are not strictly worse as fewer
input images are given, but significantly more variable. We also include a visual assessment

42

(a) Average error in signed distance value for grid
points near the surface as we increase the number of

grid cells in each dimension.

(b) Max error in signed distance value for grid
points near the surface as we increase the number of

grid cells in each dimension.

Figure 3.3: Convergence results with grid refinement on a cube geometry.

of the geometries in Fig. 3.5 to give the reader intuition of what the SDF error corresponds
to visually. After running the image-generated SDFs as well as the manually generated one
through a simulation of Poisson’s equation via the Embedded Boundary method, we see
that the error in geometry roughly translates to solution error. Again, we don’t expect it to
perfectly line up as solution error is dependent on both the geometry and the equation being
performed, but we do see that it gives some general intuition.

43

(a) Average error in signed distance value for grid
points near the surface with decreasing number of

input images.

(b) Max error in signed distance value for grid
points near the surface with decreasing number of

input images.

(c) Mean error in the solution to Poisson’s equation
between the predicted geometries and a manually
calculated sphere geometry as we vary the number

of input images.

44

(a) 15 Input
Images

(b) 31 Input
Images

(c) 62 Input
Images

(d) 125 Input
Images

(e) 250 Input
Images

Figure 3.5: Sphere geometries produced with NeuralAngelo as we increase the number of input
images given to the neural network.

45

3.3 Image to Simulation on Complex Geometries
In Figs 3.6 and 3.7, we demonstrate this pipeline from beginning to end on an example
problem. In this example, we take images of a building, recreate the SDF, then put the
geometry into EB-Chombo and simulate Poisson’s equation on the geometry. This is a toy
problem as the building in the image is quite literally a toy (rather than a real urban scene)
and Poisson’s equation is a much simplified version of the PDEs that would be of interest in
a real urban environment, but this serves as a good demonstration of the potential of this
workflow. One could easily see this workflow aiding in the simulation of electrostatics or fluid
flow on a real urban environment with images captured via drone.

3.4 Conclusions
In this section we construct an image to simulation pipeline using NeuS-style methods and
an Embedded Boundary PDE solver. We show that we can take 2D images of an object,
learn its SDF using NeuS, put that predicted signed distance field into EB-Chombo and end
up with a reasonable simulation of a PDE on that geometry.

We then explored some of the variables that can change the quality of that process. We
note that the methods we tested rely on COLMAP to estimate the camera viewing angles of
the input images, and in our experience SDF prediction seems to be much more sensitive
to errors in those estimated viewing angles than color and density prediction models like
NeRF. However, when camera angles are known, which is not unlikely in many scientific
applications (e.g. if one is collecting images via drone, the drone often saves those camera
parameters), the NeuS-style methods we used worked very well. Other variables seem to
work fairly intuitively: Geometry converges linearly as the grid of the signed-distance field is
refined and it also converges as more input images are added.

We also discussed error measurements in 3D geometry. Much of the computer vision
literature uses Chamfer Distance as a measure of error in the geometry, but we show how for
Embedded Boundary simulation, this measure can be misleading. Another popular metric,
IoU, does a better job, but considering that we are using the SDF values directly in the
simulation, we demonstrate that it makes the most sense to look at SDF error directly when
discussing suitability for such simulation.

The use of neural geometries in scientific simulation is still in its infancy. This constitutes
the first systematic study of these geometries in embedded boundary simulation and there is
still much more to understand. While we examined many different types of common errors
in this chapter on several test examples, we still do not know how those errors will extend
to other geometries more generally. The behavior that we witnessed on a sphere may not
extend to an object that is not convex or has different lighting conditions. It is impossible to

46

enumerate every variation in geometry we may encounter and categorize error accordingly.
The experiments in this chapter help us build an intuition, but the next level of understanding
necessary to use neuralSDFs in PDE simulation is an understanding of error on a per-model
basis. In the following chapter, we expand upon this notion of error and uncertainty and
present an uncertainty model for communicating uncertainty for any given neuralSDF.

47

(a) Input Image (b) High resolution SDF mesh (from NeuS[100]
paper)

(c) Lower resolution SDF mesh for ease of
computation.

Figure 3.6: An input image of a building geometry and two corresponding meshes derived from
NeuS-predicted SDFs. We use the bottom geometry (SDF predicted on a 64x64x64 grid) for

computational purposes as the corresponding physics problem is small enough to run on a laptop,
but we show the top geometry (a higher resolution SDF from the NeuS paper) to show that a

higher resolution geometry is easily obtainable.

48

Figure 3.7: A simulation of Poisson’s equation with a geometry of a building learned from images.
This toy problem serves as a proof of concept for the potential of this pipeline in aiding in

electrostatics and fluid flow simulations of urban environments.

49

Chapter 4

Uncertainty in NeuralSDFs

One of the biggest barriers to adoption of neural implicit functions for scientific modeling is a
lack of understanding around model error and confidence. In the previous section, we explored
various classes of error in neural implicit functions and how those errors effect numerical
simulation. In this section, we focus on modeling uncertainty. Quantifying uncertainty is a
vital task in many machine learning systems.

The term “uncertainty" does not have a single agreed upon mathematical definition.
Generally speaking, we want uncertainty to communicate something about the confidence
of a result and to roughly correlate with error, but defining what mathematical expression
properly quantifies that knowledge is a key contribution of any uncertainty model. In this
chapter we discuss a specific approach to quantifying epistemic uncertainty of an already
trained neural network known as Laplace Approximation. Specifically, we explore a method
known as BayesRays [32] which applies Laplace approximation to NeRF. We apply BayesRays
to neuralSDF methods and introduce a modification that improves performance in quantifying
uncertainty of the predicted neuralSDF.

4.1 Uncertainty in NeRF
BayesRays[32] is the current state of the art method in representing uncertainty in NeRF. We
borrow heavily from their notation. Recall from section 1.4.2, that a NeRF is a neural-implicit
function that given a position x and a viewing direction d returns a color c and density σ. It
is trained on several images of the scene with a loss function that minimizes the difference
between the predicted color (integrated along the viewing ray) C and the true color Cgt (for
a more detailed description please refer to the background section).

Lnerf = ||C − Cgt||22 (4.1)

50

Figure 4.1: An example given by Goli et. al. [32] to illustrate the intuition behind BayesRays.

4.1.1 Intuition
The intuition behind BayesRays comes from an understanding that there are many valid
solutions that minimize the loss function of a NeRF. The camera views given as training
data do not completely constrain the solution. As can be seen in Fig. 4.1, the example given
in the BayesRays paper, there are several deformations of the surface that can result in the
same loss. In this figure, we show a toy 2D example of a NeRF where cameras are observing
red and blue color values. There are several valid reconstructions of this data that would
minimize the loss function. Once can see how the trained model in the picture does in fact
minimize the loss function (i.e. the colors viewed from each camera along the viewing angle
matches the colors see in the training data), but the surface does not match the surface in
the training data, so from other positions and viewing angles the colors may not be correct.
In this particular example, the surface could be perturbed quite a bit and still technically
minimize the loss function. The regions where the surface can be perturbed without affecting
the loss are what we call the solution null-space. BayesRays attempts to quantify uncertainty
by quantifying this null-space with the intuition that a NeRF with a large null-space would
be relatively uncertain whereas a NeRF with a smaller null-space region would be relatively
more certain.

4.1.2 Spatial Deformation
To do this, we introduce a spatial deformation field D : RD → RD, which perturbs each point

x 7→ x+ D(x).

51

We choose a parameterization θ in the form of D-dimensional vector displacements stored on
the vertices of a grid of length M , allowing us to represent θ as a vector of size MD ×D. We
also define a deformation for every individual spatial coordinate via trilinear interpolation:

Dθ(x) = Trilinear(x, θ). (4.2)
Now we take the already optimized NeRF with optimized parameters ϕ∗ and re-parameterize

with θ by perturbing each coordinate x. This results in perturbed density, color, and color
accumulation functions:

c̃θ(x) = c(x+ Dθ(x), d) (4.3)
σ̃θ(x) = σ(x+ Dθ(x)) (4.4)

C̃θ(x, d) =
N∑

i=1
wi(σ̃θ)c̃θi (4.5)

Recalling from the background section that for a NeRF, the weights are wi = Tiαi, the
opacity of the i-th ray segment is

αi = 1 − exp(−σiδi), (4.6)

the distance between adjacent samples δi = ti+1 − ti, and the accumulated transmittance
is Ti = ∏i−1

j=1(1 − αj). Recall that any quadratic loss can be interpreted as the negative
log-likelihood of a Gaussian with appropriate mean and constant covariance matrix, A, i.e.

min
x

||x− x||22 = min
x

{
(x− x)T A−1(x− x)

}

= min
x

{
(x− x)T A−1(x− x) + log det A

}

= min
x

{
− log Pr

x∼N (x,A)
(x)
}
.

(4.7)

The NeRF loss is also quadratic, so we can model its uncertainty as A, the covariance of the
Gaussian. Comparing the NeRF loss, Eq. 4.1, and Eq. 4.7, we see that Eq. 4.1 is equivalent
to minimizing the negative log-likelihood assuming the predicted colors are drawn from
independent normal distributions around the ground-truth color with variance 1/2, i.e.

C̃n ∼ N (Cgt
n , 1/2). (4.8)

Assuming that we have found optimal parameters ϕ∗ in training, meaning we are in a local
minimum, we can expect that a deformation will not significantly decrease the loss. To

52

encourage this, we introduce a quadratic additive loss on the deformations, which we interpret
as a regularizing independent Gaussian prior θ ∼ N (0, λ−1). The resulting posterior, p(θ | I),
has a negative log-likelihood, h(θ), which is given by

h(θ) = EnEr∼In||C̃θ(r) − Cgt
n (r)||22 + λ||θ||2. (4.9)

This equation is the negative log-likelihood of the posterior distribution of the spatial
NeRF parameters conditioned on the training data, I, up to a constant, which can give us
some quantification of the epistemic uncertainty of the neural network.

4.1.3 Laplace’s Approximation
In order to understand the uncertainty induced by Eq. 4.9 on the distortion field, θ, we
leverage Laplace’s approximation. Laplace’s approximation [75, 16] provides an analytical
expression for a posterior probability distribution by fitting it with a Gaussian distribution.
The mean of this Gaussian is equal to the maximum a posteriori probability (MAP) estimate
(i.e. the mode of the posterior distribution) and its precision is equal to the the negative
Hessian of the log-likelihood (i.e. the observed Fisher information)1. Specifically, take a
model with dataset {xn, yn}n=1,...,N comprising inputs x, outputs y, with parameters θ. The
likelihood is denoted p(y | x, θ), the parameter prior is p(θ) and the joint density of the
outputs and parameters

p(y, θ|x) = p(y|x, θ)p(θ|x) = p(y|x)p(θ|y, x). (4.10)
The joint density is equal to the product of the likelihood and the prior, which by

Bayes’ rule is equal to the product of the marginal likelihood and the posterior. Laplace’s
approximation approximates the joint by an un-normalized Gaussian,

q̃(θ) = Zq(θ), (4.11)
where q is the approximate density, q̃ is the un-normalized density, and Z is a constant

(independent of θ). The probability density function of a Gaussian distribution q(θ) is given
by

q(θ) def= exp
(

−1
2(θ − θ̂)T Σ−1(θ − θ̂)

)
(4.12)

where θ̂ is the mean and Σ is the covariance matrix. The marginal likelihood, p(y | x) is
independent of θ and the posterior p(θ | y, x) normalizes over θ, we can identify them with Z
and q(θ) yielding:

1This can also be formalized by taking a second-order Taylor expansion of the negative log-likelihood

53

p(y, θ|x) ≃ q̃(θ) = p(y, θ̂|x)exp
(

−1
2(θ − θ̂)T Σ−1(θ − θ̂)

)
, (4.13)

where

θ̂ = argmaxθ log p(y, θ) (4.14)
Σ−1 = Hθ(− log p(y, θ|x)|θ=θ̂) (4.15)

Laplace’s Approximation on the NeRF Deformation Field

To apply Laplace’s approximation on our reparameterized NeRF, note that in Eq. 4.9 the
minimum is obtained when θ = 0 as that implies σ̃0(x) = σϕ∗(x), c̃0(x) = cϕ∗(x, d), and
C̃0(r) = Cϕ∗(r). Therefore, 0 is the mode of the distribution p(θ|I) and we are able to
apply the laplace approximation around θ∗ = 0. This results in a belief distribution (i.e.,
uncertainty):

θ ∼ N (0,H−1
∗), (4.16)

where H∗ is the Hessian matrix h(θ) (Eq. 4.9 evaluated at 0).

4.1.4 Computing the Hessian
The introduction of a deformation field allows us to make certain assumptions that enable us
to efficiently compute the Hessian. Specifically we assume:

1. We do not have multiple color observations for a single ray.

2. The deformations’ influence is limited spatially, e.g. a small deformation does not
obscure a large field of view.

We will see that assumption 1 enables first conditioning expectation on the ray, and then the
color given the ray. Assumption 2 will justify a sparsity assumption H∗.

To start, the Hessian of the log-likelihood with respect to the parameters of a statistical
distribution is known as the Fisher information.

I(θ) def= −EX∼pθ

[
∂2h(X; θ)

∂θ2 | θ
]

= −H(θ). (4.17)

Assuming regularity, we can also define this as the variance of the parametric score [46]

I(θ) = −Ex∼pθ

[
∂h(X; θ)

∂θ

T ∂h(X; θ)
∂θ

| θ
]
. (4.18)

54

Now, take the pair of random variables corresponding to a ray and its predicted color,
(r, y), where r ∼ {In} and y = Cgt

n (r). Then the equation takes the form

I(θ) = −E(r,y)
[
4ϵθ(r)Jθ(r)T Jθ(r)

]
− 2λI (4.19)

where the residual error of the ray is

ϵθ(r) = ||C̃θ(r) − Cgt
n (r)||2, (4.20)

and the Jacobian of first derivatives is

Jθ(r) = ∂C̃θ(r)
∂θ

(4.21)

which can be computed via back-propagation. Using assumption 1 and the definition of
conditional expectation, we can simplify further:

I(θ) = −Er

[
4Ey|r[ϵθ(r)Jθ(r)T Jθ(r)]

]
− 2λI. (4.22)

By definition Ey|r[ϵθ(r)] = var(N (Cgt
n ,

1
2)) = 1

2 , so

I(θ) = −Er

[
2Jθ(r)T Jθ(r)

]
− 2λI. (4.23)

Applying Eq. 4.17 and approximating the expectation via sampling R rays, yields the following
approximation for H :

H(θ) ≈ 2
R

∑
r

Jθ(r)T Jθ(r) + 2λI. (4.24)

Now, we take advantage of the reparameterization to simplify this even further in estimat-
ing Σ. By assumption 2, since each vector entry in θ corresponds to a vertex on the grid, its
effect is spatially limited to the cells containing it. This results in most deformation param-
eters having little correlation which implies H(θ) is sparse and dominated by its diagonal.
Using this assumption, we can effectively approximate Σ by only computing diagonal entries
of H .

Σ ≈ diag
(

2
R

∑
r

Jθ(r)T Jθ(r) + 2λI

)−1

. (4.25)

Measuring Spatial Uncertainty

We’ve transformed the problem of measuring uncertainty to one of computing Jacobians.
Specifically, the covariances of our deformation field, Σ, encode the spatial uncertainty of the

55

radiance field, i.e. large variance in the deformation parameters signals a less constrained
surface reconstruction. The diagonal entries of Σ define a marginal variance vector τ =
(τx, τy, τz). At each grid vertex τ defines a spatial ellipsoid which can be deformed with
minimal change in the loss. The norm of this vector τ = ||τ ||2 is a positive scalar that
measure the local spatial uncertainty of the radiance field at each grid vertex, and form a
spatial uncertainty field,

U(x) = Trilinear(x, τ). (4.26)

This uncertainty field can be computed for any NeRF architecture, including sdf-derivatives
NeuS and NeuralAngelo as we will show in the following sections, but it continues to represent
the uncertainty of the radiance field, not the signed-distance function, which while closely
related in NeuS-like methods, are not the same thing.

4.2 BayesRays with NeuralSDFs
For our workflow, we wish to adapt BayesRays for NeuS-style methods. From a mathematical
standpoint, NeuS is constructed very similarly to NeRF, so there is a pretty straight-forward
way to use NeuS with BayesRays in an almost black-box manner. However, while this is
very simple from engineering perspective, it is not in line with our downstream applications
and what we truly wish to gain from an uncertainty model of NeuS. In numerical modeling,
we are interested in using the predicted SDF directly with our numerical model and want
some understanding of error/uncertainty in the SDF geometry. We do not have any direct
use for rendering or color information, and in some cases the quality of the rendering can be
dramatically different than the quality of the geometry (see Fig. 4.2). Accordingly, we wish
to make sure the uncertainty model directly captures the uncertainty in the 3D geometry
and does not include any extraneous information. For this reason, we propose modifications
to the naive approach and demonstrate that these modifications better reflect true geometric
error through preliminary experiments.

Because BayesRays is designed to work black-box with any NeRF method, naively, you
can swap Eq. 4.6 for the NeuS opacity equation (please refer to Sec. 1.4.2 for more background
on NeuS),

αi = max

(
Φs(f(xi)) − Φs(f(xi+1))

Φs(f(xi))
, 0
)
, (4.27)

and perturb the s-density function similarly to how the density function in Eq. 4.4:

Φ̃s = Φs(f(x) + Dθ(x)). (4.28)

56

However, while this perturbs the spatial component of the opacity, it does not perturb the
SDF itself, which is the main quantity of interest. Instead we suggest perturbing the SDF
more directly:

Φ̂s = Φs(f(x+ Dθ(x))). (4.29)
If what we are truly interested in is the SDF which is already being computed on a grid,
and are not at all interested in color uncertainty, there is no need to introduce a spatial
perturbation of the individual color predictions, so we can modify Eq. 4.5 to instead be:

Ĉθ(x, d) =
N∑

i=1
wi(Φ̂s)ci. (4.30)

To compute this modified uncertainty, the approximation in Eq. 4.25 still holds, but the
Jacobian, Jθ, is now taken with respect to our proposed color value perturbation, Ĉθ, as
opposed to the original BayesRays quantity C̃θ. The computed derivatives will be imbued
with information of the uncertainty in the SDF network f via the chain-rule, but the color
network c is no longer parameterized by θ, so it is independent. In doing this, we do lose
information about uncertainty in the rendering, but for applications where the desired output
is the SDF, such as numerical simulation, only uncertainty in the SDF is of interest.

4.2.1 Rendering Uncertainty
Rendering uncertainty is the main method of evaluation shown in the BayesRays paper,
and while it makes sense for understanding uncertainty in a NeRF, it does not necessarily
translate to neuralSDFs. This is particularly true when the rendering of NeuS and the
geometry produced do not line up as can be seen in Fig. 4.2. The converged NeRF (shown in
the left side of part c) is not a very accurate representation of the input images. BayesRays
using deformation Φ̃s captures the uncertainty in the rendering. It shows high uncertainty
in the space between the camera and the object, where there are many floating pixels and
the world patter appears to be smeared across the view. It shows higher certainty in the
center where the sphere is actually located. By only looking at the image rendering and
the uncertainty rendering together, we see what could be interpreted as a good depiction of
uncertainty, but looking at the meshed SDF (part b), gives a very different story. NeuS has
two outputs that work in conjunction with each other: (1) a color and density prediction
network similar to NeRF that can be used to render novel views and (2) a prediction of
SDF values along a grid. When using NeuS as a geometry generation method for numerical
simulation, we do not care at all about the rendering, we only use the predicted SDF. In this
particular case, the SDF appears to be very accurate even though the rendering has obvious
flaws. A scientist ought to feel very comfortable using this geometry in a simulation, but
looking at a BayesRays rendering does not communicate that.

57

(a) Input image

(b) Meshed output SDF

(c) Output rendering with accompanying uncertainty rendering

Figure 4.2: A comparison of the inputs of NeuS (image a) with two outputs of the converged
network (the rendering of the object, image c, and the mesh of the predicted SDF, image b).

Although the rendered novel view is of very poor quality, the mesh is of relatively high quality.
Therefore it is impossible to have one uncertainty quantity that accurately describes both rendering

and geometric error. BayesRays using deformation, Φ̃θ, accurately models uncertainty in the
rendering (as can be seen in the left part of image c), it does not give much useful information

about the uncertainty of the geometry shown in image b, which is produced by the same network.

58

4.2.2 Uncertainty and Geometric Error
In Fig 4.2 we demonstrate that volumetric rendering of uncertainty obscures information
about the surface of the SDF and does not make sense for SDF based applications, so how
should we use uncertainty in SDF-based applications? Intuitively, in these applications we
want uncertainty to serve as a proxy for geometric error. We also expect that as we increase
the number of input images given to NeuS, we would see less error in the predicted SDF
correspondingly, less uncertainty. This intuition is roughly demonstrated in the convergence
study we did in Ch. 3. In Fig. 4.3.a, we see this general trend of error decreasing as number
of input images increases. The exception is with the first data point of 12 input images,
which we can attribute to networks sometimes getting lucky. Now given this trend of error,
we look at which deformation field yield an uncertainty estimate that more closely tracks
with error. Clearly Φ̂s outperforms Φ̃s in this case. The “black box” application of BayesRays
to NeuS which perturbs the density and color fails to give meaningful information about the
geometric error of the object.

59

(a) Error in the SDF as we increase the number of
input images.

(b) Uncertainty at SDF grid points near the surface
using deformation Φ̃s

(c) Uncertainty at SDF grid points near the surface
using deformation Φ̂s

Figure 4.3: We can see that measuring uncertainty with deformation field Φ̂s tracks with observed
error much better than using Φ̃s

60

4.3 Future Work: Propagating Uncertainty in Embed-
ded Boundary Simulation

In the previous sections, we presented a method for estimating uncertainty of NeuS-style
neuralSDFs. While on their own, this method can advise scientists of the suitability of
a geometry before using it to perform a numerical simulation, what is of more use is an
uncertainty estimate of not just the geometry but the entire physical simulation.

Given the nature of 3D neural reconstruction, there will always be some level of geometric
uncertainty, but one can imagine situations where that uncertainty would greatly affect the
overall simulation quality and ones where the effect would be negligible. Imagine performing
a flood simulation on a reconstructed geometry of a city. The simulation could be very
sensitive to even small geometric errors in certain regions such as dams or levees, whereas
other regions such as the top of tall buildings could be completely missing with no effect at all.
Geometric uncertainty can only tell us so much without a connection to the downstream PDE
simulation. In future work, we plan to connect uncertainty estimates in 3D neural signed
distance functions to the Embedded Boundary method to quantify the effect of geometric
uncertainty on numerical PDE computations.

In addition to providing better uncertainty quantification in numerical simulation, con-
necting the two methods has the potential to lead to further research by then using the
results to go back and improve the geometry generation methods. Literature has shown
that physics and numerical methods can be used to effectively guide the output of machine
learning methods, and we believe this could be true of geometry generation methods as well.

61

Chapter 5

Applications to Forestry

In the previous chapters, we explored various computer vision technologies from the lens of
scientific computing. We used simple toy problems to more clearly analyze the benefits and
potential errors in such technologies, but the value of these technologies lies in their ability
to handle real scientific data and answer impactful scientific questions. In this chapter, we
demonstrate how the various technologies discussed perform on real data from the Open
Forest Observatory and their potential real-world impacts.

The Open Forest Observatory (OFO) is an open source software and data repository
created in a joint effort by UC Davis, University of Arizona, and CU Boulder to facilitate
drone-based forest mapping for forest ecology and management applications. The dataset in
development includes drone-derived 2D photos and videos of forests, photogrammetry-derived
2D and 3D forest maps [110], and field-based tree geolocation and species classification
information, among other forest data. The objective of the OFO is to make current state-of-
the art drone-based mapping methods and data accessible to forest ecologists and managers
with limited technical background in imagery processing and remote sensing. By enabling
rapid collection of forest inventory data over broad extents, the OFO aims to increase the
pace and scale of forest research and management that has traditionally been dependent on
time- and cost-intensive, spatially-constrained ground-based survey work. In the following
sections we discuss work we have done1 in incorporating contemporary 3D reconstruction
techniques into the OFO, highlighting the impact of these models and also describing future
research directions.

1Some of the work presented in this chapter will also appear as workshop paper for the 2024 ICLR
Workshop on Climate AI, co-authored with Arjun Rewari, Trevor Darrell, and Derek J. N. Young [71].

62

5.1 Forest Mapping
Forest inventories are critical resources for understanding ecological processes and informing
forest management, but they have traditionally required time-consuming ground-based surveys.
Individual tree-level measurements including location, height, stem diameter, health status,
and species identity require substantial time and effort to obtain. For example, a standard
approach to forest mapping is to establish a plot centerpoint and measure each tree’s position
relative to it in radial coordinates using a laser rangefinder (distance) and compass (azimuth).
The spatial extent of the survey is thus limited to the mapper’s visual line of sight from the
plot centerpoint; for larger maps, multiple centerpoints must be established and additional
steps must be taken to keep the multiple subplots aligned, contiguous, and non-duplicative.
Individual tree-level measurements including height, stem diameter, health status, and
species identity require additional time and effort to obtain. Advances in drone and imagery
processing technology are enabling a new era of forest research in which individual trees can
be mapped, measured, and identified to genus or species across broad areas without extensive
ground surveys [62, 7], reducing survey time to days rather than months. Drone-based
mapping approaches generally involve executing a drone mission to collect a series of images
with high (70-90%) image-to-image overlap over a contiguous study area. The images are
then traditionally processed using photogrammetry into downstream data products such as
an orthomosaic, canopy height model, and a 3D mesh model of the scene. In turn, one or
more of these products can be used extract forest inventory data; for example, individual
treetops may be detected as local maxima in the canopy height model [110] and trees may
be classified to species based on their appearance in the orthomosaic [23, 102]. Forest
areas many hectares in extent can be surveyed in a day of imagery collection followed by
automated processing; traditional ground-based surveys of the same area may take months.
Although drone-based inventories do not capture forest conditions to the same level of detail
as ground-based methods, particularly in the forest understory, the tools are continually
improving.

5.1.1 Structure-from-Motion (SfM)
Currently, the 3D forest models in the OFO are created using structure-from-motion (SfM)
[81], a classical photogrammetry technique. As we detail in Chapter 1, SfM consists of
two main processes, correspondence search and incremental reconstruction. Correspondence
search takes in a set of images, processes them through feature extraction, matching, geometric
verification, and outputs a scene graph which shows relationships between images. This
scene graph is then used in the incremental reconstruction which consists of initialization,
image registration, triangulation of scene points, and outlier filtration. Since the resulting

63

Figure 5.1: NeRF (top) versus current SfM mesh reconstruction (below) on overhead drone
imagery. The NeRF retains more fine detail in the trees, most notably leaf and branch structure.

reconstructed scene often contains errors after triangulation, a refinement process called
bundle adjustment is often applied. Structure-from-Motion is successful in creating 3D
structure from 2D images, but it is ultimately limited by the data given it. It is not designed
to reconstruct novel views, which can limit its usefulness in situations where certain views
are difficult to collect, such as the understory of a dense forest.

64

(a)

(b)

Figure 5.2: Two views rendered views from a single NeRF created from drone-captured forest
imagery. The NeRF provides significantly enhanced levels of photorealism.65

5.2 Introducing NeRFs to the OFO
The OFO is a program created by forest ecologists for other ecologists, land managers, and
the general public. The OFO aims to integrate existing and emerging imagery processing
tools and techniques, tune them for forestry applications, and present them through user-
friendly interfaces. The OFO’s initial focus on classical photogrammetry-based approaches
has achieved high-quality mapping of the forest overstory [110], but the limited utility of
these methods for understory reconstruction poses some constraints to widespread adoption
by the forest ecology and management community. In particular, most forest inventory
methods, management prescriptions, and ecological analyses rely critically on measurements
of tree stem diameter at breast height (DBH), which can be challenging to obtain using
photogrammetry even in sparse stands [90, 89].

For this proof-of-concept work, we used an OFO video acquisition, collected using a DJI
Phantom 4 Pro v2 drone, that included footage from many angles of an isolated lodgepole
pine (Pinus contorta) on the Tahoe National Forest near Graegle, California (39.67 deg W,
120.62 deg N). We processed the data in nerfstudio [92] and used their nerf-facto method to
create a NeRF of the scene (Fig. 5.2). It is immediately obvious the significantly enhanced
photo-realism of the NeRF compared to a SfM created mesh (Fig. 5.3a). Detail such as
branches, leaves, and trunks can be made out much more clearly which can aid in a variety
of downstream tasks including species classification and trunk measurement. In Fig. 5.1, we
show another example of a NeRF, this time created from overhead imagery. As the images
were taken from further overhead, less detail is visible, but it is still more photorealistic than
the current 3D model in the OFO taken on a similar stand of trees with the same image
collecting procedure.

The mesh extracted from the NeRF also has improved detail. A SfM point-cloud generated
from the same data has a significant number of floaters. In Fig. 5.3 we compare the two. The
high number of artifacts prevents us from reasonably meshing the point-cloud. Those floaters
can be removed through post-processing, but in general we are not seeing much detail in the
individual trees, which is consistent with the SfM data already present in OFO. In addition
to providing a richer visual experience, having more detail can serve a various scientific
purposes. There are several qualitative tasks that typically require an expert walking through
a forest, such as fuel load estimation or density verification, that could potentially be done
virtually with a NeRF, saving significant travel time and costs as many forests are quite
remote. NeRFs also allow the 3D qualitative experience to be saved, enabling more robust
comparisons across time.

This mesh also has the potential to be used for PDE simulation. Relatively little work has
been done in high fidelity 3D wildfire simulations for two primary reasons: (1) it is difficult to
get access to high quality 3D geometries, so 2D elevation maps are used instead; (2) Correctly

66

(a) Point-cloud generated via SfM.

(b) Mesh extracted from NeRF.

Figure 5.3: A side by side of a 3D point-cloud and a 3D mesh generated via different
reconstruction methods of the same imagery. The COLMAP point-cloud is shown instead of a

mesh, because there were so many stray points and other artifacts that the point-cloud could not
be reasonably meshed. NeRF by comparison yields a higher-quality, detailed mesh reconstruction of

individual trees.

67

simulating the physics in 3D is time consuming and is not well-suited to real-time information
which is what is most desired in an active fire scenario. However, if 3D geometries become
easily accessible, we believe this could spur development on the simulation side. There are
several applications of wildfire modeling that do not require real-time solutions, including
predictive modeling for insurance and development purposes.

5.3 Climate and Environmental Impacts
Broad-extent forest inventory data is critical for informing management of forests in our
era of changing climate, increasing drought stress, and unnaturally high-severity wildfires.
Due to a century of intensive fire suppression and exclusion of indigenous forest stewardship
through fire, dry forests in the western U.S. – and many other areas around the globe –
have become unnaturally dense [78]. With more trees competing for the same finite pool
of resources, particularly water, such “overstocked" stands are at high risk of mortality due
to drought [112]. The closely spaced trees, with an abundance of flammable material in the
understory, put the stands at high risk of near complete mortality in the event of a wildfire [2].
Forest mortality, whether through drought, fire, or other environmental stressors, has clear
implications for carbon storage and myriad other ecosystem services. Understanding tree
density is essential for proper forest management.

Forest management such as mechanical thinning, prescribed fire, and reintroduction of
beneficial wildfire can greatly ameliorate the stresses associated with unnaturally dense forest
stands and improve forest resistance to drought and fire [111], thus reducing the risk of
catastrophic forest and carbon loss. However, resources for such forest management are
stretched thin, and only a small fraction of forest area needing management each year receives
treatment [66, 65]. Thus, data to inform efforts to prioritize forest management across
space and time is critical. Because in-person assessments and surveys for all forests are not
practical, modern tools to automate and virtualize forest measurement could thus provide
substantial value to forest management efforts. This data (e.g. species identification, density
and biomass estimation, DBH etc.) also serve as an additional metrics to judge reconstruction
quality. Such prioritization depends on inventory data, which is costly and time-consuming
to collect by traditional means. The OFO aims to greatly increase the efficiency of such
data collection using drone-based alternatives to traditional ground-based surveys and enable
individuals such as forest managers to both collect and process the data into extensive forest
inventory maps suitable for informing management decisions. The work presented here, and
future expansions upon it, will help to improve the fidelity of drone-derived products to the
real-world stand conditions, thus increasing their relevance for informing management to
maintain healthy forests.

68

Figure 5.4: A SfM reconstruction where trees are floating off the ground. Future work is
motivated around using NeRF-based technologies to fill in the missing geometry enabling 3D

simulation.

5.4 Uncertainty in Forest Renderings
The wealth of data in the Open Forest Observatory gives us an opportunity to demonstrate
various aspects of our Image-to-PDE pipeline as well as highlight points of friction that would
benefit from improvement. Starting with geometry generation, we showed in the previous
sections how a NeRF can be built from OFO data. Neuralangelo similarly can be used to
get high quality renderings. While the geometry in this case leaves much to be desired, we
can still apply our uncertainty model to the color. In Fig. 5.5 we see a novel view rendering
created with NeuralAngleo. There are small artifacts at the tree top level with rays being
hallucinated from some of the trees. The uncertainty heat-map correctly identifies these areas
as areas of high uncertainty while indicating that the rest of the image is relatively certain.

As the SDF that was learned with this rendering was not of the desired quality, we did not
apply our SDF uncertainty method (only the color uncertainty), but we expect it could be
applied similarly. In this application we could see several uses of this uncertainty information.

69

Figure 5.5: Novel image rendering of an OFO tree scene using NeuralAngelo, rather than NeRF,
with accompanying uncertainty heat-map generated by the method outlined in Ch. 4. Darker

colors indicates higher uncertainty

By indicating to the user where the rendering is uncertain, it enables the user to decide to
collect more imagery or not. Of further usefulness would be connecting the uncertainty to the
physics to give an indication of how this uncertainty will affect the simulation. In a wildfire
simulation, it may or may not matter how accurately the tree-tops are rendered.

5.5 Future Work
Using traditional NeRF can already transform how the Open Forest Observatory can be
used by forest managers, significantly improving reconstruction quality enabling virtual
assessments among other applications. However, there are several variants of NeRF that
could provide additional improvements. The next immediate goal is to greatly scale up
the size of the NeRF taking inspiration from other large-scale NeRF efforts [91]. Next, we
wish to explore methods to improve the quality of the underlying geometric structure. We
have done some preliminary experiments with signed-distance function based methods such
as neus-facto (implemented in SDFstudio [113]) and Neuralangelo [49], but despite decent
quality renderings we were failing to see higher quality meshes. In practice, we have seen
that NeuS and Neuralangelo have high sensitivity to camera angles in producing their mesh,
but by converting the camera information saved by the drone into a SDFstudio compatible
format, we do think it is feasible to generate higher quality SDFs for simulation. This work is
still on-going. We also wish to do a better job filling in the hard-to-image understory: Trees
often appear to be floating floating (Fig. 5.4). We plan to explore approaches that combine
diffusion models with NeRF [17, 35, 107]. We believe forests are particularly well suited to

70

this approach as we have a strong prior that most everything we are imaging is a tree, and
there are basic principles such as “trees should be connected to the ground" that we can
enforce to improve reconstruction quality. We are also currently exploring 3D in-painting
methods such as Inpaint3D [69] which use 2D images to in-paint a 3D scene, fixing errors.
Can we use the photorealisitic NeRF reconstruction to get a good 2D image of a novel view
and then use that to fill-in the missing pieces of the SfM reconstruction? Could we also use
the SfM as an initialization for NeuS? There are many ideas for combining the various 3D
methods available to improve the final 3D geometry.

Another exciting extension of NeRF that could aid in forestry management is the incor-
poration of language models. LERF [43] allows for natural-language searching through a
NeRF, which if fine-tuned on species level forest data could be very useful for finding and
counting species. As we see more multi-model models that can handle question answering,
we could imagine merging those with NeRF as well to give more information about the 3D
environment such as stand density, basal area, or biomass, all of which are important metrics
in estimating carbon sequestration and fuel sources for wildfires.

The OFO is compiling extensive imagery and ground truth data (in the form of geospatial
locations, species labels, and diameter measurements) of forest stands across the western
U.S. and ultimately around the world. We plan to curate a subset of the data in the form of
well-defined “challenge problems" to spur the development of new vision methods specifically
designed for this high-impact application area. Already metrics for 3D reconstruction quality
are a hotly debated topic in the community, as what constitutes an acceptable versus an
unacceptable error is often dependent on the downstream application. In many forestry
applications the key metric is faithful reconstruction of a tree’s stem diameter at breast height
(DBH), given it is the size metric around which the vast majority of forest ecology models
and management prescriptions are based. With a specific downstream application in mind,
along with extensive and high-quality ground-truth DBH data, we hope to provide a new
application area and validation metric to the 3D reconstruction community.

71

Chapter 6

Final Words

In this thesis we explored technologies from several branches of computational science and
detailed how they could be put together to create an image-to-simulation pipeline that
would greatly broaden the real-world scenarios we are able to simulate. We explored several
approaches for learning signed distance functions from images, finding much potential in the
NeuS family of algorithms.

We paired NeuS with Embedded Boundary PDE simulation, analyzing the various
parameters that can affect error in geometry and how that error in geometry translates to
error in simulation. Additionally we examined how traditional 3D geometry metrics fail to
capture the errors most relevant to EB simulation, so we provided our own framework for
evaluating neural reconstruction techniques in the context of PDE simulation. While the
method we used in our experiments, NeuralAngelo, represents the current state of the art in
NeuralSDF inference from images, the field moves very quickly and we expect new methods
to soon emerge. In the past, the fast pace of 3D reconstruction research has made it difficult
to transfer to scientific disciplines - it can be challenging for the uninitiated to know what to
focus on. We hope that the introduction of a systematic evaluation framework specifically
designed for use with numerical simulation can prepare numerical analysts to more easily
evaluate new methods as the are developed.

In our analysis of the NeuS family of methods, we saw the limitations of only evaluating
error post-facto. In most situations, we will not have ground truth to compare to, or really
much concrete understanding of error, and there is so much variation in input data (images
available, lighting of scene, geometry of the objects, etc.) that each test reconstruction
problem does not easily generalize to others. This motivated the necessity of a model-specific
understanding of uncertainty. We turned towards the literature in NeRF and outlined how to
apply it to NeuS, along with modifications to support specifically error in the SDF geometry
as opposed to just error in the rendering. We showed the efficacy of our method as opposed

72

to just measuring uncertainty in rendering in some small test problems and also highlighted
many areas for improvement. Most importantly, we wish to fully integrate this understanding
of uncertainty in geometry to a fuller understanding of uncertainty in physics by propagating
the uncertainty measure through the EB calculations.

Finally, as this thesis is primarily concerned with the practical integration of tools for
solving real-world problems, we ground all of this work in a very impact real-world application.
Proper forest management is increasingly important as our climate changes, for many reasons
including wildfire prevention, carbon sequestration, and biodiversity preservation. We
illustrated the data that our partners at the Open Forest Observatory have collected to aid in
this vital task, and how all of the technologies outlined in this thesis have and will continue
to support the creation of this valuable open-source dataset.

As this work was the first to pair these technologies together, it is just a start to building
an automatic, robust pipeline. Part of our contribution is to identify and pose the interesting
questions that arise by putting these technologies together. One of the most important
of these questions is how to fully propagate uncertainty through the physics model and
possibly even bring that physics uncertainty back in to the image reconstruction model.
There exists an extensive literature in uncertainty propagation [56, 64] in computational fluid
dynamics that could be applied to this problem, although there is no work yet on specifically
performing uncertainty quantification through an Embedded Boundary simulation. This
provides a rich area for future work. Supposing we have an uncertainty metric, the physics
uncertainty could also be used as feedback to the initial 3D reconstruction network. We could
penalize geometries that have highly uncertain physics or break a law of physics, leading to
an improved overall geometry.

The collaboration with the Open Forest Observatory also highlights the various weak
points in this pipeline. In this work, we are mostly assuming that high quality images are
relatively easy to obtain. While they certainly are easier to obtain than LiDAR scans or
other 2.5D/3D imagery, there are still hurdles. For example, it is difficult to obtain good
imagery of the understory of a forest as manual drone navigation through a forest can be
tricky. However, there are improvements in obstacle avoidance algorithms that could enable
autonomous image collection. Using this imagery to build a NeRF and combining it with
the overstory imagery, could increase fidelity. There are also many NeRF-based methods
that incorporate diffusion and/or 3D in-painting [69] that could be used to fill in parts of
the forest that are difficult to image. From there, the Embedded Boundary method could be
used to perform a 3D wildfire simulation, and using the machinery we have built up in this
work, we could also characterize the error and uncertainty of that simulation to be able to
make informed forest management decisions.

Computer vision has huge potential to aid in scientific tasks, but work still has to be
done to bridge the gap between cutting-edge research results and messy, real-world data.

73

Scientists must be able to quantify and understand the strengths and weaknesses of any given
model, and we present this thesis as a step towards enabling trust in neural approaches in
the scientific process.

74

Bibliography

[1] Michael J Aftosmis, Marsha J Berger, and John E Melton. “Robust and efficient
Cartesian mesh generation for component-based geometry”. In: AIAA journal 36.6
(1998), pp. 952–960.

[2] Victoria JW Amato, David Lightfoot, Cody Stropki, and Michael Pease. “Relationships
between tree stand density and burn severity as measured by the Composite Burn
Index following a ponderosa pine forest wildfire in the American Southwest”. In: Forest
ecology and management 302 (2013), pp. 71–84.

[3] Ma Baorui, Han Zhizhong, Liu Yu-Shen, and Zwicker Matthias. “Neural-Pull: Learning
Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces”.
In: International Conference on Machine Learning (ICML). 2021.

[4] Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan
Gutfreund, Joshua B. Tenenbaum, and Boris Katz. “ObjectNet: A large-scale bias-
controlled dataset for pushing the limits of object recognition models”. In: NeurIPS.
2019.

[5] Fausto Bernardini, Joshua Mittleman, Holly Rushmeier, Cláudio Silva, and Gabriel
Taubin. “The ball-pivoting algorithm for surface reconstruction”. In: IEEE transactions
on visualization and computer graphics 5.4 (1999), pp. 349–359.

[6] Bo Li, Chunhua Shen, Yuchao Dai, A. van den Hengel, and Mingyi He. “Depth and
surface normal estimation from monocular images using regression on deep features
and hierarchical CRFs”. In: 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2015.

[7] Nicolò Camarretta, Peter A Harrison, Tanya Bailey, Brad Potts, Arko Lucieer, Neil
Davidson, and Mark Hunt. “Monitoring forest structure to guide adaptive management
of forest restoration: a review of remote sensing approaches”. In: New Forests 51 (2020),
pp. 573–596.

[8] Angel X. Chang et al. “ShapeNet: An Information-Rich 3D Model Repository”. In:
Arxiv. 2015.

75

[9] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. “TensoRF: Tensorial
Radiance Fields”. In: 2022. arXiv: 2203.09517 [cs.CV].

[10] Weifeng Chen, Zhao Fu, Dawei Yang, and Jia Deng. “Single-Image Depth Perception
in the Wild”. In: Advances in Neural Information Processing Systems. Ed. by D.
Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett. Vol. 29. Curran Asso-
ciates, Inc., 2016. url: https://proceedings.neurips.cc/paper/2016/file/
0deb1c54814305ca9ad266f53bc82511-Paper.pdf.

[11] Zhiqin Chen and Hao Zhang. “Learning implicit fields for generative shape modeling”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2019.

[12] Yen-Chi Cheng, Hsin-Ying Lee, Sergey Tulyakov, Alexander G Schwing, and Liang-Yan
Gui. “Sdfusion: Multimodal 3d shape completion, reconstruction, and generation”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2023, pp. 4456–4465.

[13] Christopher B. Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese.
“3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction”.
In: eccv. 2016.

[14] P Colella, D. T. Graves, T. J. Ligocki, G.H. Miller, D. Modiano, P.O. Schwartz, B. Van
Straalen, J. Pillod, D. Trebotich, and M. Barad. “EBChombo software package for
Cartesian grid, embedded boundary applications”. In: (2014).

[15] Michael G Crandall and Pierre-Louis Lions. “Viscosity solutions of Hamilton-Jacobi
equations”. In: Transactions of the American mathematical society 277.1 (1983), pp. 1–
42.

[16] Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias
Bauer, and Philipp Hennig. “Laplace redux-effortless bayesian deep learning”. In:
Advances in Neural Information Processing Systems 34 (2021), pp. 20089–20103.

[17] Congyue Deng, Chiyu Jiang, Charles R Qi, Xinchen Yan, Yin Zhou, Leonidas Guibas,
Dragomir Anguelov, et al. “Nerdi: Single-view nerf synthesis with language-guided
diffusion as general image priors”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2023, pp. 20637–20647.

[18] Dharshi Devendran, Daniel Graves, Hans Johansen, and Terry Ligocki. “A fourth-order
Cartesian grid embedded boundary method for Poisson’s equation”. In: Communica-
tions in Applied Mathematics and Computational Science 12.1 (2017), pp. 51–79.

76

https://arxiv.org/abs/2203.09517
https://proceedings.neurips.cc/paper/2016/file/0deb1c54814305ca9ad266f53bc82511-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/0deb1c54814305ca9ad266f53bc82511-Paper.pdf

[19] D. Eigen and R. Fergus. “Predicting Depth, Surface Normals and Semantic Labels
with a Common Multi-scale Convolutional Architecture”. In: 2015 IEEE International
Conference on Computer Vision (ICCV). 2015.

[20] David Eigen, Christian Puhrsch, and Rob Fergus. “Depth Map Prediction from a Single
Image Using a Multi-Scale Deep Network”. In: Proceedings of the 27th International
Conference on Neural Information Processing Systems - Volume 2. 2014.

[21] Haoqiang Fan, Hao Su, and Leonidas Guibas. “A Point Set Generation Network for
3D Object Reconstruction from a Single Image”. In: CVPR. 2017.

[22] Péter Fankhauser, Michael Bloesch, Diego Rodriguez, Ralf Kaestner, Marco Hutter, and
Roland Siegwart. “Kinect v2 for mobile robot navigation: Evaluation and modeling”.
In: 2015 International Conference on Advanced Robotics (ICAR). 2015, pp. 388–394.
doi: 10.1109/ICAR.2015.7251485.

[23] Matheus Pinheiro Ferreira, Danilo Roberti Alves de Almeida, Daniel de Almeida Papa,
Juliano Baldez Silva Minervino, Hudson Franklin Pessoa Veras, Arthur Formighieri,
Caio Alexandre Nascimento Santos, Marcio Aurélio Dantas Ferreira, Evandro Orfano
Figueiredo, and Evandro José Linhares Ferreira. “Individual tree detection and species
classification of Amazonian palms using UAV images and deep learning”. In: Forest
Ecology and Management 475 (2020), p. 118397.

[24] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao. “Deep Ordinal Regression
Network for Monocular Depth Estimation”. In: 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2018.

[25] Matheus Gadelha, Rui Wang, and Subhransu Maji. “Multiresolution Tree Networks
for 3D Point Cloud Processing”. In: ECCV. 2018.

[26] Ravi Garg, BG Vijay Kumar, Gustavo Carneiro, and Ian Reid. “Unsupervised CNN
for single view depth estimation: Geometry to the rescue”. In: European Conference
on Computer Vision. Springer. 2016, pp. 740–756.

[27] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for autonomous
driving? The KITTI vision benchmark suite”. In: 2012 IEEE Conference on Computer
Vision and Pattern Recognition. 2012, pp. 3354–3361. doi: 10.1109/CVPR.2012.
6248074.

[28] Georgia Gkioxari, Jitendra Malik, and Justin Johnson. “Mesh r-cnn”. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. 2019, pp. 9785–9795.

[29] Clément Godard, Oisin Mac Aodha, and Gabriel J. Brostow. “Unsupervised Monocular
Depth Estimation with Left-Right Consistency”. In: CVPR. 2017.

77

https://doi.org/10.1109/ICAR.2015.7251485
https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.1109/CVPR.2012.6248074

[30] Clément Godard, Oisin Mac Aodha, Michael Firman, and Gabriel J. Brostow. “Digging
into Self-Supervised Monocular Depth Prediction”. In: (Oct. 2019).

[31] Shubham Goel, Angjoo Kanazawa, and Jitendra Malik. “Shape and Viewpoints without
Keypoints”. In: ECCV. 2020.

[32] Lily Goli, Cody Reading, Silvia Selllán, Alec Jacobson, and Andrea Tagliasacchi.
“Bayes’ Rays: Uncertainty Quantification for Neural Radiance Fields”. In: arXiv
preprint arXiv:2309.03185 (2023).

[33] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman. “Implicit
geometric regularization for learning shapes”. In: arXiv preprint arXiv:2002.10099
(2020).

[34] Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan Russell, and Mathieu
Aubry. “AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation”. In:
Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2018.

[35] Jiatao Gu, Alex Trevithick, Kai-En Lin, Joshua M Susskind, Christian Theobalt,
Lingjie Liu, and Ravi Ramamoorthi. “Nerfdiff: Single-image view synthesis with nerf-
guided distillation from 3d-aware diffusion”. In: International Conference on Machine
Learning. PMLR. 2023, pp. 11808–11826.

[36] C. Häne, S. Tulsiani, and J. Malik. “Hierarchical Surface Prediction for 3D Object
Reconstruction”. In: 3DV. 2017.

[37] Miles Hansard, Seungkyu Lee, Ouk Choi, and Radu Horaud. Time of Flight Cameras:
Principles, Methods, and Applications. Oct. 2012.

[38] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The
elements of statistical learning: data mining, inference, and prediction. Vol. 2. Springer,
2009.

[39] Hans Johansen and Phillip Colella. “A Cartesian grid embedded boundary method
for Poisson’s equation on irregular domains”. In: Journal of Computational Physics
147.1 (1998), pp. 60–85.

[40] Angjoo Kanazawa, Shubham Tulsiani, Alexei A. Efros, and Jitendra Malik. “Learning
Category-Specific Mesh Reconstruction from Image Collections”. In: ECCV. 2018.

[41] Michael Kazhdan and Hugues Hoppe. “Screened Poisson Surface Reconstruction”.
In: ACM Trans. Graph. 32.3 (July 2013). issn: 0730-0301. doi: 10.1145/2487228.
2487237. url: https://doi.org/10.1145/2487228.2487237.

[42] Michael Kazhdan and Hugues Hoppe. “Screened poisson surface reconstruction”. In:
ACM Transactions on Graphics (ToG) 32.3 (2013), pp. 1–13.

78

https://doi.org/10.1145/2487228.2487237
https://doi.org/10.1145/2487228.2487237
https://doi.org/10.1145/2487228.2487237

[43] Justin Kerr, Chung Min Kim, Ken Goldberg, Angjoo Kanazawa, and Matthew Tan-
cik. “Lerf: Language embedded radiance fields”. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. 2023, pp. 19729–19739.

[44] Kourosh Khoshelham and Sander Oude Elberink. “Accuracy and Resolution of Kinect
Depth Data for Indoor Mapping Applications”. In: Sensors (Basel, Switzerland) 12
(2012), pp. 1437–1454.

[45] Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Federico Tombari, and Nassir
Navab. “Deeper depth prediction with fully convolutional residual networks”. In: 3D
Vision (3DV), 2016 Fourth International Conference on. IEEE. 2016, pp. 239–248.

[46] Erich L Lehmann and George Casella. Theory of point estimation. Springer Science &
Business Media, 2006.

[47] Ruibo Li, Ke Xian, Chunhua Shen, Zhiguo Cao, Hao Lu, and Lingxiao Hang. “Deep
attention-based classification network for robust depth prediction”. In: Asian Confer-
ence on Computer Vision. Springer. 2018, pp. 663–678.

[48] Xueting Li, Sifei Liu, Kihwan Kim, Shalini De Mello, Varun Jampani, Ming-Hsuan
Yang, and Jan Kautz. “Self-supervised Single-view 3D Reconstruction via Semantic
Consistency”. In: ECCV. 2020.

[49] Zhaoshuo Li, Thomas Müller, Alex Evans, Russell H Taylor, Mathias Unberath,
Ming-Yu Liu, and Chen-Hsuan Lin. “Neuralangelo: High-Fidelity Neural Surface
Reconstruction”. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2023, pp. 8456–8465.

[50] Zhengqi Li and Noah Snavely. “MegaDepth: Learning Single-View Depth Prediction
from Internet Photos”. In: Computer Vision and Pattern Recognition (CVPR). 2018.

[51] T. Ligocki. “Poster: Embedded Boundary Grid Generation using the Divergence
Theorem, Implicit FUnctions and Constructive Solid Geometry”. In: Applied Partial
Differential Equations Center for Enabling Technologies (APDEC). 2008.

[52] Chen-Hsuan Lin, Chaoyang Wang, and Simon Lucey. “SDF-SRN: Learning Signed
Distance 3D Object Reconstruction from Static Images”. In: Advances in Neural
Information Processing Systems (NeurIPS). 2020.

[53] Fayao Liu, Chunhua Shen, and Guosheng Lin. “Deep Convolutional Neural Fields for
Depth Estimation from a Single Image”. In: Proc. IEEE Conf. Computer Vision and
Pattern Recognition. 2015. url: http://arxiv.org/abs/1411.6387.

[54] Shitong Luo and Wei Hu. “Diffusion Probabilistic Models for 3D Point Cloud Genera-
tion”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). June 2021, pp. 2837–2845.

79

http://arxiv.org/abs/1411.6387

[55] Yue Luo, Jimmy Ren, Mude Lin, Jiahao Pang, Wenxiu Sun, Hongsheng Li, and Liang
Lin. “Single View Stereo Matching”. In: CVPR. 2018.

[56] Lionel Mathelin, M Yousuff Hussaini, and Thomas A Zang. “Stochastic approaches to
uncertainty quantification in CFD simulations”. In: Numerical Algorithms 38 (2005),
pp. 209–236.

[57] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas
Geiger. “Occupancy networks: Learning 3d reconstruction in function space”. In:
CVPR. 2019.

[58] S. Mahdi H. Miangoleh, Sebastian Dille, Long Mai, Sylvain Paris, and Yağız Ak-
soy. “Boosting Monocular Depth Estimation Models to High-Resolution via Content-
Adaptive Multi-Resolution Merging”. In: 2021.

[59] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi
Ramamoorthi, and Ren Ng. “Nerf: Representing scenes as neural radiance fields for
view synthesis”. In: Communications of the ACM 65.1 (2021), pp. 99–106.

[60] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi
Ramamoorthi, and Ren Ng. “NeRF: Representing Scenes as Neural Radiance Fields
for View Synthesis”. In: CVPR. 2020.

[61] Paritosh Mittal, Yen-Chi Cheng, Maneesh Singh, and Shubham Tulsiani. “AutoSDF:
Shape Priors for 3D Completion, Reconstruction and Generation”. In: CVPR. 2022.

[62] Reason Mlambo, Iain H Woodhouse, France Gerard, and Karen Anderson. “Structure
from motion (SfM) photogrammetry with drone data: A low cost method for monitoring
greenhouse gas emissions from forests in developing countries”. In: Forests 8.3 (2017),
p. 68.

[63] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. “Instant Neural
Graphics Primitives with a Multiresolution Hash Encoding”. In: ACM Trans. Graph.
41.4 (July 2022), 102:1–102:15. doi: 10 . 1145 / 3528223 . 3530127. url: https :
//doi.org/10.1145/3528223.3530127.

[64] Habib N Najm. “Uncertainty quantification and polynomial chaos techniques in
computational fluid dynamics”. In: Annual review of fluid mechanics 41 (2009), pp. 35–
52.

[65] Malcolm North, April Brough, Jonathan Long, Brandon Collins, Phil Bowden, Don
Yasuda, Jay Miller, and Neil Sugihara. “Constraints on mechanized treatment signifi-
cantly limit mechanical fuels reduction extent in the Sierra Nevada”. In: Journal of
Forestry 113.1 (2015), pp. 40–48.

80

https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127

[66] MP North, RA York, BM Collins, MD Hurteau, GM Jones, EE Knapp, L Kobziar,
H McCann, MD Meyer, SL Stephens, et al. “Pyrosilviculture needed for landscape
resilience of dry western United States forests”. In: Journal of Forestry 119.5 (2021),
pp. 520–544.

[67] Stanley Osher and James A Sethian. “Fronts propagating with curvature-dependent
speed: Algorithms based on Hamilton-Jacobi formulations”. In: Journal of computa-
tional physics 79.1 (1988), pp. 12–49.

[68] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven
Lovegrove. “Deepsdf: Learning continuous signed distance functions for shape rep-
resentation”. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 2019, pp. 165–174.

[69] Kira Prabhu, Jane Wu, Lynn Tsai, Peter Hedman, Dan B Goldman, Ben Poole, and
Michael Broxton. “Inpaint3D: 3D Scene Content Generation using 2D Inpainting
Diffusion”. In: arXiv preprint arXiv:2312.03869 (2023).

[70] Marissa Ramirez de Chanlatte, Matheus Gadelha, Thibault Groueix, and Radomir
Mech. “Recovering Detail in 3D Shapes Using Disparity Maps”. In: arXiv preprint
arXiv:2207.00182 (2022).

[71] Marissa Ramirez de Chanlatte, Arjun Rewari, Trevor Darrell, and Derek J. N. Young.
“Neural Tree Reconstruction for the Open Forest Observatory”. In: arXiv preprint
arXiv:2207.00182 (2022).

[72] René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun.
“Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-
dataset Transfer”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI) (2020).

[73] René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun.
“Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-
dataset transfer”. In: IEEE transactions on pattern analysis and machine intelligence
(2020).

[74] Gernot Riegler, Ali Osman Ulusoy, Horst Bischof, and Andreas Geiger. “OctNetFusion:
Learning Depth Fusion from Data”. In: 3DV. 2017.

[75] Hippolyt Ritter, Aleksandar Botev, and David Barber. “A scalable laplace approxima-
tion for neural networks”. In: 6th International Conference on Learning Representa-
tions, ICLR 2018-Conference Track Proceedings. Vol. 6. International Conference on
Representation Learning. 2018.

[76] Lawrence G Roberts. “Machine perception of three-dimensional solids”. In: 1963.

81

[77] Anirban Roy and Sinisa Todorovic. “Monocular depth estimation using neural regres-
sion forest”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016, pp. 5506–5514.

[78] Hugh D Safford, Jens T Stevens, et al. Natural range of variation for yellow pine and
mixed-conifer forests in the Sierra Nevada, southern Cascades, and Modoc and Inyo
National Forests, California, USA. United States Department of Agriculture, Forest
Service, Pacific Southwest . . ., 2017.

[79] Sara Fridovich-Keil and Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht,
and Angjoo Kanazawa. “Plenoxels: Radiance Fields without Neural Networks”. In:
CVPR. 2022.

[80] A. Saxena, M. Sun, and A. Y. Ng. “Make3D: Learning 3D Scene Structure from a Single
Still Image”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence.
2009.

[81] Johannes L Schonberger and Jan-Michael Frahm. “Structure-from-motion revisited”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2016, pp. 4104–4113.

[82] Thomas Schöps, Johannes L. Schönberger, Silvano Galliani, Torsten Sattler, Konrad
Schindler, Marc Pollefeys, and Andreas Geiger. “A Multi-View Stereo Benchmark
with High-Resolution Images and Multi-Camera Videos”. In: Conference on Computer
Vision and Pattern Recognition (CVPR). 2017.

[83] Peter Schwartz, David Adalsteinsson, Phillip Colella, Adam Paul Arkin, and Matthew
Onsum. “Numerical computation of diffusion on a surface”. In: Proceedings of the
National Academy of Sciences 102.32 (2005), pp. 11151–11156.

[84] Peter Schwartz, Julie Percelay, Terry J. Ligocki, Hans Johansen, Daniel T. Graves,
Dharshi Devendran, Phillip Colella, and Eli Ateljevich. “High-accuracy embedded
boundary grid generation using the divergence theorem”. In: Communications in
Applied Mathematics and Computational Science 10 (1 2015), pp. 83–96.

[85] Daeyun Shin, Charless Fowlkes, and Derek Hoiem. “Pixels, voxels, and views: A
study of shape representations for single view 3D object shape prediction”. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2018.

[86] Pratul P Srinivasan, Boyang Deng, Xiuming Zhang, Matthew Tancik, Ben Mildenhall,
and Jonathan T Barron. “Nerv: Neural reflectance and visibility fields for relighting
and view synthesis”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2021, pp. 7495–7504.

82

[87] Wen Su, Haifeng Zhang, Jia Li, Wenzhen Yang, and Zengfu Wang. “Monocular Depth
Estimation as Regression of Classification Using Piled Residual Networks”. In: 2019.

[88] Xingyuan Sun, Jiajun Wu, Xiuming Zhang, Zhoutong Zhang, Chengkai Zhang, Tianfan
Xue, Joshua B Tenenbaum, and William T Freeman. “Pix3d: Dataset and methods for
single-image 3d shape modeling”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2018, pp. 2974–2983.

[89] Neal C Swayze and Wade T Tinkham. “Application of unmanned aerial system
structure from motion point cloud detected tree heights and stem diameters to model
missing stem diameters”. In: MethodsX 9 (2022), p. 101729.

[90] Neal C Swayze, Wade T Tinkham, Jody C Vogeler, and Andrew T Hudak. “Influence
of flight parameters on UAS-based monitoring of tree height, diameter, and density”.
In: Remote Sensing of Environment 263 (2021), p. 112540.

[91] Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Pradhan, Ben Mildenhall,
Pratul P Srinivasan, Jonathan T Barron, and Henrik Kretzschmar. “Block-nerf: Scal-
able large scene neural view synthesis”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2022, pp. 8248–8258.

[92] Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li, Brent Yi, Terrance Wang,
Alexander Kristoffersen, Jake Austin, Kamyar Salahi, Abhik Ahuja, et al. “Nerfstudio:
A modular framework for neural radiance field development”. In: ACM SIGGRAPH
2023 Conference Proceedings. 2023, pp. 1–12.

[93] M. Tatarchenko, A. Dosovitskiy, and T. Brox. “Octree Generating Networks: Efficient
Convolutional Architectures for High-resolution 3D Outputs”. In: iccv. 2017.

[94] Maxim Tatarchenko, Stephan R Richter, René Ranftl, Zhuwen Li, Vladlen Koltun,
and Thomas Brox. “What do single-view 3d reconstruction networks learn?” In:
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
2019, pp. 3405–3414.

[95] Anh Thai, Stefan Stojanov, Vijay Upadhya, and James M Rehg. “3d reconstruction
of novel object shapes from single images”. In: 2021 International Conference on 3D
Vision (3DV). IEEE. 2021, pp. 85–95.

[96] Shubham Tulsiani, Nilesh Kulkarni, and Abhinav Gupta. “Implicit mesh reconstruction
from unannotated image collections”. In: arXiv preprint arXiv:2007.08504 (2020).

[97] Kalyan Alwala Vasudev, Abhinav Gupta, and Shubham Tulsiani. “Pre-train, Self-train,
Distill: A simple recipe for Supersizing 3D Reconstruction”. In: Computer Vision and
Pattern Recognition (CVPR). 2022.

83

[98] Chaoyang Wang, Simon Lucey, Federico Perazzi, and Oliver Wang. “Web stereo
video supervision for depth prediction from dynamic scenes”. In: 2019 International
Conference on 3D Vision (3DV). IEEE. 2019, pp. 348–357.

[99] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and Yu-Gang Jiang.
“Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”. In: ECCV. 2018.

[100] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping
Wang. “Neus: Learning neural implicit surfaces by volume rendering for multi-view
reconstruction”. In: arXiv preprint arXiv:2106.10689 (2021).

[101] Yiming Wang, Qin Han, Marc Habermann, Kostas Daniilidis, Christian Theobalt,
and Lingjie Liu. “Neus2: Fast learning of neural implicit surfaces for multi-view recon-
struction”. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. 2023, pp. 3295–3306.

[102] Ben G Weinstein, Sergio Marconi, Sarah J Graves, Alina Zare, Aditya Singh, Stephanie
A Bohlman, Lukas Magee, Daniel J Johnson, Phillip A Townsend, and Ethan P White.
“Capturing long-tailed individual tree diversity using an airborne imaging and a
multi-temporal hierarchical model”. In: Remote Sensing in Ecology and Conservation
(2023).

[103] Jiajun Wu, Yifan Wang, Tianfan Xue, Xingyuan Sun, William T Freeman, and Joshua
B Tenenbaum. “MarrNet: 3D Shape Reconstruction via 2.5D Sketches”. In: Advances
In Neural Information Processing Systems. 2017.

[104] Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T Freeman, and Joshua B Tenen-
baum. “Learning a probabilistic latent space of object shapes via 3d generative-
adversarial modeling”. In: Advances in Neural Information Processing Systems. 2016,
pp. 82–90.

[105] Jiajun Wu, Chengkai Zhang, Xiuming Zhang, Zhoutong Zhang, William T Freeman,
and Joshua B Tenenbaum. “Learning 3D Shape Priors for Shape Completion and
Reconstruction”. In: European Conference on Computer Vision (ECCV). 2018.

[106] Yu Xiang, Roozbeh Mottaghi, and Silvio Savarese. “Beyond PASCAL: A Benchmark
for 3D Object Detection in the Wild”. In: IEEE Winter Conference on Applications
of Computer Vision (WACV). 2014.

[107] Guandao Yang, Abhijit Kundu, Leonidas J Guibas, Jonathan T Barron, and Ben
Poole. “Learning a Diffusion Prior for NeRFs”. In: arXiv preprint arXiv:2304.14473
(2023).

[108] Yufei Ye, Shubham Tulsiani, and Abhinav Gupta. “Shelf-Supervised Mesh Prediction
in the Wild”. In: Computer Vision and Pattern Recognition (CVPR). 2021.

84

[109] Wei Yin, Jianming Zhang, Oliver Wang, Simon Niklaus, Long Mai, Simon Chen, and
Chunhua Shen. “Learning To Recover 3D Scene Shape From a Single Image”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). June 2021, pp. 204–213.

[110] Derek JN Young, Michael J Koontz, and JonahMaria Weeks. “Optimizing aerial
imagery collection and processing parameters for drone-based individual tree mapping
in structurally complex conifer forests”. In: Methods in Ecology and Evolution 13.7
(2022), pp. 1447–1463.

[111] Derek JN Young, Marc Meyer, Becky Estes, Shana Gross, Amarina Wuenschel,
Christina Restaino, and Hugh D Safford. “Forest recovery following extreme drought
in California, USA: natural patterns and effects of pre-drought management”. In:
Ecological Applications 30.1 (2020), e02002.

[112] Derek JN Young, Jens T Stevens, J Mason Earles, Jeffrey Moore, Adam Ellis, Amy L
Jirka, and Andrew M Latimer. “Long-term climate and competition explain forest
mortality patterns under extreme drought”. In: Ecology letters 20.1 (2017), pp. 78–86.

[113] Zehao Yu, Anpei Chen, Bozidar Antic, Songyou Peng, Apratim Bhattacharyya,
Michael Niemeyer, Siyu Tang, Torsten Sattler, and Andreas Geiger. SDFStudio:
A Unified Framework for Surface Reconstruction. 2022. url: https://github.com/
autonomousvision/sdfstudio.

[114] Xiuming Zhang, Zhoutong Zhang, Chengkai Zhang, Joshua B Tenenbaum, William T
Freeman, and Jiajun Wu. “Learning to Reconstruct Shapes From Unseen Classes”. In:
Advances in Neural Information Processing Systems (NeurIPS). 2018.

85

https://github.com/autonomousvision/sdfstudio
https://github.com/autonomousvision/sdfstudio

	Introduction
	Implicit Functions & Level Sets
	The Embedded Boundary Method
	Neural Networks
	3D Reconstruction from Images
	Structure from Motion
	Neural Methods
	Neural Radiance Fields (NeRFs)
	Neural Signed Distance Functions

	Learning SDFs from Single Images
	Single View Reconstruction
	Monocular Depth Estimation
	Projecting Disparity to 3D
	Recovering Detail in 3D Shapes Using Disparity Maps
	Experimental Results
	Disparity Projection Sensitivity Studies
	Full-Method Validation
	Synthetic Images
	Real Images

	Discussion & Limitations
	Limitations of The Models Used
	Limitations of SVR for Scientific Use Cases

	Related Work
	Monocular Depth Estimation
	Single View Reconstruction
	3D Diffusion and Shape Completion

	Simulating Physics with NeuralSDFs
	Learning SDFs for Scientific Simulation
	Methodology for Evaluating NeuralSDFs in EB Simulation
	Geometry Quality Metrics
	NeuralSDF Convergence

	Image to Simulation on Complex Geometries
	Conclusions

	Uncertainty in NeuralSDFs
	Uncertainty in NeRF
	Intuition
	Spatial Deformation
	Laplace's Approximation
	Laplace's Approximation on the NeRF Deformation Field

	Computing the Hessian
	Measuring Spatial Uncertainty

	BayesRays with NeuralSDFs
	Rendering Uncertainty
	Uncertainty and Geometric Error

	Future Work: Propagating Uncertainty in Embedded Boundary Simulation

	Applications to Forestry
	Forest Mapping
	Structure-from-Motion (SfM)

	Introducing NeRFs to the OFO
	Climate and Environmental Impacts
	Uncertainty in Forest Renderings
	Future Work

	Final Words

