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Acronyms and Definitions

API  Application programming interface
ASTER  Advanced Spaceborne Thermal Emission and 

Reflection Radiometer
ECHO  Extraction and classification of homogeneous 

objects
ENVI  Environment for visualizing images
GEOBIA Geographic object-based image analysis
GIS  Geographic information system 
GIScience Geographic information science
GPL  General public license
GPS  Global positioning system
ISI  Institute for Scientific Information
LiDAR Light detection and ranging
NGO  Nongovernmental organization
OBIA  Object-based image analysis
OGC  Open Geospatial Consortium
PPGIS   Public participation geographic information 

system
RGB  Red, green, blue color system
RS  Remote sensing
RSGISLib Remote sensing and GIS software library
SAGA  System for automated geoscientific analyses
UAS  Unmanned aerial systems

VGI  Volunteered geographic information
WoS  Web of science

14.1 introduction

Remote sensing, what it is and what it can be used for, is laid 
out in various chapters of this comprehensive book. We may 
only state here that remote sensing has a short history—when 
compared to traditional disciplines such as mathematics or 
physics. Contrarily, we may state that it has a long history 
when we compare it to recent Internet-based technology like 
social media or, closer to our field, the tracking of people and 
moving objects by means of cell phone signals. Remote sensing 
has been a domain for specialists for many years and to some 
degree it still is. Similarly, geographic information system (GIS) 
has for years been a field where professionals worked on desig-
nated workstations while not being fully integrated in standard 
corporate information technology infrastructures. The latter 
changed more than a decade ago, while for remote sensing only 
recently, one may still witness remnants of historical develop-
ments of Remote Sensing (RS)-specific hardware and software. 
The dominant concept in remote sensing has been the pixel, 
while GIS functionality has always been somehow splintered 
into the raster and vector domains. Blaschke and Strobl (2001) 
provocatively raised the question “What’s wrong with pixels?” 
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278 Remotely Sensed Data Characterization, Classification, and Accuracies

having identified an increasing dissatisfaction with pixel-
by-pixel image analysis. Although this critique was not new 
(Cracknell 1998; see also Blaschke and Strobl 2001; Burnett 
and Blaschke 2003; Blaschke 2010; Blaschke et  al. 2014 for a 
more thorough discussion), these authors described a need for 
applications beyond pixels and for specific methods and meth-
odologies that support this (Figure 14.1).

Over the last years, the number of applications that conceptually 
aim for objects—still built on the information of the underlying 
pixels—rose quickly. Blaschke et al. (2014) identified a high number 
of relevant publications that use—with some degree of fuzziness 
in their terminology—the concept of object-based image analysis 
(OBIA). They even claim that this concept and its instantiation to 
a particular order of scale—the geographic as opposed to applica-
tions in medical imaging or cell biology—is a new paradigm in 
remote sensing. For this level of scale and the geodomain, this par-
adigm is then referred to by some scholars as Geographic Object-
Based Image Analysis (GEOBIA), while the generic principles—the 
multiscale segmentation and object handling—may generically be 
called OBIA. Other sources use the more generic term of OBIA 
when referring to the geospatial domain also, and Blaschke et al. 
refer to Kuhn (1962) stating that an inconsistent use of terminology 
can be expected for a new paradigm. Nevertheless, it is high time 
to consolidate this terminology and to support a coherent usage 
of terms and naming conventions—after having agreed upon the 
concepts and the conception of the overall approach.

This chapter therefore briefly explains OBIA methods as 
used in the geospatial domain and elsewhere. We will start 
from the quest to partitioning geospatial data into meaningful 
image objects and the needs and possibilities to assessing their 
characteristics through spatial, spectral, and temporal scale. 
At its most fundamental level, OBIA requires image segmen-
tation, attribution, classification, and the ability to query and 
link individual objects (aka segments) in space and time. We 
will elucidate the evolution of this approach, its relatively short 
history, and its older origins. Instead of a comprehensive state-
of-the-art analysis, we refer to the key literature and try to sum-
marize the core concepts for the reader in an understandable 
way, with a particular emphasis on a common nomenclature, 
definitions, and reporting procedures. Ultimately, we will ask 

where this development will lead to in terms of applications, 
research questions and needs in education, and training and 
professional workforce development, and we conclude with the 
main advances and recommendations for future work.

14.2 History of oBiA

14.2.1 intellectual Roots

14.2.1.1 conceptual Foundations

The conceptual foundations of OBIA are rooted in the 1960s with 
predigital aerial photography. The spatial information found in 
digital imagery that is harnessed in the object-based approach, 
for example, image texture, contextual information, pixel prox-
imity, and geometric attributes of features, were discussed in 
the 1960s as possible components to yet possible automation of 
photo interpretation. In his seminal work on aerial photography 
and early remote-sensing applications, Colwell (1965) describes 
the photo interpretation process as the act of examining photo-
graphic images for the purpose of identifying objects and judging 
their significance. He said that photo interpretation involves the 
observation of the size, shape, shadow, tone, texture, pattern, and 
location of the features, as well as the significance of the features, 
based largely on their interrelationships or association (Colwell 
1965). His assessment of the potential for automation of an object 
recognition process depended on the capacities of a digital scan-
ner and the ability of an algorithm to assess the differences, in 
photographic tone, between a blob and its surroundings (Colwell 
1964, 1965). Colwell was an important advisor on the Landsat 1 
mission, and his ideas on extraction of meaningful features trans-
ferred to his ambitions for the satellite missions (Colwell 1973).

14.4.1.2 image Segmentation

Image segmentation is the division of an image into differ-
ent regions, each having certain properties, and it provides the 
building blocks of OBIA (Blaschke 2010). The desire expressed 
by Colwell and others in the 1960s to more automatically delin-
eate meaningful features, objects, or blobs in  his early termi-
nology launched numerous approaches to image segmentation 
that rapidly advanced in the 1980s. It is widely agreed that the 

Landsat 8

30 m 10 m 3.3 m 1.8 m 0.5 m

SPOT 5 IKONOS-2 WorldView-2 GeoEye Pansharpened 

FIg u r e  14.1 Objects and resolutions: OBIA methods are associated with the notion of high resolution—whereby high has always to be seen in context.
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279Object-Based Image Analysis

segmentation algorithms implemented in the OBIA software of 
today owe a debt to theoretical and applied work in the 1970s and 
1980s that developed and refined numerous methods for image 
segmentation (Blaschke et  al. 2004; Blaschke 2010). Early key 
papers for the remote-sensing field include Kettig and Landgrebe 
(1976) who presented experimental results in segmentation of 
Landsat  1 (ERTS-1) imagery, and McKeown et  al. (1989) who 
developed a knowledge-based system with image segmenta-
tion and classification tools designed for semiautomated photo 
interpretation of aerial photographs. Key reviews are provided 
in numerous papers (Fu and Mui 1981; Haralick and Shapiro 
1985; Pal and Pal 1993). Building on that work, image segmen-
tation techniques implemented today include those focused on 
thresholding or clustering, edge detection, region extraction, 
and growing, and some combination of these has been explored 
since the 1970s (Fu and Mui 1981; Blaschke 2010) (Table 14.1).

14.2.2 needs and Driving Forces

With a focus on geospatial data, OBIA has particular needs 
that were not anticipated by its antecedents. The OBIA meth-
ods were driven first by the need to more accurately map mul-
tiscaled Earth features with high-spatial-resolution imagery 
such as the tree, the building, and the field. Following that, the 
spatial dimension of objects (distances, pattern, neighborhoods, 
and topologies) was mined for classification accuracy (e.g., Guo 
et al. 2007). Most recently, the OBIA field has been character-
ized by discussions of object semantics within fixed or emergent 
ontologies (Arvor et al. 2013; Yue et al. 2013) and by the need 
for interoperability between OBIA and GIS and spatial model-
ing frameworks (Harvey and Raskin 2011; Yue et al. 2013). The 
OBIA approach has evolved from a method of convenience to 
what has been called a new paradigm in remote sensing and spa-
tial analysis (Blaschke et al. 2014).

14.2.3 GeoBiA Developments

14.2.3.1 emergence (1999–2003/2004)

The emergence of OBIA has been written about extensively 
elsewhere (e.g., Blaschke 2010; Blaschke et al. 2014) and had its 

largest boost from the availability of satellite imagery of increas-
ing spatial resolution such as IKONOS (1–4 m), QuickBird 
( resolution), and OrbView (resolution) sensors (launched in 
1999, 2001, and 2003, respectively) (Blaschke 2010). This ready 
availability of high-resolution multiband imagery coincided with 
increasing awareness in the remote-sensing literature that novel 
methods to extract meaningful and more accurate results were 
critically needed. The business-as-usual pixel-based algorithms 
were not reliable with imagery exhibiting high local variability 
and obvious spatial context (Cracknell 1998; Townshend et al. 
2000; Blaschke and Strobl 2001).

Importantly, the software package called eCognition from 
the company Definiens (subsequently called Definiens Earth 
Sciences) became commercially available from 2000. This event 
is marked as a milestone in the emergence of a body of work on 
OBIA, as it was the first commercially available, object-based, 
image analysis software (Flanders et al. 2003; Benz et al. 2004; 
Blaschke 2010), and many peer-reviewed papers during this 
phase relied on the software. The eCognition software is built on 
to the approach originally known as Fractal Net Evolution (Baatz 
and Schäpe 2000; Blaschke 2010) that is not easily nor often 
described in detail in early papers that relied on the software.

Representative papers demonstrating the utility of the newly 
released software from this time frame include the follow-
ing. Flanders et al. (2003) evaluated the object-based approach 
from eCognition software and classified forest clearings and 
forest structure elements in British Columbia, Canada, using a 
Landsat-enhanced thematic mapper plus image. They found that 
forest clearings as well as forest growth stage, water, and urban 
features were classified with significantly higher accuracy than 
using a traditional pixel-based method. With slightly different 
results, Dorren et  al. (2003) also compared pixel- and object-
based classification of forest stands using Landsat imagery in 
Austria. They used eCogntion for the object-based approach 
and found that while the pixel-based method provided slightly 
better accuracies, the object-based approach was more real-
istic and better served the needs of local foresters. Benz et  al. 
(2004) used eCognition to update urban maps (buildings, roofs, 
etc.) from high-resolution (0.5 m) RGB aerial orthoimages in 
Austria. Theirs was an early and comprehensive examination of 

TABLe 14.1 Overview of Major Groups of Image Segmentation Techniques

 Main Issues Strengths Weaknesses 

Thresholding 
and clustering

Threshold values are applied globally (to the 
whole image) or locally (applied to 
subregions)

Most thresholding algorithms are 
computationally simple. Clustering 
an image or a raster may be intuitive 
for a given number of clusters

The results depend on the initial set of clusters 
and user values or thresholds, respectively

Edge detection Boundaries of object or regions under 
consideration and edges are assumed to be 
closely related, since there are often sharp 
differences in intensity at the region 
boundaries

Discontinuities are identified across 
the array of values studied. 
Particularly suited for internally 
relatively homogeneous objects such 
as buildings, roads, or water bodies

Edges identified by edge detection are often 
disconnected. To segment an object from an 
image, however, one needs closed region 
boundaries. Typically problematic in objects 
with high internal heterogeneity such as forests

Region growing Starting from the assumption that the 
neighboring pixels within one region have 
similar values, a similarity criterion is 
defined and applied in to neighboring pixels

Selection of the similarity criterion significantly 
influences the results
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280 Remotely Sensed Data Characterization, Classification, and Accuracies

the use of the software, and they discussed numerous aspects of 
the OBIA approach that are still actively discussed today—for 
example, the importance of semantic features and uncertain-
ties in representation. Laliberte et al. (2004) used a combination 
of historic (1937–1996) scanned aerial photos and a contempo-
rary QuickBird satellite image to map shrub cover and range-
land characteristics over time. The eCognition was critical in 
their workflow. Chubey et  al. (2006) used eCognition to seg-
ment IKONOS-2 imagery and decision tree analysis to correlate 
field-derived forest inventory parameters and image objects for 
forests in Alberta, Canada. They found that the strongest rela-
tionships were found for discrete land cover types, species com-
position, and crown closure. While much work focused on the 
use of eCognition for high-resolution imagery, not all work in 
this phase did. Many papers explored the method using Landsat 
imagery (e.g., Dorren et al. 2003) (Table 14.2).

14.2.3.2 establishment (2005–2010)

14.2.3.2.1  Accuracy
Many papers during this time frame focused on proving the 
utility of the new approach and provided comparisons between 
OBIA and pixel-based classifiers (Yan et  al. 2006; Cleve et  al. 
2008; Maxwell 2010). For example, Yu et al. (2006) used high-
spatial-resolution digital airborne imaging system imagery 
and associated topographic data of the Point Reyes National 
Seashore in California, United States, for a comprehensive and 
detailed vegetation inventory at the alliance level. The object-
based approach outperformed the pixel-based approach. Yan 
et  al. (2006) compared pixel- and object-based classification 
of an Advanced Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER) image (15 m resolution) to map surface 
coal fires and coal piles. The OBIA approach yielded classifica-
tions of marked improvement over the pixel-based approach. 
Similar results were shown using high-resolution aerial imagery 

for urban features (Cleve et al. 2008), Landsat imagery, and land 
cover (Maxwell 2010).

14.2.3.2.2  Applications
From 2005 to 2010, there was a wide net cast around OBIA 
application areas. Table 14.3 provides an overview of the various 
application areas, which emerged over these years.

Capturing, attributing, and understanding changing land-
scapes continues to be a primary research area in remote sensing, 
and the use of OBIA methods for studying and understanding 

TABLe 14.2 Overview of Early Application Fields

Application Images Comparison to Pixel-Based/Findings Software 

Forest clearings and forest structure 
(Flanders et al. 2003)

Landsat-enhanced thematic mapper 
plus image

Significantly higher accuracy of OBIA compared to pixel 
based

eCognition

Forests (Dorren et al. 2003) Landsat Pixel-based method provided slightly better accuracies, 
but the object-based approach was more realistic and 
better served the needs of local foresters

eCognition

Update urban maps (Benz et al. 2004) High-resolution (0.5 m) RGB aerial 
orthoimages

Comprehensive examination of the use of the software. 
Discussed, for example, the importance of semantic 
features and uncertainties in representation

eCognition

Shrub cover and rangeland 
characteristics (Laliberte et al. 2004)

Historic (1937–1996) scanned aerial 
photos and a contemporary 
QuickBird satellite image

eCognition

Correlate field-derived forest inventory 
parameters and image objects 
(Chubey et al. 2006)

IKONOS-2 imagery The strongest relationships were found for discrete 
land-cover types, species composition, and crown closure

eCognition

Vegetation inventory (Yu et al. 2006) Digital airborne imaging system 
imagery

The object-based approach outperformed the pixel-based 
approach

Map surface coal fires (Yan et al.  2006) ASTER image (15 m resolution) The OBIA approach yielded classifications of marked 
improvement over the pixel-based approach

TABLe 14.3 Development of OBIA Application Fields

Application Area Examples 

Forests Flanders et al. (2003)
Dorren et al. (2003)

Individual trees Guo et al. (2007)
De Chant et al. (2009)

Forest stands Radoux and Defourny (2007)
Gergel et al. (2007)

Parklands Rocchini et al. (2006)
Yu et al. (2006)

Rangelands Laliberte et al. (2007)
Wetlands and other critical habitat Bock et al. (2005)
Urban areas Weeks et al. (2007)

Cleve et al. (2008)
Durieux et al. (2008)

Land use and land cover Maxwell (2010)
Public health Kelly et al. (2011)
Disease vector habitats Koch et al. (2007)

Troyo et al. (2009)
Public health infrastructure 

(e.g., refugee camps)
Lang and Blaschke (2006)

Hazard vulnerability and disaster aftermath Al-Khudhairy et al. (2005)
Gusella et al. (2005)
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281Object-Based Image Analysis

change were increasingly popular during this period. In a com-
prehensive review article, Chen et al. (2012) presented a timely 
overview of the main issues in remote-sensing change detec-
tion and suggested reasons for favoring object-based change 
detection over pixel-based approaches. They suggested that an 
object-based approach to change detection allows for multiscale 
analysis to optimize the delineation of individual landscape fea-
tures, it reduces spurious changes due to high spectral variability 
in high-spatial-resolution imagery, and the approach also allows 
for more meaningful ways to evaluate change (Figure 14.2).

14.2.3.2.3  Data Fusion
Data fusion became increasingly common during this phase. 
The utility of light detection and ranging (LiDAR) data for cap-
turing height, that could be used in both segmentation and clas-
sification, was recognized soon after LiDAR became somewhat 
operational. Pascual et  al. (2008) incorporated LiDAR data to 
help characterize forest stands and structure using OBIA in a 
complex Pinus sylvestris–dominated forest in central Spain. 
Zhou and Troy (2008) used LiDAR with high-resolution digital 
aerial imagery to analyze and characterize the urban landscape 
structure of Baltimore at the parcel level. Ebert et  al. (2009) 
used optical, LiDAR, and digital elevation models to estimate 
social vulnerability indicators through the use of physical 

characteristics and hazard potential. Tullis et  al. (2010) found 
that certain land covers (e.g., forest and herbaceous cover rather 
than impervious surface) benefited more from a synergy between 
LiDAR and optical imagery. Image fusion has also involved mul-
tiple spatial and spectral resolutions. For example, Walsh et al. 
(2008) used both QuickBird and Hyperion hyperspectral imag-
ery to map an invasive plant species in the Galapagos Islands. 
The fusion of multi- and hyperspectral imagery was beneficial.

14.2.3.2.4  Software
During this time frame, papers evolved from naive and some-
times simplistic use of complicated software (e.g., “we used eCog-
nition to segment and classify our imagery”) to more nuanced 
descriptions of methodology. Editorial boards of journals with 
higher impact factors (e.g., Remote Sensing of Environment) 
began demanding more explanation in a method section than the 
use of a software package. The success of the suite of  eCognition/
Definiens software packages likely prompted rapid development 
of alternative software for the OBIA workflow. Berkeley Image 
Seg (Clinton et  al. 2010), Visual Learning Systems’ Feature 
Analyst extension for ArcGIS (Visual Learning Systems 2008), 
System for Automated Geoscientific Analyses (SAGA) (Böhner 
et al. 2006), Environment for Visualizing Images (ENVI) Feature 
Extraction (Hölbling and Neubert 2008), ERDAS IMAGINE’s 
objective module (ERDAS 2009), and IDRISI Taiga’s segmenta-
tion module (Clark Labs 2009) appeared between 2006 and 2010. 
Use of additional, external software, particularly for the classi-
fication step of the OBIA workflow, became increasingly com-
mon. For example, many papers discuss the use of decision trees 
such as classification and regression trees (CART), usually run 
externally to a software package such as eCognition, in R (http://
www.r- project.org/) or See5 (Quinlan 2013), to classify objects. 
Yu et al. (2006) used this approach to map vegetation alliances 
in a California reserve; Laliberte et al. (2007) did so with high-
resolution data over rangelands, as did Chubey et al. (2006) for 
forest inventory mapping. Green and Lopez (2007) used CART 
to label polygons created in eCognition for benthic habitat in 
Texas, and Stow et al. (2007) used a similar combined approach 
to map urban areas in Accra, Ghana. Since then, eCognition has 
implemented a decision tree algorithm for classification.

Next to the commercial software mentioned, several open-
source software products have been developed. While earlier 
attempts may be considered to be more of an academic, not 
very user-friendly and not well-documented prototypical soft-
ware such as GeoAida (Bückner et al. 2001), recent open-source 
developments aim to compete with commercial software such 
as eCognition, ERDAS, or ENVI in respect to a modern user-
friendly GUI and software documentation. InterIMAGE is an 
open-source and free-access framework for knowledge-based 
image classification. It is based on algorithms from GeoAida and 
provides a capacity for customization and extension tools. Costa 
et al. (2010) describe the InterIMAGE system as a multiplatform 
framework, implemented for Linux and Windows operational 
systems (http://www.lvc.ele.puc-rio.br/projects/interimage/).

Pixel-based classification Object-based classification

FIg u r e 14.2 Object-based versus pixel-based classification.
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282 Remotely Sensed Data Characterization, Classification, and Accuracies

A more recent development is the Geographic Data Mining 
Analyst. It bridges GIS and image-processing functionality and 
includes algorithms for segmentation, feature extraction, feature 
selection, classification, landscape metrics, and multitemporal 
methods for change detection and analysis (Körting et al. 2013).

Bunting et  al. (2014) developed the open-source platform 
RSGISLib for data-processing techniques. Users interact with the 
software through an XML script, where XML tags and attributes 
are used to parameterize 300 available commands. The develop-
ers claim that command options are easily recognizable to the 
user because of their logical and descriptive names. Through 
the XML interface, processing chains and batch processing are 
supported. More recently, a Python binding has been added to 
Remote Sensing and GIS Software Library (RSGISLib) allowing 
individual XML commands to be called as Python functions. 
The software has been released under a GPL3 (General Public 
License) license and makes use of a number of other open-source 
software libraries (e.g., Geospatial Data Abstraction Library 
(GDAL)/OGR); a user guide and the source code are available at 
http://www.rsgislib.org.

14.2.3.3 consolidation (Since Around 2010)

Since around 2010, the field has emerged from its earlier stages 
and is displaying more maturity. Blaschke et al. (2014) raise the 
discussion that in some ways, this maturity suggests a label of 
new paradigm. From a workshop on OBIA convened at the 2012 
GIScience Conference in Columbus, OH, to discuss key theoreti-
cal and applied aspects of the approach emerged several impor-
tant topics for the next decade: integration with GIS, semantics, 
accuracy, change, standards, and learning from the past. These 
themes are born out in the literature. There have also been some 
important developments on the software front. For example, in 
2010, Trimble (a company expert in field and mobile technol-
ogy and one of the leading manufacturers of research and sur-
vey grade GPS systems) purchased Definiens Earth Sciences 
(“Trimble Acquires Definiens’ Earth Sciences Business to Expand 
its GeoSpatial Portfolio”: https://www.trimble.com/news/release.
aspx?id=061110a), with expectations that the OBIA workflow 
would be of particular use to mobile mapping, survey, and 
urban environment reconnaissance. Additionally, there has been 
increasing use in the remote-sensing world of unmanned aerial 
systems (UAS) or drones, which provide small footprint, very 
high-resolution imagery (cm to meter pixel size). Once geometric 
and radiometric corrections and mosaicking have been applied, 
these images are routinely being approached with the OBIA 
workflow. UAS provide the ability for repeated deployment for 
acquisition of multispectral imagery at high temporal resolution 
data at very high-spatial resolution. For example, Laliberte et al. 
(2011) acquired multispectral imagery using UAS and obtained 
orthorectified, radiometrically calibrated image mosaics for the 
purpose of rangeland vegetation classification. They relied heav-
ily on an OBIA approach for classification of rangeland classes 
and achieved relatively high accuracies. Castro et al. (2013) were 
able to generate weed maps early in the growing season for maize 
fields by using an unmanned aerial vehicle and OBIA.

The current global explosion of imagery resources at high-
temporal and high-spatial resolution is actively changing all 
aspects of the geospatial enterprise. The ways in which we 
acquire, store, serve, and generate information from an increas-
ing supply of imagery across domains necessitate the contin-
ued development of streamlined OBIA workflows that render 
imagery useful through geospatial semantics and shared knowl-
edge (Harvey and Raskin 2011; Blaschke et al. 2014). The time-
sensitive decision support tasks found in disaster response, for 
example, which typically make use of rapidly acquired imagery 
to find targets, are often facilitated currently by human volun-
teers or distributed thinking (Zook et al. 2010). These tasks in the 
future might be supported by OBIA workflows. And the acceler-
ated pace of geospatial work that accompanies disaster response 
is increasingly characteristic of science in general than it has 
ever been in the past. Decisions that routinely waited for annual, 
seasonal, or monthly data (e.g., forest loss, peak greenness, soil 
water deficits) can now be made based on data at finer spatial 
and temporal resolutions (e.g., Hansen et al. 2014). Doubtlessly, 
future research within OBIA will focus on transferring imagery 
quickly into comprehensive and web-enabled geographic knowl-
edge bases to be used for decision making (Table 14.4).

14.3  oBiA: A Short Summary 
of the State of the Art

This section is kept very short and aims to succinctly summarize 
the main findings from other state-of-the-art reviews, particu-
larly Blaschke (2010) and Blaschke et al. (2014).

14.3.1  Segmentation is Part of oBiA 
but not Married to it

A common denominator of OBIA applications was, and still 
is, that they are built on image segmentation (see also Burnett 
and Blaschke 2003; Benz et al. 2004; Liu et al. 2006; Hay and 
Castilla 2008; Lang 2008). Image segmentation is not at all 
new (Haralick and Shapiro 1985; Pal and Pal 1993) but has its 
roots in industrial image processing and was not used exten-
sively in geospatial applications throughout the 1980s and 1990s 
(Blaschke et al. 2004).

Interestingly, not only independent from most of the OBIA-
related developments described in Blaschke (2010) but also 
triggered by the advent of high resolution satellite imagery, 
Aplin et al. (1999) and Aplin and Atkinson (2001) developed an 
approach to segment image pixels using vector field boundaries 
and to assign subpixel land cover labels to the pixel segments. 
Subsequently, hard per-field classification, the assignment 
of land cover classes to fields (land cover parcels) rather than 
pixels (Aplin et  al. 1999), was achieved by grouping and ana-
lyzing all land cover labels for all pixels and pixel segments 
within each individual field. Their approach was somewhat dif-
ferent in a sense that they aimed to classify predefined objects, 
namely, fields. These developments coincided later with the 
OBIA community when Paul Aplin and Geoff Smith organized 
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283Object-Based Image Analysis

a symposium on “object-based landscape analysis” in 2009 in 
Nottingham, United Kingdom, and edited a special issue in 
International Journal of Geographical Information Science (Aplin 
and Smith 2011).

Although most scientists would associate OBIA with seg-
mentation, recent work has shown that some segmentation steps 
typically involved in OBIA research do not necessarily play a 
major role, as sometimes postulated in the earlier development 
of OBIA. See particularly the discussion of Tiede (2014) who 
in essence decouples OBIA from image processing and Lang 
et al. (2010, 2014) and their work on concept-related fiat objects, 
geons, and on latent phenomena.

14.3.2 classification

Blaschke and Strobl (2001) have posed the question “What’s 
wrong with pixels?” and elucidated some shortcomings of a 
pure per-pixel approach. This was certainly not the first time 
to highlight the limitations of treating pixels individually 
based on multivariate statistics. In fact, Kettig and Landgrebe 
(1976) developed the first algorithm called Extraction and 
Classification of Homogeneous Objects (ECHO), which at least 
partially utilizes contextual information. Based on the short his-
tory of OBIA in the section before, we may argue that around 
the turn of the millennium, the quest for objects reached a new 
dimension. Particularly for high-resolution image, it seems to 
make much sense to classify segments—rather than pixels. The 
segments may or may not correspond exactly to the objects of 
desire. Burnett and Blaschke (2003) called such segments from 
initial delimitation steps object candidates. They already offer 
parameters such as size, shape, relative/absolute location, bound-
ary conditions, and topological relationships, which can be used 

within the classification process in addition to their associated 
spectral information.

There is increasing awareness that object-based methods 
make better use of—often neglected—spatial information implicit 
within remote-sensing images. Such approaches allow for a 
tightly coupled or even full integration with both vector- and 
raster-based GIS. In fact, when studying the early OBIA litera-
ture for the geospatial domain, it may be concluded that many 
applications were driven by the demand for classifications, 
which incorporate structural and functional aspects.

One good example of a comprehensive review is the paper 
by Salehi et  al. (2012). They conducted recent literature and 
evaluated performances in urban land cover classifications 
using high-resolution imagery. They analyzed the classification 
results for both pixel-based and object-based classifications. In 
general, object-based classification outperformed pixel-based 
approaches. These authors reason that the cause for the supe-
riority was the use of spatial measures and that utilizing spatial 
measures significantly improved the classification performance 
particularly for impervious land cover types.

14.3.3 complex Geo-Intelligence tasks

Increasingly, OBIA is used beyond simple image analysis tasks 
such as image classification and feature extraction from one 
image or a series of images from the same sensor.

Today, terabytes of data are acquired from space- and air-
borne platforms, resulting in massive archives with incredible 
information potential. As Hay and Blaschke (2010) argue, it is 
only recently that we have begun to mine the spatial wealth of 
these archives. These authors claim that, in essence, we are data 
rich but geospatial information poor. In most cases, data/image 

TABLe 14.4 Summary of Historic Effects and OBIA Developments

External Effects/Triggers OBIA Developments 

1972: Landsat 1 and its multispectral sensor set the standard for 
civilian remote-sensing applications for the next decades

Late 1970s: image segmentation techniques are developed and are 
subsequently being used in image processing but not much in 
geospatial applications

Kettig and Landgrebe (1976) developed the first hybrid classification approach that 
included neighborhood aspects

Late 1999 and 2000: advent of the first two civilian 1 m resolution 
satellites mark a new area of high-resolution spaceborne imaging

1999/2000: commercialization of Definiens company and eCognition software

1998/1999: commercial LiDAR systems available June 2003: 
Orbview-3 high-resolution digital airborne cameras such as the 
Ultracam (Leberl and Gruber 2003)

July 2001 first scientific workshop on OBIA methods: FE/GIS’2001: Remote sensing: 
New sensors—innovative methods, Salzburg, Austria (German language)

2002: first book on OBIA in German language based on the 2001 workshop (Blaschke 2002)
2001–2003: first dozen papers in peer-reviewed journals

2004 onward: more high-resolution satellites, decreasing prices of 
data, higher accessibility

2005: First OBIA-related book for the fast developing Brazilian market 
(Blaschke and Kux 2005)

2005: Google Earth raised public awareness about remote-sensing 
imagery and subsequently increased demand for information 
products

OBIA workshop at the XII Brazilian remote sensing symposium, June 2005, Goiania, Brazil
2006: first OBIA conference in Salzburg, Austria
2007: OBIA workshop at UC Berkeley
2008: GEOBIA international conference in Calgary, Alberta, Canada
2009: Object-based landscape analysis workshop at the University of Nottingham, 

United Kingdom
2010: GEOBIA international conference in Ghent, Belgium
2012: GEOBIA international conference in Rio de Janeiro, Brazil
2014: GEOBIA international conference in Thessaloniki, Greece
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284 Remotely Sensed Data Characterization, Classification, and Accuracies

access is constrained by technological, national, and security 
barriers, and tools for analyzing, visualizing, comparing, and 
sharing these data and their extracted information are still in 
their infancy. In the few years since this publication, big data 
have fully arrived in many sciences, and this debate seems not to 
be OBIA specific from today’s point of view.

Furthermore, policy, legal, and remuneration issues related to 
who owns (and are responsible for) value-added products result-
ing from the original data sources, or from products that repre-
sent the culmination of many different users input (i.e., citizen 
sensors), are not well understood and still developing. Thus, 
myriad opportunities exist for improved geospatial information 
generation and exploitation.

OBIA has been claimed to be a subdiscipline of GIScience 
devoted to developing automated methods to partition remote-
sensing imagery into meaningful image objects and assessing 
their characteristics through scale (Hay and Castilla 2008). Its 
primary objective is the generation of geographic information 
(in GIS-ready format) from which new geo-intelligence can be 
obtained. Based on this argument, Hay and Blaschke (2010) have 
defined geo-intelligence as geospatial content in context.

The final theme is intelligence—referring to geo- intelligence—
which denotes the right (geographically referenced) information 
(i.e., the content) in the right situation so as to satisfy a specific 
query or queries within user-specified constraints (i.e., the context).

Moreno et al. (2010) describe a geographic object-based vector 
approach for cellular automata modeling to simulate land-use 
change that incorporates the concept of a dynamic neighbor-
hood. This represents a very different approach for partitioning 
a scene, compared to the commonly used OBIA segmentation 
techniques, while producing a form of temporal geospatial 
information with a unique heritage and attributes.

Lang (2008) provided a more holistic perspective on an image 
analysis and the extraction of geospatial information or what he 
called at this time an upcoming paradigm. He started from a 
review of requirements from international initiatives like Global 
Monitoring of Environment and Security (now Copernicus), 
and he discussed in details the concept of class modeling. Also, 
such methods may need further advancement of the required 
adaptation of standard methods of accuracy assessment and 
change detection. He introduced the term conditioned informa-
tion. With this term, he addresses processes that entail the cre-
ation of new geographies as a flexible, yet statistically robust and 
(user-) validated unitization of space.

Lang et al. (2014) developed the concept of geons as a strategy to 
represent and analyze latent spatial phenomena across different 
geographical scales (local, national, and regional) incorporating 
domain-specific expert knowledge. The authors exemplified how 
geons are generated and explored. So-called composite geons 
represent functional land-use classes, required for regional-
planning purposes. They are created via class modeling to 
translate interpretation schemes from mapping keys. Integrated 
geons, on the other hand, address abstract, yet policy-relevant 
phenomena such as societal vulnerability to hazards. They are 
delineated by regionalizing continuous geospatial data sets 

representing relevant indicators in a multidimensional variable 
space. In fact, the geon approach creates spatially exhaustive sets 
of units, scalable to the level of policy intervention, homogenous 
in their domain-specific response, and independent from any 
predefined boundaries. Despite its validity for decision making 
and its transferability across scales and application fields, the 
delineation of geons requires further methodological research 
to assess their statistical and conceptual robustness.

14.4  ongoing Developments: 
influences of oBiA to other 
Fields and Vice Versa

14.4.1 GiScience and Remote Sensing

OBIA arguably has its roots firmly in the field of remote sens-
ing. Developments in remote sensing through the decades of 
the 2000–2010s—including most importantly the widespread 
availability of high-resolution imagery globally, but also from 
LiDAR and novel methods of data fusion—have continued 
this alliance. However, this early grounding of OBIA in theo-
retical and practical aspects of remote sensing is recently being 
enhanced through multiple novel interactions with aspects of 
the GIScience field, and OBIA is poised to develop further from 
new trends in GIScience.

Since Goodchild (1992) first coined the term GIScience, sug-
gesting it as a manner of dealing with the issues raised by GIS 
technology by focusing on the unaddressed theoretical short-
comings of conventional GIS, the contents and borders have 
constantly shifted, especially in light of recent advances in geo-
spatial technologies, including remote sensing (Blaschke and 
Merschdorf 2014). In order to deal with the special properties of 
spatial information in an era of Web 2.0 technologies, the field 
of GIScience has embraced not only classic geographical knowl-
edge and concepts but also increasingly incorporated approaches 
from other disciplines such as computer science and cognitive 
sciences (Blaschke and Merschdorf 2014). In turn, other disci-
plines have recently discovered the potential of GIScience, uti-
lizing its tools and methodologies to serve their own needs and 
to drastically advance the knowledge base in their own respec-
tive fields. Such is not least the case for remote sensing, which 
has experienced a drastic shift from purely pixel-based meth-
ods of image interpretation to the identification of objects in 
remotely sensed imagery by means of OBIA. Hay and Castilla 
(2006) propose that OBIA is a subdiscipline of GIScience, com-
bining a “unique focus on remote sensing and GI” (Hay and 
Castilla 2006:1). In this sense, OBIA may be seen as the first in a 
string of developments leading to the consolidation of GIS and 
remote sensing, facilitated through the common denominator of 
GIScience. This implies that current and ongoing developments 
in the discipline of GIScience may bare a significant impact on 
the field of remote sensing. Such developments include but are 
not limited to volunteered geographic information (VGI), ubiq-
uitous sensing, indoor sensing, and the integration of in  situ 
measurements with classic remote-sensing datasets.
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285Object-Based Image Analysis

Web 2.0 technologies have had a significant impact on 
GIScience, as they have enabled the bidirectional and participa-
tory use of the Internet (Blaschke and Merschdorf 2014). These 
technologies go beyond GIS-centered assemblages of hardware, 
software, and functionalities. Wiki-like collective mapping envi-
ronments, geovisualization APIs, and geotagging may either be 
based on GIS or they have common denominators in the digital 
storage, retrieval, and visualization of information based upon 
its geographic content (Sheppard 2006).

These developments have led to an influx of spatial content, 
contributed by individual users or groups of users, which now-
adays composes a valuable data source in GIS. Such content 
has been termed as “volunteered geographic information,” by 
Goodchild (2007), and Atzmanstorfer and Blaschke (2013) claim 
that its full realm of possibilities, in terms of citizens partaking 
in planning initiatives, yet remains unknown. VGI is not only 
limited to online applications such as the provision of geotagged 
photographs on the photo management service Flickr or geolo-
cated messages on the online messaging portal Twitter but also 
includes the information collected by wireless sensors on com-
mon mobile devices. Due to the proliferation of wireless sensors 
in all sorts of mobile devices, sensory data collection is no longer 
constrained to few experts equipped with expensive sensors but 
rather has shifted more into the lay domain. In GIScience, this 
notion is referred to as ubiquitous sensing and can be used for 
monitoring activities and locations of users, or groups of users, 
in near real time. The near real-time capabilities of ubiquitous 
sensing can assist decision makers in a variety of applications, 
such as emergency response, public safety, traffic management, 
environmental monitoring, or public health (Resch 2013). For 
example, Sagl et al. (2012) utilize the movements of cell phones 
between pairs of radio cells—termed as handovers—in order to 
analyze spatiotemporal urban mobility patterns and demon-
strate how mobile phone data can be utilized to analyze patterns 
of real-world events using the example of a soccer match, while 
Zook et al. (2010) present how a mash-up of various data sources, 
including both government data and VGI, significantly contrib-
uted to disaster relief in Haiti, following the earthquake in 2010.

While VGI is oftentimes a passive by-product, resulting from 
the use of Web 2.0 technologies and mobile-computing devices, 
millions of internet users can nowadays choose to actively utilize 
GIS methodologies and applications by means of public partici-
pation geographic information system (PPGIS). Manifestations 
of such participation can, for instance, be found in the wide-
spread community of users contributing to virtual globes and 
maps by superimposing new layers, such as street networks or 
landmarks, or even in disaster relief efforts such as the recent 
search for the debris of the missing Malaysian Airline flight 
MH370, which was assisted by tens of thousands of Internet 
users, who helped in sifting through the vast magnitude of sat-
ellite data recorded during the time frame in question.

The contribution of the general public, be it actively by 
uploading data to virtual globes or maps or passively by utilizing 
social media platforms such as Twitter or Flickr, has also fuelled 
the collection of in situ data, such as photos taken at a certain 

location and values measured there. Such data are particularly 
valuable in the era of very high-resolution satellite imagery, as 
well as the subsequent surge of urban remote-sensing applica-
tions, such as the mapping of megacities, the monitoring of fast-
expanding settlements in developing countries, or the routine 
monitoring of informal settlements, conducted either by pub-
lic administration or by commercial companies, as outlined by 
Blaschke et al. (2011). Based on an extensive literature review, 
Blaschke et  al. (2011) conclude that the increased availability 
of high-resolution satellite imagery has resulted in a greater 
demand for timely urban mapping and monitoring. However, 
remotely sensed imagery, which provides the basis for urban 
mapping applications, can only provide the bird’s-eye view of 
a given location, neglecting ground information such as the 
building facades or interiors. With the advent of widely applied 
Open Geospatial Consortium (OGC) standards, in  situ mea-
surement data recorded at ground locations can be integrated 
with the remote-sensing imagery, providing a more holistic 
approach to urban-mapping applications (Blaschke et al. 2011). 
Blaschke et  al. (2011) note that although remote sensing and 
in situ measurements are currently two separate technologies, 
the strengths of both can be combined by means of sensor webs 
and OGC standards, potentially producing new and meaning-
ful information (Blaschke et al. 2011). They conclude that “while 
available information will always be incomplete, decision mak-
ers can be better informed through such technology integra-
tion, even if loosely coupled” (Blaschke et al. 2011:1768).

Another trend enabled by the recent advances in mobile tech-
nology is the concept of indoor sensing, sometimes referred to 
as indoor geography (Blaschke and Merschdorf 2014). Naturally, 
remote-sensing imagery can only provide a planar view of the 
Earth’s surface, including natural features, as well as human 
infrastructure. While LiDAR technology complements the 
classic 2D imagery with the added dimension of depth, it still 
doesn’t provide any insight as to the contents of buildings. In this 
sense, indoor sensing may be a future trend in indoor position-
ing and mapping, whereby sensor fusion will evolve to support 
indoor locations, paving the way for geoenabled manufacturing 
(Blaschke and Merschdorf 2014).

14.4.2 changing Workplace

In the past, remote sensing and GIS were distinctly separated 
disciplines, whereby remotely sensed imagery was primarily 
considered as a data source for GIS (Jensen 1996). However, in 
light of more recent technical and theoretical advancements, 
these disciplines have begun to consolidate, not least attributed 
to the quest for tangible objects. The emergence of OBIA as a 
subdiscipline of GIScience laid a foundation for the use of shared 
methodologies, and remote sensing was recognized as “one ele-
ment of an integrated GIS environment, rather than simply 
an important data source” (Malczewski 1999:20). The bidirec-
tional nature of the relationship between remote sensing and 
GIS implies that not only advances in remote sensing technol-
ogy influence the GIS environment but also vice versa. In this 
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286 Remotely Sensed Data Characterization, Classification, and Accuracies

sense, we can witness the impact of recent trends in GIScience, 
described in Section 14.4.1, on the remote-sensing discipline. 
Especially, the technological advances brought about by the 
Web 2.0, such as VGI, ubiquitous sensing, or PPGIS, call for new 
approaches of data integration, with the primary aim of devel-
oping more comprehensive and accurate datasets. Such integra-
tion can complement the bird’s-eye view perspective offered by 
remotely sensed imagery, with in situ information, which in turn 
can more efficiently represent dynamic urban environments 
(Blaschke et al. 2011). To this end, OGC standards can provide 
the necessary interface for data integration, as is the case for the 
Global Earth Observing System of Systems, which seamlessly 
integrates remotely sensed imagery with in situ measurements.

One particular example of an OBIA application as a substitute 
for GIS overlay is provided by Tiede (2014). GIS-overlay rou-
tines usually build on relatively simple data models. Topology 
is—if at all—calculated on the fly for very specific tasks only. If, 
for example, a change comparison is conducted between two or 
more polygon layers, the result leads mostly to a complete and 
also very complex from–to class intersection. Additional pro-
cessing steps need to be performed to arrive at aggregated and 
meaningful results. To overcome this problem, Tiede (2014) pre-
sented an automated geospatial overlay method in a topologically 
enabled (multiscale) framework. The implementation works with 
polygon and raster layers and uses a multiscale vector/raster data 
model developed in the OBIA software eCognition. Advantages 
are the use of the software inherent topological relationships in 
an object-by-object comparison, addressing some of the basic 
concepts of object-oriented data modeling such as classification, 
generalization, and aggregation. Results can easily be aggregated 
to a change-detection layer; change dependencies and the defini-
tion of different change classes are interactively possible through 
the use of a class hierarchy and its inheritance (parent–child class 
relationships). The author demonstrates the flexibility and trans-
ferability of change comparison for Corine Land Cover data sets. 
This is only one example where OBIA and GIS are fully integrated, 
and although this case may be being an exception so far, one field 
may jeopardize the other field if the fields are seen isolated.

14.4.3 Who Uses oBiA?

In a recent publication, Blaschke et al. (2014) found an increasing 
number of publications concerned with OBIA in peer-reviewed 
journals, special issues, books, and book chapters and concluded 
that OBIA is a new evolving paradigm in remote sensing and to 
some degree in GIScience also. However, they also noted that the 
exact terminology used within these publications is distinctly 
ambiguous, as is characteristic for an emerging multidisciplinary 
field (Blaschke et al. 2014). Therefore, we herein aim to review the 
literature databases of the ISI’s (Institute for Scientific Information) 
Web of Science (WoS), as well as Scopus, in an attempt to quantify 
who uses OBIA, both in terms of countries of origin and contribut-
ing field, and to track its presence in literature over the past years.

A search in the WoS database for the phrases object-based 
image analysis or object-oriented image analysis, or OBIA, or 

geographic object-based image analysis, (GEOBIA),” contained 
in the title, abstract, or keywords, returns a total of 451 articles 
(April 17, 2014). When analyzing which countries the publica-
tions primarily come from, we determined that the highest num-
ber of publications is contributed by the United States, accounting 
for 24% of all publications; followed by the People’s Republic of 
China with a 14% contribution; Germany contributing 12%; 
Austria 8%; Canada 7%; Australia, Brazil, and Netherlands 6%, 
respectively; and Italy and Spain with 4% each, just to name the 
top 10 contributing countries. This shows that while the United 
States is the main contributor, accounting for nearly a quarter 
of all publications returned in the search, many other smaller 
countries also make a noteworthy contribution. In particularly 
remarkable is the 8% contribution made by Austria, which has 
only a fraction of the population (approx. 8.5 million) compared 
to most other countries represented within the top 10. Compared 
to the leading country—United States—Austria has merely 2.7% 
of the population but has 33% as many publications. Such a com-
parison becomes even more extreme when made with China, 
the second largest contributor, whereby Austria has only 0.6% 
as many inhabitants but accounts for 57% as many publications. 
This shows that there may be certain research clusters in certain 
countries, which largely contribute to OBIA/GEOBIA research, 
rather than all countries contributing relatively to their popula-
tion (Figure 14.3).

A further analysis consisting of the research areas contributing 
to OBIA/GEOBIA reveals that the largest contribution is made 
by remote sensing, accounting for 61% of all publications. The 
second largest contributor, namely, imaging science, accounts 
for only 31%, followed by geology with a share of 27%. A full 
chart of the top 10 contributing fields is depicted in Figure 14.4.

When assessing the publication years, it is notable that the num-
ber of publications on the topic of OBIA/GEOBIA has drastically 
increased over the last 5 years, whereby 22% were written in 2013 
alone, as compared to >16% prior to 2008. The first OBIA publica-
tion indexed in ISI’s WoS database dates back to 1985, preceding 
the second OBIA publication by 10 years, and at least 20 years prior 
to a steady incline in the number of publications (Figure 14.5).

When the same search is conducted in the Scopus database 
(same phrases searched for in title, abstract, and keywords), a 
total of 586 publications are returned (April 17, 2014). The dis-
crepancy in terms of numbers of publications as compared to the 
WoS database can be attributed to the fact that Scopus contains 
a broader range of document types, such as notes, short sur-
veys, and in press articles, while the WoS database only contains 
peer-reviewed journal articles, conference proceedings, reviews, 
and editorials, all of which are additionally included in Scopus.

Although including a slightly greater number in overall publi-
cations, the trends revealed in the Scopus data are largely in line 
with those depicted in the WoS data. Some discrepancies were 
found in terms of research areas, which, however, may largely be 
down to the different naming conventions utilized by both data-
bases (e.g., the top contributing discipline to OBIA/GEOBIA in 
the Scopus database is “Earth and Planetary Sciences,” with a total 
of 315 publications or 54%, which corresponds to the largest WoS 
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288 Remotely Sensed Data Characterization, Classification, and Accuracies

contributor of “Remote Sensing”). Furthermore, both the publica-
tion year timeline and the contributing countries roughly corre-
spond to the results obtained from the analyses of the WoS data.

In conclusion, when analyzing the literature, and some key 
milestone events and publications, the rise of OBIA/GEOBIA can 
be clearly traced through the course of the last decade and a half. 
This is depicted in the timeline shown in Figure 14.6, which exem-
plifies how both technological and methodological advances gave 
birth to object-oriented approaches and, according to Blaschke 
et al. (2014), to a new paradigm in remote sensing although it must 
be clearly stated that in absolute terms classic per-pixel methods 
are represented way more in publications at the moment.

14.5 concluding Perspectives

14.5.1  new Paradigm: the need for a common 
nomenclature and Sound Methodologies

OBIA has certainly arrived at the sciences. While the first 
years of the development were characterized by a lack of high-
quality peer-reviewed scientific publications, the last few years 
witnessed a sharp increase in such articles. Some of them are 
remarkably highly cited such as the review paper by Blaschke 
(2010). Much of the excitement about this new methodology or 
paradigm has to do with the increasing availability of high-res-
olution datasets, which can now be used to produce informa-
tion and, in particular, information on demand or conditioned 
information. Some predict that researchers, policy makers, 
citizen groups, and private institutions might use information 

contributed by ordinary people for any number of purposes, 
including emergency response, mobilizing activist efforts, mon-
itoring environmental change, filling gaps in existing spatial 
databases, or identifying and addressing needs and problems in 
urban neighborhoods.

OBIA has developed a rich array of approaches for grappling 
with the challenges associated with high-resolution data. One 
remaining task is to standardize terms across methods and 
methodologies being used. While Blaschke et  al. (2014) argue 
that this is very common for a new paradigm, it is nevertheless 
troublesome. OBIA needs to urgently harmonize and streamline 
the terms being used. Otherwise, a widespread recognition from 
other fields may be hindered.

14.5.2 toward a civilian Geo-intelligence

We do not exactly know how the future will look like. One pos-
sible development can best be illustrated by the power and the 
innovative potential of the object-by-object change comparison 
framework (Tiede 2014) described before. This framework yields 
flexible, transferable, and highly complex change comparisons 
that can be visualized or calculated and aggregated to higher 
level composite objects. Here, the geon concept of Lang et  al. 
(2014) comes into play: as briefly described, it also allows for the 
creation of more conceptual objects that may represent latent 
phenomena, which are not directly mappable.

Hay and Blaschke (2010) suggested the term (civilian) geo-
intelligence. Since then, the number of technical developments 
and the number of documented applications, which may support 
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FIg u r e 14.6 Milestone timeline of OBIA/GEOBIA development from the late 1990s ‘until today.

© 2016 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

M
ag

gi
 K

el
ly

] 
at

 0
9:

22
 1

5 
N

ov
em

be
r 

20
15

 



289Object-Based Image Analysis

the hypothesis of locational intelligence, have clearly grown. As 
discussed earlier, Lang (2008) laid some theoretical foundations 
for the concept of conditioned information, and Lang et al. (2014) 
developed the concept of geons, which may also serve as units to 
characterize and delimitate latent phenomena.

An area for future research emerges from a wider set of organi-
zational changes within the software industry such as the software 
as a service paradigm. This is a significant development in the 
organization and deployment of remote-sensing image analysis 
for the professional and advanced users. It may also open oppor-
tunities for nonexpert users in remote sensing in general and for 
OBIA in particular. Tiede et al. (2012) presented an OBIA geopro-
cessing service that integrates OBIA methods into a geoprocess-
ing service. This development was—to our best knowledge—the 
first integration of an eCognition-based OBIA application into an 
interactive WebGIS geoprocessing environment.

Interestingly, the emergence of OBIA has not been generat-
ing a substantial quantity of critical reflection neither about the 
technology as such nor about the wider scientific and technolog-
ical implications of this paradigm for various user groups, both 
geographically and seen along an educational ladder (students–
graduates–professionals in private industry and academia).

Another future research area concerns the remote sensing and 
GIScience practices of nonprofessional actors, not as outsourced 
operatives for research institutions but as private actors or NGOs 
following their own agendas. In remote sensing in general, much 
more than in GIScience, the vast majority of existing literature 
investigates widely agreed scientific or commercially interesting 
problems and reflects both the focus of an Anglophone research 
community looking primarily back in time and a focus primar-
ily on activities in the global North by state actors. Although we 
did not carry out a severe literature study, we may speculate that 
OBIA researchers may be a little bit less Anglophone dominated 
than the general remote-sensing community.

14.5.3  epistemological and 
ontological challenges

We may claim here for the field of remote sensing that some long-
known principles about technological determinism (McLuhan 
1964 who basically claimed that humans shape their tools and 
they in turn shape humans) may become more obvious today 
because its practical and theoretical implications are now much 
faster discovered. Nevertheless, the process of the social shap-
ing of technology can be long term, interactive, and sometimes 
conflict ridden (Rohracher 2003).

Like GIS, which has for some years been decried as onto-
logically shallow and insufficient to the task of comprehend-
ing the many epistemological points of difference among users 
(Schuurman 1999), remote-sensing literature offers very little 
in regard to its ontological and epistemological foundation. 
Without doubt, remote-sensing principles have solid foundations 
in physics. Only through the amalgamation with GIS-principles 
with OBIA the need for a theoretical, that is, epistemological 
and ontological, establishment increases. As long as the pixel is 

more or less the only subject of studies and, more importantly, as 
long as objects of interest are smaller than or similar in size com-
pared to the pixels, such questions may not be urgent. With the 
advent of high-resolution imagery, the question “What’s wrong 
with pixels?” (Blaschke and Strobl 2001) is valid to be asked. In 
fact, concerns about the appropriate use of technology in the 
application of remote-sensing data suggest that nonexpert users 
involved in interpretation tasks may gain a relatively sophis-
ticated understanding not just of what the technology can do 
but of the processes involved in visualizing and disseminating 
findings via interactive representations and WebGIS.

We refer to Pickles (2004) who contends that the contingent 
nature of technical outcomes from GIS use is often overlooked, 
and the exploitation of some groups, particularly those with less 
access to technology, becomes a real possibility. He also empha-
sizes how important it is “to study maps in human terms, to 
unmask their hidden agendas, to describe and account for their 
social embeddedness and the way they function as microphys-
ics” (Pickles 2004, p. 181).

Lastly, we may call for a relaxation of a potential friction 
between OBIA and per-pixel approaches. There are dozens, 
most likely more than a hundred, of scientific papers that com-
pare both methods. Nevertheless, the future may not be domi-
nated by an either-or question. Rather, we should be cautious 
about abandoning too hastily the concepts and terminologies of 
the old paradigm with reference to its dazzling object of cogni-
tion in this debate—the pixel. The pixel is a technical construct 
that may be useful in many cases from a technical, that is, data 
acquisition, point of view but sometimes also as a cognitional 
prerogative. In this sense, the aforementioned question “what’s 
wrong with pixels” (Blaschke and Strobl 2001) may appear in a 
less unfavorable light—for the latter, the pixels.
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