
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Theoretical and Applied Deep Learning for the Physical Sciences

Permalink
https://escholarship.org/uc/item/8vx1617p

Author
Ott, Jordan

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8vx1617p
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Theoretical and Applied Deep Learning for the Physical Sciences

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Jordan Andrew Melchionne Ott

Dissertation Committee:
Professor Pierre Baldi, Chair

Professor Franklin Dollar
Professor Roy Fox

2022

Chapter 4 © IOP Publishing Ltd
All other materials © 2022 Jordan Andrew Melchionne Ott

DEDICATION

To my mother who taught me to work
My father who taught me to play
My brother who taught me to fight

And my fiancée who taught me to love

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES ix

ACKNOWLEDGMENTS xi

VITA xii

ABSTRACT OF THE DISSERTATION xv

1 Introduction 1
1.1 Contributions . 1

1.1.1 Climate Modeling . 1
1.1.2 Software Libraries . 2
1.1.3 Physics . 2
1.1.4 Biomedical Applications . 3
1.1.5 Theoretical Deep Learning . 3

2 Learning in the Machine: To Share or Not to Share? 5
2.1 Introduction . 5
2.2 Origins and Functions of Weight-Sharing . 7
2.3 Free Convolutional Networks . 9
2.4 Data and Methods . 11

2.4.1 Networks . 12
2.4.2 Variable Connection Patterns . 13

2.5 Results . 14
2.5.1 Is weight-sharing necessary to prevent overfitting? 15
2.5.2 Is weight-sharing necessary to ensure translational invariant recognition? 16
2.5.3 Can acceptable performance be achieved without weight-sharing? . . 17
2.5.4 Does approximate or exact weight-sharing emerge in a natural way? . 18
2.5.5 For What Learning Tasks Are Free Convolutional Networks Most Ap-

plicable? . 19
2.5.6 Is weight-sharing necessary? . 20
2.5.7 If weight-sharing is not necessary, are translational invariant training

sets necessary? . 21

iii

2.6 Conclusion . 21

3 A Fortran-Keras Deep Learning Bridge for Scientific Computing 26
3.1 Introduction . 26
3.2 Fortran Projects . 28
3.3 The Python Anchor (Deep Learning) . 31
3.4 The Fortran Anchor (Scientific Computing) 32
3.5 Features of FKB . 33

3.5.1 FKB/P . 35
3.5.2 FKB/F . 35

3.6 Case Study . 42
3.7 Conclusion . 50

4 An end-to-end CNN with attentional mechanism applied to raw EEG in
a BCI classification task 51
4.1 Introduction . 51
4.2 Related work . 54
4.3 Methods . 56

4.3.1 Proposed CNN-based neural-network architecture 56
4.3.2 Hyperparameter Optimization and Training 59
4.3.3 Data augmentation . 61
4.3.4 Dataset and experimental protocol 62

4.4 Channel selection . 65
4.5 Results . 68

4.5.1 Performance of the proposed CNN (Neural architectures vs. Neural
architectures) . 68

4.5.2 Properties of our collected dataset . 70
4.5.3 Motor Imagery vs. Motor Execution 72
4.5.4 Channel selection . 73
4.5.5 Data Augmentation . 75
4.5.6 Different portions of dataset . 78
4.5.7 Combination of participants’ EEG signals 80
4.5.8 Leave-one-participant out and transfer learning 82

4.6 Discussion . 82

5 Conclusion 93

A Appendix 94
A.1 Experimental Settings . 94

A.1.1 Hyperparameter Search . 94
A.1.2 Network Architectures . 95
A.1.3 Implementation Details . 95

A.2 Other Augmentation Methods . 96
A.2.1 Edge Noise . 97
A.2.2 Noise . 97

iv

A.2.3 Quadrant Swap . 99
A.2.4 Rotation . 100
A.2.5 Approximate Weight-Sharing . 100

A.3 Variable Connection Patterns . 101

Bibliography 107

v

LIST OF FIGURES

Page

2.1 Free convolutional layers maintain a separate kernel at each location, unlike
typical convolutional layers, that apply the same filter across all possible lo-
cations. The above figures are examples of FCN layers on a 9x9 input space.
Each 3x3 subregion of the input is covered with a distinct kernel (weight ma-
trix), as shown in the diagram on the left. The top square represents the
output obtained from applying the filter to the corresponding input region.
The diagram on the right depicts free convolutional layers with variable con-
nection patterns, where the x’s represent absent connections. In this example,
12 out of the 91 connections are missing, creating a variable connection prob-
ability of roughly 0.15. 10

2.2 Examples of translational augmentation on MNIST. In training images are
translated left-right as well as up-down. The above only display the result
of continually translating an image leftwards, for a visual example. (a) 0%
translation augmentation, equivalent to a un-altered MNIST image. (b-k)
Gradually increasing the percentage of augmentation by 10% each time. . . 11

2.3 MNIST results. Shown above are FCN (left column) and CNN (right column)
results trained with varying degrees of translational augmentation, indicated
by the legend. Top row: training accuracy over time. Middle row: validation
accuracy over time. Bottom row: accuracy on the translationally augmented
validation set. 23

2.4 CIFAR results. Shown above are FCN (left column) and CNN (right column)
results trained with varying degrees of translational augmentation, indicated
by the legend. Top row: training accuracy over time. Middle row: validation
accuracy over time. Bottom row: accuracy on the translationally augmented
validation set. 24

2.5 Shown above is the average Euclidean distance between weight kernels in FCN
layer overtime at the specified radius away. E.g., a radius of four indicates
comparing a given weight kernel to all kernels four units away. As translational
augmentation is increased weights become more similar to one another. As
expected, weights closer in proximity (radius 4; left figure) have a smaller
average distance than weights farther away (radius 7; right figure). 25

2.6 Results for CNN and FCN models trained on MNIST and tested on images
where quadrant I is replaced with quadrant III and vice versa. 25

vi

3.1 (a) Usage of programming languages for machine learning and data science.
Statistics are from the 2018 Kaggle ML & DS Survey [91]. (b) Usage metrics
of deep learning frameworks. Statistics are from the 2019 Kaggle State of
Data Science and Machine Learning report [92]. 30

3.2 Positioning of FKB within Fortran and Python ecosystems. 31
3.3 The time-evolution of the tropospheric (a) temperature and (b) humidity bi-

ases, colorized by the offline validation error 47
3.4 Offline performance - validation mean squared error (MSE) - vs online per-

formance - number of steps until crash.(a) All models. (b) By batch normal-
ization usage. (c) By Dropout amount. (d) By leaky ReLU coefficient. (e)
By learning rate. (f) By number of dense nodes per layer. (g) By number of
layers. (h) By total number of model parameters. (i) By optimizer type. . . 48

4.1 Our proposed CNN with attentional mechanism. (A) The sliding window
(length is 1000ms and step-size is 100ms) applied to 64 EEG channels. (B)
The 64 segments of raw EEG signal, depicted in orange in (A). Each time
window and channel are separately sent through shared convolution layers.
The embedded features I (CxE) applied to self-attention. The output of self-
attention passes through 2 dense layers. (C) An expansion of the self-attention
block. 58

4.2 The experimental paradigms for our experimental dataset, BCI 2a, and BCI
2b. 67

4.3 Four different electrode configurations on the actiCAP—which included 3, 7,
18, and all 64 electrodes . 68

4.4 Comparison the average validation accuracy (SE) on the BCI 2a and BCI 2b
datasets with Dense, CNN, Dai et al. (2020), and CNN-Attention-Dense (See
section 2.1 and 2.2). 69

4.5 Validation accuracy of sliding-window analysis in ME (top), MI (middle), and
ME and MI combined (bottom). The left column is the accuracy over time
averaged across all 7 participants. The right column depicts the accuracy
for the participant with the highest overall accuracy in the ME condition
(Participant 4). 74

4.6 Validation accuracy for different channel configurations on the 7 participants
of our dataset. 74

4.7 Our proposed cGAN model. In the generator (G), the prior input noise and
label are combined into a hidden representation. In the discriminator (D),
Real Data (i.e., raw EEG data) and the Label are presented as inputs to a
discriminative function. The contents of all purple boxes in the architecture
are the same and are expanded at the bottom left. 76

4.8 (Top) Validation accuracies for combinations of participants for BCI 2a, BCI
2b, and our experimental dataset. (Bottom) line plots of differences between
mean validation accuracies of consecutive groups for the 3 datasets. The x
axis labels are the smaller groups; so, differences between 2 participants and
one are plotted above the label ”1 participant”, between 3 and 2 participants
above ”2 participants”, and so on. 81

vii

4.9 Validation accuracy for BCI 2a, BCI 2b, and our dataset (64 and 18 channels)
with and without transfer learning. 83

A.1 Examples of edge noise augmentation on MNIST. (a) 0 variance noise, equiv-
alent to a un-altered MNIST image. (b-k) Gradually increasing the variance
of noise augmentation by .1 each time. 97

A.2 Examples of noise augmentation on MNIST. (a) 0 variance noise, equivalent
to a un-altered MNIST image. (b-k) Gradually increasing the variance of
noise augmentation by .1 each time. 99

A.3 Quadrant swap on MNIST. (a) Un-augmented image. (b) Quadrant swap
augmentation. Where quadrant I is replaced with quadrant III and III with I 100

A.4 Examples of rotation augmentation on MNIST. (a) 0% rotation, equivalent
to a un-altered MNIST image. (b-k) Gradually increasing the degree rotation
by 10% each time. 101

A.5 Filters at a specified radius. (a) Filters at radius 1 from the desired filter,
marked by an X. (b) Filters at radius 4 from the desired filter, marked by an X.102

A.6 Euclidean distance between filters of an FCN layer, trained on MNIST with
rotation augmentation. (a) Average euclidean distance between filters one
unit away. i.e. all adjacent filters in the layer. (b) Average euclidean distance
between filters four units away. 103

A.7 Euclidean distance between filters of an FCN layer, trained on MNIST with
noise augmentation. (a) Average euclidean distance between filters one unit
away. i.e. all adjacent filters in the layer. (b) Average euclidean distance
between filters four units away. 103

A.8 FCNs trained with variable connection patterns on MNIST. The legends indi-
cate the probability of absent dentritic connections in a FCN filter. (a) Accu-
racy on translation augmented training set, 30% translations. (b) Accuracy
on the un-augmented validation set. (c) Accuracy on the translation aug-
mented validation set, using 25% translations. (d) Accuracy on the rotation
augmented validation set. (e) Accuracy on the noise augmented validation
set. (f) Accuracy on the edge noise augmented validation set. 105

A.9 FCNs trained with variable connection patterns on CIFAR. The legends indi-
cate the probability of absent dentritic connections in a FCN filter. (a) Accu-
racy on translation augmented training set, 30% translations. (b) Accuracy
on the un-augmented validation set. (c) Accuracy on the translation aug-
mented validation set, using 25% translations. (d) Accuracy on the rotation
augmented validation set. (e) Accuracy on the noise augmented validation
set. (f) Accuracy on the edge noise augmented validation set. 106

viii

LIST OF TABLES

Page

2.1 MNIST results. Median accuracies of training, un-augmented validation, and
augmented validation set. The left most column denotes the amount of trans-
lational augmentation used during training. When performing translational
augmentation on the validation set, 25% augmentation was used throughout
the experiments. Bold values indicate the highest performing model in that
accuracy metric for CNN and FCN, respectively. 14

2.2 CIFAR results. Median accuracies of training, un-augmented validation, and
augmented validation set. The left most column denotes the amount of trans-
lational augmentation used during training. When performing translational
augmentation on the validation set, 25% augmentation was used throughout
the experiments. Bold values indicate the highest performing model in that
accuracy metric for CNN and FCN, respectively. 15

3.1 Hyperparameter Space . 45
3.2 Spearman correlation of corresponding hyperparameter with online perfor-

mance, and associated p-value. 49

4.1 Summary of the proposed CNN with attentional mechanism parameters (”-1”
represents a flexible shape, essentially the batch size. 59

4.2 The hyperparameter space. 61
4.3 Hyperparameters for each model and dataset. 62
4.4 DA techniques that are used on the MI task 63
4.5 Summary of the 3 datasets used in this study: Our experimental dataset, BCI

2a, and BCI 2b . 66
4.6 Participant-by participant comparison of the proposed CNN with attentional

mechanism—with and without DA— against Dai et al. [51] results on the
BCI 2a and BCI 2b datasets . 70

4.7 Comparison of our proposed method (with and without data augmentation)
with other state-of-the-art methods. All methods were run on the same
dataset (BCI 2a and/or BCI 2b) . 71

4.8 Validation accuracy for different channel selections on our dataset for single
participants and the average over all participants. For each participant, we
present mean ± SE over trials. In the bottom row, we present mean ± SE
over participants. 75

ix

4.9 Comparison of different DA techniques with different magnification factors
and hyperparameters for BCI 2a, BCI 2b, and our experimental dataset (for
64 channels and 18 channels) . 77

4.10 Accuracies for different proportions of our dataset with different DA techniques 79
4.11 Leave-one-out and transfer-learning validation accuracy for BCI 2a, BCI 2b,

and our dataset (64 and 18 channels) . 83

A.1 Hyperparameter Space for the conducted grid search. 94
A.2 Architecture specification resulting from the grid search. The format for con-

volutional layers is (kernel size, number of output channels, stride). All layers,
except the output, use ReLU activations. 96

A.3 Edge noise results. Median accuracy of un-augmented validation and trans-
lation augmented validation set. The left most column denotes the amount
variance of noise used during training. When performing translational aug-
mentation on the validation set, 25% augmentation was used throughout the
experiments. Bold values indicate the highest performing model in that ac-
curacy metric for CNN and FCN, respectively. 98

A.4 Noise results. Median accuracy of un-augmented validation and translation
augmented validation set. The left most column denotes the amount variance
of noise used during training. When performing translational augmentation on
the validation set, 25% augmentation was used throughout the experiments.
Bold values indicate the highest performing model in that accuracy metric for
CNN and FCN, respectively. 98

A.5 Rotation results. Median accuracies of un-augmented validation and transla-
tion augmented validation set. The left most column denotes the percentage of
rotation used during training. When performing translational augmentation
on the validation set, 25% augmentation was used throughout the experi-
ments. Bold values indicate the highest performing model in that accuracy
metric for CNN and FCN, respectively. 102

x

ACKNOWLEDGMENTS

I wish to acknowledge financial support from the National Science Foundation grant NRT
1633631 and the hardware contributions from NVIDIA.

I wish to thank all co-authors of those publications in enabling the research which forms
the basis for this dissertation. I would also like to highlight the members of Chapman
University’s MLAT lab for igniting my academic journey.

Portions of Chapter 2 were previously published as “Learning in the Machine: To Share or
Not to Share? Journal of Neural Networks, June 2020. Jordan Ott, Erik Linstead, Nicholas
LaHaye, Pierre Baldi”. Permissions to reuse the text were granted by Elsevier and co-
authors. Portions of Chapter 3 were previously published as “A Fortran-Keras Deep Learning
Bridge for Scientific Computing, Scientific Programming, August 2020. Jordan Ott, Mike
Pritchard, Natalie Best, Erik Linstead, Milan Curcic, and Pierre Baldi”. Permissions to reuse
the text were granted by Hindawi and co-authors. Portions of Chapter 4 were previously
published as “An end-to-end CNN with attentional mechanism applied to raw EEG in a BCI
classification task, Journal of Neural Engineering, August 2021. Elnaz Lashgari, Jordan Ott,
Akima Connelly, Pierre Baldi, and Uri Maoz”. Permissions to reuse the text were granted
by IOP and co-authors.

Finally, I would like to thank my adviser Pierre Baldi for providing this opportunity and his
guidance and support.

xi

VITA

Jordan Andrew Melchionne Ott

EDUCATION

Doctor of Philosophy in Computer Science 2022
University of California, Irvine Irvine, California

Master of Science in Computational and Data Sciences 2018
Chapman University Orange, California

Bachelor of Science in Computer Science 2017
Chapman University Orange, California

RESEARCH EXPERIENCE

Graduate Research Assistant 2018–2022
University of California, Irvine Irvine, California

TEACHING EXPERIENCE

Lecturer 2018–2020
Chapman University Orange, California

Teaching Assistant 2018–2019
University of California, Irvine Irvine, California

PROFESSIONAL EXPERIENCE

Senior Computer Vision Engineer March 2022–Present
Path Robotics Columbus, Ohio

Computer Vision Engineer October 2020–March 2022
Path Robotics Columbus, Ohio

xii

REFEREED JOURNAL PUBLICATIONS

Real-time reconstruction of intense, ultrafast laser
pulses using deep learning

2022

Nature Scientific Reports

An end-to-end CNN with attentional mechanism ap-
plied to raw EEG in a BCI classification task

2021

Journal of Neural Engineering

Assessing the Potential of Deep Learning for Emulating
Cloud Superparameterization in Climate Models with
Real-Geography Boundary Conditions

2021

JAMES

Detecting Pulmonary Coccidioidomycosis with Deep
Convolutional Neural Networks

2021

Machine Learning with Applications

Enforcing analytic constraints in neural-networks emu-
lating physical systems

2021

The Journal of Physical Review Letters

A Fortran-Keras deep learning bridge for scientific com-
puting

2020

Scientific Computing

Sherpa: Robust hyperparameter optimization for ma-
chine learning

2020

SoftwareX

The Pretense of Knowledge 2020
Cosmos+Taxis

Learning in the machine: To share or not to share? 2020
Neural Networks

REFEREED CONFERENCE PUBLICATIONS

Deep-Learning-Based Kinematic Reconstruction for
DUNE

2020

NIPS

PUBLICATIONS UNDER REVIEW / IN PREPARATION

xiii

Deducing Neutron Star Equation of State From Tele-
scope Spectra with Machine Learning

2022

Deep-Learning-Based Kinematic Reconstruction for
DUNE

2022

Polynomial Neural Networks: Review and Progress 2022

SOFTWARE

Fortran-Keras Bridge (FKB) https://github.com/scientific-computing/FKB

A Fortran-Keras Deep Learning Bridge for Scientific Computing.

xiv

https://github.com/scientific-computing/FKB

ABSTRACT OF THE DISSERTATION

Theoretical and Applied Deep Learning for the Physical Sciences

By

Jordan Andrew Melchionne Ott

Doctor of Philosophy in Computer Science

University of California, Irvine, 2022

Professor Pierre Baldi, Chair

Weight-sharing is one of the pillars behind Convolutional Neural Networks and their suc-

cesses. However, in physical neural systems such as the brain, weight-sharing is implausible.

Taking inspiration from neural circuitry, we explore the use of Free Convolutional Networks

and neurons with variable connection patterns. Using Free Convolutional Networks, we

show that while weight-sharing is a pragmatic optimization approach, it is not a necessity

in computer vision applications.

Second, we turn to an application of artificial networks for scientific computing. Implement-

ing artificial neural networks is commonly achieved via high-level programming languages

such as Python and easy-to-use deep learning libraries such as Keras. As a result, a deep

learning practitioner will favor training a neural network model in Python, where these tools

are readily available. However, many large-scale scientific computation projects are written

in Fortran, making it difficult to integrate with modern deep learning methods. To alleviate

this problem, we introduce a software library, the Fortran-Keras Bridge in order to connect

environments where deep learning resources are plentiful with those where they are scarce.

Finally, we examine an application of neural networks to activity classification. Using raw

EEG signals we demonstrate superior performance of our novel attention based network to

predict a subject’s motor execution.

xv

Chapter 1

Introduction

1.1 Contributions

1.1.1 Climate Modeling

In climate modeling we introduced a systematic way of enforcing nonlinear analytic con-

straints in neural networks via constraints in the architecture or the loss function [32]. This

was applied to convective processes for climate modeling, architectural constraints enforce

conservation laws to within machine precision without degrading performance. In the real

geography scenario, we demonstrated the ability of neural networks to parameterize convec-

tion dynamics over continents [128]. This allowed for accurate emulation of climate models

locally in space and time.

1

1.1.2 Software Libraries

Implementing artificial neural networks is commonly achieved via high-level programming

languages such as Python and easy-to-use deep learning libraries such as Keras. These

software libraries come preloaded with a variety of network architectures, provide autodiffer-

entiation, and support GPUs for fast and efficient computation. As a result, a deep learning

practitioner will favor training a neural network model in Python, where these tools are

readily available. However, many large-scale scientific computation projects are written in

Fortran, making it difficult to integrate with modern deep learning methods. To alleviate

this problem, we introduce a software library, the Fortran-Keras Bridge (FKB). This two-way

bridge connects environments where deep learning resources are plentiful with those where

they are scarce [143].

When implementing neural networks there are a number of choices - hyperparameters - that

must be set prior to training. Choosing hyperparameters arbitrarily can lead to suboptimal

results. We introduced SHERPA [77], a Python library for hyperparameter tuning.

1.1.3 Physics

In high energy particle physics, the Deep Underground Neutrino Experiment (DUNE) is

a next-generation long-baseline neutrino oscillation experiment based on liquid argon TPC

(LArTPC) technology. While LArTPC technology provides excellent spatial resolution, high

neutrino detection efficiency, and superb background rejection, it poses significant recon-

struction challenges. We design, train, and test two CNN-based methods, using 2-D and

3-D LArTPC pixelmaps, for the reconstruction of final state particle direction and energy,

as well as neutrino energy, from both raw event pixelmaps and clustered shower and tracks.

This proves that deep neural networks can automatically obtain individual particle informa-

tion from a global pixelmap without human engineered clustering. Combining our models

2

with particle masses yields a fully AI-based reconstruction chain producing the four-vector

momenta of the final state particles. Improvements in energy and direction reconstruction

for electrons, muons, νµ CC, and νe CC events demonstrate that quality and robustness of

the approach across multiple reconstruction tasks [115].

In optics, we introduced a method for the phase reconstruction of an ultrashort laser pulse

based on the parameterization of the nonlinear spectral changes induce by self-phase mod-

ulation [181].

1.1.4 Biomedical Applications

In the domain of brain computer interfaces (BCI), electroencephalography (EEG) is a rel-

atively inexpensive and non-invasive monitoring technique. We demonstrated the use of

attention based neural networks, to predict patients motor actions from raw EEG signals

[105].

Coccidioidomycosis is the most common systemic mycosis in dogs in the southwestern United

States. We demonstrated the effectiveness of automatically detecting the disease in canine

subjects, paving the way to help doctors and veterinarians more easily identify and diagnose

positive cases [141].

1.1.5 Theoretical Deep Learning

Weight-sharing is one of the pillars behind Convolutional Neural Networks and their suc-

cesses. However, in physical neural systems such as the brain, weight-sharing is implausible.

This discrepancy raises the fundamental question of whether weight-sharing is necessary.

Taking inspiration from neural circuitry we assessed the necessity of weight sharing in com-

puter vision applications [142].

3

Polynomials have a long history in mathematics going back hundreds of years. Their mathe-

matical formulation is accompanied by a vast literature that offers interpretability, potential

theorems, and alternative hardware embodiments for computation. This begs the question

as to why polynomials have been noticeably absent from the development of deep neural net-

works. In this paper we investigate the interplay between polynomials and deep networks.

Through a series of computer vision simulations we formalize the idea of polynomial neural

networks and their various forms. We present insights into the trade off of polynomial de-

gree, training paradigms, as well as polynomial extensions to the standard artificial neuron

model.

4

Chapter 2

Learning in the Machine: To Share or

Not to Share?

2.1 Introduction

Digital simulations of neural networks are successful in many applications but rely on a

fantasy where neurons and synaptic weights are objects stored in digital computer memories.

This fantasy often obfuscates some fundamental principles of computing in native neural

systems. To remedy this obfuscation, learning in the machine refers to a general approach

for studying neural computations. In this approach, the physical constraints of physical

neural systems, such as brains or neuromorphic chips, are taken into consideration. When

applied to single neurons, learning in the machine can lead, for instance, to the discovery of

dropout [179, 19]. When applied to synapses, learning in the machine can lead, for instance,

to the discovery of local learning [21] and random backpropagation [113, 18, 17]. Moreover,

when applied to layers of neurons, as we do in this paper, learning in the machine leads

one to question the fundamental assumption of weight-sharing behind convolutional neural

5

networks (CNNs).

The technique of weight-sharing, whereby different synaptic connections share the same

strength, is a widely used and successful technique in neural networks and deep learning.

This paradigm is particularly true in computer vision where weight-sharing is one of the

pillars behind convolutional neural networks and their successes. In any physical neural

system, for instance, carbon- or silicon-based, exact sharing of connections strengths over

spatial distances is difficult to realize, especially on a massive 3D scale. In physical systems,

not only is it difficult to create identical weights at a given time point, but it is also challenging

to maintain the identity over time. During phases of development and learning the weights

may be changing rapidly. During more mature stages weights must retain their integrity

against the microscopic, entropic forces surrounding any physical synapse. Furthermore,

given the exquisitely complex geometry of neuronal dendritic trees and axon arborizations, it

is implausible to form large arrays of neurons with identically translated connection patterns.

In short, not only is it challenging to share weights exactly, but it is also difficult to exactly

share the same connection patterns.

While weight-sharing has proven to be very useful in computer vision and other applications,

it is extremely implausible in biological and other physical systems. This discrepancy raises

the fundamental question of whether weight-sharing is a strict prerequisite for convolution-

based deep learning, or if similar levels of learning are possible without it. In particular, we

consider the following research questions:

1. Is weight-sharing necessary to prevent overfitting?

2. Is weight-sharing necessary to ensure translational invariant recognition?

3. Can acceptable classification performance be achieved without weight-sharing?

4. Does approximate or exact weight-sharing emerge in a natural way1?

1Without explicit constraints in the architecture or imposed constraints in the form of losses

6

In formulating the research questions above, we considered the most common reasons prac-

titioners give for employing weight sharing in convolutional network architectures. The

purpose is to challenge these common points based on the intuitive principle that weight

sharing is implausible in biological systems. In total, answers to these questions provide

new insight into whether weight sharing is a strict prerequisite for the effective training

convolutional architectures, and what happens if the requirement for weight sharing is re-

laxed. The goal of this study is to investigate these research questions, primarily through

simulations where the weight-sharing assumption is relaxed. Some of these questions have

been previously considered in the literature in other contexts. We are not the first to utilize

locally connected architectures or assess their performance on computer vision tasks [26],

for example. However, in aggregate, the answer to these questions provide novel insight into

whether weight-sharing is vital for convolutional architectures and whether it can emerge in

other ways when connections are not shared.

2.2 Origins and Functions of Weight-Sharing

Before addressing the question of its necessity, it is useful to review the origins and functions

of weight-sharing. Hubel and Wiesel’s neurophysiological work [83] on the cat visual cortex

was the inception of weight-sharing. These experiments suggested the existence of entire

arrays of neurons dedicated to implementing simple operations, such as edge detection and

other Gabor filters, at all possible image locations. Fukushima systematically used the ideas

proposed by Hubel and Wiesel to create the neocognitron [61] in computer vision. Primar-

ily a convolutional neural network architecture with Hebbian learning. However, Hebbian

Learning alone applied to a feedforward CNN cannot solve vision tasks [21]. Solving vision

tasks requires feedback channels and learning algorithms for transmitting target information

to the deep synapses. A job that is precisely achieved by backpropagation, or stochastic

7

gradient descent. Successful CNNs for vision problems, trained via backpropagation, were

developed in the late 80s and 90s [49, 16, 170].

Substantial improvements in the size of the training sets and available computing power have

led to a new wave of successful implementations in recent years, [100, 183, 180, 74], as well

as applications to a variety of specific domains, ranging from biomedical images [45, 71, 199,

198, 57, 191] to particle physics [15, 12, 164] and video analysis [138, 188, 139, 190]. Older

[218] as well as more recent work [41, 203] has also shown that not only do convolutional

neural networks rival the object category recognition accuracy of the primate cortex but also

seem to provide the best match to biological neural responses, at least at some coarse level

of analysis.

It is worth pointing out that weight-sharing is sometimes used in other settings, for instance

when Siamese Networks are used to process and compare objects [38, 16, 93], which also

includes Siamese CNNs for images. Siamese Networks consist of two or more sub-networks

that are used to train a contrastive loss function in order to learn the differences between pairs

of inputs. In the case of Siamese CNN’s, the typical weight sharing paradigm is used between

each subnetwork architecture. In addition, the weights of each subnetwork are identical with

each other, hence achieving another ”level” of weight sharing. Finally, a different kind of

weight-sharing that will not concern us here, when a recurrent network is unfolded in time.

In this case, weight-sharing occurs over time and not over space [81, 42].

Biologically motivated architectures have become an import focal point of deep learning as of

late [26, 24, 23, 168, 113, 22, 137]. Most recently [26] investigated how biologically motivated

deep learning algorithms scale to more massive datasets. Locally connected networks were

included in their simulations, where each weight kernel interacts with local features, not the

entire input. However, the focus of the paper is on how learning algorithms such as feedback

alignment [113] and target propagation [109] scale to more significant image recognition

problems. Not addressed in the paper is the problem of learning translationally invariant

8

representations, overfitting, variable connection patterns, and the emergence of approximate

weight-sharing. Nor was there in-depth analysis comparing networks with weight-sharing to

those without.

Two primary but different purposes are typically associated with weight-sharing. The first is

to reduce the number of free parameters that need to be stored or updated during learning.

This requirement can be important in applications where storage space is limited (i.e., cell

phones), or where training data is limited, and overfitting is a danger. It is important to

remember, however, that in convolutional architectures the local connectivity of neurons

contributes at least as much to parameter reduction as weight-sharing. In other words,

weight-sharing is not the only way to shrink the parameter space. The second function of

weight-sharing is to apply the same operation at different locations of the input data, to

process the data uniformly and provide a basis for invariance, typically translation invariant

recognition in CNN architectures.

2.3 Free Convolutional Networks

The research questions proposed in Section 1 deal with the necessity of weight sharing and

the result of its absence. As a result, it is natural to consider simulations where weights are

not shared but instead are maintained for specific regions of the input space. Relaxing the

weight-sharing assumption in CNNs yields a Free Convolutional Network (FCN). In FCNs,

the weights of a filter at a specific location are not tied to the weights of the same filter at a

different location (see Figure 2.1). This naturally means that FCNs have far more parameters

than the corresponding CNN and are slower to train on a digital machine. However, this is

not a concern here, as our primary goal is not to improve the efficiency of CNNs deployed on

digital machines, but rather to understand the consequences of relaxing the weight-sharing

assumption inside a native neural machine.

9

Figure 2.1: Free convolutional layers maintain a separate kernel at each location, unlike
typical convolutional layers, that apply the same filter across all possible locations. The
above figures are examples of FCN layers on a 9x9 input space. Each 3x3 subregion of
the input is covered with a distinct kernel (weight matrix), as shown in the diagram on
the left. The top square represents the output obtained from applying the filter to the
corresponding input region. The diagram on the right depicts free convolutional layers with
variable connection patterns, where the x’s represent absent connections. In this example, 12
out of the 91 connections are missing, creating a variable connection probability of roughly
0.15.

Furthermore, it is highly implausible that a given neuron will share the same dendritic

tree with a neighboring neuron [86], thus in addition to neighboring neurons of the same

layer not having the same weights, we would like to consider also the possibility of them

not having the same receptive field pattern. Thus, in addition to plain FCNs, FCNs with

variable connection patterns are implemented in the simulations below. The implementation

of variable connection patterns has many options. Here, for simplicity, a random percentage

of connections are severed (Figure 2.1) [Note: this is very different from dropout where

different sets of weights get randomly set to 0 at each presentation of a training example].

Similar to in methodology to DropConnect [197], however, the same weights remain 0 for

all of training and testing. The x’s in the right image of Figure 2.1 correspond to missing

synaptic connections between neurons that are set to zero and never trained.

By running simulations comparing CNNs and FCNs (with and without variable connection

patterns), we seek to answer the research questions laid out in the introduction. Appendix

10

A.3 contains complete details regarding simulations with variable connection patterns. To

our knowledge, this is the first systematic study, through large-scale computational simu-

lations, that explores the necessity of weight-sharing in deep convolutional architectures as

it pertains to overfitting and performance in the broader context of biological plausibility.

Further novelty is found in our assessment of the emergence of approximate weight-sharing

in free convolutional architectures with and without variable connection patterns.

2.4 Data and Methods

Figure 2.2: Examples of translational augmentation on MNIST. In training images are trans-
lated left-right as well as up-down. The above only display the result of continually translat-
ing an image leftwards, for a visual example. (a) 0% translation augmentation, equivalent
to a un-altered MNIST image. (b-k) Gradually increasing the percentage of augmentation
by 10% each time.

In the simulations, we focus exclusively on computer vision tasks. We evaluate various free

and shared weight networks on two well-known benchmark datasets: the handwritten digit

dataset, MNIST [108], as well as the CIFAR-10 object dataset [99].

In the case of free weights, we consider using data augmentation by translating images

horizontally and vertically to potentially compensate for the lack of translation, inherent

11

in the architecture. Due to the local receptivity of free weight networks, individual filters

learn features solely within their receptive field. Translationally invariant data will allow

filters to learn more or less the same features across the input space. Conversely, in CNNs,

weights are shared across space. By applying the same operation across the input space,

translational invariance is naturally embedded in the model. This property of CNNs gives

them an inherent advantage in vision-based tasks. The purpose of these experiments is

not to demonstrate the superiority of one network but to understand the consequences of

weight-sharing and properties that arise around it.

Eleven settings of translation were tested in experiments (0% to 99% by increments of 10%).

Translational augmentation involves shifting images horizontally and vertically by varying

degrees of the width and height respectively. Points outside the boundaries of the input get

filled according to the nearest pixels. Figure 2.2 shows examples of translational augmenta-

tion results on MNIST. During training, each image presented to the network is translated

left-right as well as up-down by random amounts. 0% to the augmentation setting for that

trial. e.g., at 90% augmentation, an image may be translated any amount 0-90% up-down

as well as 0-90% left-right.

All simulations, each augmentation setting, were completed using five-fold cross-validation.

Simulations were implemented in Keras [44] with a Tensorflow [2] backend using NVIDIA

GeForce GTX Titan X GPUs with 12 GB memory. For purposes of reproducibility, the code

has been made publicly available2.

2.4.1 Networks

Conducting a grid search yielded appropriate hyperparameter configuration for all networks.

See Appendix A.1.1 for complete details. The search produced network architectures com-

2https://github.com/Learning-In-The-Machine/Weight-Sharing

12

https://github.com/Learning-In-The-Machine/Weight-Sharing

posed of three convolutional/free convolutional layers, followed by a single hidden layer, and

one output layer for classification. A full description of all networks, including filter size,

number of filters, stride, and learning rate can be found in Table A.2. MNIST and CIFAR re-

quire different architectures as the input sizes differ. For every setting of data augmentation

(0 to 99%, increments of 10%) a CNN and FCN were trained via five-fold cross-validation.

For simplicity, the architecture of CNNs and FCNs are equivalent, except that free convolu-

tional layers replace convolutional layers. The activation functions, softmax layer, as well as

the number of filters per layer, remain the same across all networks. Table A.2 lists hyperpa-

rameter settings of the networks used in this paper. Additionally, it is essential to note that

there is no architectural difference between the networks trained with data augmentation

and those trained without.

2.4.2 Variable Connection Patterns

Also implemented in this study are neurons with variable connection patterns in FCNs. At

the start of training, a chosen percentage of weights are randomly set to 0, representing the

absence of a dendritic connection. These missing weights do not contribute to the output

of the layer, and their values are never updated during backpropagation. The resulting

connection patterns are maintained throughout training and testing. There are multiple

options for implementing neurons with variable connection patterns. For computational

simplicity, the implementation used in this paper is to turn off connections within each

square filter given some probability (depicted in Figure 2.1). In simulations, we vary the

drop probability from 0 to 99% by increments of 10%. The results from these simulations

are reported in Figure A.8 and A.9 of the Appendix.

13

2.5 Results

We report accuracy metrics on translationally augmented training (0 - 99%, increments of

10%), un-augmented validation, and translationally augmented validation set (with 25%

translation) throughout training. Results for MNIST and CIFAR are shown in Figure 2.3

and 2.4, respectively. The legend denotes the amount of translation used during training (0

- 99%, increments of 10%).

Tables 2.1 and 2.2 show the median accuracy of the five-fold cross validation experiments

for the MNIST and CIFAR-10 datasets respectively. The tables display results for each cor-

responding setting of translation augmentation (0 - 99%, increments of 10%). Bold values

indicate the highest performing model in that accuracy metric for CNN and FCN, respec-

tively. The Appendix contains additional experiments regarding the use of other augmen-

tation methods, additional training metrics, as well as simulations regarding neurons with

variable connection patterns.

Training Accuracy Validation Accuracy Translation Accuracy
Aug % CNN FCN CNN FCN CNN FCN

0.00 0.999964 0.999175 0.990536 0.988071 0.366536 0.372287
0.10 0.997793 0.995665 0.993071 0.991857 0.837963 0.813368
0.20 0.996719 0.991730 0.993000 0.990357 0.986220 0.977033
0.30 0.992555 0.983998 0.992143 0.987643 0.990741 0.985062
0.40 0.976966 0.965521 0.991571 0.984500 0.989439 0.982422
0.50 0.935973 0.923703 0.990071 0.981571 0.987594 0.979456
0.60 0.863680 0.847367 0.988286 0.978500 0.986111 0.976273
0.70 0.752630 0.731917 0.987000 0.974286 0.984484 0.971933
0.80 0.626956 0.606541 0.985500 0.970786 0.982820 0.968171
0.90 0.520896 0.503312 0.984714 0.967821 0.982096 0.965133
0.99 0.448491 0.431218 0.984000 0.965071 0.981120 0.961372

Table 2.1: MNIST results. Median accuracies of training, un-augmented validation, and
augmented validation set. The left most column denotes the amount of translational aug-
mentation used during training. When performing translational augmentation on the vali-
dation set, 25% augmentation was used throughout the experiments. Bold values indicate
the highest performing model in that accuracy metric for CNN and FCN, respectively.

14

Training Accuracy Validation Accuracy Translation Accuracy
Aug % CNN FCN CNN FCN CNN FCN

0.00 1.000000 1.000000 0.671083 0.647333 0.444556 0.433468
0.10 0.982156 0.973354 0.749333 0.724333 0.598538 0.561324
0.20 0.876542 0.858094 0.773250 0.731500 0.705225 0.653478
0.30 0.834646 0.781885 0.774083 0.720167 0.739163 0.683972
0.40 0.775188 0.725198 0.768750 0.704958 0.742608 0.680444
0.50 0.712146 0.657438 0.751667 0.682250 0.729419 0.661458
0.60 0.650719 0.598344 0.734042 0.659958 0.714130 0.642557
0.70 0.592385 0.545354 0.717250 0.641542 0.699555 0.624286
0.80 0.535958 0.496677 0.699667 0.626250 0.681452 0.607695
0.90 0.483635 0.449490 0.684833 0.611667 0.667801 0.593834
0.99 0.442260 0.413802 0.668667 0.599458 0.653436 0.583375

Table 2.2: CIFAR results. Median accuracies of training, un-augmented validation, and
augmented validation set. The left most column denotes the amount of translational aug-
mentation used during training. When performing translational augmentation on the vali-
dation set, 25% augmentation was used throughout the experiments. Bold values indicate
the highest performing model in that accuracy metric for CNN and FCN, respectively.

2.5.1 Is weight-sharing necessary to prevent overfitting?

Both FCNs and CNNs are shown to overfit the training set, given a sufficient number of

epochs. This result is evident from a divergence in training accuracy vs. validation accuracy

over time (MNIST and CIFAR, Figures 2.3 and 2.4 respectively). In situations, without over-

fitting, one would expect training and validation scores to be close to one another. However,

as the training accuracy continues to increase towards 100%, in many cases the validation

accuracy declines, the telltale indication of overfitting. In the remaining cases the validation

accuracy plateaus while training accuracy continues to grow. The large gap between training

and validation performance in these cases suggests that the model’s ability to generalize to

new data is suffering, and that overfitting is likely taking place. In experiments performed

on MNIST and CIFAR overfitting was observed for CNNs and FCNs when translation was

not used, Figure 2.3 and 2.4 respectively. This effect manifests in CIFAR (Table 2.2) where

there is more than a 30% gap between training accuracy and validation accuracy for both

15

CNN and FCN, with no translational augmentation (i.e., 0% translation).

In the case of MNIST, we see from Table 2.1 that FCNs, trained on augmented data (10%

translation), achieve a median accuracy of 99.1857% on the validation set. Only slightly less

than the 99.3071% median accuracy achieved by standard CNNs. On the more complicated

CIFAR dataset, with 10% translation, FCNs can come within 2% of CNN accuracy on the

validation set (Table 2.2). Thus, we can infer that data augmentation alone is sufficient to

prevent overfitting, and weight-sharing need not be leveraged to achieve this.

Using augmentation during training (Figure 2.3 and 2.4) not only reduces overfitting but

also leads to an increase in performance on validation sets. For FCNs on CIFAR specifically,

training with translational amounts of 10, 20, and 30% increases FCN validation performance

while dramatically reducing overfitting, compared to 0% translation. In human learning,

translational augmentation comes as a byproduct of interacting with a changing world, which

inherently provides the brain with samples of the same object translated at different positions

- for example, a car driving down the street. Because FCNs cannot rely on weight-sharing

to simulate the effect of translation, they must, therefore, rely on manual augmentation.

Large, translationally invariant datasets, like those produced through data augmentation, are

essential for free weight networks to achieve excellent performance and avoid overfitting. If

this constraint can be met, overfitting can be mitigated without weight-sharing.

2.5.2 Is weight-sharing necessary to ensure translational invariant

recognition?

Learning translationally invariant representations is tested by using translational augmen-

tation on the validation set. Figures 2.3e and 2.3f for MNIST and Figures 2.4e and 2.4f for

CIFAR show results of translation on the augmented validation set.

16

Significant disparity between validation accuracy and translation augmented validation ac-

curacy would signal that the network is not capable of translationally invariant recognition.

For example, the FCN trained on MNIST data without augmentation saw more than a

sixty percent gap between validation set accuracy and translation augmented validation set

accuracy (Table 2.1). Similarly, on CIFAR, the FCN trained without translation augmen-

tation performed 20% worse on the translation augmented validation set than the standard

one (Table 2.2). Meaning these networks trained with 0% augmentation are incapable of

learning translation invariant representations.

On both MNIST and CIFAR, FCNs achieve comparable results on the validation set and

translation augmented validation set. This result is evident on MNIST where an FCN

trained with 30% translation achieves a 0.2% difference between validation and translation

augmented validation performance. Likewise, on CIFAR, the FCN trained with 40% transla-

tion comes within 2% of its validation performance on the translation augmented validation

set.

The results show that as translational augmentation is used during training, the gap between

the validation accuracy and translation augmented validation accuracy decreases. This con-

firms that FCNs are capable of learning translationally invariant representations provided

sufficient, translationally augmented, data.

2.5.3 Can acceptable performance be achieved without weight-

sharing?

FCNs can achieve high-performance scores on two benchmark computer vision datasets,

which agrees with what has been noted previously in the literature [26]. In the absence

of data augmentation (0% translation), CNNs outperform FCNs on MNIST and CIFAR.

Referencing Table 2.1, CNNs achieve 99.05% validation accuracy whereas FCNs are slightly

17

worse with 98.81% validation accuracy for MNIST. On CIFAR, Table 2.2, CNNs outperform

FCNs with 67.11% and 64.73%, respectively. When FCNs are exposed to translational data,

they can achieve 99.19%, 10% augmentation, and 73.15%, 20% augmentation, on MNIST

and CIFAR validation sets, respectively.

The validation set accuracy observed in our simulations shows that as translational aug-

mentation is increased, FCNs can match the performance of CNNs. Thus, there is not a

fundamental necessity of weight-sharing to attain satisfactory performance.

2.5.4 Does approximate or exact weight-sharing emerge in a nat-

ural way?

To test for the emergence of approximate weight-sharing, we calculate the average euclidean

distance between each filter of the FCN layer, at a specified radius. Experiments in this

paper use a radius of one and four units to test the similarity of filters at different distances.

Figure A.5 in the Appendix, gives a visual example. This depiction means that each filter

in the FCN layer is compared to the filters one and four units, respectively, away from it.

Figure 2.5 reports the euclidean distance between filters at radius one and radius four.

If weight-sharing did emerge naturally, one would expect to see a lower average euclidean

distance between filters within an FCN layer throughout training. One would only expect to

see this convergence in weight values if a similar stimulus is present across the input space

(i.e., translationally augmented data, akin to video). Simulations conducted on the MNIST

dataset confirms this. As the amount of translation increases (indicated by the legend

in Figure 2.5), the parameters of the FCN layer converge to similar values; the euclidean

distance between filters decreases. Furthermore, a higher degree of translation yields more

similar the weight values. Conversely, when translation is not used during training, the

weights diverge and become less similar from each other over time (i.e., the distance between

18

them increases).

One would also expect filters near one another to be more similar than those farther away

(i.e., filters at radius 1 should be more similar than at radius 4). Again, this is confirmed in

simulations where Figure 2.5a shows lower average Euclidean distance values, per augmen-

tation setting, compared to Figure 2.5b.

To ascertain the cause of approximate weight-sharing, FCNs were trained with noise and

rotation augmentation while measuring the distance between their filters. Figure A.6 and

A.7 display euclidean distance results for these experiments. These metrics confirm that

only translation augmentation is sufficient to endow FCNs with approximate weight-sharing.

Additional explanations are provided in Appendix A.2.5.

While not exact, the distance between FCN filters shows how approximate weight-sharing can

emerge in a natural way with translationally augmented data.

2.5.5 For What Learning Tasks Are Free Convolutional Networks

Most Applicable?

In CNNs, the same filter is applied to all locations in the input space. One may hypothesize

that, as a result, CNNs will be focused less on the overall structure of features in spatial

relation to each other, and more on identifying the features themselves. This is in contrast

to FCNs, which can only operate locally within their receptive field, and so must inherently

learn the global structure of features in relation to one another.

To test this hypothesis, images presented to the networks for testing need to be manipulated

in such a way so as to compromise the overall global structure of the image while at the same

time preserving individual features appearing within an image. Appendix A.2.3 details the

quadrant swap task, in which quadrants I and III of images are interchanged with each other

19

in the validation set. See Figure A.3 for a visual example. In this task, lower classification

accuracy would indicate a higher importance placed on global structure during training.

That is, it is not sufficient for learned features just to be present in an image, but the spatial

relationship between them must also be preserved to some degree.

The results from the quadrant swap task are shown in Figure 2.6. One might expect se-

vere degradation of performance after rearranging parts on an image. However, the CNN

performs at nearly 50% accuracy. This performance indicates that the CNN is still able to

recognize features of the altered images when making its prediction. Conversely, the FCN

performs nearly 20% worse. Higher accuracy bolsters the notion that the overall global

structure of an image is less important for a CNN as opposed to the FCN. In domains where

global structure is essential such as face recognition or biomedical imaging, FCNs may find

substantial applicability.

2.5.6 Is weight-sharing necessary?

The necessity of weight-sharing arises as a means of parameter reduction. Reducing the

number of parameters leads to networks that are faster to train and smaller to store. Due to

the limitations of modern hardware, practical applications of free weight networks are not

currently viable, especially in embedded environments. Thus in situations where space is a

constraint, and translationally invariant datasets are not available, weight-sharing becomes

a necessity.

In terms of accuracy, FCNs have shown comparable results are possible without weight-

sharing. In this regard, weight-sharing is not a necessity.

20

2.5.7 If weight-sharing is not necessary, are translational invariant

training sets necessary?

To examine the necessity of translational datasets, additional experiments were conducted

using noise and rotational augmentation during training. Intuition would suggest that only

translational data is sufficient to endow FCNs with translational invariant recognition. The

full results, including accuracy performance on the noise and rotation, augmented training,

un-augmented validation, rotation augmented validation, noise augmented validation, and

translation augmented validation set can be found in Appendix A.2.

Training using other augmentation methods that do not produce translational invariant

datasets yield poor results when testing on the translationally augmented validation set.

Referencing Appendix A.2 (Table A.3, A.4, and A.5), the results show that FCNs trained on

non-translational data are consistently not capable of learning translationally invariant rep-

resentations. Low performance indicates that only translationally augmented training data

allows FCNs to learn translationally invariant representations. Using translationally invari-

ant datasets yields better results in validation set and augmented validation set accuracy,

specifically in FCNs.

2.6 Conclusion

The use of weight-sharing arises as a solution to parameter reduction and translationally

invariant recognition in neural networks. Though weight-sharing is implausible in any bio-

logical or physical setting, it is instrumental in computer vision tasks. We have examined

alternatives to weight-sharing, such as free convolutional networks, where the weight-sharing

assumption is relaxed. FCNs trained with augmented datasets have been shown to match

and even surpass standard CNNs in validation set accuracy. Data augmentation, specifi-

21

cally datasets augmented via translation, is a necessity as a means to avoid overfitting and

train FCNs capable of translationally invariant recognition. Thus, in environments where

data is plentiful and computational resources can cope with the large number of parameters

that result from abandoning weight-sharing, FCNs provide an alternative to CNNs that can

achieve potentially superior performance and higher fidelity to physical systems.

22

Figure 2.3: MNIST results. Shown above are FCN (left column) and CNN (right column)
results trained with varying degrees of translational augmentation, indicated by the legend.
Top row: training accuracy over time. Middle row: validation accuracy over time. Bottom
row: accuracy on the translationally augmented validation set.

23

Figure 2.4: CIFAR results. Shown above are FCN (left column) and CNN (right column)
results trained with varying degrees of translational augmentation, indicated by the legend.
Top row: training accuracy over time. Middle row: validation accuracy over time. Bottom
row: accuracy on the translationally augmented validation set.

24

Figure 2.5: Shown above is the average Euclidean distance between weight kernels in FCN
layer overtime at the specified radius away. E.g., a radius of four indicates comparing a given
weight kernel to all kernels four units away. As translational augmentation is increased
weights become more similar to one another. As expected, weights closer in proximity
(radius 4; left figure) have a smaller average distance than weights farther away (radius 7;
right figure).

Figure 2.6: Results for CNN and FCN models trained on MNIST and tested on images where
quadrant I is replaced with quadrant III and vice versa.

25

Chapter 3

A Fortran-Keras Deep Learning

Bridge for Scientific Computing

3.1 Introduction

The Fortran programming language was originally developed in the 1950s and published in

1957. It was created to help programmers implement solutions for scientific and engineering

problems on the IBM 704 computer, which at the time needed to be written in machine or

assembly language. Fortran has been regarded as revolutionary and possibly one of the most

influential software products in history [1]. Having evolved many times since its creation,

with the most recent release in 2018, each version adds new features and capabilities. Fortran

initially gained popularity and remains a widely used language due to its fast and efficient

computational ability. Additionally, Fortran’s strength is its backward compatibility, which

allows modern compilers to build code written in the 60s and 70s.

Though not as popular as it once was, Fortran is still used in specialized fields, includ-

ing oceanography, solid mechanics, computational physics, earthquake simulation, climate

26

modeling, and aerospace. Because of Fortran’s continued use, a great deal of legacy code

and new code exists. Unfortunately, it is difficult to rewrite all existing code bases in more

mainstream languages, due to their size and complexity. Therefore, when algorithms and

extensive libraries are created in modern languages, backwards compatible methods must be

developed to make them available in older legacy code, like Fortran.

In recent years, the rise of machine learning and deep learning has led to successful appli-

cations in various domains. Substantial improvements in the size of the training sets and

available computing power have led to a new wave of implementations [100, 170]. In turn,

this success has increased the usage and dissemination of deep learning. These methods have

been applied to a variety of domains, e.g., ranging from remote sensing [216, 101] to computer

vision [138, 188, 139, 140, 192], and to games [5, 176]. Specifically, within scientific com-

puting, many advancements have been achieved through the application of neural networks.

Neural networks have been augmented with physically informed capabilities [153, 31], better

suiting them for conservation restrictions. Learning partial differential equations [25, 158]

has proved valuable in multiple scientific domains.

The success and popularity of deep learning have inspired the creation of powerful software

libraries written in several modern programming languages. However, Fortran is not among

the modern languages that benefit from these deep learning libraries. This absence leaves

Fortran programmers with few options to implement deep neural networks.

The implementation of deep neural networks, in Fortran, may be achieved via two primary

pathways. One solution is to rewrite all existing deep learning libraries in Fortran. The

second solution is to leverage existing frameworks and bridge available functionalities to

Fortran. The former is extremely arduous and time consuming, considering the size and

scope of existing deep learning packages and the dizzying pace of their evolution [44, 3, 145].

The latter approach, which this paper describes, is to allow users to leverage the power

of existing frameworks while providing a bridge between paradigms where deep learning

27

resources are plentiful and those where they are scarce. In this way, we can leverage aspects

of currently available deep learning software libraries, like Keras [44], and bring them to

large-scale scientific computing packages written in Fortran. To this end, we propose the

Fortran-Keras Bridge (FKB) – A two-way bridge connecting models in Keras with ones

available in Fortran. The source code is publicly available and can be found here: https://

github.com/scientific-computing/FKB. We begin by reviewing existing Fortran projects

that would benefit from the integration of FKB.

3.2 Fortran Projects

FKB can be integrated with many existing large-scale and computationally intensive projects

written in Fortran. These projects will benefit from the easy integration of neural network

models, which FKB makes possible.

For example, Fortran is used to do a great deal of work in climate and ocean modeling. For

instance, the US-produced Community Earth System Model [84] is written in object-oriented

Fortran-90; this is the most widely used climate model in the world. So are the other climate

simulation codes used by the US Department of Energy [69] and the National Oceanographic

and Atmospheric Administration’s Geophysical Fluid Dynamics Laboratory [75]. Meanwhile,

the Nucleus for European Modelling of the Ocean (NEMO) engine is used for studying ocean

circulation problems on regional and global scales [186] and making future predictions, is

also written in Fortran. The Hybrid Coordinate Ocean Model (HYCOM) [196], also used

for ocean modeling, extends traditional ocean models to allow for a smooth transition from

the deep ocean to coastal regimes. Researchers have also developed models for the modeling

of waves and wind stress [54]. The Weather Research and Forecasting Model (WRF), is

arguably the most widely used numerical weather prediction models for regional decision

support [149]. Since its release in 2000, the number of WRF registrations has grown to

28

https://github.com/scientific-computing/FKB
https://github.com/scientific-computing/FKB

over 36,000. WRF produces atmospheric simulations with support for special applications,

including air chemistry, hydrology, wildland fires, hurricanes, and regional climate, and is

again a Fortran-based model.

Fortran has found continued use in solid mechanics packages for implementing finite element

methods. Popular packages such as ANSYS [123], ABAQUS [34], and LS-DYNA [133] are

written in Fortran or accept Fortran subroutines. Similarly, in earthquake modeling, the

SPECFEM3D [97] package leverages Fortran for simulations.

The list goes on. Code Saturne [11], developed by Électricité de France, and NEK5000

[146], are Fortran open-source computational fluid dynamics packages. Code Saturne allows

for user customization via Fortran subroutines, which is just one application domain for

FKB. NEK5000 is actively used in the Center for Exascale Simulation of Advanced Reactors

(CESAR) projects. Fortran has also been continually used for molecular modeling within

chemistry and physics. The Chemistry at Harvard Macromolecular Mechanics (CHARMM)

Development Project has produced a powerful molecular simulation program in Fortran

[39]. This simulation program primarily targets biological systems but can also be used

for inorganic materials. A similar tool, NWChem, has been developed by the Molecular

Sciences Software Group at the Pacific Northwest National Laboratory [193]. NWChem is a

computational chemistry software that includes quantum chemical and molecular dynamics

functionalities. Within the molecular physics domain, Fluktuierende Kaskade (FLUKA) is

a proprietary tool for calculations of particle transport and interactions with matter [60].

The models mentioned above and projects can leverage the FKB library to leverage neural

networks within their codebases. For example, neural networks have proven useful in model-

ing sea surface temperature cooling for typhoon forecasting [88]. Therefore the integration of

FKB with tools like NEMO, HYCOM, or WRF models is a possibility. In a recent study of

computational fluid dynamics, Ling et al. solve the Reynolds-averaged Navier-Stokes equa-

tions, similar to Code Saturne and NEK5000. By implementing deep neural networks, the

29

authors report that the architecture improved prediction accuracy [114]. Finally, the Fluka

tool contains a wide range of molecular physics applications, including dosimetry calcula-

tions. Vega-Carrillo et al. have shown neural networks aided in the calculation of neutron

doses [195]. For global climate simulation, there is proof that deep neural networks can offer

skillful alternatives to assumption-prone approximations of sub-grid cloud and turbulence

physics in the atmosphere [155, 36]. We hope that the FKB library enables Fortran users to

expand their research and projects to include neural networks.

Having reviewed several Fortran based projects that can leverage FKB, we now introduce

the two sides of this bridge. The following sections will develop the foundations on which to

anchor each side of this two-way bridge. We start by introducing the deep learning anchor.

(a) (b)

Figure 3.1: (a) Usage of programming languages for machine learning and data science.
Statistics are from the 2018 Kaggle ML & DS Survey [91]. (b) Usage metrics of deep
learning frameworks. Statistics are from the 2019 Kaggle State of Data Science and Machine
Learning report [92].

30

Figure 3.2: Positioning of FKB within Fortran and Python ecosystems.

3.3 The Python Anchor (Deep Learning)

Many programming languages offer tools and libraries for implementing artificial neural

networks. However, in recent years, Python has emerged as the clear favorite within this

domain. Metrics in Figure 3.1a display Python’s dominance. Python is used nearly 50%

more than the second most popular language, R. Python’s ubiquitous presence in machine

learning makes it the obvious choice to leverage existing libraries for Fortran. The question

then becomes, which available software library within Python, is best suited to bridge to

Fortran?

Of the available deep learning libraries, Keras [44] is the most popular among practitioners

(Figure 3.1b). Keras is an Application Programming Interface (API) built on top of Ten-

sorflow [3], that provides users the ability to implement quickly, train, and test networks.

This convenience encapsulates much of the low-level complexity one must manage when im-

plementing deep networks from scratch. Keras abstracts many of the complicated aspects

of Tensorflow while still providing customizability and ease of use. This combination makes

Keras the first choice of many for deep learning applications. As a result of its popularity

31

and ease of use, Keras is the clear choice on which to build one end of the two-way bridge.

Figure 3.2, depicts the positioning of the Python anchor, FKB/P, within the deep learning

ecosystem. The Keras API leverages Python to build deep neural networks. FKB/P resides

on top of Keras to access models produced from Keras and transmit them to the Fortran

anchor, FKB/F. This structure allows for integration with Fortran applications that wish to

leverage deep neural network architectures. Having described the deep learning anchor within

Python, the next section develops the foundation for anchoring the bridge with Fortran.

3.4 The Fortran Anchor (Scientific Computing)

Several attempts have been made to implement neural networks in Fortran, with some suc-

cess [50, 28, 29, 37, 135]. However, many implementations resort to hacking a single-use

neural network by hand, or binding code from other languages [135]. Along these lines, one

may consider accessing Python functionality directly from Fortran, by running a Python

instance within Fortran. While providing flexibility and ease of use, this is vulnerable to ex-

treme deficiencies in speed and computational resources. As a result, this solution becomes

untenable for large-scale computation projects like the ones described in Section 3.2.

There are a small number of existing neural network libraries in Fortran [135, 102, 50]. The

most recent and well developed library is Neural Fortran [50], a lightweight neural network

library, written natively in Fortran. The Neural Fortran library provides the ability to imple-

ment artificial neural networks of arbitrary size with data-based parallelism. Additionally,

in benchmark studies, Neural Fortran was shown to have comparable compute performance

with Keras while maintaining a lower memory footprint. This library offers a foundation to

anchor the Fortran side of the two-way bridge, FKB/F. By extending - and building on top

of - Neural Fortran, we can convert Keras models to ones readily available in Fortran and

32

implement them in existing Fortran projects.

The positioning of FKB within the scientific computing ecosystem is shown in Figure 3.2.

The Fortran anchor, FKB/F, can use models originally constructed and trained in Keras,

which can then be transferred to Fortran via FKB/P. To use these models, the Fortran

side of FKB implements a neural network library. This portion of FKB can be used within

large-scale scientific computation software, like the projects identified in Section 3.2.

By leveraging FKB, it becomes seamless to train networks in Python and transfer them to

Fortran, to run inside large scale simulations. Similarly, neural network models constructed

in Fortran can be transferred to Python for additional analysis, expansion, and optimization

- including hyperparameter searches using available tools in Python [78, 178, 27]. As both

sides of the bridge have been properly introduced, the following section will describe the

specific features and functionalities of FKB.

3.5 Features of FKB

Once a neural network is trained in high-level APIs like Keras, the practitioner has few

practical avenues for using this model in Fortran-based projects. One approach may be to

hard code network operations inside Fortran while manually moving parameters from the

Keras model. Several examples of this can been seen in climate modeling [155, 36, 63, 62].

To provide one specific example, in [155], the authors trained a deep neural network (DNN)

to represent sub-grid cloud and convective energy transport processes, in Keras. To assess

its credibility, they needed to test the DNN’s two-way interactions when thousands of repli-

cates of it were embedded within a coarse-resolution global atmospheric model, written in

Fortran – neural network emulated clouds interacting with determinstic physical calculations

of planetary geophysical fluid dynamics. As the global atmospheric simulator does not offer

33

native neural network support, the authors hardcoded their DNN model into the global sim-

ulation software framework. This approach has obvious disadvantages. Every minor change

made to the model in Keras requires rewriting the Fortran code. If one wishes to test a

suite of models in Fortran, this approach becomes untenable. As each network may require

different hyperparameters and, as a result, necessitates rewriting and compiling the Fortran

code for every new model. This process drastically limits the breadth of available models

to be tested within the simulator. This bottleneck is currently a significant roadblock to

ongoing debates in the climate simulation community, more broadly, about whether or not

to use DNN representations of subgrid physics in next-generation climate modeling. Insuf-

ficient testing of diverse candidate neural networks (NN) means that little is known about

how minor imperfections in the fit of one NN can amplify when the NN is coupled to fluid

dynamics, which is just beginning to be explored [35].

These issues demand a solution, in the form of a bridge between Keras and Fortran. The FKB

software solves these issues via two key elements. First, it provides a neural network library

implemented in Fortran (FKB/F). Second, it offers the ability to parse existing Keras models

into formats consistent with the Fortran neural network library (FKB/P). As a result, users

can switch, seamlessly, back and forth between Python and Fortran. This context provides

a way for iterative neural network tuning (Python) and testing (Fortran), with a simple

way to translate between the two software environments. Additionally, FKB offers currently

unavailable Fortran specific features for neural networks. It will be useful to highlight those

new features while documenting the format to which FKB adheres. The following subsections

describe the Python and Fortran anchors’ features, FKB/P and FKB/F, respectively.

34

3.5.1 FKB/P

Keras models - once built, trained, and saved - are stored in Hierarchical Data Format 5

(HDF5) files. These files contain the network architecture, weights, biases, and additional

information - optimizers, learning rates, gradients, etc. From the HDF5 file, FKB/P parses

the network architecture, extracting the number of layers, activation functions, nodes per

layer, and all weights and biases. This information is converted to match the Fortran neural

network configuration in FKB/F. This allows users to build an equivalent network in Fortran,

which can easily be loaded and used within a Fortran environment. If any modifications to

the model are made inside Fortran, FKB/P will parse this back into the equivalent HDF5

file to be used in Keras once again.

On the other hand, networks may be initially constructed in Fortran. After initial training

and testing, a user can switch to Keras for further evaluation. From Keras, users can conduct

additional testing or hyperparameter tuning where these tools are readily available [78].

The ability to seamlessly pass neural network architectures between Python and Fortran

is essential for any practitioner working in this space. This bridge allows users to take

advantage of the high-level Keras API - training on computationally efficient GPUs - then

to insert their trained model into a Fortran codebase. The functionality provided bridges

the chasm between Keras and Fortran.

3.5.2 FKB/F

The Fortran anchor of FKB leverages and extends the original Neural Fortran library. Below

we introduce newly implemented features to make Neural Fortran more flexible and able to

communicate on the two-way bridge.

35

Custom Layers

To implement neural networks in Fortran, FKB leverages and extends the Neural Fortran

library [50]. The prototype Neural Fortran library format that we build on was only capable

of implementing a fully connected layer. Forward and backward operations occurred outside

this layer - in the network module. An example of this is shown in Listing 3.1. From the

listing, one can observe hard-coded matrix multiplication of layer weights, the addition of

biases, and the activation functions inside the network module. This network-level subroutine

accesses and modifies individual layer attributes. This rigid format is inconsistent with

modern neural network implementation paradigms [44, 3, 145], but it makes it impossible to

implement other layers or custom operations. To increase the library’s flexibility, operations

must be encapsulated inside the layer, consistent with current practice.

pure subroutine fwdprop(self, x)

! Performs the forward propagation and stores arguments to activation

! functions and activations themselves for use in backprop.

class(network_type), intent(in out) :: self

real(rk), intent(in) :: x(:)

integer(ik) :: n

associate(layers => self % layers)

layers(1) % a = x

do n = 2, size(layers)

layers(n) % z = matmul(transpose(layers(n-1) % w), layers(n-1) % a) +

layers(n) % b

layers(n) % a = self % layers(n) % activation(layers(n) % z)

end do

end associate

end subroutine fwdprop

36

Listing 3.1: Original code from [50]. Layer operations occur inside the network module,

limiting flexibility.

In FKB we introduce an extendable layer type module (Listing 3.2). To implement a layer,

one simply extends the layer type and specifies the construction of the forward and backward

functions. Adhering to this format offers several advantages. By restructuring the format of

the library, we offer the ability to implement arbitrary layers. Additionally, in the network

module, all layers are stored in an array of pointers. This leads to the encapsulated version

shown in Listing 3.2 wherein a forward pass, in the network module, calls the layer-specific

forward function. In this way, all operations are confined to the layer module, and the output

from one layer is passed as input to the next.

function output(self, input) result(last_layer_output)

...

! iterate through layers passing activation forward

do n = 1, size(layers)

call layers(n) % p % forward(layers(n-1) % p % o)

end do

! get output from last layer

last_layer_output = layers(size(layers)) % p % o

end function output

Listing 3.2: Forward pass in the FKB network module. Each layer simply calls its own

forward function. The technical operations occur within each layer.

FKB supports fully connected or dense layers, dropout [179, 20], and batch normalization

[85]. Shown in Listing 3.3 is an example of extending the layer type to implement a Batch

Normalization layer. This format translates to increased functionality and customizability

37

to the user. As a result, more standard layers from Keras are available, while giving users

the flexibility to implement their own custom operations.

! BatchNorm layer - extends from base layer_type

! Implements batch normalization

type, extends(layer_type) :: BatchNorm

! epsilon parameter

real(rk) :: epsilon

contains

procedure, public, pass(self) :: forward => batchnorm_forward

procedure, public, pass(self) :: backward => batchnorm_backward

end type BatchNorm

Listing 3.3: Example of extending the layer type to implement Batch Normalization

Training in Fortran

It is necessary to distinguish between the terms offline versus online for the following section.

These terms serve to distinguish two different settings in which a neural network can be used

in a Fortran computing package. Both settings can make use of historical or simulated data

to train an artificial network. The distinguishing feature is how the predictions of a model

are used. In an online setting, predictions from the model are used to evolve a physical

process. The predictions at one time step effect how the system acts at the following time

step. As a result, inputs to the model will change based on how the model acted in the past.

In offline settings, this is not the case. Predictions made in the past do not affect the input

to the model in the future.

In many cases, offline training may be sufficient to learn a model, if enough prior data is

available. However, in some cases, online training may be the method of choice. To this end,

38

FKB is equipped to handle backpropagation for gradient descent optimization of a specified

cost function.

The layer encapsulation mentioned above of forward and backward operations (Section 3.5.2)

becomes extremely valuable in training. Instead of all computations occurring within the

network module [50], they are contained in layer-specific functions. Much like the forward

pass, backward operations occur in the layer. In this fashion, each layer is responsible

for computing its gradients with respect to its parameters and returning the gradient with

respect to the layer below it.

Online training can serve a variety of purposes. First, a neural network model may be learned

entirely in Fortran, based on the evolving state variables during the integration of a physical

dynamical system simulation, and then transferred to Keras after the fact. In this setting,

the ground truth, from the simulator, is passed to the network for it to calculate its errors and

update its parameters accordingly through backpropagation. Second, online training could

serve to provide gentle corrections to an imperfect pretrained model, for instance, to hedge

against the amplification of its imperfections that are only revealed once the NN is coupled

to other physical calculations. Here a model is trained offline in Keras and transferred to

Fortran (Section 3.5.1). In some cases, for a variety of reasons, the offline training data

may have a differing distribution than that of the online data. In such a setting, it proves

beneficial to offer slight corrections to the network. Finally, a secondary model may be

constructed to learn and compensate for the deficiencies in the primary model. In this way,

the two networks work together to balance out any instability issues.

The ease of use and proper format directly results from the encapsulation of layer operations.

Online training offers a solution to tackle a suite of potential problems. As a result, models

may be updated with slight corrections or learned entirely online.

39

Custom Loss Functions

In many applications, practitioners may wish to optimize a unique quantity - a function

other than a mean squared error or cross-entropy. This is common when target variables

interact or additional information is known about their relationship in a desired application.

For example, in modeling any physical system, predictions from a neural network must not

violate physical constraints - energy cannot be created or destroyed in the system. To satisfy

this restriction, a loss function can be written to quantify the amount of violation of physical

properties. This construction can then be minimized to alleviate constraint infractions [31].

The implementation of custom loss functions is standard for high-level APIs like Keras,

Tensorflow, and PyTorch to provide this ability in their codebase [44, 3, 145]. As FKB

is designed for those working in the physical sciences where environmental, physical, or

application-specific constraints are common, it provides the ability to implement custom loss

functions. To take advantage of this functionality, users must implement their desired loss

function, just as they would in Keras. As FKB does not provide automatic differentiation,

the derivatives with respect to the input are also required for training. Once these functions

have been specified they can be dropped into the existing framework and run normally, much

like Keras.

real(rk) function crossentropy_loss(self, y_true, y_pred)

! Given predicted and expected output, returns the scalar loss

class(network_type), intent(in out) :: self

real(rk), intent(in) :: y_true(:), y_pred(:)

loss = - sum(y_true * log(y_pred))

end function loss

function d_crossentropy_loss(self, y_true, y_pred) result(loss)

40

! Given predicted and expected output

! returns the loss with respect to softmax input

class(network_type), intent(in out) :: self

real(rk), intent(in) :: y_true(:), y_pred(:)

real(rk), allocatable :: loss(:)

loss = y_pred - y_true

end function d_loss

Listing 3.4: Implementation of crossentropy loss function and the corresponding derivation

with respect to the input logits.

This capability is demonstrated through the implementation of the cross-entropy loss func-

tion in Listing 3.4. To implement this previously unavailable loss function, we first declare

two functions. First, the cross-entropy scalar loss is. Second, the loss with respect to the

input logits is derived. These two functions are then referenced as the loss and d loss, re-

spectively. By providing this functionality, users may leverage a variety of loss functions

that can be used to minimize application-specific quantities. Once described, they may be

included with the existing framework and used during online training.

Ensembles

Ensembles consist of different models, each trained on the same, or bootstrapped, data.

The output of the ensemble will be an average of all its member’s predictions. In machine

learning, ensembles of models typically perform better than any one of its members alone.

The ensemble strategy exploits the fact that each model will make different errors. There-

fore, when averaged together, these predictions become more accurate, as certain errors get

smoothed out. A consensus from machine learning practitioners is ensembling gives 1-2%

41

improvement in performance [43].

As a result of this averaging, ensembles provide a boost in performance as well as additional

robustness. In domains where physical constraint violations yield stability issues, ensembles

may be applied to dampen these problems. By averaging across many networks, the insta-

bility of any one model will be drastically reduced in the presence of more sound predictions.

The functionality provided requires the user to specify a directory that contains the models

of interest and a desired amount of noise. The ensemble type will read in each model and

construct a network corresponding to each of them. To get a prediction from the ensemble,

an input vector is passed to it. For non-zero amounts of noise, Gaussian noise is applied to

the input vector each time it is passed to an ensemble member. This allows each member to

see a slightly different variant of the input, increasing the robustness of prediction around

that point. This operation runs in parallel using OpenMP, where each network can be given

its thread to expedite computation; such an approach could easily be adapted via OpenACC

for GPU-based threading of large ensemble network calculations. Following the computation,

the predictions are averaged together, and the final output is given.

3.6 Case Study

The following section provides a case study demonstrating an application of FKB to ex-

perimental next-generation climate modeling. The Superparameterized Community Atmo-

spheric Model version 3.0 (SPCAM3) is used for all simulations in this study. SuperParam-

eterization is an approach that confronts the decades-long problem of representing subgrid

cloud physics in climate models by embedding thousands of limited-domain explicit sub-

models of moist convection within a conventional planetary-scale model of the large scale

atmosphere [70, 96, 95, 187]. This approach tends to involve two orders of magnitude more

42

computational intensity per unit area of the simulated earth, but recently Rasp et al. used a

deep neural network to emulate all of the expensive subgrid cloud resolving models’ (CRM)

influence on the planetary host at drastically reduced computational expense [155]. This

study, along with others in the emerging climate modeling literature [36] have demonstrated

the potential advantages of a data-driven approach for addressing the critical unresolved

effects of clouds and convection on planetary climate, as compared to previous, heuristic

based, approximations to subgrid physics. However, the idea of emulating turbulence in

climate simulation is still an emerging one, with unclear trade-offs, including frequent in-

stabilities when NN emulators are coupled with fluid dynamics, which the community is

seeking to learn how to control [36]. It has even been questioned whether the offline skill of

such emulators, during their training, is predictive of their online performance [154, 64], an

important open question.

These questions are understudied primarily due to the lack of the simple software interface

that FKB now enables for climate scientists to test diverse candidate neural networks, and

ensembles within planetary climate models.

To illustrate an advance on this front we now apply FKB to shed new light on two related

questions currently in debate:

1. Does offline performance translate to online model performance [154, 64]?

2. Which neural network hyperparameters most affect online performance?

Using FKB, the study can be broken into two stages. First, a suite of 108 candidate neural

network models of convection are trained, via Keras, on simulated data from the SPCAM3.

Second, the models are converted to Fortran and run online (i.e. coupled to planetary fluid

dynamics) in the SPCAM3 simulator. The number of steps serves as a preliminary metric

of performance until catastrophic failure. It is clear that in the absence of the FKB library,

43

running hundreds of candidate neural network submodels of convection within the Fortran

based model of the rest of the planet’s atmosphere would be nearly impossible. As each

network contains various hyperparameters, each with different weights and biases learned

during training, including layer-specific properties such as optional use of dropout or batch-

normalization. To leverage the FKB library with SPCAM3, we simply compile the neural

network library in advance and link it to the compilation of SPCAM3. Documentation

steps for the implementation of this case study are provided here: https://github.com/

scientific-computing/FKB/blob/master/SPCAM_Instructions.md.

The input to this neural network model is a 94-dimensional vector. Features include vertically

resolved vectors representing the large scale (host model) temperature, humidity, meridional

wind vertical structure, surface pressure, incoming solar radiation, sensible heat flux, and

latent heat flux scalars. The output of the network is a 65-dimensional vector composed

of the embedded models’ influence on their host – i.e. the sum of the CRM and radiative

heating rates, the CRM moistening rate, the net radiative fluxes at the top of the atmosphere

and surface of the earth, and the precipitation.

The training data used here are challenging to fit, as they come from an enhanced version

of the CRM training data that was originally studied by [155]. In superparameterized sim-

ulations, one can control the degrees of freedom of the interior resolved scale through the

room available for interesting forms of sub-grid storm organization to form. One can control

the physical extent (i.e. number of columns used in) each embedded CRM array [150]. In

[155], CRM arrays with only 8 columns (32-km extent, given the 4-km horizontal resolution)

were used. Here we quadruple the extent (from 32 km to 128 km, i.e. from 8-columns to

32-columns) to improve its physical realism. Despite several attempts, these data have never

been fit successfully. NNs trained from the enriched data tend to produce crashes within

just a few simulated weeks after they are embedded in the climate model (see discussion of

“NN-unstable” by [35] for details).

44

https://github.com/scientific-computing/FKB/blob/master/SPCAM_Instructions.md
https://github.com/scientific-computing/FKB/blob/master/SPCAM_Instructions.md

Name Options Parameter Type

Batch Normalization [yes, no] Choice
Dropout [0, 0.25] Continuous
Leaky ReLU coefficient [0 - 0.4] Continuous
Learning Rate [0.00001 - 0.01] Continuous (log)
Nodes per Layer [128,256,512] Discrete
Number of layers [4 - 11] Discrete
Optimizer [Adam, RMSProp, SGD]Choice

Table 3.1: Hyperparameter Space

Our working hypothesis is that historical failures in free-running tests when emulators are

trained on higher quality CRM training data reflect a broader issue of insufficient hyperpa-

rameter tuning in climate model applications. To address this, we conducted neural network

optimization via a random search using SHERPA [78], a Python library for hyperparameter

tuning. We detail the hyperparameters of interest in Table 3.1, as well as the range of avail-

able options during the search. The hyperparameters of interest consisted of whether or not

to use batch normalization, the amount of dropout, the leaky ReLU coefficient, learning rate,

nodes per layer, the number of layers, and the optimizer. The random search algorithm has

the advantage of making no assumptions about the structure of the hyperparameter search

problem and is ideal for exploring a variety of settings.

We attained 108 candidate neural network model configurations, each trained for 25 epochs

with early stopping monitoring the validation loss. Following the offline training stage,

the neural network models were converted into their Fortran counterparts and ran inside

SPCAM3. We underscore that this critical step would have been prohibitive using standard

tools that have required manual translation of each candidate model. However, by leveraging

the FKB library, each model was loaded independently into Fortran and run as the subgrid

physics emulator inside SPCAM3’s host planetary model, of the large-scale atmospheric

state. Each model was coupled to fluid dynamics, to run a wide ensemble of prognostic tests

across an unprecedented diversity of candidate neural network architectures. Each of the one

hundred and eight candidate neural network models - with their various numbers of layers,

45

layer-specific settings (batch-normalization, relu magnitude, etc), nodes per layer, weights,

and biases - were run online, all without rewriting any Fortran code.

In order to address the first question and evaluate a neural network model’s performance,

we compare its validation MSE during training with the time-to-failure of the online tests in

which 8,192 instances of the NN, spaced at regular intervals around the globe, are coupled

interactively to their host global atmospheric model of large scale geophysical fluid dynamics.

This yields Figure 3.4a, which sheds new light on the offline vs. online relationship.

The results in this figure demonstrate a relationship between offline validation error and

online performance. There is a distinct, negative, relationship between offline MSE and

online stability (Spearman correlation of −0.73; p = 4.961e−19. Intriguingly, the mean-

squared error loss of our multi-layer perceptron is a reasonable predictor of stability once

coupled to the climate model, insofar as the time-to-failure is concerned. This finding is

interesting in the context of the recent speculation by [154] that such a relationship might

not exist using similar NNs in a similar setting, as well as the comments by [64] about similar

incongruities even in reduced-order dynamical systems when emulated with GANs.

Of course, stability alone is a necessary but not a sufficient condition of prognostic success,

which also requires an in-depth analysis of biases in the simulated climate. Figure 3.3 shows

the time-evolution of the tropospheric temperature and humidity biases, colorized by the

offline validation error. These metrics reveal that although our search has uncovered many

runs that are “stable” - can run without catastrophically crashing for several months - most

of these runs would not be very useful in an operational setting. Almost all NNs exhibit

major errors in the simulated climate, having drifted to erroneous attractors with root-mean-

square errors in temperature frequently above 10 K. However, the NN that produced the

best offline validation error stands out as having the combined desired qualities of stability

and skill with temperature biases of less than 2 K, competitive with [155]. Interestingly,

coupling instead to the ensemble mean of a few of the best-ranked models (magenta dashed

46

lines) does not outperform coupling to the best fit model, the value of having found it using

SHERPA (Figure 3.3).

Figure 3.3: The time-evolution of the tropospheric (a) temperature and (b) humidity biases,
colorized by the offline validation error

In short, we have produced a successful coupled simulation that was particularly challenging

without formal hyper-parameter tuning and FKB. This result suggests that sufficient hyper-

parameter tuning may be critical to solving chronic instability in climate model applications

of DNNs for subgrid physics.

The second question naturally arises as to which of the hyperparameters are most impactful

to the online performance. To assess this, Figure 3.4b-3.4i decomposes the sensitivity of the

baseline relationship to individual hyperparameter choices. The choice of optimizer is shown

to correlate most strongly with online performance (Figure 3.4i). This finding is confirmed

by Spearman values, shown in Table 3.2. The optimizer hyperparameter has the largest

absolute correlation value with online performance. No other hyperparameter shows as clear

a distinction in correlation that is evident in the choice of optimizer, including the network

depth and total number of parameters, which are known to be important to offline fits for

this problem [68], but are surprisingly not as predictive of coupled skill as the choice of

optimizer, whose impact has not previously been isolated (for this application).

Further investigation into the specific optimizer used, reveals the SGD optimizer to perform

47

poorly; NNs fit with SGD never run longer than 1,000 steps when coupled online (Figure

3.4i). Again the visual intuition from Figure 3.4i is confirmed by Spearman correlation values.

SGD, Adam, and RMSProp have Spearman values of −0.6670, 0.5936, 0.0586 respectively.

These values demonstrate that the use of SGD is negatively correlated with online perfor-

mance, whereas Adam positively correlates with online performance. This result leads one

to speculate that increased improvements in online skill may be realized from more advanced

optimizers with enhanced gradient update schedules.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.4: Offline performance - validation mean squared error (MSE) - vs online perfor-
mance - number of steps until crash.(a) All models. (b) By batch normalization usage. (c)
By Dropout amount. (d) By leaky ReLU coefficient. (e) By learning rate. (f) By number of
dense nodes per layer. (g) By number of layers. (h) By total number of model parameters.
(i) By optimizer type.

48

Correlation P-Value

BatchNorm 0.0859 3.7896e-01
Dropout 0.1919 4.7591e-02
Leaky ReLU 0.0055 9.5465e-01
Learning Rate -0.2087 3.0923e-02
Dense Nodes 0.1427 1.4249e-01
Layers 0.0410 6.7491e-01
Optimizer -0.6998 5.0177e-17
Parameters 0.1528 1.1609e-01

Table 3.2: Spearman correlation of corresponding hyperparameter with online performance,
and associated p-value.

Finally, after answering the two questions motivating this case study, we can compare the

results of the best performing model with that of previously published models of [155] when

applied to the challenging limit of CRMs with 32-km horizontal extent. The model proposed

by Rasp et al. was a single deep neural network. The hyperparameter space of this model

was not fully explored online in large part due to the laborious process required to transfer

those models into Fortran. The Rasp et al. model (provided by the authors) ran for 128

steps before crashing due to instability issues. The five best models achieved in this study

ran to completion of a 5-year simulation, i.e. for 87,840 steps; of these, two of the five

models further exhibited root-mean-square errors in simulated tropospheric temperature of

less than 2 degrees Celsius. This dramatic improvement in stability is a direct result of

the ease with which a wide variety of models (identified by SHERPA) can be transferred

between Python and Fortran (thanks to FKB). We also note that this method is preferable

to another approach that was recently proposed to begin stabilizing the same model, through

small-amplitude Gaussian input perturbation [35] - a strategy that, while promising, adds

computational expense and introduces out-of-sample extrapolation issues that can be avoided

with the brute-force optimization and wide-ensemble prognostic testing path to stabilization

we have outlined here.

This case study has investigated two closely entangled questions: 1) Does offline performance

49

correspond to online model performance? 2) What neural network hyperparameters most

effect online performance? Both of these questions have been answered by leveraging the

FKB library. The library offers the ability to expeditiously transfer models trained in Keras

to Fortran, where they may be run online in existing simulators. In the absence of FKB,

neither one of these questions could be approached without unreasonable human intervention,

as the operational target is a climate model with over a hundred thousand lines of code

written in Fortran.

3.7 Conclusion

The ubiquitousness of deep learning has resulted from extensive free and open source libraries

[44, 3, 145]. Deep learning’s success and popularity merit its integration in large-scale com-

puting packages, like those written in Fortran. Instead of rewriting all existing libraries in

Fortran, we introduced a two-way bridge between low-level, Fortran, and Python through

the FKB Library. The library provides researchers the ability to implement neural networks

into Fortran code bases while being able to transfer them back and forth with Keras.

Fortran, which has been a staple within computationally intensive fields for decades, will

undoubtedly see continued use due to its fast computational ability and vast amounts of

legacy code. The FKB library enables users to access many features of the Keras API

directly in Fortran, including the ability to create custom layers and loss functions to suit

their needs. We demonstrate the integrability of FKB through our case study involving the

SPCAM3 simulator. An advantage of FKB is its ease of use, demonstrated by its ability

to be compiled in advance and once linked can be easily leveraged in existing large scale

simulators, as we have illustrated for the application of multi-scale physical simulations of

the global atmosphere.

50

Chapter 4

An end-to-end CNN with attentional

mechanism applied to raw EEG in a

BCI classification task

4.1 Introduction

Advances in brain science and computer technology in the past decade have led to exciting

developments in Brain-Computer Interfaces (BCI), thereby making BCI a key research area

in applied neuroscience and neuro-engineering [4]. Non-invasive BCI facilitates new methods

of neurorehabilitation for physically disabled people (e.g., paralyzed patients and amputees)

and patients with brain injuries (e.g., stroke patients) [4]. BCI systems utilize recorded

brain activity to directly communicate between the brain and computers to control the

environment in a manner compatible with the individual’s intentions [120].

However, the ability to decode intentions is also an important tool for basic neuroscientific

research. In particular, it strongly enhances the scientific armamentarium used to investigate

51

volition [167, 171]. And, more specifically, decoding intention in real time would open the

door to interesting experimental possibilities, such as interventions to facilitate or frustrate

intentions [172, 104, 106] and intention-contingent stimulation [167]. Technological advances

of recent decades—such as untethered, wireless recording, machine-learning-based analysis,

and real-time analysis of raw EEG signal have increased the interest in electroencephalogra-

phy (EEG) based BCI approaches [126].

EEG has proved to be the most popular brain-imaging method for BCI because it is inex-

pensive, noninvasive, directly measures neural activity (as opposed to fMRI for example),

and can facilitate portability to clinical use [120]. EEG signals thus serve as pathways from

the brain to various external devices, resulting in brain-controlled assistive devices for dis-

abled people and brain-controlled rehabilitation devices for patients with strokes and other

neurological deficits [4, 52, 122]. One of the most challenging topics in BCI is finding and

analyzing the relations between recorded brain activity and underlying models of the human

body, of biomechanics, and of cognitive processing. The investigation of relations between

EEG signals and—real and imagined—upper limb movement has gained more attention in

recent years [132, 47].

To implement an EEG-based BCI system for a particular application, a specific experimental

protocol and paradigm must be chosen for all phases of the experiment. Typically, the

participant first performs a particular task (e.g., a motor-imagery task, a visual task) to

learn how to modulate their brain activity, while EEG signals are simultaneously recorded

from their scalp. Using the recorded EEG as training data, a machine-learning-based neural

decoder for the paradigm is then constructed [4]. Finally, the participant performs the task

again, and the neural decoder is used for BCI control.

The process for BCI systems based on motor imagery (MI) is similar. Though, in this case,

the participant imagines the movement rather than actually executing it [132]. Previous

studies have confirmed that imagination activates areas of the brain that are responsible

52

for generating actual movement [4, 148]. The most common MI paradigms reported in

literature are based on sensorimotor rhythms (SMR) and imagined body kinematics. In the

SMR paradigm (e.g., [73, 206] participants imagined kinesthetic movements of some body

part—such as hands, feet, or tongue—which result in modulations of brain activity that are

trackable using EEG [129]. Imagined movement in such SMR paradigms often causes event-

related desynchronization (ERD) in mu (typically 8-12 Hz) and beta rhythms (roughly 12-30

Hz). In contrast, relaxing after MI results in event-related synchronization (ERS) [147]. The

ERD and ERS modulations are most prominent in EEG signals acquired from electrode

locations C3 and C4 (in the 10/20 international system); these electrodes are approximately

above the motor cortices of both brain hemispheres.

MI classification is one of the most popular EEG-based BCI paradigms. EEG MI classifica-

tion generally consists of four parts: signal acquisition, feature extraction, classification, and

control. Most existing feature-extraction methods depend on manually designed features,

based on human knowledge. Feature extraction and classification of EEG signals for MI

tasks have been attempted in the time, frequency, and space (electrodes) domains—not nec-

essarily mutually exclusively. Time-frequency feature extraction in EEG has focused mostly

on short-time Fourier transform [157, 207] or wavelets [7, 55]. In the space domain, filter-

bank common spatial-patterns (FBCSP) has achieved notable performance [8, 89]. However,

FBCSP uses a fixed temporal duration, ignoring difference between participants. As such,

it does not make full use of time-domain information. Moreover, these methods generally

use handcrafted features and require heuristic parameter setting—e.g., predefined frequency

bands—which often do not generalize well across tasks and participants [51]. As such, they

often result in limited classification accuracy [7, 65, 205].

53

4.2 Related work

Recently, researchers have successfully used deep learning (DL) to perform automatic feature

extraction [14] and classification [51, 107, 118, 169]. DL has achieved breakthrough accuracies

and discovered intricate structures in various complex and high-dimensional data [189, 210].

In particular, it has provided promising results in the analysis and decoding of EEG signals

[103]. Thus, NN architectures, their training procedures, regularization, optimization, and

hyper-parameter settings are all active area of research in DL-based analysis of EEG, with

advances often resulting in dramatic increases in decoding accuracy [103].

Recently, Zhang et al., proposed a hybrid DL architecture, which combined convolutional

neural networks (CNNs) and long short-term memory (LSTM) models to handle sequential

time domain data [160]. Even more recently, Dai et al., proposed an architecture composed

of a CNN with a hybrid convolution scale (HS-CNN), which separates a signal into three

frequency bands using bandpass filters at 4∼7 Hz, 8∼13 Hz, and 13∼32 Hz. The three

frequency bands are then fed into the convolutional layers with different filter sizes [51]. The

features, including different semantic information, were concatenated and then MI classifica-

tion was carried out. In another study, Zhang et al., applied an attention module to LSTM

to utilize long-range information for EEG-based hand-movement classification [209].

Despite their promise, these deep NN architectures are not easy to train from scratch, be-

cause they require large amounts of training data to achieve high classification accuracy.

However, it is particularly challenging to obtain a large amount of training samples for MI

classification. This is because gathering high-quality data requires training and experience as

well as a state-of-the-art EEG machine and a noise-free environment. MI tasks are also time

consuming and fatigue-inducing for the participants. For example, during the task, partici-

pants must minimize, if not altogether avoid, eye movements and other muscle contractions,

especially around the head. At the same time, they typically need to employ a great deal of

54

concentration and attention during MI tasks. Thus, participants can only produce a limited

amount of data at each session and must come in for multiple sessions to construct a large

dataset of EEG MI. This often results in attrition over the course of multiple sessions.

Data augmentation (DA) can lead to considerable performance gains for DL, reducing over-

fitting and increasing overall accuracy and stability. DA generates new samples to augment

an existing dataset by transforming existing samples in some systematic manner. Expos-

ing the classifiers to various transformations of the training samples, as DA does, makes

the models more robust and invariant to these and potentially other transformations when

attempting to generalize beyond the training set [200, 208, 214].

DA is an especially important technique for EEG-based BCI because of its specific combi-

nation of two factors: the dimensionality of EEG signals tends to be high, while the number

of available training samples tends to be low. In a recent systematic review on DA in EEG,

Lashgari et al. collected all the papers that used DA for NN-based analysis of EEG up to

and including 2019 [103]. They showed that convolutional neural networks (CNN) were the

most popular NN architectures for EEG MI classification and typically resulted in accurate

decoding. This is likely because CNNs are well suited to end-to-end learning, scale well

to large datasets, and can exploit hierarchical structure in natural signals. The review also

found that the most common input formulation for motor tasks and MI was raw EEG signals

[103].

With these elements in mind, here we investigated the efficacy and generalizability of deep

learning on EEG-based decoding of MI. We designed an end-to-end CNN with an attentional

mechanism [194]. This is because a CNN with an attention-mechanism architecture can

improve classification performance using EEG signals by focusing on essential, task-relevant

features on different time-steps.

We begin by testing this architecture on 2 benchmark datasets (BCI Competition IV 2a

55

and 2b) as well as on the dataset that we collected, which we share with the community.

Then, we compare MI to ME on the dataset that we collected. Next, we tackled a common

question when collecting EEG data: how many channels to record for optimal decoding

accuracy? We thus compared the decoding accuracy for different numbers of channels. It

has also been demonstrated that DA techniques hold promise for EEG decoding. So, we

also tested how much DA can boost the accuracy of our method across the datasets. How

much EEG data is needed to train deep NN is also not well understood, especially in relation

to DA techniques. We therefore next investigate how the accuracy of our model depends

on the amount of data on which we train and the type and amount of DA we use. Of

course, structure and anatomical features vary across brains. So, we further investigated

what happens to the decoding accuracy when we train and test it on EEG from single

participants, on pair of participants, triplets, and so on. In the interest of understanding

how well models of EEG decoding generalize to previously unseen participants, we also

investigated what happens when we train the model on all but one participant and then test

on that remaining participant, with and without transfer learning.

4.3 Methods

4.3.1 Proposed CNN-based neural-network architecture

Convolutional models have been successful in many signal processing applications, as they

allow temporally related inputs to be processed together via a sliding-window approach (Fig-

ure 4.1). This produces shared weights, where the same weight kernel is applied across the

temporal domain (for a 1D convolutional model over time). In our architecture (Figure 4.1),

this reduces the number of parameters needed in such a model and enables the signal to

maintain its spatial relations—across time within each electrode and across electrodes over

56

the head. The signal from each electrode channel is fed through the same convolutional

base to produce an output matrix of dimension C ×E, where C is the number of electrodes

(or channels) and E is the size of the embedding dimension (Figure 4.1). Hence, the con-

volutional layers in effect reduce the dimension of the input to the embedding dimension,

E.

Now, in the self-attention part of the network [194, 175], we first initialize the weights for

the Query (Q), Key (K), and Value (V). The magnitudes of Q, K, and V are derived by

the product of the input (I) and the weights. The second step is to calculate the attentional

score (S), S = QKT . The shape of S will be (C × C). The Softmax (W) of S is calculated

to return a vector of C × 1. The third step is to find the weighted values (M), M = WV T .

Each input’s value for M is concatenated to return a shape of C×C, which will be the value

for the final Attention. Tanh was used to produce the alignment score. In the following, the

equations show more details:

I Input for self-attention, shape (number of channels (C) x the size of the
embedding dimension (E))

Key, Value, Query Initialize weights for key, value and query with shape of input size (C x E)

K = I ×KeyT Derive key, value, and query
V = I × V alueT Shape (CxC)
Q = I ×QueryT

S = Q ·KT Calculate attention score by dot product (C x 1)

W = Softmax(S) Calculate Softmax (C x 1)

M = W × V Multiply scores with value

O = tanh(M ×WT) Linear transformation of M

The attention layer discussed above is added after the convolutional base (Figure 4.1), so

that each electrode channel is computed with every other channel to produce a matrix of

scalar values. Summing across rows and normalizing these scalars produces a vector of atten-

tion scores. These scores are used to create a linear combination of all the electrode channel

57

vectors, which is passed to the fully connected layers of the network for classification. A valu-

able part of this model is therefore its interpretability [172, 46, 130]. The attention scores

for each electrode channel can be examined to determine the importance of each electrode

in the model’s prediction. However, in this study we were not interested in the added inter-

pretability that the attentional mechanism affords us. Instead, we relied on the attentional

mechanism to improve the prediction accuracy of our architecture. This is because a CNN

with attention-mechanism architecture can improve classification performance using EEG

signals by focusing on essential, task-relevant features on different time-steps, via the sliding

windows. Table 4.1 shows the summary of the proposed NN parameter.

Figure 4.1: Our proposed CNN with attentional mechanism. (A) The sliding window (length
is 1000ms and step-size is 100ms) applied to 64 EEG channels. (B) The 64 segments of raw
EEG signal, depicted in orange in (A). Each time window and channel are separately sent
through shared convolution layers. The embedded features I (CxE) applied to self-attention.
The output of self-attention passes through 2 dense layers. (C) An expansion of the self-
attention block.

58

Layer (Type) Param # Shared convolutional layer

Convolution 1D [-1 ,16, 64] 816 x64
Convolution 1D [-1 ,16, 6] 12,816 x64
Max Pooling 1D [-1 ,16, 3] 0 x64
1D Vector [-1, 48] 2,304 0
Attention [[-1, 64, 48], [-1, 64, 64]] 4,608 0
Dense [-1,32] 98,336 0
Dense [-1,2] 66 0

Total Parameters 977,762

Table 4.1: Summary of the proposed CNN with attentional mechanism parameters (”-1”
represents a flexible shape, essentially the batch size.

4.3.2 Hyperparameter Optimization and Training

When implementing NN there are several choices (or hyperparameters) that must be set prior

to training—those range from the type of architecture to the depth and width of the layers,

through to the neuronal activation-function in the different layers, and so on. Choosing

hyperparameters arbitrarily is likely to lead to suboptimal results. To address this, we

first created a 3-way split of our data into a training, validation, and test sets to identify

reasonable architectures and parameter ranges. Then, guided by those preestablished ranges,

we conducted NN optimization via a Bayesian hyperparameter search using SHERPA [79],

a Python library for hyperparameter tuning. The Bayesian search has the advantage of

learning a distribution over the hyperparameters of the network architecture, in relation to

the task to be optimized. By employing this procedure, we were able to evaluate a large

space of possible models and test many configurations.

We detail the hyperparameters of interest in Table 4.2, as well as the range of available op-

tions during the search. The hyperparameters of interest consisted of the activation function,

dropout percentage, learning rate, learning rate decay, nodes per layer, and the optimizer.

Additional hyperparameters for convolutional models included the number of filters and the

kernel size. We tried 250 different hyperparameter settings for each network architecture

59

(Dense NN, Conv Net-Dense NN, Conv Net-Attention-Dense NN), for a total of 750 models

over 3 different NN (Dense NN, Conv Net-Dense NN, Conv Net-Attention-Dense NN). Table

4.3 present the result of best hyperparameters tuning by SHERPA for the 3 datasets: BCI

competition IV 2a (BCI 2a), BCI competition IV 2b (BCI 2b), and our dataset and for 3

different models (Dense, CNN-Dense, and CNN-Attention-Dense).

For the 3 datasets examined in this study, we adhered to the following procedure. For each

set of hyperparameters sampled in the search, we partitioned each subject’s data into a

training and validation set. The proposed architecture was thus trained on each subject

separately. Then, to evaluate the architecture, we averaged the validation accuracy scores

across subjects. We then selected the network architecture with the highest average accuracy

score across all subjects. Critically, this process ensures that we find architectures that

perform well across subjects, but which are not tailored to specific subjects or tasks.

All networks were trained for 250 epochs using an early stopping condition—i.e., when

the accuracy on the validation set did not improve for 25 epochs, training stopped. All

models were trained using 10-fold cross-validation. The partitioning was stratified to ensure a

constant ratio of representation amongst right and left examples—roughly 50/50—in keeping

with the ratio in the data overall. This cross-validation procedure requires a given model to

be trained 10 distinct times (re-initializing the network parameters each time) and ensures

that, on the one hand, different subsets of the data are used for training and testing, while

on the other hand, each datapoint serves as part of the training set (9 times) and in the

test set (once). To be clear, when we performed cross validation, we used data partitions

that were not used during the hyperparameter search. The accuracies reported below are

therefore always the average accuracies across the 10 validation sets described above.

To double check our results, we carried one additional train/validation/test split of 75/15/10%,

respectively. After this train/validation/test procedure, we ended up with neural architec-

tures that were the same as those selected by the cross-validation procedure above—both

60

Name Range Type

Activation (ReLU, ELU) Choice
Dropout (0, 0.9) Continuous
Kernel Size (25, 50, 75) Choice
Learning Rate (0.0001, 0.1) Continuous
Learning Rate Decay (0.5, 1.0) Continuous
Number of Dense Nodes (8, 512) Discrete
Number of Filters (16, 32, 64) Choice
Optimizer Adam, SGD, RMSProp Choice

Table 4.2: The hyperparameter space.

in terms of the number of layers and the kernel size. This gave us confidence that our re-

sults are not due to some leakage between the training and test sets. Our cross-validation

procedure allowed us to report confidence scores, in the form of average accuracies and stan-

dard deviations. It also demonstrated that we did not cherry pick a data partition in which

the proposed architectures happened to perform well; rather, our models were robust across

partitions.

Training took place on NVIDA Titan V GPUs with 12GB of memory. Each epoch took less

than a minute to complete. Training for a single fold typically completed within 30 minutes.

4.3.3 Data augmentation

Generally, in machine learning, but especially for NN, the classification accuracy tends to

critically depend on the amount of training data; limited training data typically leads to low

accuracy. DA comprises the systematic generation of new samples to augment an existing

dataset by transforming existing samples in a manner that increases the accuracy and sta-

bility of classification [103]. Exposing the classifiers to varied representations of its training

samples typically makes the model more invariant and robust to such transformations when

attempting to generalize the model to new datasets. DA for the MI task fell into 5 cate-

61

Dataset Model
Kernel
Size Activation Dropout

Learning
Rate

Learning
Rate
Decay

Number
of

filters
Dense
Nodes Optimizer

Dense NN NAN ReLU 0.171 0.017 1 NAN 27 Adam
BCI
2a Conv Net-Dense NN 25 ELU 0.092 0.052 1 64 303 SGD

Conv
Net-Attention-Dense

NN 25 ELU 0.9 0.1 1 32 91 SGD

Dense NN NAN ReLU 0.845 0.001 0.864 NAN 289 Adam
BCI
2b Conv Net-Dense NN 50 ReLU 0 0.1 1 16 15 SGD

Conv
Net-Attention-Dense

NN 25 ELU 0 0.1 1 64 263 SGD

Dense NN NAN ReLU 0.687 0.037 1 NAN 369 SGD
Our
dataset Conv Net-Dense NN 25 ReLU 0.68 0.034 0.989 32 196 SGD

Conv
Net-Attention-Dense

NN 50 ELU 0.807 0.1 0.978 32 183 SGD

Table 4.3: Hyperparameters for each model and dataset.

gories in our analysis: noise addition [112, 144], GAN [72, 204, 212, 213], sliding window

[169, 124, 185], Fourier transform [214], and recombination of segmentation [51]. Table 4.4

shows more details about each of these methods. We evaluate all DA techniques with a

magnification m = (2, 5, 10, 15, 20, 30, 50) factor for our proposed CNN.

4.3.4 Dataset and experimental protocol

We used three datasets in this study: (1) A dataset that we collected ourselves, (2) the BCI

2a dataset [40], and (3) the BCI 2b dataset [111] (Figure 4.2).

Our dataset: Seven healthy volunteers (3 male and 4 female) participated in the study, all

were right-handed and between the ages of 23 to 30 (mean age 28). All participants gave

written, informed consent to participate in the study. Participants were seated in a chair at

a distance of 80 cm from an LCD screen with both hands resting on a table. They held a

62

DA methods Details of the method

Sliding
window
[169, 124, 185]

Sliding window over the input of each trial, which leads to many more training examples for the
network compared to using than the entire. More formally, given an original trial Xj ∈ RE×T , with
E electrodes and T timesteps, we create a set of crops with crop size T ′ as time slices of the trial:
Cj = (Xj

1,...E;t,...t+T ′ |t ∈ 1, ...T − T ′). All of these T − T ′ crops then become training examples for

our CNN and will get the same label, yj , as the original trial. The best results in the BCI dataset are
for 1s window length. In this study, we tried to evaluate this technique with different m and 100 ms
step-size.

Noise
Addition
[112, 144]

We found two main categories for adding noise to the EEG signals in purpose of DA: (1) Add various
types of noise such as Gaussian, Poisson, Salt and pepper noise, etc. with different parameters (for
instance: mean (µ) and standard deviation (σ) to the raw signal (2) Convert EEG signals to sequences
of images and add noise to the images [103]. Our proposed end-to-end CNN is for raw EEG. Therefore,
we add noise just on the raw EEG signal. We add Gaussian noise with different parameters (mean =
0, standard deviation σ = 0.01, 0.1, 0.2, 0.5) to all channels of raw EEG signal.

GANs
[72, 204, 212, 213]

The GAN framework consists of two opposing networks trying to outplay each other [127]. The
discriminator (D) is trained to distinguish between real and fake input data. The generator (G) takes
a latent noise variable z as input and tries to generate fake samples that would not be recognized as fake
by the discriminator. To learn a generator distribution pg over data x, the generator builds a mapping
function from a prior noise distribution pz(z) to data space as G(z; θg). And the discriminator,
D(x; θd), outputs a single scalar representing the probability that x came from training data rather
than pg. G and D are both trained simultaneously: we adjust parameters for G to minimize log(1−
D(G(z))) and adjust parameters for D to minimize logD(x) [127]. This results in a minimax game in
which the generator is forced by the discriminator to produce ever better samples with value function
V (G,D):

minGmaxDV (D,G) = Ex∼pdata(x)
[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))].

GAN can be extended to a conditional model if both generator and discriminator are conditioned on
some extra information such as y. In conditional generative adversarial nets (cGANs) y could be any
kind of auxiliary information, such as class labels or data from other modalities. We can perform the
conditioning by feeding y into the both the discriminator and generator as additional input layer. In
the generator the prior input noise pz(z), and y are combined in joint hidden representation, and the
adversarial training framework allows for considerable flexibly in how this hidden representation is
composed. In the discriminator x and y are presented as inputs and to a discriminative function. The
objective function of a two-player minmax game would be as:

minGmaxDV (D,G) = Ex∼pdata(x)
[logD(x|y)] + Ez∼pz(z)[log(1−D(G(z|y)))].

Recombination of
segmentation
[51]

Perform segmentation on the input trials (i.e., left-/right-hand MI) with the same label. Each trial
is segmented into three crops. The crops with the same labels are then recombined to generate new
trials. For the same person and the same class, the crops at the same position from multiple trials are
randomly swapped and recombined in the time/frequency domain to generate recombined trials [51].

Fourier
Transform/Wavelet
[214]

Apply the empirical mode-decomposition algorithm on the EEG frames and mixed their intrinsic
mode functions to create new, artificial EEG frames [214]. The algorithm decomposes the original
EEG signals into a finite number of functions called “intrinsic mode functions” (IMFs). Once the
signal has been decomposed, we can recover it by adding all the IMFs and the residue without loss.
To generate the new samples, we swapped the IMFs of the decompositions. Moreover, the intrinsic
characteristics of each class (left/right) will be preserved because we mixed the IMFs of the same class.
We randomly select the trials that contribute with their IMFs to generate samples for specific class.

Table 4.4: DA techniques that are used on the MI task

63

tennis ball in each hand and were told to remain relaxed and strive to minimize movement

and eye blinks. When required to respond, they were to squeeze the tennis ball in their hand

but try to avoid tensing their arms or shoulders. Each session (ME and MI—Figure 4.2) was

repeated twice. The whole experiment thus consisted of four sessions. Every session lasted

30–40 minutes with 10 to 15 minutes breaks between sessions. The duration of the whole

experiment, including setup, was kept below 3 hours to minimize fatigue. EEG data was

recorded and sampled at 250 Hz using 64 active electrodes (BrainVision actiCHamp) placed

according to the 10/20 montage. Bipolar electromyography (EMG) electrodes were placed

on the Brachioradialis for both hands as a sanity check for any movement in MI session.

Sessions 1 and 3 were designed to identify EEG signals related to ME. Participants were

instructed to squeeze the tennis ball with their right or left hand while fixating on the cross

displayed on the screen. They were encouraged to minimize all other movement and to only

use the designated hand. One hundred trials were collected for each hand.

Session 2 and 4 aimed to show that a decoding model based on actual ME, derived from the

first session, could be used to decode EEG activity in the absence of execution. Participants

were instructed to carry out MI of the repetitive hand movement instructed in session 1 while

fixating on the cross displayed on the screen. One hundred trials were collected for both left

and right imagination per each session. All other aspects of the task were identical to session

1. This session also allowed us to screen participants for the presence of motor-related EEG

oscillations, and at least minimal voluntary control over these oscillations. Hence, overall,

we collected 200 trials of ME and 200 trials of MI for each subject. The data underlying this

study have been uploaded to figshare.

Data are available from the following link: https://doi.org/10.6084/m9.figshare.14721297.

v1

BCI 2a: BCI 2a contains EEG data from 9 healthy participants [40], 2 sessions per partic-

64

https://doi.org/10.6084/m9.figshare.14721297.v1
https://doi.org/10.6084/m9.figshare.14721297.v1

ipant. Each session is made up of 288 trials, resulting in 5184 trials overall. No feedback

was provided. Twenty-two Ag/AGCL channels were used to record EEG. The signals were

sampled with 250 Hz and bandpass filtered between 0.5-100 Hz. To compare our results with

previous studies ([51, 66, 121] etc.) we focused on the C3, CZ, and C4 electrodes.

BCI 2b: BCI 2b contains EEG data from another 9 healthy participants [111]. For each

participant, 5 sessions of data are collected. Each of the first 2 sessions has 120 trials and

each of the last 3 sessions has 160 trials. The total number of trials is thus 6480. Two types

of trials are included in these datasets: left- and right-hand MI. The first 2 sessions contain

training data without feedback, while the last three sessions gave a smiley face as feedback.

The EEG data is again collected over the C3, CZ, and C4 electrodes, which were placed

following the international 10–20 system. The sampling frequency was 250 Hz. Table 4.5

presents the summary of three datasets.

4.4 Channel selection

Analyzing dense-array EEG is computationally expensive and complex; it also typically

requires more expensive EEG systems than those with sparser electrodes. We therefore

tested 4 different electrode configurations on our participants—which included 3, 7, 18, or all

64 electrodes (see Section 4.3)—to further test the effect of channel selection on classification

accuracy for MI in our own dataset.

Configuration (1) C3, CZ, and C4 electrodes were chosen in accordance with the 10-20

framework [90] since these electrodes have been shown to be especially discriminatory in

hand and foot movements data [94]. It should be noted that right (left) hand’s MI operation

is usually detected above the left (right) motor cortex underneath the C3 (C4) electrode,

65

Experimental dataset BCI 2a BCI 2b

The dataset
provided by

The Institute for Interdis-
ciplinary Brain and Be-
havioral Sciences, Chap-
man University

The Institute for Knowl-
edge Discovery (Labora-
tory of Brain-Computer
Interfaces), Graz Univer-
sity of Technology

The Institute for Knowl-
edge Discovery (Labora-
tory of Brain-Computer
Interfaces), Graz Univer-
sity of Technology

Open-source
dataset

Yes Yes Yes

Description
of dataset

2-class MI and ME (left
hand and right hand).
Session 1 and 3 are ME
and 2and 4 MI, No feed-
back

4-class MI (left hand,
right hand, both feet, and
tongue. No feedback

2-class MI (right hand, left
hand). The first two ses-
sions contain training data
without feedback, and the
last three sessions with
smiley feedback.

Channels 64 EEG channels (0.5-
100Hz -BrainVision ac-
tiCHamp)

22 bipolar EEG channels
(0.5-100Hz; notch filtered)

3 bipolar EEG channels
(0.5-100Hz; notch filtered)

Sampling
frequency

250 Hz 250 Hz 250 Hz

Subjects 7 9 9

Sessions
per subject

4 2 5

Trials
per session

100 288 120 for first 2 sessions and
160 trials for last 3 session

Total trials
for each subject

400 576 720

Total trials
in the dataset

2800 5184 6480

Table 4.5: Summary of the 3 datasets used in this study: Our experimental dataset, BCI
2a, and BCI 2b

66

Figure 4.2: The experimental paradigms for our experimental dataset, BCI 2a, and BCI 2b.

and the foot’s MI action is typically captured by the CZ electrode.

Configuration (2) The brain’s frontal, central and parietal lobes are important from a neu-

rological perspective for MI commands. We therefore also focused on these 7 electrodes (i.e.

F3, F4, C3, CZ, C4, P3 and P4), which reside above these lobes of interest according to the

10-20 standard are considered in criteria 2 [90].

Configuration (3) Electrodes that are generally placed around the left and right motor cor-

tices are included in this configuration because they are related to MI. According to 10-20

electrode montage [90], 18 electrodes lie around motor cortex. These are labelled C5, C3,

67

C1, C2, C4, C6, CP5, CP3, CP1, CP2, CP4, CP6, P5, P3, P1, P2, P4 and P6 [162, 163].

Configuration (4) We used all 64 EEG channels.

In Figure 4.3, we showed these four configurations.

Figure 4.3: Four different electrode configurations on the actiCAP—which included 3, 7,
18, and all 64 electrodes

4.5 Results

4.5.1 Performance of the proposed CNN (Neural architectures vs.

Neural architectures)

To evaluate the performance of our proposed CNN, we conducted comparisons between the

Dense NN, Conv Net-Dense NN, Dai et al. [51], and Conv Net-Attention-Dense NN (Figure

4.4). The baseline Conv Net is identical to the Conv Net-Attention-Dense NN but lacks the

attention module (see Methods, Figure 4.1, Table 4.1). The dense network sends all channels

through 2 dense layers, then it concatenates all the vectors into a single one and sends that

through 2 more dense layers. We used SHERPA for hyperparameter optimization for all 4

types of networks [79]. We also reproduced the proposed NN in [51] without the use of DA

to compare it with the proposed CNN with the attentional mechanism.

Table 4.6 represents the classification results of our proposed CNN (with the attentional

mechanism) without DA and with DA, which resulted in the highest accuracy for both

68

Figure 4.4: Comparison the average validation accuracy (SE) on the BCI 2a and BCI 2b
datasets with Dense, CNN, Dai et al. (2020), and CNN-Attention-Dense (See section 2.1
and 2.2).

datasets. Those are further compared against the results of Dai et al. [51]. All classifications

were carried out on the BCI 2a and BCI 2b datasets. The average accuracy in Dai et

al. (2020) for BCI 2a and BCI 2b were 91.57% (±5.73) and 87.6% (±8.48), respectively.

In comparison, our proposed method with DA (GAN and m = 15) achieved an average

accuracy of 93.6% (±2.59) for BCI 2a and 87.83% (±6.34) for BCI 2b. Hence, our method

has a higher average accuracy than Dai et al. (2020) while maintaining less variability in the

accuracy across participants for both datasets. For the BCI 2a, our proposed method was

90.54% or higher for all participants while Dai et al. (2020) got this accuracy just for 5 of 9

participants (56%). Furthermore, we reproduced the NN described in [51] without the use of

DA to compare with our proposed CNN with the attentional mechanism without DA. Our

results on the BCI 2a and 2b datasets were 89.11% (±3.77) and 86.28% (±7.41), respectively,

outperforming those of [51] at 75.61% (±14.63) and 78.88% (±11.42), respectively. Again,

our results were also less variable than theirs.

Table 4.7 further compares our results with various other state-of-the-art methods. As is

69

BCI 2a BCI 2b

Participant Dai et al.
(2020)
[51]

Reproduced
the result
in [51]
(without
DA)

Proposed
method
without
DA

Proposed
method
with DA
(GAN
m=15)

[51] Reproduced
the result
(without
DA)

Proposed
method
without
DA

Proposed
method
with DA
(sliding
window
m=2)

1 90.07% 69.77% 91.58% 95.38% 80.50% 70.83% 81.64% 84.13%
2 80.28% 65.62% 89.67% 91.25% 70.60% 63.24% 73.17% 77.92%
3 97.08% 97.91% 91.89% 91.25% 85.60% 62.64% 81.50% 83.64%
4 89.66% 69.45% 90.05% 96.12% 94.60% 97.84% 98.61% 99.18%
5 97.04% 62.51% 91.28% 95.05% 98.30% 80.95% 93.83% 94.97%
6 87.04% 62.48% 90.97% 94.62% 86.60% 80.28% 85.22% 85.83%
7 92.14% 66.66% 81.38% 91.22% 89.60% 84.58% 86.57% 86.57%
8 98.51% 90.64% 91.20% 90.54% 95.60% 86.05% 89.90% 90.50%
9 92.31% 95.46% 83.95% 97.50% 87.40% 83.47% 86.05% 87.73%
AVG 91.57% 75.61% 89.11% 93.60% 87.60% 78.88% 86.28% 87.83%
S.D. 5.73 14.63 3.77 2.59 8.48 11.42 7.41 6.34
S.E. 1.91 4.87 1.26 0.87 2.83 3.81 2.47 2.11

Table 4.6: Participant-by participant comparison of the proposed CNN with attentional
mechanism—with and without DA— against Dai et al. [51] results on the BCI 2a and BCI
2b datasets

apparent from the table, our results outperform all others, typically by a wide margin. On

average, our method is 16.44% and 7.21% more accurate than the other method for the 2a

and 2b datasets, respectively. What is more, even without DA, our method has a higher

average accuracy than all other methods except for Dai et al. (2020). And, with DA, our

method beats all other methods, including Dai et al.’s.

4.5.2 Properties of our collected dataset

There are several available BCI datasets [40, 111, 33]. However, we wanted to investigate

several open questions in neuroscience and BCI that were outside the scope of the available

datasets. So, we took the time and effort to collect our own dataset, which we are now sharing

with the community. First, we wanted to test and directly compare the performance of our

proposed attentional CNN on ME, MI, and their combination. In particular, we wanted to

track the decoding accuracy over time via a sliding-window approach. We therefore increased

the duration of the motor-imagination period from 2-3s to 4-6s to gain more insight and track

70

[174] [10] [161] [121] [6] [118] [157] [215] [116] [156] [66] [67] [51]

Proposed
method
(without
DA)

Proposed
method
(with
DA)

Dataset 2b 2b 2b 2a/2b 2b 2b 2b 2b 2a 2a/2b 2a/2b 2a 2a/2b 2a/2b 2a/2b

S1 77.0 70.0 80.0 63.69/73.2 84.6 81.0 76.0 72.5 88.9 90.28/70.3 66.7/62.8 91.5 90.07/80.5 91.58/81.64 95.38/84.13
S2 64.5 60.0 66.0 61.97/67.5 66.3 65.0 65.8 56.4 51.4 57.64/50.6 63.9/67.1 60.6 80.28/70.6 89.67/73.17 91.25/77.92
S3 61.0 61.0 53.0 91.09/63 62.9 66.0 75.3 55.6 96.5 95.14/52.8 77.8/98.7 94.2 97.08/85.6 91.89/81.50 91.25/83.64
S4 96.5 97.5 98.5 61.72/97.4 95.8 98.0 95.3 97.2 70.1 65.97/93.8 63.2/88.4 76.7 89.66/94.6 90.05/98.61 96.12/99.18
S5 82.0 92.8 93.5 63.41/95.5 89.2 93.0 83.0 88.4 54.9 61.11/63.8 72.2/96.3 58.5 97.04/98.3 91.28/93.83 95.05/94.97
S6 84.5 81.0 89.0 66.11/86.7 97.9 88.0 79.5 78.7 71.5 65.28/74.1 70.1/75.3 68.5 87.04/86.6 90.97/85.22 94.62/85.83
S7 75.0 77.5 81.5 59.57/84.7 82.1 82.0 74.5 77.5 81.3 61.11/61.9 64.6/72.2 78.6 92.14/89.6 81.38/86.57 91.22/86.57
S8 91.0 92.5 94.0 62.84/95.9 86.3 94.0 75.3 91.9 93.8 91.67/83.1 76.4/87.8 97.0 98.51/95.6 91.20/89.90 90.54/90.50
S9 87.0 87.2 90.5 84.46/92.6 97.1 91.0 73.3 83.4 93.8 86.11/77.2 77.1/85.3 93.9 92.31/87.4 83.95/86.05 97.50/87.73

AVG 80 80 83 68.32/84.1 84.7 84 77.6 78 78.01 74.92/69.7 70.2/81.6 79.93 91.57/87.6 89.11/86.28 93.60/87.83

S.D. 1.3 1.5 1.6 1.3/1.5 1.4 1.3 0.9 1.6 1.9 1.7/1.6 0.7/1.4 1.7 0.6/0.9 0.4/0.8 0.3/0.7

Table 4.7: Comparison of our proposed method (with and without data augmentation) with
other state-of-the-art methods. All methods were run on the same dataset (BCI 2a and/or
BCI 2b)

the changes in decoding accuracy over time.

Second, BCI datasets typically instruct subjects to make trivial movements, such as pressing

a button. We wanted to test our subjects on a less trivial paradigm, that requires them

to exert some force. We therefore had our subjects squeeze a tennis ball (ME) or imagine

doing that (MI). We expected this to make our classifier more robust against variety of MI

tasks. This is vindicated by recent evidence that decoding attempted handwriting movements

results in much higher accuracy than attempted typing [201].

Third, most of the BCI datasets for MI focused on electrodes above the motor region—such

as C3, C4, and Cz [111]. We wanted to test to what degree general, high-density EEG

recordings across the cortex (to the extent that those brain regions are accessible to EEG)

contribute to the performance of an MI classifier. This also let us investigate the extent to

which channel selection is useful in MI classification. Forth, an additional goal of our study

was to evaluate the role of DA in MI classification. So, we needed a large enough dataset

to be able to compare classification results when training our classifier on only a portion of

the dataset. Altogether we recorded 400 trials per subject (200 each for ME and MI, see

71

Methods).

4.5.3 Motor Imagery vs. Motor Execution

MI could be described as kinesthetic anticipation of corresponding overt ME without produc-

ing an actual motor output. Jeannerod stated that MI is functionally equivalent to its ME

counterpart [87]. More specifically, MI is related to the preparation of ME and represents

meaningful neurophysiological dynamics of human motor functions [217]. Consequently,

both MI and ME are accompanied by activation in common sensorimotor areas, such as the

primary motor area (M1), supplementary motor area (SMA), and premotor cortex (PMC)

[87, 217]. The neurophysiology underlying MI may differ in healthy people and patients with

motor-impairing conditions [117]. MI-based BCI may further augment the motor learning

process in healthy participants [159]. What is more, in patients with impaired motor func-

tions, MI is often the only viable option to drive rehabilitative BCI, because these patients

cannot perform overt ME [117]. The individuality and severity of motor impairments impact

the underlying neurophysiology; for example, post-stroke neurophysiology relies on lesion lo-

cations [134]. Additional work is needed to further delineate the roles of MI and ME in

motor learning or relearning for both healthy and impaired participants to refine the design

of BCI for supplementing the motor learning process.

Our own dataset enables us to directly compare ME and MI within each participant. In our

task, the participants were presented with the cue for 1s, then saw a blank screen for 1s,

and finally began ME or MI for 4s (see Methods). However, Dai et al. (2020), only used 2s

of MI. To better compare our results to theirs, we ran a sliding window analysis only for the

first 2s of the 4-s-long ME or MI period. We used window sizes of 100ms, 300ms, 500ms,

1s, and 2s, with the step size fixed at 100ms (see Figure 4.4 and Methods) on the data from

all 64 channels. With this analysis, we would expect to see a rise in the accuracy leading up

72

to the moment when the participants needed to begin ME or MI. Further, as participants

were supposed to execute or imagine the movement for 4s, we expected the accuracy to then

generally plateau over this after the above rise (similarly to [167] for example).

The left column in Figure 4.5 represents the average validation accuracy over all 7 partici-

pants and the right column is specifically for Participant 4. Both show the accuracy of the

running-window analysis and over the first 4s after cue onset for 3 analyses: ME only, MI

only, and the combination of ME and MI trials. The window shown at the 4s mark is from

3900 to 4000ms for the 100ms window, for 3700 to 4000ms for the 300ms window, and so

on.

Our method’s accuracy on ME is greater than on MI (Figure 4.5), which is consistent with

previous findings about ME versus MI [53]. The average validation accuracy for the com-

bination of MI and ME (All) is also greater than MI. Looking at the variability among the

different window sizes, we see more variability in the ME condition than the MI or com-

bined condition, on average. Our averaged results over all participants also align with our

expectations, in that the accuracy rises from chance toward the beginning of the ME and

MI periods and then generally plateaus (again, compare with [167]).

4.5.4 Channel selection

Analyzing dense-array EEG is computationally expensive and complex; it also typically

requires more expensive EEG systems than those with sparser electrodes. Therefore, in this

study we tested 4 different electrode configurations on our participants—which included 3,

7, 18, or all 64 electrodes (see Methods)—to further test the effect of channel selection on

classification accuracy for MI in our own dataset.

The validation accuracy of the 7 participants for the 4 different channel-configurations are

73

Figure 4.5: Validation accuracy of sliding-window analysis in ME (top), MI (middle), and
ME and MI combined (bottom). The left column is the accuracy over time averaged across
all 7 participants. The right column depicts the accuracy for the participant with the highest
overall accuracy in the ME condition (Participant 4).

shown in Figure 4.6. In Table 4.8, the validation accuracy for each participant and the

average accuracy across all participants are shown. The 18-channel layout had the highest

accuracy, at 81.73% (±2.5).

Figure 4.6: Validation accuracy for different channel configurations on the 7 participants of
our dataset.

74

Participant 3 channels 7 channels 18 channels 64 channels

1 74.75(± 4.3) 75.25(±2.2) 83.25(±4.1) 81.18(±8.9)
2 72.25(± 4.2) 72.50(±4.9) 71.75(±4.1) 75.22(±4.3)
3 68.01(± 3.9) 70.01(±4.1) 74.75(±4.3) 72.05(±3.2)
4 87.69(± 5.4) 89.62(±3.2) 92.31(±3.6) 70.03(±3.1)
5 83.50(± 6.3) 85.01(±3.3) 84.50(±5.7) 68.08(±2.2)
6 83.00(± 4.2) 83.50(±6.7) 83.51(±5.8) 67.33(±1.6)
7 83.50(± 3.4) 82.01(±6.7) 82.01(±5.9) 66.41(±2.4)

AVG (± S.E.) 78.95(±2.7) 79.70(±2.7) 81.73(±2.5) 71.47(±1.9)

Table 4.8: Validation accuracy for different channel selections on our dataset for single
participants and the average over all participants. For each participant, we present mean ±
SE over trials. In the bottom row, we present mean ± SE over participants.

4.5.5 Data Augmentation

We used 5 types of DA for the MI task: noise addition [112, 144], GAN [72, 204, 212, 213],

sliding window [169, 124, 185], Fourier transform [214], and recombination of segmentation

[51]. Table 4.9 represents the result of different DA techniques on the BCI 2a, BCI 2b and our

dataset for 64 channels and 18 channels. We evaluate all DA techniques with magnification

factor m = (2, 5, 10, 15, 20, 30, 50) for the proposed CNN. For Fourier transform, we used

the same technique as in [214]. For noise addition, we opted for Gaussian noise with µ = 0,

σ = (0.1, 0.2, 0.5).

cGANs allow generation based on a class assignment [79]. In this study, the GAN had 2

different conditions that were implemented: In order to provide context about the task, the

first GAN model generates a sample conditioned on the participant’s decision—i.e., left vs.

right. The second GAN model applies finer granularity by conditioning not only on left vs

right but also the electrode channel. When generating data, the conditional inputs provide

additional information and allow the model to tailor its outputs with greater detail (see

Table 4.4). Figure 4.7 illustrates the architecture of cGAN in our work.

We also evaluated sliding-window technique (lengths l = 1000ms with sampling frequency

250 Hz and step-size 100ms). Table 4.9 demonstrated that GAN (conditional left vs. right

75

Figure 4.7: Our proposed cGAN model. In the generator (G), the prior input noise and label
are combined into a hidden representation. In the discriminator (D), Real Data (i.e., raw
EEG data) and the Label are presented as inputs to a discriminative function. The contents
of all purple boxes in the architecture are the same and are expanded at the bottom left.

and channels) with m = 15 resulted in the best accuracy (93.6%) for BCI 2a dataset while

Sliding Window (500ms windows and 100ms step size) with m = 2 achieved the best accu-

racy (87.83%) for BCI 2b dataset. For our dataset, Fourier Transform with m = 15 for 64

(86.61%) and 18 (83.42%) channels, respectively. The BCI 2a dataset had a magnification

factor of 15 for the best result compared to a magnification factor of only 2 for BCI 2b.

This might be because we did not include neurofeedback within our experimental paradigm.

Decoding neurofeedback dataset has less complexity which is why BCI 2b dataset was seen

to have a smaller magnification factor of 2. Our dataset did not include neurofeedback in

the paradigm similarly to the BCI 2a dataset.

76

D
at
as
et

D
A

T
ec
h
n
iq
u
es

F
ou

ri
er

T
ra
n
sf
or
m

N
oi
se

A
d
d
it
io
n

G
A
N

S
li
d
in
g
W

in
d
ow

p
ar
am

et
er

fo
r
ea
ch

(E
M
D
)

σ
=
0.
1

σ
=
0.
2

σ
=
0.
5

C
on

d
it
io
n
al

(l
ef
t
v
s.

ri
gh

t)
C
on

d
it
io
n
a
l

(l
ef
t
v
s.

ri
g
h
t

an
d
ch
a
n
n
el
s)

S
li
d
in
g
W

in
d
ow

o
f
le
n
g
th

1
s

(s
te
p
-s
iz
e:

1
0
0
m
s)

B
C
I
2a

Magnification
Factor

2
0.
86

71
0.
90

56
0.
89

82
0.
87

68
0.
91

33
0.
90

2
5

0
.8
9
4
8

5
0.
86

52
0.
89

99
0.
88

49
0.
89

08
0.
92

40
0.
90

9
2

0
.8
9
0
4

10
0.
88

22
0.
89

02
0.
89

20
0.
87

21
0.
90

87
0.
92

1
7

0
.8
9
9
2

15
0.
88

58
0.
89

88
0.
87

56
0.
87

50
0.
93

58
0
.9
3
6
0

0
.8
9
4
9

20
0.
89

32
0.
88

98
0.
89

75
0.
89

04
0.
91

93
0.
93

0
0

0
.9
0
9
2

B
C
I2
b

Magnification
Factor

2
0.
85

35
0.
86

47
0.
86

14
0.
85

75
0.
79

39
0.
85

1
1

0
.8
7
8
3

5
0.
83

91
0.
87

46
0.
86

96
0.
85

58
0.
77

47
0.
86

2
4

0
.8
7
4
7

10
0.
83

39
0.
86

77
0.
86

68
0.
85

60
0.
77

33
0.
85

8
2

0
.8
7
2
6

15
0.
82

28
0.
86

60
0.
87

17
0.
85

51
0.
76

01
0.
86

4
6

0
.8
7
4
9

20
0.
82

17
0.
87

36
0.
86

77
0.
85

35
0.
76

11
0.
87

0
8

0
.8
6
9
1

O
u
r
D
at
as
et

(6
4
ch
an

n
el
s)

Magnification
Factor

2
0.
84

42
0.
81

46
0.
75

48
0.
77

20
0.
79

14
0.
81

5
9

0
.7
9
0
4

5
0.
83

05
0.
77

43
0.
78

44
0.
78

97
0.
83

77
0.
79

4
5

0
.7
9
3
3

10
0.
83

77
0.
79

07
0.
78

85
0.
77

93
0.
80

24
0.
80

4
4

0
.8
0
3
3

15
0
.8
6
6
1

0.
77

75
0.
75

41
0.
75

56
0.
81

84
0.
78

2
4

0
.8
3
6
2

20
0.
85

60
0.
75

21
0.
78

26
0.
78

86
0.
79

94
0.
80

5
2

0
.7
9
9
0

O
u
r
D
at
as
et

(1
8
ch
an

n
el
s)

Magnification
Factor

2
0.
81

24
0.
80

51
0

.8
05

6
0.
80

79
0.
80

45
0.
81

7
4

0
.8
1
9
0

5
0.
80

10
0.
81

79
0.
81

21
0.
80

90
0.
79

69
0.
81

5
6

0
.8
2
2
4

10
0.
79

88
0.
81

23
0.
81

62
0.
80

48
0.
79

65
0.
80

2
0

0
.8
3
1
2

15
0.
79

54
0.
82

03
0.
81

41
0.
80

47
0.
78

42
0.
80

1
5

0
.8
3
4
2

20
0.
79

63
0.
82

09
0.
80

51
0.
80

48
0.
78

75
0.
81

0
2

0
.8
2
7
7

T
ab

le
4.
9:

C
om

p
ar
is
on

of
d
iff
er
en
t
D
A

te
ch
n
iq
u
es

w
it
h
d
iff
er
en
t
m
ag
n
ifi
ca
ti
on

fa
ct
or
s
an

d
h
y
p
er
p
ar
am

et
er
s
fo
r
B
C
I
2a
,
B
C
I

2b
,
an

d
ou

r
ex
p
er
im

en
ta
l
d
at
as
et

(f
or

64
ch
an

n
el
s
an

d
18

ch
an

n
el
s)

77

4.5.6 Different portions of dataset

A dearth of data is a common problem when training machine-learning models on neuroimag-

ing data. We therefore wanted to systematically test to what degree DA can compensate for

the reduced availability of data. We thus randomly selected 100%, 75%, 50%, or 25% of the

samples in our dataset. And we tested the accuracy of DA on these different proportions

of our dataset for different DA techniques and magnification factors (Table 4.10). Fourier

transform resulted in the best accuracy for 100%, 75%, and 50% of the data, with 86.61%,

88.26%, and 86.18% accuracy, under magnification factors 15, 5, and 10, respectively. When

using only 25% of the data, GAN (conditional left vs. right and channels) was the best DA

technique in terms of accuracy, with 82.18% and a magnification factor of 15.

78

P
ro
p
or
ti
on

of D
at
as
et

D
A

T
ec
h
n
iq
u
es

F
ou

ri
er

T
ra
n
sf
or
m

N
oi
se

A
d
d
it
io
n

G
A
N

S
li
d
in
g
W

in
d
ow

p
ar
am

et
er

fo
r
ea
ch

D
A

(E
M
D
)

σ
=
0.
1

σ
=
0.
2

σ
=
0.
5

C
on

d
it
io
n
al

(l
ef
t
v
s.

ri
gh

t)
C
on

d
it
io
n
a
l

(l
ef
t
v
s.

ri
g
h
t

an
d
ch
an

n
el
s)

S
li
d
in
g
W

in
d
ow

o
f
le
n
g
th

1
2
5

10
0%

Magnification
Factor

2
0.
84

42
0.
81

46
0.
75

48
0.
77

20
0.
79

14
0.
81

59
0
.7
9
0
4

5
0.
83

05
0.
77

43
0.
78

44
0.
78

97
0.
83

77
0.
79

45
0
.7
9
3
3

10
0.
83

77
0.
79

07
0.
78

85
0.
77

93
0.
80

24
0.
80

44
0
.8
0
3
3

15
0
.8
6
6
1

0.
77

75
0.
75

41
0.
75

56
0.
81

84
0.
78

24
0
.8
3
6
2

20
0.
85

60
0.
75

21
0.
78

26
0.
78

86
0.
79

94
0.
80

52
0
.7
9
9
0

75
%

Magnification
Factor

2
0.
86

44
0.
79

75
0.
78

86
0.
81

29
0.
77

72
0.
79

27
0
.7
6
9
5

5
0
.8
8
2
6

0.
78

56
0.
78

77
0.
79

87
0.
79

97
0.
80

45
0
.7
9
9
8

10
0.
87

07
0.
80

96
0.
77

43
0.
79

21
0.
80

40
0.
79

50
0
.7
9
8
0

15
0.
87

32
0.
77

35
0.
80

13
0.
77

41
0.
77

80
0.
80

57
0
.8
1
0
4

20
0.
86

25
0.
80

66
0.
78

38
0.
78

14
0.
82

23
0.
81

59
0
.8
1
5
8

50
%

Magnification
Factor

2
0.
83

46
0.
81

16
0.
79

57
0.
79

09
0.
77

43
0.
75

60
0
.7
6
6
9

5
0.
85

36
0.
76

72
0.
76

87
0.
78

20
0.
77

54
0.
80

63
0
.7
6
5
6

10
0
.8
6
1
8

0.
80

67
0.
82

22
0.
76

95
0.
80

34
0.
79

43
0
.7
5
0
3

15
0.
84

74
0.
80

37
0.
79

69
0.
76

87
0.
76

71
0.
81

51
0
.7
4
2
6

20
0.
81

28
0.
75

60
0.
80

10
0.
75

39
0.
82

47
0.
80

69
0
.8
0
3
9

25
%

Magnification
Factor

2
0.
74

22
0.
79

80
0.
78

68
0.
80

57
0.
75

95
0.
77

31
0
.7
3
8
7

5
0.
76

83
0.
80

16
0.
75

69
0.
77

55
0.
77

14
0.
78

21
0
.7
2
0
2

10
0.
74

17
0.
78

38
0.
77

67
0.
80

87
0.
76

43
0.
82

04
0
.7
2
5
6

15
0.
79

09
0.
76

43
0.
81

87
0.
75

84
0.
77

37
0
.8
2
1
8

0
.7
1
3
8

20
0.
78

26
0.
76

43
0.
78

14
0.
75

13
0.
77

31
0.
79

82
0
.7
5
0
1

T
ab

le
4.
10
:
A
cc
u
ra
ci
es

fo
r
d
iff
er
en
t
p
ro
p
or
ti
on

s
of

ou
r
d
at
as
et

w
it
h
d
iff
er
en
t
D
A

te
ch
n
iq
u
es

79

4.5.7 Combination of participants’ EEG signals

The variability in brain anatomy and even more so functionality among different individuals

is well known, e.g. [131]. Strong structure-function correspondences is therefore typically

derived only at the aggregate level [82]. For example, Smith et al. delineated structural dif-

ferences, suggesting that the number of folds and thickness of the cortex could be associated

with whole-brain functional network [177]. Furthermore, inter-participant variability in brain

topography may also occurs due to participant-specific cognitive styles and the strategies

that different participants use to perform the task [151]. This might augment the underlying

learning processes—e.g., motor and perceptual learning [80]. Intra- and inter-participant

variability might be explained by scale-dependent brain networks in spatial, temporal and

topological domains [30].

Motor variability due to variability in human kinematic parameters—e.g., force field adapta-

tion, speed and trajectory, and motivational factors such as level of user engagement, arousal

and feelings of competence, necessary for performing a motor task—is an integral part of

the motor learning process [56, 59, 165]. What is more, EEG signals are of course measured

from the scalp rather than directly inside the brain, so they suffer from various signal distor-

tions and technical limitations [119]. Given the above, the extent to which machine-learning

models can be transferred between participants is not completely understood. The EEG

patterns associated with motor variability could partly explain intra-individual variability in

SMR-based BCI [136]. The neurophysiological processes underpinning the SMR often vary

over time and across participants. Inherent intra- and inter-participant variability causes

covariate shift in data distributions that impede the transferability of model parameters

among sessions/participants.

Given the above, we evaluate the performance of the proposed NN on combinations of data

across participants. The validation accuracy was averaged over every possible combination

80

for each dataset—e.g., all participant pairs, all triplets, etc. After finding all the possible

combinations, the data was split into training and test for each combination to compute the

validation accuracy. The averages of the validation accuracy over all the states for the three

datasets are reported in Figure 4.8 (top) and differences between group (bottom). As we add

more participants, the accuracy decreases—but the decreases become smaller. In Figure 4.8

(bottom), for the BCI 2a and 2b datasets, after combining 6 or more participants, we can

see the curves plateau. This suggest that our proposed CNN was able to learn the important

variations of the different EEG signals among the different subjects thus achieving stable

accuracy.

Figure 4.8: (Top) Validation accuracies for combinations of participants for BCI 2a, BCI 2b,
and our experimental dataset. (Bottom) line plots of differences between mean validation
accuracies of consecutive groups for the 3 datasets. The x axis labels are the smaller groups;
so, differences between 2 participants and one are plotted above the label ”1 participant”,
between 3 and 2 participants above ”2 participants”, and so on.

81

4.5.8 Leave-one-participant out and transfer learning

This subsection addresses two separates but closely related tasks. The first, leave-one-out,

trains a NN on n − 1 participants and tests on the remaining nth participant. This task

addresses the question of how information is shared between different participants’ EEG

signals (see section 3.7 Figure 4.6, on the x-axis, 8 participants for BCI 2a, BCI 2b and 6

participants for our dataset).

The second task, transfer learning, pretrains a NN on n − 1 participants and fine-tunes to

the nth participant [152]. The pre-training phase orients the network weights to extract

meaningful representations from the data. Then the fine-tuning, where the learning rate is

decreased, adjusts to the task of interest, the nth participant. For transfer learning, 10-fold

cross validation over the nth participant was used. Each fold fine-tunes on 9 folds and tests

on the held-out 10th fold. Table 4.11 shows the result of transfer learning on the BCI 2a, BCI

2b, and our dataset (64 channels and 18 channels). Figure 4.9 compared the result with and

without transfer learning for all 3 datasets. For instance, the validation accuracy without

transfer learning on participant n is defined by the trained model based on combination of

the other n−1 participants and is tested on the complete dataset of participant 9. However,

the validation accuracy with transfer learning on participant n is tuned to the trained model

based on combination of the other n − 1 participants based on 10% of the nth participant

and is tested on 90% of participant n.

4.6 Discussion

In this study, we proposed an end-to-end CNN architecture for EEG-based MI classifica-

tion. This proposed mechanism is used to automatically extract features from raw EEG

data (Figure 4.1 and Table 4.1). The NN optimization used the SHERPA Bayesian hy-

82

Train
(participants index)

Finetune
(participant index)

BCI 2a (with transfer
learning for different par-
ticipants)

BCI 2b (with transfer
learning for different par-
ticipants)

2-3-4-5-6-7-8-9 1 78.12 78.75
3-4-5-6-7-8-9-1 2 76.38 71.62
4-5-6-7-8-9-1-2 3 89.53 79.17
5-6-7-8-9-1-2-3 4 77.77 97.02
6-7-8-9-1-2-3-4 5 77.41 83.10
7-8-9-1-2-3-4-5 6 78.83 81.94
8-9-1-2-3-4-5-6 7 80.58 81.67
9-1-2-3-4-5-6-7 8 81.60 87.36
1-2-3-4-5-6-7-8 9 90.63 84.44

Train
(participants index)

Finetune
(participant index)

Our dataset
64 channels

Our dataset
18 channels

2-3-4-5-7-6 1 83.25 83.75
3-4-5-6-7-1 2 73.01 87.25
4-5-6-7-1-2 3 76.50 77.50
5-6-7-1-2-3 4 91.15 92.70
6-7-1-2-3-4 5 91.01 85.50
1-2-3-4-5-7 6 82.10 82.50
1-2-3-4-5-6 7 84.50 86.50

Table 4.11: Leave-one-out and transfer-learning validation accuracy for BCI 2a, BCI 2b, and
our dataset (64 and 18 channels)

Figure 4.9: Validation accuracy for BCI 2a, BCI 2b, and our dataset (64 and 18 channels)
with and without transfer learning.

perparameter search on 3 datasets: the BCI Competition IV 2a and BCI Competition IV

2b, which have become benchmarks in the field, and a dataset that we collected ourselves

(Figure 4.2; see Methods). We began by comparing the architecture we favored, Conv Net-

83

Attention-Dense NN, to two other baseline architectures—a Dense NN and Conv Net-Dense

NN—as well as to what was, to the best of our knowledge, the top result in the field on the

benchmark datasets—the architecture described in Dai et al. (2020) (see Figure 4.4). Our

CNN-Attention-Dense achieved 93.6% (S.E.: ±0.87) and 87.8% (S.E.: ± 2.11) accuracy over

the BCI 2a and 2b datasets, respectively (Table 4.6). That is 6.4% to 13.5% and 4.03% to

5% better than the other architectures for BCI 2a and 2b, respectively (Figure 4.4). We

further compared our results with all the papers we could find that classified the BCI 2a

and 2b datasets and reported participant-by-participant results. For the BCI 2a dataset,

our proposed EEG MI classification method achieved an improvement of 2.03% to 25.28%

over all other methods (Table 4.7). For the BCI 2b dataset, our proposed method achieved

an average improvement of 0.23% to 18.13% over previous methods (Table 4.7).

To the best of our knowledge, our CNN-Attention-Dense architecture achieved the highest

accuracy thus far for the 2 benchmark datasets—BCI 2a and 2b. On top of that, an ad-

ditional strength of our approach is its automated features extraction, directly from raw

EEG. This contrasts with most methods, which tend to use handcrafted features and require

heuristic parameter setting (e.g., predefined frequency bands). Automated features have the

advantage of often generalizing better across tasks and participants [51]. Another potential

advantage of our architecture is that the attentional mechanism could potentially lead to

more interpretable results. However, we leave the explainable-AI facet of our architecture

for further, future research.

The dataset that we collected for this study used 64 electrodes (according to the 10/20

montage; Figure 4.3). It included both ME and MI tasks and enabled us to compare the

two tasks. Having all 3 datasets further enabled us to compare MI with and without neuro-

feedback training (datasets 2b and 2a, respectively) as well as imagining button presses

versus squeezing tennis balls (datasets 2a and 2b versus our own dataset, respectively).

A long-standing question in neuroscience and motor control is the extent of shared neural

84

mechanisms between MI and ME [53]; though there is a general consensus that MI and

ME at least share some important neural mechanisms. This similarity has been used in the

MI-decoding literature, where some attempts to decode MI have relied on ME as training

data [167]. Our results suggest that it is easier to decode ME than MI, at least when

using EEG and relying on our decoding methods (Figure 4.5). Furthermore, we found

that, on average, the decoding accuracy started at chance and then rose toward the time

that participants were required to move or to imagine moving. After that it more or less

plateaued. Interestingly, though perhaps not surprisingly, the accuracy level at the plateau,

when using sliding windows, was lower than the accuracy for the full 4 s of ME (compare

Figures 4.5 and 4.6). A likely contributing factor to this is that the sliding-window analysis

decoded the EEG over shorter time windows than the full 4 s.

Another long-standing question when decoding EEG, and especially dense-array EEG, relates

to how many and which electrodes (or channels) to use when recording the task. On the

one hand, when using all channels (64, in our case), the set-up time for the task is longer,

analyzing the larger dataset is more complex and computationally expensive, and brain

signals unrelated to the task and noise are perhaps more often introduced. On the other

hand, using only a limited number of channels, there may not be full coverage of brain regions

that may be involved in the decision-making and action-preparation processes. We therefore

wanted to identify the appropriate channels relevant to the MI task. We thus selected

different combinations of channels, according to 10-20 system standard, based on what is

known about the neurophysiology of decision making and action formation, [167, 172, 13].

Hence we included different EEG configurations in our study (see Results), with 3, 7, or 18,

channels around the motor cortex (see Methods), or with all 64 channels [90]. Our analysis

suggests that, without DA, the 18-channels configuration had the best average accuracy

(81.73% ± 2.5), at least on our dataset (Figure 4.6, Table 4.8), while using all 64 channels

resulted in the worse accuracy (71.47% ± 1.9). Our results therefore suggest that, for MI

decoding, it may be best to use only the 18 channels around the left and right motor region

85

rather than all the channels. However, that result should be taken with a grain of salt,

because when including DA, the tables were flipped, and it was the 64-channel configuration

that did best, as described above.

One of the EEG configurations we tested included only 3 channels (C3, Cz, and C4)—this

thus let us more directly compare our dataset to the two benchmark ones and the results

of other studies. On those 3 electrodes, we achieved a mean accuracy of 79.95% for our

dataset, while our analysis resulted in an accuracy of 89.11% and 86.28% for BCI 2a and

2b, respectively—all without DA. The higher accuracy for the benchmark datasets over our

dataset might be due to the difference in tasks, the inclusion of neurofeedback (in BCI 2b),

or that they perhaps ran participants who were better able to elicit good EEG data.

One general challenge of EEG decoding, especially with deep NNs, is obtaining enough

data to train the numerous parameters in these large statistical models. The problem is

compounded for MI tasks, because they are highly cognitively demanding. So, participants

are easily fatigued and thus cannot produce a large amount of data in each experimental

session. Bringing participants in for multiple sessions runs into issues of participant attrition

for example. Another issue with collecting EEG over multiple session is the non-stationary

nature of EEG signals [48]—i.e., the statistics of the EEG signals vary across time. As a

result, a classifier trained at a specific time would tend to generalize increasingly poorly to

data recorded at another time that was increasingly temporally removed—even for the same

participant. This is a challenge for real-life applications of EEG, which must often work

train on only limited amounts of data.

Some studies indeed strived for very lengthy data collection paradigms. One study, investi-

gating MI control of 3D movement, had participants come back for up to 50 experimental

sessions, which amounted to more than 20 hours of training per participant in some cases

[125]. In another study, focusing on an EEG-based stroke-rehabilitation system [182], it took

12 weeks to collect enough data for three MI tasks, with each participant participating in

86

2 sessions per week [182]. While these are extreme examples, they highlight how common

it is for participants to become fatigued after as little as 1 hour or less of data collection

[9, 98, 184].

A promising solution to this dearth of data is to use DA, especially when using DL models

on EEG data [103]. We therefore tested 5 disfferent DA techniques: sliding window, noise

addition, GAN, Recombination of segmentation, and Fourier transform/wavelet. We further

tested different magnification factors and hyperparameters (e.g., different window sizes for

sliding window, various standard deviations for noise addition) for each technique we eval-

uated. Based on the guidelines in Lashgari et al. (2020) we evaluated the accuracy of the

proposed method before and after DA. Our main objective was to find the best DA technique

for each of the 3 datasets above. As far as we know, this is the first study to compare these

various DA techniques as well as the different hyperparameters of the various techniques on

benchmark datasets BCI 2a and 2b (see Table 4.9). We found that different techniques work

best for different datasets. For BCI 2a, GAN (conditional left vs. right and channels, m =

15) achieved the best accuracy, 93.6%. In contrast, sliding window (m = 2) gave the best

accuracy for BCI 2b, at 87.83%. The DA step thus clearly boosted the performance of our

proposed CNN (Table 4.6) as discussed below.

Interestingly, the BCI 2a dataset did not include neurofeedback training for the participants,

while BCI 2b did. At the same time, the DA method that worked best for BCI 2a was a

highly complex GAN with a large magnification factor, while that for BCI 2b it was a simple

sliding window with a small magnification factor. So, one possible conclusion is that the

neurofeedback training in BCI 2b, which effectively trained the participants to emit neural

activity that would be better classified by the classifier, may have led to the superior accuracy

from a simpler DA technique.

We also tested different DA techniques on our own dataset, which included 64 channels (see

Methods). This achieved an accuracy of 86.61% (m = 15) with Fourier transform (Table

87

4.9). Using only 18 channels and the sliding-window DA technique (m = 15), we achieved an

accuracy of 83.42%. Hence, using DA, we achieved higher accuracy with 64 channels than

with 18 channels. Interestingly, without DA, the situation was flipped: the 64-channel data

had lower accuracy 71.47% (±1.9) than the 18-channel data 81.73% (±2.5) (see Table 4.8).

This suggests that, if one dataset has lower accuracy than another without DA, it does not

necessarily mean that the first dataset would also have lower accuracy than the second after

DA.

As noted above, our accuracies were higher than those of Dai et al. (2020) (Table 4.6)—

which was the top result in the field. Besides higher accuracies on average, our accuracies for

individual participants were 90.54% or higher (Table 4.6), while Dai et al. (2020) achieved

this accuracy or higher for just for 5 of the 9 participants. Further, we were interested in

the effect of DA on the accuracy of their results. But they did not report that for BCI 2a.

And we were unable to obtain their code. What is more, they did not specify the details

of their DA techniques. We therefore reimplemented their architecture from their paper, as

per the details in their methods, without DA, to compare it with our architecture without

DA. The accuracy of our proposed CNN without DA—at 89.11% (±3.8; SE here and below)

and 86.28% (±7.4)—outperformed the NN reproduced from Dai et al. (2020)—at 75.61%

(±14.6) and 78.88% (± 11.4)—for BCI 2a and 2b datasets, respectively.

Following the above, an exciting potential use of DA is to replace lengthy, multi-session

data-acquisition efforts [125, 182]. For brain-imaging studies, it would decrease the time

and funds that researchers need to spend on data collection and reduce the inconvenience

of participants. This is especially pertinent for situations where gathering additional data is

financially, ethically, or otherwise difficult. Though DA would of course come at the expense

of additional training time for the statistical models. We tested this by training on only

some of the training set—25, 50, 75, or 100% (see Table 4.10)—while testing different DA

techniques on the remaining data.

88

We therefore tested the extent to which data augmentation could replace gathering more

data, at least for the dataset that we collected (Table 4.10). More specifically, we collected

400 trials from each participant (see Methods) and used different proportions of the MI

dataset (100%, 75%, 50% and 25%) to train the model. We then augmented those different

proportions of the dataset with various DA techniques that have different magnification

factors. Our aim was to test the effects of those DA parameters on classification accuracy

(Table 4.10). With 100%, 75% and 50% of the data, m = 15, 5, and 10, using Fourier

transform achieved the highest accuracies, that were overall similar, at 86.61%, 88.26%,

and 86.18% accuracy. Yet, classification based on just 25% of the data, m=15 and GAN

(conditional left vs. right and channels) resulted in a lower accuracy, 82.18%. It might

be that the smaller dataset required a more sophisticated DA technique that for the other

proportions was needed to achieve its best accuracy. Though this accuracy was clearly lower

than for the other proportions of data. This hints at the limits of DA for EEG.

It is well known that there is general anatomical similarity as well as structure-function

correspondence among humans. But the anatomy of different brains also differs, at least

to some extent, as does the structure-function correspondence. So, brain science typically

operates at the aggregate level [82]. In particular, Smith et al. delineated structural differ-

ences, suggesting that the number of folds and thickness of the cortex could be associated

with whole-brain functional networks [177]. Furthermore, inter-participant variability in to-

pography occurs due to participant-specific cognitive style and strategy to perform a task

over time [173], which could augment the underlying learning processes, e.g., motor and

perceptual learning [80].

This question has clear implications for the analysis of EEG over groups of participants.

We therefore wanted to investigate to what extent the number of participants over which

we trained and tested our machine-learning model reduced the classification accuracy of the

statistical model over that group. We thus trained and tested our model on all individual

89

participants, on all pairs of participants, all triplets, quadruplets, and so on (Figure 4.8).

It appears that, for all 3 datasets, the accuracy dropped most markedly between training

and testing on individual participants to training and testing on pairs. Then there were

diminishing decreases going from pairs to triplets, triplets to quadruplets, and so on, leading

to roughly a plateau from groups of 6 participants and on. This suggests that the costs

associated with inter-individual differences in brain structure and activity outweigh the ben-

efits of the additional data when training over a group of participants. Though the decoding

accuracy appeared to stop decreasing and reached somewhat of a plateau after around 6

participants. Future work, with a larger number of participants, could test the hypothesis

that the accuracy would begin to rise again when training and testing over enough additional

participants. One reason that this could happen is that the introduction of an ever-increasing

number of additional participants might end up more than compensating for the neural vari-

ability between different brains. In other words, the advantages of the increasingly larger

data available to train the model would outweigh the disadvantages of the variability across

additional brains. Testing this hypothesis is left for future studies.

Following the discussion of inter-participant brain variability above, another key question in

EEG analysis and especially for classification using DL is the extent to which a machine-

learning model that was training on one group of participants could be generalized to new

participants [166]. Put differently, we were wondering to what extent transfer learning, which

has been increasingly used in the machine-learning literature, especially of late [110, 202, 211],

would be useful for EEG classification using DL. We tested this by directly comparing two

analyses. In the first, we trained a model on all but one participant and then tested it

on that remaining participant (i.e., leave-one-participant-out classification). The second

analysis comprised of again training on all but one participant, but then using transfer

learning and finetuning the model on one part of the left-out participant. Finally, we tested

the model on independent data from that participant (see Results 3.7). Our results clearly

indicated that transfer learning led to higher accuracy than leave one out (Figure 4.9)—an

90

increase in accuracy of 16.66%, 11.35%, and 18.6% for BCI 2a, BCI 2b, and for our dataset,

respectively. This demonstrates the clear advantages of transfer learning for EEG analysis

using DL. With DL models getting increasingly complex, the ability to finetune them for

new participants rather than retrain them from scratch becomes increasingly important.

In addition, our results suggest that the BCI community could use transfer learning with

EEG to train a model on an existing dataset and then improve its performance for a new

participant using only finetuning of the model [110, 58]. According to our results, this could

markedly improve the performance of BCI classifiers.

Due to the good classification performance of our proposed neural-network architecture and

the relatively simple data processing, without prior manual feature extraction, our method

holds promise for online, real-time, EEG-based classification of MI. It is left to future work

to test how well the system will work in real time. Further, based on our results, it seems

useful to use transfer learning between participants in a real-time paradigm. Furthermore,

our neural-network architecture uses an attentional mechanism that helps identify the most

salient brain regions that drive the network’s classification ability. However, we leave the

analysis of these brain regions for future work.

Acknowledgements

This publication was made possible in part through the support of a joint grant from the

John Templeton Foundation and the Fetzer Institute, BIAL foundation and Boston Sci-

entific Corporation. The opinions expressed in this publication are those of the author(s)

and do not necessarily reflect the views of the John Templeton Foundation or the Fetzer

Institute. This publication was also made possible in part by the support of the Boston

Scientific Investigator-Sponsored Research Program. The authors would like to acknowledge

the assistance of Natalie Nichols and Kai Lee Hague for graphics in this research.

91

Ethical statement

The research was conducted in accordance with the principles embodied in the Declaration

of Helsinki and in accordance with local statutory requirements. All subjects gave written,

informed consent to participate in the study, which was approved by the Chapman University

IRB (IRB-18-104).

92

Chapter 5

Conclusion

We have presented contributions to the field of deep learning. Both in theoretical understand-

ing, motivated from biological plausibility constraints, as well as applications to problems

in the physical sciences. Findings in the realm of deep learning theory have demonstrated

that while weight sharing is a pragmatic convenience for time and memory efficiency it is

not required from a learning perspective. These findings nicely intertwine with well known

facts of biology and neurocircuitry.

Our contributions in applied machine learning have dramatically impacted the availability

of deep learning resources in specific high performance computing landscapes. The FKB

framework has become a useful tool for those seeking to apply neural networks in FORTRAN

based simulators.

93

Appendix A

Appendix

A.1 Experimental Settings

A.1.1 Hyperparameter Search

We conducted a hyperparameter search to explore the space of possible architectures. CNN

and FCNs trained on MNIST and CIFAR, using a grid search to find the optimal setting.

The search was executed using SHERPA [76], a Python library for hyperparameter tuning.

We detail the hyperparameters of interest in Table A.1, as well as the range of available

options during the search.

During the hyperparameter search, MNIST trained for 100 epochs with a patience of 25

monitoring the validation accuracy. CIFAR trained for 200 epochs with a patience of 50

Name Options Parameter Type

Learning Rate 10−i, i ∈ [1, 6] Choice
Number of layers [2, 3] Discrete

Table A.1: Hyperparameter Space for the conducted grid search.

94

monitoring the validation accuracy. We show the hyperparameters of the best-performing

networks in Table A.2. All networks achieved the best performance with three layers. The

ultimate difference between MNIST and CIFAR architectures is the learning rate, 10−3 and

10−4, respectively.

A.1.2 Network Architectures

Table A.2 describes the architectures used in this paper. MNIST networks have three con-

volutional or free convolutional layers respective of the architecture. All weight kernels are

of size 3x3 with 32, 64, and 128 filters for the three layers. This output feeds into a fully

connected layer of 1024 nodes, followed by a softmax layer for classification.

CIFAR networks have three convolutional or free convolutional layers respective of the ar-

chitecture. Layer one has a 5x5 weight kernel, 64 filters, and a stride of 2. Layer two has

a 5x5 weight kernels, 128 filters, and a stride of 2. Layer three has 3x3 weight kernels, 256

filters, and a stride of 1. Following these layers are a fully connected layer of 1024 nodes,

followed by a softmax layer for classification.

A.1.3 Implementation Details

Random seeds were set to zero for the Tensorflow backend and Numpy. Batch sizes were 256

and 128 for MNIST and CIFAR, respectively. Weights for all layers were initialized using the

Xavier Uniform Initialization. The source code for all experiments has been made publicly

available at: https://github.com/Learning-In-The-Machine/Weight-Sharing

95

https://github.com/Learning-In-The-Machine/Weight-Sharing

CNN FCN

MNIST

Convolutional(3x3,32,2) Free Convolutional(3x3,32,2)
Convolutional(3x3,64,2) Free Convolutional(3x3,64,2)
Convolutional(3x3,128,1) Free Convolutional(3x3,128,1)
Fully Connected(1024) Fully Connected(1024)

Softmax(10) Softmax(10)

Learning Rate: 10−3 Learning Rate: 10−3

CIFAR

Convolutional(5x5,64,2) Free Convolutional(5x5,64,2)
Convolutional(5x5,128,2) Free Convolutional(5x5,128,2)
Convolutional(3x3,256,1) Free Convolutional(3x3,256,1)
Fully Connected(1024) Fully Connected(1024)

Softmax(10) Softmax(10)

Learning Rate: 10−4 Learning Rate: 10−4

Table A.2: Architecture specification resulting from the grid search. The format for con-
volutional layers is (kernel size, number of output channels, stride). All layers, except the
output, use ReLU activations.

A.2 Other Augmentation Methods

To examine the necessity of translational datasets, additional experiments were conducted

using noise and rotational augmentation during training. The hypothesis being that only

translational data is sufficient to endow FCNs with translational invariant recognition. The

full results for edge noise, noise, and rotation augmentation can be found in Tables B.1, B.2,

and B.3, respectively.

Training using other augmentation methods that do not produce translational invariant

datasets yield poor results when testing on the translationally augmented validation set.

This result indicates that only translationally augmented training data allows FCNs to learn

translationally invariant representations. Using translationally invariant datasets yields bet-

ter results in validation set and augmented validation set accuracy, specifically in FCNs.

96

A.2.1 Edge Noise

Augmentation with edge noise represents adding Gaussian noise to the periphery of an image.

For experiments in this paper, the periphery is defined as the 5 pixels bordering an image (for

both CIFAR and MNIST). This type of augmentation serves to test the network’s resiliency

to noise on the fringe. For datasets like MNIST and CIFAR that contain the object of

interest in center focus, this noise is unlikely to corrupt the object. Figure B.1 shows the

effect of edge noise on the periphery, starting from zero noise, Figure B.1a, up to a standard

deviation of 0.99, Figure B.1k.

Figure A.1: Examples of edge noise augmentation on MNIST. (a) 0 variance noise, equivalent
to a un-altered MNIST image. (b-k) Gradually increasing the variance of noise augmentation
by .1 each time.

A.2.2 Noise

Augmentation with noise represents adding Gaussian noise to the image. This type of

augmentation serves to test the network’s resiliency to noise corruption. Figure B.2 shows

the effect of edge noise on the periphery, starting from zero noise, Figure B.2a, up to a

standard deviation of 0.99, Figure B.2k.

97

MNIST CIFAR
Validation Acc Translation Acc Validation Acc Translation Acc

Aug % CNN FCN CNN FCN CNN FCN CNN FCN

0.00 0.99054 0.98807 0.36654 0.37229 0.67108 0.64733 0.44456 0.43347
0.10 0.99100 0.98786 0.36263 0.37666 0.64475 0.62633 0.42742 0.42179
0.20 0.98921 0.98714 0.35503 0.37587 0.63567 0.62375 0.42288 0.42011
0.30 0.98943 0.98714 0.35113 0.36777 0.62992 0.62350 0.41944 0.41986
0.40 0.98950 0.98750 0.34368 0.36053 0.61225 0.62342 0.40835 0.41952
0.50 0.98864 0.98664 0.34107 0.35236 0.60917 0.62167 0.40348 0.41734
0.60 0.98893 0.98750 0.33550 0.34968 0.59083 0.61617 0.39365 0.41541
0.70 0.98843 0.98707 0.33565 0.34650 0.59308 0.61558 0.39415 0.41473
0.80 0.98821 0.98671 0.33200 0.34165 0.58392 0.61375 0.38794 0.41322
0.90 0.98800 0.98679 0.33377 0.33970 0.58058 0.60925 0.38458 0.41112
0.99 0.98829 0.98650 0.32986 0.33767 0.57383 0.60996 0.37912 0.41053

Table A.3: Edge noise results. Median accuracy of un-augmented validation and transla-
tion augmented validation set. The left most column denotes the amount variance of noise
used during training. When performing translational augmentation on the validation set,
25% augmentation was used throughout the experiments. Bold values indicate the highest
performing model in that accuracy metric for CNN and FCN, respectively.

MNIST CIFAR
Validation Acc Translation Acc Validation Acc Translation Acc

Aug % CNN FCN CNN FCN CNN FCN CNN FCN

0.00 0.99054 0.98807 0.36654 0.37229 0.67108 0.64733 0.44456 0.43347
0.10 0.99000 0.98750 0.35757 0.37004 0.63092 0.63425 0.41507 0.41919
0.20 0.98957 0.98779 0.35880 0.37410 0.59258 0.61825 0.39037 0.40381
0.30 0.99007 0.98829 0.36328 0.36957 0.56258 0.59404 0.37433 0.38899
0.40 0.98979 0.98879 0.35793 0.36769 0.53521 0.56983 0.35652 0.37576
0.50 0.98964 0.98857 0.35084 0.34990 0.51142 0.55075 0.34232 0.36794
0.60 0.98900 0.98836 0.33623 0.33261 0.48083 0.53192 0.32451 0.35685
0.70 0.98807 0.98750 0.31854 0.31782 0.44858 0.50850 0.30612 0.34341
0.80 0.98614 0.98586 0.30433 0.30136 0.42417 0.47683 0.29255 0.32502
0.90 0.98407 0.98350 0.29080 0.28516 0.41179 0.44933 0.28642 0.30855
0.99 0.98164 0.98086 0.27590 0.27235 0.38250 0.40042 0.27050 0.28154

Table A.4: Noise results. Median accuracy of un-augmented validation and translation aug-
mented validation set. The left most column denotes the amount variance of noise used
during training. When performing translational augmentation on the validation set, 25%
augmentation was used throughout the experiments. Bold values indicate the highest per-
forming model in that accuracy metric for CNN and FCN, respectively.

98

Figure A.2: Examples of noise augmentation on MNIST. (a) 0 variance noise, equivalent to
a un-altered MNIST image. (b-k) Gradually increasing the variance of noise augmentation
by .1 each time.

A.2.3 Quadrant Swap

Using the convention from Cartesian geometry, quadrant I and III of images are swapped.

This type of image deformation serves to test the networks reliance on features as opposed

to global structure. The hypothesis being that because of CNNs shared weight paradigm,

the location of features matters less opposed to the presence of the feature itself. Conversely,

FCN filters can only operate locally within their receptive field, rendering the global structure

of the image essential.

To test this hypothesis, features of images need to be manipulated in such a way to compro-

mise the overall structure of the image but preserve individual features. Figure B.3 shows a

visual example of the swap procedure.

The results from this task, shown in Figure 2.6, indicate CNNs score a higher accuracy on

Quadrant swapped images compared to FCNs. This indicates that CNNs are still able to

recognize features of the altered images when making their prediction. This bolsters the

notion that the overall structure of an image is less important for a CNN as opposed to the

99

FCN, that performs nearly 20% worse. In this task, a lower score indicates higher importance

on the global structure.

Figure A.3: Quadrant swap on MNIST. (a) Un-augmented image. (b) Quadrant swap
augmentation. Where quadrant I is replaced with quadrant III and III with I

A.2.4 Rotation

Rotation augmentation is accomplished via rotating images clockwise about the center point.

Figure B.4 shows the effect of rotating an MNIST image from 0%, Figure B.4a, up through

99%, Figure B.4k. Table B.3 displays the results of training networks with rotation augmen-

tation.

A.2.5 Approximate Weight-Sharing

The distance between weight kernels within an FCN layer was measured during training with

other types of augmentation. This experiment tests if translation augmentation is the cause

of approximate weight-sharing in FCNs. Figure B.6 and B.7 show the results of training

with rotation and noise augmentation, respectively.

100

Figure A.4: Examples of rotation augmentation on MNIST. (a) 0% rotation, equivalent to a
un-altered MNIST image. (b-k) Gradually increasing the degree rotation by 10% each time.

The results show that for all augmentation settings of rotation, the distance between filters

increases over time. Additionally, in noise augmented training, the average Euclidean dis-

tance increases in all cases except very high values of noise (0.8, 0.9, 0.99). Indicating this

increase in filter similarity is due to the high noise levels across the image. This is confirmed

visually by examining Figure B.2i, B.2j, and B.2k. Also, the decrease in euclidean distance

for noise is not as dramatic as observed for translation, Figure 2.5.

A.3 Variable Connection Patterns

Also implemented in this study are neurons with variable connection patterns in FCNs. At

the start of training, a chosen percentage of weights are randomly set to 0, representing

the absence of a dendritic connection. These missing weights do not contribute to the

output of the layer, and their values are not updated during backpropagation. The resulting

connection patterns are maintained throughout training and testing. There are multiple

options for implementing neurons with variable connection patterns. For computational

simplicity, the implementation used in this paper is to turn off connections within each

101

MNIST CIFAR
Validation Acc Translation Acc Validation Acc Translation Acc

Aug % CNN FCN CNN FCN CNN FCN CNN FCN

0.00 0.99054 0.98807 0.36654 0.37229 0.67108 0.64733 0.44456 0.43347
0.10 0.99079 0.98836 0.38527 0.37753 0.68233 0.65500 0.48660 0.46211
0.20 0.98907 0.98571 0.36372 0.35055 0.65746 0.62608 0.47450 0.44766
0.30 0.98779 0.98436 0.33587 0.30107 0.64708 0.61000 0.47106 0.43364
0.40 0.98636 0.98329 0.32147 0.28877 0.63625 0.59767 0.46455 0.42981
0.50 0.98439 0.98114 0.32183 0.29492 0.62242 0.58550 0.46337 0.42465
0.60 0.98400 0.97979 0.32154 0.29854 0.61533 0.57458 0.45682 0.41919
0.70 0.98336 0.97864 0.32060 0.29337 0.60717 0.57100 0.44750 0.41465
0.80 0.98236 0.97786 0.31547 0.29015 0.60875 0.56567 0.44758 0.40961
0.90 0.98071 0.97686 0.31040 0.28566 0.59958 0.55767 0.44414 0.40692
0.99 0.98350 0.97975 0.32429 0.29239 0.61842 0.58108 0.46102 0.42221

Table A.5: Rotation results. Median accuracies of un-augmented validation and transla-
tion augmented validation set. The left most column denotes the percentage of rotation
used during training. When performing translational augmentation on the validation set,
25% augmentation was used throughout the experiments. Bold values indicate the highest
performing model in that accuracy metric for CNN and FCN, respectively.

Figure A.5: Filters at a specified radius. (a) Filters at radius 1 from the desired filter,
marked by an X. (b) Filters at radius 4 from the desired filter, marked by an X.

square filter given some probability. In simulations, we vary the probability from 0 to 99%

by increments of 10%. The results from these simulations are reported in Figure C.1 and

C.2 for MNIST and CIFAR, respectively. Both datasets use 30% translational augmentation

102

Figure A.6: Euclidean distance between filters of an FCN layer, trained on MNIST with
rotation augmentation. (a) Average euclidean distance between filters one unit away. i.e. all
adjacent filters in the layer. (b) Average euclidean distance between filters four units away.

Figure A.7: Euclidean distance between filters of an FCN layer, trained on MNIST with
noise augmentation. (a) Average euclidean distance between filters one unit away. i.e. all
adjacent filters in the layer. (b) Average euclidean distance between filters four units away.

for these experiments.

The variable connection probability is varied from 0% to 99% as indicated by the legend

(VCP %). The results shown in Figure C.1 and C.2 were trained using 20% translation

augmentation. Accuracy on the validation set indicates FCNs are robust to even large

103

amounts of missing connections. Even when 80% of connections are absent, the FCN is able

to perform comparably well on both MNIST and CIFAR. FCNs are shown to be robust to

a high degree of missing connections. Performance degrades rapidly beyond 90%.

104

Figure A.8: FCNs trained with variable connection patterns on MNIST. The legends indicate
the probability of absent dentritic connections in a FCN filter. (a) Accuracy on translation
augmented training set, 30% translations. (b) Accuracy on the un-augmented validation
set. (c) Accuracy on the translation augmented validation set, using 25% translations. (d)
Accuracy on the rotation augmented validation set. (e) Accuracy on the noise augmented
validation set. (f) Accuracy on the edge noise augmented validation set.

105

Figure A.9: FCNs trained with variable connection patterns on CIFAR. The legends indicate
the probability of absent dentritic connections in a FCN filter. (a) Accuracy on translation
augmented training set, 30% translations. (b) Accuracy on the un-augmented validation
set. (c) Accuracy on the translation augmented validation set, using 25% translations. (d)
Accuracy on the rotation augmented validation set. (e) Accuracy on the noise augmented
validation set. (f) Accuracy on the edge noise augmented validation set.

106

Bibliography

[1] Fortran, Mar. 2011.

[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Tal-
war, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine
learning on heterogeneous systems, 2015. Software available from tensorflow.org.

[3] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, et al. Tensorflow: A system for large-scale machine learning.
In 12th Symposium on Operating Systems Design and Implementation 2016), pages
265–283, 2016.

[4] R. Abiri, S. Borhani, E. W. Sellers, Y. Jiang, and X. Zhao. A comprehensive review
of eeg-based brain–computer interface paradigms, topical review, journal of neural
engineering. Journal of Neural Engineering, 16(1):011001, 2019.

[5] F. Agostinelli, S. McAleer, A. Shmakov, and P. Baldi. Solving the rubik’s cube with
deep reinforcement learning and search. Nature Machine Intelligence, 1(8):356–363,
2019.

[6] M. ai Li, W. Zhu, H. na Liu, and J.-F. Yang. Adaptive feature extraction of motor
imagery eeg with optimal wavelet packets and se-isomap. Applied Sciences, 7:390,
2017.

[7] H. U. Amin, A. Malik, R. F. Ahmad, N. Badruddin, N. Kamel, M. Hussain, and W.-
T. Chooi. Feature extraction and classification for eeg signals using wavelet transform
and machine learning techniques. Australasian Physical & Engineering Sciences in
Medicine, 38, 02 2015.

[8] K. Ang, Z. Chin, H. Zhang, and C. Guan. Filter bank common spatial pattern (fbcsp)
in brain-computer interface. pages 2390 – 2397, 07 2008.

[9] K. Ang, K. Chua, K. S. Phua, C. Wang, Z. Chin, C. Kuah, W. Low, and C. Guan.
A randomized controlled trial of eeg-based motor imagery brain-computer interface

107

robotic rehabilitation for stroke. Clinical EEG and neuroscience: official journal of
the EEG and Clinical Neuroscience Society (ENCS), 46:310–320, 10 2015.

[10] K. K. Ang, Z. Y. Chin, C. C. Wang, C. Guan, and H. Zhang. Filter bank common
spatial pattern algorithm on bci competition iv datasets 2a and 2b. Frontiers in
Neuroscience, 6, 2012.

[11] F. Archambeau, N. Méchitoua, and M. Sakiz. Code Saturne: A Finite Vol-
ume Code for the computation of turbulent incompressible flows - Industrial Ap-
plications. International Journal on Finite Volumes, 1(1):http://www.latp.univ–
mrs.fr/IJFV/spip.php?article3, Feb. 2004.

[12] A. Aurisano, A. Radovic, D. Rocco, A. Himmel, M. Messier, E. Niner, G. Pawloski,
F. Psihas, A. Sousa, and P. Vahle. A convolutional neural network neutrino event
classifier. Journal of Instrumentation, 11(09):P09001, 2016.

[13] O. Bai, V. Rathi, P. Lin, D. Huang, H. Battapady, D.-Y. Fei, L. Schneider, E. Hou-
dayer, X. Chen, and M. Hallett. Prediction of human voluntary movement before it
occurs. Clinical neurophysiology : official journal of the International Federation of
Clinical Neurophysiology, 122:364–72, 02 2011.

[14] P. Baldi. Deep Learning in Science. Cambridge University Press, 2021.

[15] P. Baldi, K. Bauer, C. Eng, P. Sadowski, and D. Whiteson. Jet substructure clas-
sification in high-energy physics with deep neural networks. Physical Review D,
93(9):094034, 2016.

[16] P. Baldi and Y. Chauvin. Neural networks for fingerprint recognition. Neural Compu-
tation, 5(3):402–418, 1993.

[17] P. Baldi, Z. Lu, and P. Sadowski. Learning in the machine: the symmetries of the deep
learning channel. Neural Networks, 95:110–133, 2017.

[18] P. Baldi, Z. Lu, and P. Sadowski. Learning in the machine: Random backpropa-
gation and the deep learning channel. Artificial Intelligence, 260:1–35, 2018. Also:
arXiv:1612.02734.

[19] P. Baldi and P. Sadowski. The dropout learning algorithm. Artificial Intelligence,
210C:78–122, 2014.

[20] P. Baldi and P. Sadowski. The dropout learning algorithm. Artificial intelligence,
210:78–122, 2014.

[21] P. Baldi and P. Sadowski. A theory of local learning, the learning channel, and the
optimality of backpropagation. Neural Networks, 2016. To appear.

[22] P. Baldi and P. Sadowski. Learning in the machine: Recirculation is random back-
propagation. Neural Networks, 108:479–494, 2018.

108

[23] P. Baldi, P. Sadowski, and Z. Lu. Learning in the machine: The symmetries of the
deep learning channel. Neural Networks, 95:110–133, 2017.

[24] P. Baldi, P. Sadowski, and Z. Lu. Learning in the machine: Random backpropagation
and the deep learning channel. Artificial intelligence, 260:1–35, 2018.

[25] Y. Bar-Sinai, S. Hoyer, J. Hickey, and M. P. Brenner. Learning data-driven discretiza-
tions for partial differential equations. Proceedings of the National Academy of Sciences,
116(31):15344–15349, 2019.

[26] S. Bartunov, A. Santoro, B. Richards, L. Marris, G. E. Hinton, and T. Lillicrap. Assess-
ing the scalability of biologically-motivated deep learning algorithms and architectures.
In Advances in Neural Information Processing Systems, pages 9368–9378, 2018.

[27] J. Bergstra, D. Yamins, and D. D. Cox. Hyperopt: A python library for optimizing the
hyperparameters of machine learning algorithms. In Proceedings of the 12th Python in
science conference, pages 13–20. Citeseer, 2013.

[28] J. Bernal. Neurbt: A program for computing neural networks for classification using
batch learning, 02 2015.

[29] J. Bernal and J. Torres-Jimenez. Sagrad: A program for neural network training with
simulated annealing and the conjugate gradient method. Journal of research of the
National Institute of Standards and Technology, 120:113, 06 2015.

[30] R. F. Betzel, M. A. Bertolero, E. M. Gordon, C. Gratton, N. U. F. Dosenbach, and D. S.
Bassett. The community structure of functional brain networks exhibits scale-specific
patterns of inter- and intra-subject variability. NeuroImage, 202, 2019.

[31] T. Beucler, M. Pritchard, S. Rasp, P. Gentine, J. Ott, and P. Baldi. Enforcing
analytic constraints in neural-networks emulating physical systems. arXiv preprint
arXiv:1909.00912, 2020.

[32] T. Beucler, M. Pritchard, S. Rasp, J. Ott, P. Baldi, and P. Gentine. Enforcing analytic
constraints in neural networks emulating physical systems. Physical Review Letters,
126(9):098302, 2021.

[33] B. Blankertz, G. Dornhege, M. Krauledat, K.-R. Müller, and G. Curio. The non-
invasive berlin brain–computer interface: Fast acquisition of effective performance in
untrained subjects. NeuroImage, 37:539–550, 2007.

[34] L. Börgesson. Abaqus. In Developments in geotechnical engineering, volume 79, pages
565–570. Elsevier, 1996.

[35] N. D. Brenowitz, T. Beucler, M. Pritchard, and C. S. Bretherton. Interpreting and
stabilizing machine-learning parametrizations of convection, 2020.

[36] N. D. Brenowitz and C. S. Bretherton. Prognostic validation of a neural network unified
physics parameterization. Geophysical Research Letters, 45(12):6289–6298, 2018.

109

[37] P. Brierley. Fortran90 mlp backprop code.

[38] J. Bromley, J. W. Bentz, L. Bottou, I. Guyon, Y. LeCun, C. Moore, E. Sackinger,
and R. Shah. Signature verification using a siamese time delay neural network. In-
ternational Journal of Pattern Recognition and Artificial Intelligence, 7(4), August
1993.

[39] B. Brooks, R. Bruccoleri, B. Olafson, D. States, S. Swaminathan, and M. Karplus.
Charmm: A program for macromolecular energy, minimization, and dynamics calcu-
lations. Journal of Computational Chemistry, 4:187 – 217, 09 2004.

[40] C. Brunner, R. Leeb, G. Müller-Putz, A. Schlögl, and G. Pfurtscheller. Bci compe-
tition 2008–graz data set a. Institute for Knowledge Discovery (Laboratory of Brain-
Computer Interfaces), Graz University of Technology, 16:1–6, 2008.

[41] C. F. Cadieu, H. Hong, D. L. K. Yamins, N. Pinto, D. Ardila, E. A. Solomon, N. J.
Majaj, and J. J. DiCarlo. Deep neural networks rival the representation of primate it
cortex for core visual object recognition. PLOS Computational Biology, 2014.

[42] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio. Learning phrase representations using rnn encoder-decoder for statistical
machine translation. arXiv preprint arXiv:1406.1078, 2014.

[43] F. Chollet. Deep Learning mit Python und Keras: Das Praxis-Handbuch vom Entwick-
ler der Keras-Bibliothek. MITP-Verlags GmbH & Co. KG, 2018.

[44] F. Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

[45] D. Cireş, A. Giusti, L. M. Gambardella, and J. Schmidhuber. Deep neural networks
segment neuronal membranes in electron microscopy images. In Advances in neural
information processing systems, pages 2843–2851, 2012.

[46] G. Cisotto, A. Zanga, J. Chlebus, I. Zoppis, S. Manzoni, and U. Markowska-Kaczmar.
Comparison of attention-based deep learning models for eeg classification. ArXiv,
abs/2012.01074, 2020.

[47] J. Contreras-Vidal, A. Presacco, H. Agashe, and A. Paek. Restoration of whole body
movement toward a noninvasive brain-machine interface system. IEEE pulse, 3:34–7,
01 2012.

[48] A. Craik, Y. He, and J. Contreras-Vidal. Deep learning for electroencephalogram (eeg)
classification tasks: A review. Journal of Neural Engineering, 16, 02 2019.

[49] Y. L. Cun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel.
Handwritten digit recognition with a back-propagation network. In D. Touretzky,
editor, Advances in Neural Information Processing Systems, pages 396–404. Morgan
Kaufmann, San Mateo, CA, 1990.

110

https://github.com/fchollet/keras

[50] M. Curcic. A parallel fortran framework for neural networks and deep learning. In
ACM SIGPLAN Fortran Forum, volume 38, pages 4–21. ACM, 2019.

[51] G. Dai, J. Zhou, J. Huang, and N. Wang. Hs-cnn: A cnn with hybrid convolution scale
for eeg motor imagery classification. Journal of Neural Engineering, 17, 09 2019.

[52] J. Daly and J. Wolpaw. Brain-computer interfaces in neurological rehabilitation. Lancet
neurology, 7:1032–43, 11 2008.

[53] F. P. de Lange. Neural mechanisms of motor imagery. 2008.

[54] M. A. Donelan, M. Curcic, S. S. Chen, and A. K. Magnusson. Modeling waves and
wind stress. Journal of Geophysical Research: Oceans, 117(C11), 2012.

[55] B. Edelman, B. Baxter, and B. He. Eeg source imaging enhances the decoding of com-
plex right hand motor imagery tasks. IEEE transactions on bio-medical engineering,
63, 08 2015.

[56] B. J. Edelman, J. Meng, D. Suma, C. Zurn, E. Nagarajan, B. S. Baxter, C. C. Cline,
and B. He. Noninvasive neuroimaging enhances continuous neural tracking for robotic
device control. Science Robotics, 4, 2019.

[57] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun.
Dermatologist-level classification of skin cancer with deep neural networks. Nature,
542(7639):115–118, 2017.

[58] F. Fahimi, Z. Zhang, B. Goh, T.-S. Lee, K. Ang, and C. Guan. Inter-subject transfer
learning with end-to-end deep convolutional neural network for eeg-based bci. Journal
of Neural Engineering, 16, 11 2018.

[59] J. Faller, J. Cummings, S. Saproo, and P. Sajda. Regulation of arousal via online
neurofeedback improves human performance in a demanding sensory-motor task. Pro-
ceedings of the National Academy of Sciences of the United States of America, 116:6482
– 6490, 2019.

[60] A. Ferrari, P. Sala, A. Fasso, and J. Ranft. Fluka: a multi-particle transport code.
CERN Yellow report, 2005-10, 01 2005.

[61] K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism
of pattern recognition unaffected by shift in position. Biological cybernetics, 36(4):193–
202, 1980.

[62] D. J. Gagne, C.-C. Chen, and A. Gettelman. Emulation of bin microphysical processes
with machine learning. In 100th American Meteorological Society Annual Meeting.
AMS, 2020.

[63] D. J. Gagne, T. McCandless, B. Kosovic, A. DeCastro, R. Loft, S. E. Haupt, and
B. Yang. Machine learning parameterization of the surface layer: Bridging the
observation-modeling gap. AGUFM, 2019:IN44A–04, 2019.

111

[64] D. J. Gagne II, H. M. Christensen, A. C. Subramanian, and A. H. Monahan. Machine
learning for stochastic parameterization: Generative adversarial networks in the lorenz
’96 model. Journal of Advances in Modeling Earth Systems, 12(3):e2019MS001896,
2020. e2019MS001896 10.1029/2019MS001896.

[65] T. Gandhi, B. Panigrahi, and S. Anand. A comparative study of wavelet families for
eeg signal classification. Neurocomputing, 74:3051–3057, 10 2011.

[66] P. Gaur, R. B. Pachori, H. Wang, and G. Prasad. An empirical mode decomposition
based filtering method for classification of motor-imagery eeg signals for enhancing
brain-computer interface. 2015 International Joint Conference on Neural Networks
(IJCNN), pages 1–7, 2015.

[67] P. Gaur, R. B. Pachori, H. Wang, and G. Prasad. A multi-class eeg-based bci classifica-
tion using multivariate empirical mode decomposition based filtering and riemannian
geometry. Expert Syst. Appl., 95:201–211, 2018.

[68] P. Gentine, M. Pritchard, S. Rasp, G. Reinaudi, and G. Yacalis. Could machine learn-
ing break the convection parameterization deadlock? Geophysical Research Letters,
45(11):5742–5751, 2018.

[69] J.-C. Golaz, P. M. Caldwell, L. P. Van Roekel, M. R. Petersen, Q. Tang, J. D. Wolfe,
G. Abeshu, V. Anantharaj, X. S. Asay-Davis, D. C. Bader, et al. The doe e3sm coupled
model version 1: Overview and evaluation at standard resolution. Journal of Advances
in Modeling Earth Systems, 11(7):2089–2129, 2019.

[70] W. W. Grabowski. Coupling cloud processes with the large-scale dynamics using
the cloud-resolving convection paramaterization (CRCP). Journal of the Atmospheric
Sciences, 58(9):978–997, 2001.

[71] V. Gulshan, L. Peng, M. Coram, M. C. Stumpe, D. Wu, A. Narayanaswamy, S. Venu-
gopalan, K. Widner, T. Madams, J. Cuadros, et al. Development and validation of
a deep learning algorithm for detection of diabetic retinopathy in retinal fundus pho-
tographs. Jama, 316(22):2402–2410, 2016.

[72] K. G. Hartmann, R. T. Schirrmeister, and T. Ball. Eeg-gan: Generative adversarial
networks for electroencephalograhic (eeg) brain signals. ArXiv, abs/1806.01875, 2018.

[73] B. He, B. Baxter, B. Edelman, C. Cline, and W. Ye. Noninvasive brain-computer
interfaces based on sensorimotor rhythms. Proceedings of the IEEE, 103:907–925, 06
2015.

[74] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
arXiv preprint arXiv:1512.03385, 2015.

[75] I. Held, H. Guo, A. Adcroft, J. Dunne, L. Horowitz, J. Krasting, E. Shevliakova,
M. Winton, M. Zhao, M. Bushuk, et al. Structure and performance of gfdl’s cm4. 0
climate model. Journal of Advances in Modeling Earth Systems, 11(11):3691–3727,
2019.

112

[76] L. Hertel, J. Collado, P. Sadowski, and P. Baldi. Sherpa: Hyperparameter optimization
for machine learning models. 2018.

[77] L. Hertel, J. Collado, P. Sadowski, J. Ott, and P. Baldi. Sherpa: Robust hyperparam-
eter optimization for machine learning. SoftwareX, 12:100591, 2020.

[78] L. Hertel, J. Collado, P. Sadowski, J. Ott, and P. Baldi. Sherpa: Robust hyperparam-
eter optimization for machine learning. Submitted to SoftwareX, 2020.

[79] L. Hertel, J. Collado, P. Sadowski, J. Ott, and P. Baldi. Sherpa: Robust hyperparam-
eter optimization for machine learning. SoftwareX, 12:100591, 2020.

[80] D. J. Herzfeld and R. Shadmehr. Motor variability is not noise, but grist for the
learning mill. Nature Neuroscience, 17:149–150, 2014.

[81] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[82] C. Honey, J.-P. Thivierge, and O. Sporns. Can structure predict function in the human
brain? computational models of the brain. NeuroImage, 52:766–76, 09 2010.

[83] D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex. The Journal of physiology, 160(1):106, 1962.

[84] J. W. Hurrell, M. M. Holland, P. R. Gent, S. Ghan, J. E. Kay, P. J. Kushner, J.-F.
Lamarque, W. G. Large, D. Lawrence, K. Lindsay, et al. The community earth system
model: a framework for collaborative research. Bulletin of the American Meteorological
Society, 94(9):1339–1360, 2013.

[85] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[86] Y.-N. Jan and L. Y. Jan. Branching out: mechanisms of dendritic arborization. Nat
Rev Neurosci, 11(5):316–328, 05 2010.

[87] M. Jeannerod. Mental imagery in the motor context. Neuropsychologia, 33:1419–1432,
1995.

[88] G.-Q. Jiang, J. Xu, and J. Wei. A deep learning algorithm of neural network for the
parameterization of typhoon-ocean feedback in typhoon forecast models. Geophysical
Research Letters, 45(8):3706–3716, 2018.

[89] M. Jianjun, S. Zhang, A. Bekyo, J. Olsoe, B. Baxter, and B. He. Noninvasive elec-
troencephalogram based control of a robotic arm for reach and grasp tasks. Scientific
Reports, 6, 12 2016.

[90] V. Jurcak, D. Tsuzuki, and I. Dan. 10/20, 10/10, and 10/5 systems revisited: Their
validity as relative head-surface-based positioning systems. NeuroImage, 34:1600–1611,
2007.

113

[91] Kaggle. 2018 kaggle ml & ds survey, 2018.

[92] Kaggle. State of data science and machine learning 2019, 2019.

[93] M. Kayala and P. Baldi. Reactionpredictor: Prediction of complex chemical reactions
at the mechanistic level using machine learning. Journal of Chemical Information and
Modeling, 52(10):2526–2540, 2012.

[94] J. Kevric and A. Subasi. Comparison of signal decomposition methods in classification
of eeg signals for motor-imagery bci system. Biomed. Signal Process. Control., 31:398–
406, 2017.

[95] M. Khairoutdinov, C. DeMott, and D. Randall. Evaluation of the simulated interan-
nual and subseasonal variability in an amip-style simulation using the csu multiscale
modeling framework. Journal of Climate, 21(3):413–431, 2008.

[96] M. Khairoutdinov, D. Randall, and C. DeMott. Simulations of the atmospheric gen-
eral circulation using a cloud-resolving model as a superparameterization of physical
processes. Journal of the Atmospheric Sciences, 62(7):2136–2154, 2005.

[97] D. Komatitsch, J.-P. Vilotte, J. Tromp, J.-P. Ampuero, K. Bai, P. Basini, C. Blitz,
E. Bozdag, E. Casarotti, J. Charles, M. Chen, P. Galvez, D. Goddeke, V. Hjor-
leifsdottir, J. Labarta, N. Le Goff, P. Le Loher, M. Lefebvre, Q. Liu, Y. Luo,
A. Maggi, F. Magnoni, R. Martin, R. Matzen, D. McRitchie, M. Meschede, P. Mess-
mer, D. Michea, S. Nadh Somala, T. Nissen-Meyer, D. Peter, M. Rietmann, E. de An-
drade, B. Savage, B. Schuberth, A. Sieminski, L. Strand, C. Tape, Z. Xie, and H. Zhu.
Specfem3d cartesian v2.0.2 [software], 2012.

[98] B. Koo, H.-G. Lee, Y. Nam, H. Kang, C. S. Koh, H.-C. Shin, and S. Choi. A hybrid
nirs-eeg system for self-paced brain computer interface with online motor imagery.
Journal of neuroscience methods, 244, 05 2014.

[99] A. Krizhevsky, V. Nair, and G. Hinton. Cifar-10 (canadian institute for advanced
research).

[100] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105, 2012.

[101] N. LaHaye, J. Ott, M. J. Garay, H. M. El-Askary, and E. Linstead. Multi-modal object
tracking and image fusion with unsupervised deep learning. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 12(8):3056–3066, 2019.

[102] D. Lary, M. Müller, and H. Mussa. Using neural networks to describe tracer correla-
tions. Atmospheric Chemistry and Physics, 4(1):143–146, 2004.

[103] E. Lashgari, D. Liang, and U. Maoz. Data augmentation for deep-learning-based
electroencephalography. Journal of Neuroscience Methods, 346, 2020.

114

[104] E. Lashgari and U. Maoz. Electromyography classification during reach-to-grasp mo-
tion using manifold learning, 07 2020.

[105] E. Lashgari, J. Ott, A. Connelly, P. Baldi, and U. Maoz. An end-to-end cnn with
attentional mechanism applied to raw eeg in a bci classification task. Journal of Neural
Engineering, 18(4):0460e3, 2021.

[106] E. Lashgari, A. Pouya, and U. Maoz. Decoding object weight from electromyography
during human grasping, 03 2021.

[107] V. Lawhern, A. Solon, N. Waytowich, S. Gordon, C. Hung, and B. Lance. Eegnet:
A compact convolutional network for eeg-based brain-computer interfaces. Journal of
Neural Engineering, 15, 11 2016.

[108] Y. LeCun and C. Cortes. MNIST handwritten digit database. 2010.

[109] D.-H. Lee, S. Zhang, A. Fischer, and Y. Bengio. Difference target propagation. In
Joint european conference on machine learning and knowledge discovery in databases,
pages 498–515. Springer, 2015.

[110] D.-Y. Lee, J.-H. Jeong, K.-H. Shim, and S.-W. Lee. Decoding movement imagination
and execution from eeg signals using bci-transfer learning method based on relation
network. pages 1354–1358, 05 2020.

[111] R. Leeb, C. Brunner, G. Müller-Putz, A. Schlögl, and G. Pfurtscheller. Bci competition
2008–graz data set b. Graz University of Technology, Austria, pages 1–6, 2008.

[112] Y. Li, X. Zhang, B. Zhang, M.-Y. Lei, W.-G. Cui, and Y.-Z. Guo. A channel-projection
mixed-scale convolutional neural network for motor imagery eeg decoding. IEEE Trans-
actions on Neural Systems and Rehabilitation Engineering, 27:1170–1180, 2019.

[113] T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman. Random synaptic feed-
back weights support error backpropagation for deep learning. Nature communications,
7:13276, 2016.

[114] J. Ling, A. Kurzawski, and J. Templeton. Reynolds averaged turbulence modelling
using deep neural networks with embedded invariance. Journal of Fluid Mechanics,
807:155–166, 2016.

[115] J. Liu, J. Ott, J. Collado, B. Jargowsky, W. Wu, J. Bian, and P. Baldi. Deep-learning-
based kinematic reconstruction for dune. arXiv preprint arXiv:2012.06181, 2020.

[116] F. Lotte and C. Guan. Regularizing common spatial patterns to improve bci designs:
Unified theory and new algorithms. IEEE Transactions on Biomedical Engineering,
58:355–362, 2011.

[117] M. Lotze, H. Flor, W. Grodd, W. Larbig, and N. Birbaumer. Phantom movements
and pain. an fmri study in upper limb amputees. Brain : a journal of neurology, 124
Pt 11:2268–77, 2001.

115

[118] N. Lu, T. Li, X. Ren, and H. Miao. A deep learning scheme for motor imagery
classification based on restricted boltzmann machines. IEEE Transactions on Neural
Systems and Rehabilitation Engineering, 25:1–1, 08 2016.

[119] S. Luck. An Introduction to the Event-Related Potential Technique. A Bradford Book.
MIT Press, 2014.

[120] L. Luis and J. Gomez-Gil. Brain computer interfaces, a review. Sensors (Basel,
Switzerland), 12:1211–79, 12 2012.

[121] J. Luo, Z. Feng, J. Zhang, and N. Lu. Dynamic frequency feature selection based
approach for classification of motor imageries. Computers in biology and medicine,
75:45–53, 2016.

[122] S. Machado, L. Almada, and R. N. Annavarapu. Progress and prospects in eeg-based
brain-computer interface: Clinical applications in neurorehabilitation. Journal of Re-
habilitation Robotics, 2013:28–41, 01 2013.

[123] E. Madenci and I. Guven. The finite element method and applications in engineering
using ANSYS®. Springer, 2015.

[124] I. Majidov and T. K. Whangbo. Efficient classification of motor imagery electroen-
cephalography signals using deep learning methods. Sensors (Basel, Switzerland), 19,
2019.

[125] D. McFarland, W. Sarnacki, and J. Wolpaw. Electroencephalographic (eeg) control of
three-dimensional movement. Journal of neural engineering, 7:036007, 06 2010.

[126] D. Mcfarland and J. Wolpaw. Brain-computer interfaces for communication and con-
trol. Communications of the ACM, 54:60–66, 05 2011.

[127] M. Mirza and S. Osindero. Conditional generative adversarial nets. ArXiv,
abs/1411.1784, 2014.

[128] G. Mooers, M. Pritchard, T. Beucler, J. Ott, G. Yacalis, P. Baldi, and P. Gentine.
Assessing the potential of deep learning for emulating cloud superparameterization
in climate models with real-geography boundary conditions. Journal of Advances in
Modeling Earth Systems, 13(5):e2020MS002385, 2021.

[129] V. Morash, O. Bai, S. Furlani, P. Lin, and M. Hallett. Classifying eeg signals pre-
ceding right hand, left hand, tongue, and right foot movements and motor imageries.
Clinical neurophysiology : official journal of the International Federation of Clinical
Neurophysiology, 119:2570–8, 11 2008.

[130] K. Mrini, F. Dernoncourt, T. Bui, W. Chang, and N. Nakashole. Rethink-
ing self-attention: An interpretable self-attentive encoder-decoder parser. ArXiv,
abs/1911.03875, 2019.

116

[131] S. Mueller, D. Wang, M. D. Fox, B. T. T. Yeo, J. Sepulcre, M. R. Sabuncu, R. Shafee,
J. Lu, and H. Liu. Individual variability in functional connectivity architecture of the
human brain. Neuron, 77:586–595, 2013.

[132] T. Mulder. Motor imagery and action observation: Cognitive tools for rehabilitation.
Journal of neural transmission (Vienna, Austria : 1996), 114:1265–78, 02 2007.

[133] Y. D. Murray et al. Users manual for ls-dyna concrete material model 159. Technical
report, United States. Federal Highway Administration. Office of Research . . . , 2007.

[134] I. K. Niazi, N. Jiang, M. Jochumsen, J. F. Nielsen, K. Dremstrup, and D. Farina. De-
tection of movement-related cortical potentials based on subject-independent training.
Medical & Biological Engineering & Computing, 51:507 – 512, 2012.

[135] S. Nissen. Implementation of a fast artificial neural network library (fann). 12 2003.

[136] D. J. Ostry and P. L. Gribble. Sensory plasticity in human motor learning. Trends in
Neurosciences, 39:114–123, 2016.

[137] J. Ott. Questions to guide the future of artificial intelligence research. arXiv preprint
arXiv:1912.10305, 2019.

[138] J. Ott, A. Atchison, P. Harnack, A. Bergh, and E. Linstead. A deep learning approach
to identifying source code in images and video. In 2018 IEEE/ACM 15th International
Conference on Mining Software Repositories (MSR), pages 376–386. IEEE, 2018.

[139] J. Ott, A. Atchison, P. Harnack, N. Best, H. Anderson, C. Firmani, and E. Linstead.
Learning lexical features of programming languages from imagery using convolutional
neural networks. In 2018 IEEE/ACM 26th International Conference on Program Com-
prehension (ICPC), pages 336–3363. IEEE, 2018.

[140] J. Ott, A. Atchison, and E. J. Linstead. Exploring the applicability of low-shot learning
in mining software repositories. Journal of Big Data, 6(1):1–10, 2019.

[141] J. Ott, D. Bruyette, C. Arbuckle, D. Balsz, S. Hecht, L. Shubitz, and P. Baldi. Detect-
ing pulmonary coccidioidomycosis with deep convolutional neural networks. Machine
Learning with Applications, 5:100040, 2021.

[142] J. Ott, E. Linstead, N. LaHaye, and P. Baldi. Learning in the machine: To share or
not to share? Neural Networks, 126:235–249, 2020.

[143] J. Ott, M. Pritchard, N. Best, E. Linstead, M. Curcic, and P. Baldi. A fortran-keras
deep learning bridge for scientific computing. Scientific Programming, 2020, 2020.

[144] M. Parvan, A. R. Ghiasi, T. Y. Rezaii, and A. Farzamnia. Transfer learning based
motor imagery classification using convolutional neural networks. 2019 27th Iranian
Conference on Electrical Engineering (ICEE), pages 1825–1828, 2019.

[145] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer. Automatic differentiation in pytorch. 2017.

117

[146] J. W. L. Paul F. Fischer and S. G. Kerkemeier. nek5000 Web page, 2008.
http://nek5000.mcs.anl.gov.

[147] G. Pfurtscheller and F. Lopes da Silva. Event-related eeg-meg synchronization and
desynchronization: Basic principles. Clin. Neurophysiol., 72:250–258, 01 1999.

[148] G. Pfurtscheller and C. Neuper. Neuper, c.: Motor imagery activates primary senso-
rimotor area in humans. neurosci. lett. 239, 65-68. Neuroscience letters, 239:65–8, 01
1998.

[149] J. G. Powers, J. B. Klemp, W. C. Skamarock, C. A. Davis, J. Dudhia, D. O. Gill,
J. L. Coen, D. J. Gochis, R. Ahmadov, S. E. Peckham, G. A. Grell, J. Michalakes,
S. Trahan, S. G. Benjamin, C. R. Alexander, G. J. Dimego, W. Wang, C. S. Schwartz,
G. S. Romine, Z. Liu, C. Snyder, F. Chen, M. J. Barlage, W. Yu, M. G., and Duda.
The weather research and forecasting model: Overview, system efforts, and future
directions. Bulletin of the American Meteorological Society, 98(8):1717–1737, 2017.

[150] M. S. Pritchard, C. S. Bretherton, and C. A. DeMott. Restricting 32–128 km hori-
zontal scales hardly affects the mjo in the superparameterized community atmosphere
model v. 3.0 but the number of cloud-resolving grid columns constrains vertical mixing.
Journal of Advances in Modeling Earth Systems, 6(3):723–739, 2014.

[151] A. J. Quinn, D. Vidaurre, R. G. Abeysuriya, R. Becker, A. C. Nobre, and M. W.
Woolrich. Task-evoked dynamic network analysis through hidden markov modeling.
Frontiers in Neuroscience, 12, 2018.

[152] A. Radford and K. Narasimhan. Improving language understanding by generative
pre-training. 2018.

[153] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational Physics, 378:686–707, 2019.

[154] S. Rasp. Online learning as a way to tackle instabilities and biases in neural network
parameterizations. arXiv preprint arXiv:1907.01351, 2019.

[155] S. Rasp, M. S. Pritchard, and P. Gentine. Deep learning to represent subgrid processes
in climate models. Proceedings of the National Academy of Sciences, 115(39):9684–
9689, 2018.

[156] H. Raza, H. Cecotti, Y. Li, and G. Prasad. Adaptive learning with covariate shift-
detection for motor imagery-based brain–computer interface. Soft Computing, 20:3085–
3096, 2016.

[157] Y. Rezaeitabar and U. Halici. A novel deep learning approach for classification of eeg
motor imagery signals. Journal of Neural Engineering, 14:016003, 02 2017.

[158] S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz. Data-driven discovery of
partial differential equations. Science Advances, 3(4):e1602614, 2017.

118

[159] C. Ruffino, C. Papaxanthis, and F. Lebon. Neural plasticity during motor learning with
motor imagery practice: Review and perspectives. Neuroscience, 341:61–78, 2017.

[160] Z. Ruilong, Z. Qun, L. Dou, and Z. Xinyi. A novel hybrid deep learning scheme for
four-class motor imagery classification. Journal of neural engineering, 2019.

[161] J. F. D. Saa and M. Çetin. A latent discriminative model-based approach for clas-
sification of imaginary motor tasks from eeg data. Journal of neural engineering, 9
2:026020, 2012.

[162] M. T. Sadiq, X. Yu, Z. Yuan, Z. Fan, A. ur Rehman, G. Li, and G. Xiao. Motor
imagery eeg signals classification based on mode amplitude and frequency components
using empirical wavelet transform. IEEE Access, 7:127678–127692, 2019.

[163] M. T. Sadiq, X. Yu, Z. Yuan, F. Zeming, A. ur Rehman, I. Ullah, G. Li, and G. Xiao.
Motor imagery eeg signals decoding by multivariate empirical wavelet transform-based
framework for robust brain–computer interfaces. IEEE Access, 7:171431–171451, 2019.

[164] P. Sadowski, B. Radics, Ananya, Y. Yamazaki, and P. Baldi. Efficient antihydrogen
detection in antimatter physics by deep learning. Journal of Physics Communications,
1(2):025001, 2017.

[165] S. Saha and M. Baumert. Intra- and inter-subject variability in eeg-based sensorimotor
brain computer interface: A review. Frontiers in Computational Neuroscience, 13,
2019.

[166] S. Saha and M. Baumert. Intra- and inter-subject variability in eeg-based sensorimotor
brain computer interface: A review. Frontiers in Computational Neuroscience, 13, 12
2019.

[167] M. Salvaris and P. Haggard. Decoding intention at sensorimotor timescales. PloS one,
9:e85100, 02 2014.

[168] A. Samadi, T. P. Lillicrap, and D. B. Tweed. Deep learning with dynamic spiking
neurons and fixed feedback weights. Neural computation, 29(3):578–602, 2017.

[169] R. T. Schirrmeister, J. T. Springenberg, L. D. J. Fiederer, M. Glasstetter,
K. Eggensperger, M. Tangermann, F. Hutter, W. Burgard, and T. Ball. Deep learning
with convolutional neural networks for eeg decoding and visualization. Human Brain
Mapping, 38(11):5391–5420, 2017.

[170] J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks,
61:85–117, 2015.

[171] L. Schneider, E. Houdayer, O. Bai, and M. Hallett. What we think before a voluntary
movement. Journal of cognitive neuroscience, 25, 01 2013.

119

[172] M. Schultze-Kraft, D. Birman, M. Rusconi, C. Allefeld, K. Görgen, S. Dähne,
B. Blankertz, and J.-D. Haynes. The point of no return in vetoing self-initiated move-
ments. proceedings of the national academy of sciences of the united states of america.,
113, 12 2015.

[173] M. Seghier and C. Price. Interpreting and utilising intersubject variability in brain
function. Trends in Cognitive Sciences, 22, 03 2018.

[174] S. Shahid and G. Prasad. Bispectrum-based feature extraction technique for devising
a practical brain-computer interface. Journal of neural engineering, 8 2:025014, 2011.

[175] P. Shaw, J. Uszkoreit, and A. Vaswani. Self-attention with relative position represen-
tations. In NAACL, 2018.

[176] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of
go with deep neural networks and tree search. nature, 529(7587):484, 2016.

[177] S. M. Smith, E. P. Duff, A. R. Groves, T. E. Nichols, S. Jbabdi, L. T. Westlye, C. K.
Tamnes, A. Engvig, K. B. Walhovd, A. M. Fjell, H. Johansen-Berg, and G. Douaud.
Structural variability in the human brain reflects fine-grained functional architecture
at the population level. The Journal of Neuroscience, 39:6136 – 6149, 2019.

[178] J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimization of machine
learning algorithms. In Advances in neural information processing systems, pages 2951–
2959, 2012.

[179] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout:
a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

[180] R. K. Srivastava, K. Greff, and J. Schmidhuber. Training very deep networks. In
Advances in Neural Information Processing Systems, pages 2368–2376, 2015.

[181] M. Stanfield, J. Ott, C. Gardner, N. F. Beier, D. M. Farinella, C. A. Mancuso, P. Baldi,
and F. Dollar. Real-time reconstruction of high energy, ultrafast laser pulses using deep
learning. Scientific Reports, 12(1):1–11, 2022.

[182] A. Suwannarat, S. Pan-ngum, and P. Israsena. Comparison of eeg measurement of
upper limb movement in motor imagery training system. BioMedical Engineering
OnLine, 17, 08 2018.

[183] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. Going deeper with convolutions. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 1–9, 2015.

[184] W.-k. Tam, R. K.-Y. Tong, F. Meng, and X. Gao. A minimal set of electrodes for
motor imagery bci to control an assistive device in chronic stroke subjects: A multi-
session study. IEEE transactions on neural systems and rehabilitation engineering : a

120

publication of the IEEE Engineering in Medicine and Biology Society, 19:617–27, 12
2011.

[185] Z. Tayeb, J. Fedjaev, N. Ghaboosi, C. Richter, L. Everding, X. Qu, Y. Wu, G. Cheng,
and J. Conradt. Validating deep neural networks for online decoding of motor imagery
movements from eeg signals. Sensors (Basel, Switzerland), 19, 2019.

[186] N. S. Team. NEMO ocean engine.

[187] K. Thayer-Calder and D. A. Randall. The role of convective moistening in the madden–
julian oscillation. Journal of the Atmospheric Sciences, 66(11):3297–3312, 2009.

[188] J. Tompson, M. Stein, Y. Lecun, and K. Perlin. Real-time continuous pose recovery of
human hands using convolutional networks. ACM Transactions on Graphics (ToG),
33(5):169, 2014.

[189] S. Tortora, S. Ghidoni, C. Chisari, S. Micera, and F. Artoni. Deep learning-based
bci for gait decoding from eeg with lstm recurrent neural network. Journal of neural
engineering, 2020.

[190] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spatiotemporal
features with 3d convolutional networks. In Proceedings of the IEEE international
conference on computer vision, pages 4489–4497, 2015.

[191] G. Urban, P. Tripathi, T. Alkayali, M. Mittal, F. Jalali, W. Karnes, and P. Baldi.
Deep Learning Achieves near Human-level Polyp Detection in Screening Colonoscopy.
Gastroenterology, 2018. In press.

[192] G. Urban, P. Tripathi, T. Alkayali, M. Mittal, F. Jalali, W. Karnes, and P. Baldi.
Deep Learning Achieves near Human-level Polyp Detection in Screening Colonoscopy.
Gastroenterology, 155(4):1069–1078, 2018.

[193] M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, H. J. J. Van Dam,
D. Wang, J. Nieplocha, E. Apra, T. L. Windus, and W. A. de Jong. Nwchem: a
comprehensive and scalable open-source solution for large scale molecular simulations.
Computer Physics Communications, 181(9):1477–1489, 2010.

[194] A. Vaswani, N. M. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin. Attention is all you need. ArXiv, abs/1706.03762, 2017.

[195] H. R. Vega-Carrillo, V. M. Hernández-Dávila, E. Manzanares-Acuña, G. A. Mercado,
E. Gallego, A. Lorente, W. A. Perales-Muñoz, and J. A. Robles-Rodŕıguez. Artificial
neural networks in neutron dosimetry. Radiation Protection Dosimetry, 118(3):251–
259, 10 2005.

[196] A. Wallcraft, H. Hurlburt, E. Metzger, J. Cummings, E. Chassignet, and O. Smedstad.
Global ocean prediction using hycom. pages 259–262, 07 2007.

121

[197] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus. Regularization of neural
networks using dropconnect. In International Conference on Machine Learning, pages
1058–1066, 2013.

[198] J. Wang, H. Ding, F. Azamian, B. Zhou, C. Iribarren, S. Molloi, and P. Baldi. Detecting
cardiovascular disease from mammograms with deep learning. IEEE Transactions on
Medical Imaging, 36(5):1172–1181, 2017.

[199] J. Wang, Z. Fang, N. Lang, H. Yuan, M.-Y. Su, and P. Baldi. A multi-resolution ap-
proach for spinal metastasis detection using deep siamese neural networks. Computers
in Biology and Medicine, 84:137–146, 2017.

[200] S. Wang, W. Liu, J. Wu, L. Cao, Q. Meng, and P. J. Kennedy. Training deep neural
networks on imbalanced data sets. 2016 International Joint Conference on Neural
Networks (IJCNN), pages 4368–4374, 2016.

[201] F. R. Willett, D. T. Avansino, L. R. Hochberg, J. M. Henderson, and K. V.
Shenoy. High-performance brain-to-text communication via handwriting. Nature, 593
7858:249–254, 2021.

[202] D. Wu, Y. Xu, and B.-L. Lu. Transfer learning for eeg-based brain-computer inter-
faces: A review of progress made since 2016. IEEE Transactions on Cognitive and
Developmental Systems, PP:1–1, 07 2020.

[203] D. L. K. Yamins, H. Hong, C. F. Cadieu, E. A. Solomon, D. Seibert, and J. J. DiCarlo.
Performance-optimized hierarchical models predict neural responses in higher visual
cortex. Proceedings of the National Academy of Sciences, 111(23):8619–8624, 2014.

[204] B. Yang, C. Fan, C. Guan, X. Gu, and M. Zheng. A framework on optimization strategy
for eeg motor imagery recognition. 2019 41st Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC), pages 774–777, 2019.

[205] Y. Yang, S. Chevallier, J. Wiart, and I. Bloch. Time-frequency selection in two bipolar
channels for improving the classification of motor imagery eeg. Conference proceedings :
... Annual International Conference of the IEEE Engineering in Medicine and Biology
Society. IEEE Engineering in Medicine and Biology Society. Conference, 2012:2744–7,
08 2012.

[206] H. Yuan and B. He. Brain-computer interfaces using sensorimotor rhythms: Current
state and future perspectives. IEEE transactions on bio-medical engineering, 61:1425–
35, 05 2014.

[207] A. Zabidi, W. Mansor, Y. K. Lee, and C. Fadzal. Short-time fourier transform analysis
of eeg signal generated during imagined writing. pages 1–4, 09 2012.

[208] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning
requires rethinking generalization. ArXiv, abs/1611.03530, 2017.

122

[209] G. Zhang, V. Davoodnia, A. Sepas-Moghaddam, Y. Zhang, and A. Etemad. Classifi-
cation of hand movements from eeg using a deep attention-based lstm network. IEEE
Sensors Journal, 20:3113–3122, 2020.

[210] H. Zhang, X. Zhao, Z. Wu, B. Sun, and T. Li. Motor imagery recognition with
automatic eeg channel selection and deep learning. Journal of Neural Engineering, 18,
2020.

[211] K. Zhang, N. Robinson, S.-W. Lee, and C. Guan. Adaptive transfer learning for eeg
motor imagery classification with deep convolutional neural network. Neural Networks,
136, 12 2020.

[212] Q. Zhang and Y. Liu. Improving brain computer interface performance by data aug-
mentation with conditional deep convolutional generative adversarial networks. ArXiv,
abs/1806.07108, 2018.

[213] X. Zhang, Z. Wang, D. Liu, and Q. Ling. Dada: Deep adversarial data augmentation
for extremely low data regime classification. ICASSP 2019 - 2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 2807–2811,
2019.

[214] Z. Zhang, F. Duan, J. Solé-Casals, J. Dinarès-Ferran, A. Cichocki, Z. Yang, and Z. Sun.
A novel deep learning approach with data augmentation to classify motor imagery
signals. IEEE Access, 7:15945–15954, 2019.

[215] Q. Zheng, F. Zhu, and P.-A. Heng. Robust support matrix machine for single trial eeg
classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering,
26:551–562, 2018.

[216] X. X. Zhu, D. Tuia, L. Mou, G.-S. Xia, L. Zhang, F. Xu, and F. Fraundorfer. Deep
learning in remote sensing: A comprehensive review and list of resources. IEEE Geo-
science and Remote Sensing Magazine, 5(4):8–36, 2017.

[217] C. Zich, S. Debener, C. Kranczioch, M. G. Bleichner, I. Gutberlet, and M. D. Vos.
Real-time eeg feedback during simultaneous eeg–fmri identifies the cortical signature
of motor imagery. NeuroImage, 114:438–447, 2015.

[218] D. Zipser and R. A. Andersen. A back-propagation programmed network that simulates
response properties of a subset of posterior parietal neurons. Nature, 331(6158):679–
684, 1988.

123

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Contributions
	Climate Modeling
	Software Libraries
	Physics
	Biomedical Applications
	Theoretical Deep Learning

	Learning in the Machine: To Share or Not to Share?
	Introduction
	Origins and Functions of Weight-Sharing
	Free Convolutional Networks
	Data and Methods
	Networks
	Variable Connection Patterns

	Results
	Is weight-sharing necessary to prevent overfitting?
	Is weight-sharing necessary to ensure translational invariant recognition?
	Can acceptable performance be achieved without weight-sharing?
	Does approximate or exact weight-sharing emerge in a natural way?
	For What Learning Tasks Are Free Convolutional Networks Most Applicable?
	Is weight-sharing necessary?
	If weight-sharing is not necessary, are translational invariant training sets necessary?

	Conclusion

	A Fortran-Keras Deep Learning Bridge for Scientific Computing
	Introduction
	Fortran Projects
	The Python Anchor (Deep Learning)
	The Fortran Anchor (Scientific Computing)
	Features of FKB
	FKB/P
	FKB/F

	Case Study
	Conclusion

	An end-to-end CNN with attentional mechanism applied to raw EEG in a BCI classification task
	Introduction
	Related work
	Methods
	Proposed CNN-based neural-network architecture
	Hyperparameter Optimization and Training
	Data augmentation
	Dataset and experimental protocol

	Channel selection
	Results
	Performance of the proposed CNN (Neural architectures vs. Neural architectures)
	Properties of our collected dataset
	Motor Imagery vs. Motor Execution
	Channel selection
	Data Augmentation
	Different portions of dataset
	Combination of participants' EEG signals
	Leave-one-participant out and transfer learning

	Discussion

	Conclusion
	Appendix
	Experimental Settings
	Hyperparameter Search
	Network Architectures
	Implementation Details

	Other Augmentation Methods
	Edge Noise
	Noise
	Quadrant Swap
	Rotation
	Approximate Weight-Sharing

	Variable Connection Patterns

	Bibliography

