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Abstract

Understanding Long-term Storage Access Patterns

by

lan F. Adams

The past two decades have seen an explosion in both the growth anafloleg-term
digital archival storage. While the traditional role of tertiary storage awemve has persisted,
there are many new use-cases as well, such as public historical docantigmes and climate
sensor data. Yet, despite this expansion, our understanding of langsterage is out of date.
We have no insights into how these new archival use-cases behaweyemour understanding
of tertiary storage behavior is decades old. Without up-to-date informatioheir behavior we
cannot validate the effectiveness of both current and future aichighitectures.

To address this issue, in my thesis we explore a variety of new and oldarcisie
cases ranging from public historical data archives to private HPC testiarage systems. In our
investigations, we found three primary results that held true across &wvafiarchives. First,
we found that the oft-quoted “Write-once, Read-maybe” assumption wastignable in light
of unpredictable users and system generated requests, calling intmqules effectiveness of
architectures that assume data is cold and immutable. Second, we obseaityed tiontrast
to enterprise storage, there was not a clear subset of files respdositriest activity, making
caching ineffective from the perspective of the archive. Third, swe that aggregate accesses
were largely unpredictable, but individual users showed strong loadligcess which can be
leveraged to reduce the number of media accesses and improve oveteih gfficiency.

The latter portion of my thesis is informed by the difficulties in analyzing the variou
archival datasets we obtained. We found that a lack of knowledge ataaat’'scoveragewhat
actions were and were not captured, caused most of our difficultieapfeached this problem
by developing a method we cakpectation differencer ExDiff. ExDiff uses a combination of
metadata snapshots and access logs to derive an expected systemtstateltbacompared to
actual metadata. Differences between the expected state and realityeprinad as to what is
and is not being captured in any given log. This coverage data caredg¢asnprove a variety

of storage system tasks ranging from trace analysis to debugging amsiantdetection.
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Chapter 1

Introduction

Obsolescence never meant the end of anything, it's just the
beginning.

Marshall McLuhan

Recent years have seen an explosion in the number of archival ses bayond
traditional tertiary storage and backup [46, 55, 64, 73, 74]. Govemhnegulations such as the
Health Insurance Portability and Accountability Act (HIPAA) legally requdega to be safely
stored and retrievable for decades or longer [41]. There are alsmaang number of public
content archives accessible via the Internet serving a wide rangeaf @heses new archives
range from state run historical document repositories, like those runashMgton, Oregon
and New York [59, 75, 84], to state and federal level climate sensorstiattes [21, 57]. There
are also now scholarly publication archives [53], personal conggruisitories storing data such
as photos and videos [58] and even entire websites being stored terifgoat the Internet
Archive [45].

In spite of this proliferation of new archives, we have little informatiorhomwthese
archives are actually used and behave in the real world. This leads fiosthaf two primary
guestions we seek to address in this thegigt does modern archival storage system behavior
look like? To answer this question, we examine the architecture and usage of a \@riety
archival storage systems. We explore the real-world usage behé&tiar mew class of publicly
accessible archival systems as well as re-examine more traditional scigattii@ry storage
systems. The latter is representative of the older, narrower view akalstorage.



As one of the primary contributions of my thesis, our study of real-worldyeidze-
haviors provides data and architectural suggestions (summarized lielbeiter tailor future
designs to actual system usage, providing for improvements in perfoemafficiency and
reliability. Without studies like like those provided in this thesis we are left wgykinder
assumptions and speculation which can lead to unpredictable system lbghavio

One difficulty that plagued us throughout our analyses was the myopicfigystem
behavior provided in several of our traces. For example, we disedwda out-of-band com-
munication with the Washington State Digital Archives administrators that intedrégking
processes were not loggekt accounted for over 99% of accesses to the systenanother
example, when we studied a repository of water sensor reports, wevelisdathat files were
being silently renamed. Given that we relied on the file name to uniquely idené&g; tiur
analysis was wildly inaccurate until we compensated for the missed renamefedt, what
we were lacking in our datasets was an understanding afdherageof the trace, what activi-
ties were and were not being captured during the tracing period. An ifeteanynderstanding
of coverage can cause significant damage, ranging from making g@fateable multi-year
dataset unusable, to silently corrupting an analysis. This leads to thedsggestion we seek
to answer in this thesidhiow can we identify the coverage of a tracB® answer this question,
we explore black-box methods (out method does not explicitly require laagges in instru-
mentation of a system) using metadata snapshots and file level traces to hélfy idbat a
given trace captures and misses.

Our work in answering the question of identifying log coverage has peovadnew
methodology for understanding storage system traces. It has applicati@mly to research,
but to a variety of other common tasks in computer science and administratigingsrom

intrusion detection and debugging, to performance analysis and task guditin

1.1 Archival Workload Analyses

A lack of understanding in the usage patterns of modern archives heedfoe-
searchers and designers to rely on outdated or marginally related infonreatib as enterprise
workload studies, and even flat-out conjecture to model archivalmystdavior. For example,
in our own peer-reviewed published work examining energy use invaicttorage systems we

had no more than educated guesses as to what archival workloadsok#ikéd7]. If and when
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such unfounded assumptions prove false, the archival systems elésigder such guesswork
may have unpredictable or even pathological behavior under real wealge scenarios.

Even our understanding of the older, traditional view of archival giias simply a
tertiary storage system is out of date, despite their continued use in mangitPénterprise
environments. The most recent studies of long-term storage systemidreaee of super-
computing systems from nearly two decades ago in the early 1990s [465S5%]e then, we
have seen three orders of magnitude growth in the scale and performfastcgage systems
across all areas. For example, in Miller and Katz’s 1993 study of the N@#&Rive [55], 25
terabytes (TBs) of storage was considered massive, and it was gtoneatily on tape. In
the present (2012/2013), purely disk-based systems of tens to lgnafrd@Bs are common.
Petabyte scale disk systems are becoming more common as well with the growtduaf c
storage services. How this massive increase in scale and accessibiitphhas not—shifted
usage patterns is largely unknown, and correspondingly our knoeletitnow appropriate
particular architectures and methods used in tertiary storage actually iswnkn

To address this gap in our knowledge, we examine the architecture agesusia
variety of archival storage systems. We explore the real-world uselygvior of several of the
new publicly accessible archival systems as well as re-examine more tnatlgicentific ter-
tiary storage systems. The study of real-world usage behaviors is impbetause it allows us
and others to better tailor future designs to the actual system usage, alfowingprovements
in performance, efficiency and reliability. For example, a good undetstgrof a system’s
workload can inform the caching technique to be used. Converselkingounder incorrect
assumptions can lead to unpredictable system behaviors.

For example, consider a tape based system designed under the dozthetyghival
assumption of write-once, read-maybe. If this assumption holds the syslidikely perform
well; tapes excel at streaming writes and appends, and the low likelihooedE mreduces
the impact of tape’s poor random-read performance. However, if tteerdguires periodic
updates and reads are relatively more common and random, systenmaaréerand efficiency
may drop due to tape seek times. In the worst case scenario we may ewsueotshoe-
shining” where reads and writes fall below the designed transfer ratedfe’s heads, leading
to repeated seeks with many rapid rewinds and fast-forwards of a taeretuces the life of
the drive, the life of the tape, and the maximum data density a tape may obtain [69]



Another example of undesirable system behavior that could potentiallit fesm
incorrect usage assumptions is illustrated by the Pergamum system [e6drddtors of Perga-
mum predicate their energy efficiency gains on the assumption—with no dagéekdlis as-
sumption up—that an archival workload is likely to have many writes and a éwsitly of read
accesses thus minimizing disk spin-ups. If this assumption does not holdesuea#y not real-
ize their energy efficiency claims and may see excessive power-cytlkbgio storage devices,
increasing wear and reducing the long-term reliability of the system.

To close this knowledge gap we examine the behavior of several publiaeegssi-
ble content archives: the Washington State Digital Archives [75] aeg@sitory of water table
reports—such as ground water levels and salinity—maintained by the Caifoapartment
of Water Resources [21]. We found the variety of long-term storagecases exhibit a cor-
respondingly wide range of behaviors well beyond that demonstrateldeén t@rtiary storage
studies. This highlights a danger in over-generalizing the view of theailcstiorage space,
and suggests that more studies on a variety of systems are needed.

However, even with the variability we have observed, our results haudisant im-
plications on archival system design and there were several garemds. Commonly held
assumptions such as write-once, read-maybe and how “cold” arafétalremains are now
being called into question. Systems that explicitly rely on the write-once regberassump-
tion, such as Chronopolis [56] and MAID [25], may exhibit unpredictdi#bavior when data
is accessed more frequently than the system was designed for. We sgwamggnmass ac-
cesses from integrity checking processes and external indexéras@oogle, suggesting new
batch interfaces are needed to address high-volume, low-sensitivdgsascto archives. Such
interfaces would allow providers to easily schedule potentially disruptigcesses, while still
providing low-latency access to smaller individual users. We also haesl strong per user-
session content preferences, suggesting that physically grougigylaemantic content may
be beneficial.

In the second portion of my thesis focusing on workload analysis, we egssnian-
tific tertiary storage systems to bring our knowledge of their behavior uptéo ttas important
to re-investigate these systems as our current understanding of théralssolete. The most
recent study (other than our own) of tertiary storage behavior was igetthe 1990s [55]. In the
intervening time, we have seen multiple order of magnitude increases in bottelkeo§ HPC



storage as well as the processing power of the computers themsevierFsaientific tertiary
storage represents a significantly different use case from the publierdarchives described
above.

Our initial investigation was on data obtained from Los Alamos National Labora
(LANL). In the LANL dataset—comprised of daily histograms of file system miata—we
found that, despite the vast increase in scale and the shift to more dislcsytstems, when
compared to prior archival super-computing studies aggregate modificates and patterns
appeared similar. We also found strong temporal and namespace locality thcatmhs,
though the coarse granularity of our LANL data limited our analysis. Toideomore detailed
and comprehensive results, we obtained a multi-year dataset from N@ARhH contained
detailed per-file activities from January 2008 through the end of Dece2@i®.

In our NCAR study we found several results of note, providing usdifelction in un-
derstanding what are potentially beneficial or harmful design decisighsegards to archives.
First, like our public archive studies, we wanted to explore the notion of write, read-maybe.
We found that from the system perspective, write-once, read-maytegastly false. In any
long-term storage system, and NCAR was no exception, files will be migratégdatentially
integrity checked, leading to inevitable reads and writes. From the usygméive, write-once,
read-maybe has been weakened. Over three years, non-triviakensiobfiles were deleted
(13%) and updated (5%) after ingest into the archive. This tells us tlyaigeon immutability
for fundamental architectural decisions may be dangerous. In exanfil@ragnd user-session
locality of access we found that users tend to restrict their activities to a soiadket of the
namespace with most accesses in a given session occurring at the sectarydepth. This
suggests that using directories as a heuristic for physical groupingtafrday prove useful,
especially for offline media such as tape where random accessegaresme. We also found
that most repeat accessess to a file, if they occur at all, tend to occur witkiatively short
period of each other, showing that basic write caching can still be béeiefic

1.2 Identifying Workload Coverage

As touched on above, a constant problem in our analyses has beerstanding
precisely what actions were being captured and omitted in any given tdeelats coverage.

For example, in our study of accesses to a repository or water senspmaadiscoverethy
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accidenf that files were being silently renamed. Since our only method of identifying adie
by its name, we found our unique file count was 200% high, and comeéspgly we had been
inaccurately mapping actions to files that didn’t actually exist. It was only wdthiaistrator

expertise that this problem was caught. Without this expert knowledge auédvihhave been
completely unaware that our results, and likely our conclusions, wererégato As another
example, in all of our workload datasets we frequently saw unexplairgabdn activity. We

were unable to tell if these drops were logger failures, if the underlyisteay was down, or
even if it was a legitimate reduction in user activity. As such, these activitysdoecome null
data and could not be used to aid in any analysis.

While our original motivation for tackling the coverage problem was in aidag r
searchers studying long-term traces, storage system logs have aasiely wf applications.
Correspondingly, incorrect knowledge of log coverage can neggtimfluence many applica-
tions as well. Consider, for example, the myriad general administration tesks#ke use of
storage system logs such as performance tuning and troubleshootiadod@ing process is
silently malfunctioning an administrator may spend time diagnosing a problem thahese,
or conversely a problem that is present may be missed due to poor gevefarmation.

Our solution to the problem of identifying coverage is to use file level traoés a
POSIX metadata snapshots in combination with a methodology wexqadctation differencing
or ExDiff. The idea is to use a trace log as a delta to an initial snapshot, roughly amslwgo
replaying a metadata journal to bring a file system to a consistent state. Basedat is
observed in the trace, the metadata snapshot is used to what deriveeehqiectthe metadata
state of the system to look like. Then this expected state can be compareddalityscurrent
metadata snapshot) of the system. The differences between the two capetlaaalyzed,
providing clues as to why types of actions are being omitted, as well as aididgritifying
logger gapsij.e. periods when the system being traced continues to function, but enteies ar
being consistently dropped.

With the development of expectation differencing, we contribute to manyreifte
groups. Researchers can better understand the limitations of the datag¢hegriing with.
Similarly, system administrators have an additional tool for diagnosing isgitigis their sys-
tems. ExDiff can even be used in the development of new systems to enauadl the neces-

sary areas have been properly instrumented.



In our evaluation we show that density based clustering can be used toaically
identify gaps in coverage, though its accuracy is strongly influencedebydture of the work-
load. Repeat accesses to the same file or record in a short period of timeas& missing log
entries. This can be mitigated by having shorter periods of time betweerhetapptures, as
well as having multiple distinct timestamps per file to correlate actions with. We atsotblat
missing a particular type of entry, such as a file create or rename, crgaa€scalarsignature

that can be used in analyzing a log’s coverage.

1.3 Thesis Overview

The rest of my thesis is dedicated to providing the background and expficegéded
for answering our two thesis questionshat does modern archival storage system behavior
look like? And how can we identify the coverage of a trace?

Chapter 2 provides background and related work helping motivate tliefaeeur
studies and tools, as well as defining terminology to provide concision argistency in our
work. In Chapter 3 we look at access and update behavior in modelinlp@zcessible content
archives from several sources. Chapter 4 examines the evolutidseaadior of tertiary storage
systems. Chapter 5 provides a combined, high-level analysis of all ofvotkload studies
as well as meta-advice lead in to our log coverage work. In Chapter 6 s@ible our log
validation techniques used for identifying coverage, and proof ofejrevaluations. Chapter 7

explores future work directions, and in Chapter 8 we conclude.



Chapter 2

Background and Motivation

Since | don't have any credible sources of what happened
next, I'm going to go off of the next best thing: hearsay and
rumor

George “Maddox” Ouzounian

The purpose of this chapter is to present the necessary backgmmmext, and re-
lated work for understanding and further motivating our investigation intg-tenm storage
as well as our interest in examining log validation techniques. First, we bggiefining the
terminology we will be using within our analyses. Second, we define whatean by archival
storage. This is necessary as it has become an increasingly overtatiedbulous term as the
field has grown. Third, we examine a variety of prior workload studiessgstems to motivate
the need for new studies, and highlight some of the techniques we basravuif own stud-
ies. Finally, fourth, we look at a variety of current system tracing, mainigorand forensics
techniques to illustrate the lack of exploration in the space of log coverabeadidation.

2.1 Lexicon

To begin, we establish a set of concise terminology definitions, summarizestin T
ble 2.1, that we use throughout this thesis.
An individual element in a set of archival data igexord or file. This may be an

object, bitstream, or even a literal SQL record. Itis at this level that thedblereel actions may



occur, such as record creation, updates, deletes and queriesreeaoth may havenetadata

associated with it such as timestamps, provenance, category data, awthsdNe refer to a
collection of records as eorpus and a copy of that corpus as emstance The hardware and
software used to store an instance of the corpus iatti@ve An individual archive may store
multiple corpora.

Long data lifetimes and relatively short refresh cycles found in modedwaae and
software dictate that a corpus will reside on several archives over etaré. It is vitally
important to note the distinction between the corpus and the archive itself.uggrd and
processes will act upon the corpus, while the archive’s hardwaksaftware provide the ability
with which to do so.

A traceor log (we use the terms interchangeably) is a list of timestamped activities
taken on a corpus’s records. We refer to each individual loggedtgicis anaction An action
is a single operation on one file, such as a read or record createloddmr or tracer write
actions that have been captured to a log or trace filen@pshotis a static view of the state of
a corpus at a single point in time. Generally this snapshot is of the file ordreretadata, such
as modification timestamps or file path.

We assume a logged action always accurately reflects a change in tha.syste
action that is not logged islag omission There are two types of omissionsissesanddrops
An action that is not logged because it was never captured is a missed detioexample, a
missed action can come from a developer failing to add a call to the loggingrsyAtdropped
action is where an action that is normally logged does not produce a log éntgntiguous
period of dropped entries is referred to agag. For example, dropped entries and gaps can be
the result of a crashed logging process.

We refer to the aggregate body of knowledge about a systensksteh A sketch
includes trace logs, profiles, record metadata, communication with systéiteats and ad-
ministrators and even information about the user base and interface. Tbheange of this
aggregate view cannot be overstated. System architect and adminisisggbits into the sys-
tem design and behavior can have drastic impact upon the interpretatisgsiean’s workload.
They have intimate knowledge of background processes and scriptathakplain oddities or
omissions in system behavior not readily apparent from logs and tradigisout this knowl-
edge, one is often left with a significantly degraded picture of what is letuacuring within a



Term Defintion

Record or File | smallest manipulatable element, may have associated metadata
Corpus collection of records

Archive combination of hardware and software used to store a corpus
Accessibility | who may access records, may be public, private, or mixed

Sketch body of knowledge, including traces, logs and personal communications
Trace/Log a timestamped list of actions taken upon a corpus

Action a single operation taken on a record or file

Snapshot a static view of the state of a corpus

Log Omission | an action of interest that has not been captured

Miss an omitted action that was not instrumented for capture
Drop an action that is normally captured that is omitted
Gap a contiguous period of dropped action entries

Table 2.1: Terminology overview.

system. For example, the interface presented to users can have an inmghabt.skilled users
may be able to circumvent a clunky interface, thus changing the perogitédbad. The same
interface with relatively unskilled users, such as might be found usindbcpaccess archive,
may in contrast exhibit unintentionally pathological behavior.

We also distinguish at a high level thecessibilityof a given system, that is, who may
access the records. public archive has its records accessible to anyone through the Internet.
A privatearchive is one that has a restricted set of users who may accessdhisre® private
archive may still be Internet accessible, but restricted to a particularalaser, such as climate
scientist or a legal team. Wixedaccess archive is one that has a mixture of public and private

records.

2.2 What is Archival Storage?

There are many use cases that now fall into the realm of archival stofagdition-

ally, archival storage has been considered the tertiary storage laywer inemory/storage hier-
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Primary Storage
Examples:
CPU Cache
Main Memory

Secondary Storage
Examples:

Internal Hard Disk and SSD
Network Storage Devices
MAID(?)

Tertiary Storage

Examples:
Tape Libraries and Robots
Optical Jukeboxes
MAID(?)

Figure 2.1: An illustration of a typical storage hierarchy in a computing systems. bbttom
of the hierarchy typically has the slowest, lowest cost-per-bit storalgie tie top is relatively
expensive, but very fast storage. We include MAID in both the seagnahd tertiary layers as
it blurs the distinction between the two by providing faster performance thawdb its disk
based approach, but at the cost of spin-down and file migration fordeméd

archy, illustrated in Figure 2.1. Tertiary storage is typically the slowesbparhg and cheapest
type of storage at the bottom level of the memory storage hierarchy. la g systems this
is often comprised of tape silos or MAID (Massive Array of Idle Disks) lédteays [25].

Yet tertiary storage is only one of a plethora of archival use casebnigto nebulous-
ness in the term archival storage. To one person, it may mean long-éesinmned backup [64],
to another it may be more akin to the library sciences view of archiving witmdbingest
processes and indexing [84].

In our work, we consider archival storage to be concerned withrdsdbat arelesired
by users or organizations to have a long, potentially indefinite lifespan. iitlisdes things
such as important legacy code, historical documents, raw scientific dataason outputs,
and personal photos, to name a few examples. Weatchowever, consider backup data by
itself to be within the realm of archival storage. This is because the peigiolsackup is to
provide recovery, while the data itself is of little value in a non-failure situation.

Given the large nature of what fits even within our definition, we restricsthdies
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in this thesis to a subset of this growing field. We examine several publicvascAnd private
tertiary stores. The former are representative of the expanded ralechival storage. Our
understanding of the latter is obsolete despite their being a critical part adfrmedientific sys-
tems. In our examinations of both we provide relevant, up-to-date knowledd suggestions

to guide the design and administration of current and future archivageg@ystems.

2.3 File System Tracing

Before we begin describing our specific workload analyses, we pedsédkground
on the primary methods used in modern file system studies.

There are two basic approaches to file system observation. The fimpiy srawling
the file system metadata and obtaining a static snapshot of the file system ststeam be
done with simple scripts to traverse the directory structure, and calls to todisasstat
to obtain the relevant inode data for directories and files [10, 26, 35¢ sEcond, and more
involved, approach is to dynamically monitor file system activity. This can Ipe doa variety
of ways, though at a high level it tends towards one of four methods.fiidtenethod is by
instrumenting a running system'’s kernel or drivers to log specified egentsas file reads and
writes [17,49, 67,82]. Second, a system’s designers may have incloggithg utilities that
produce useful traces. It is this second method that produced most dath we used in my
thesis work. Third, tracing can be accomplished recording the file systetvierk traffic with
a mirrored switch port and a tool such &spdump [12, 29, 39, 51]. The fourth approach is to
have an application intercept calls to the storage system as they occuapphigch is what is
taken in the TraceFS [15] and //TRACE systems [54].

Snapshot based approaches are easy to implement but only provitheatié;m about
system state at a specific point in time. Even with multiple snapshots over time i chifficult
to accurately comprehend file system behavior. For example, while one enalyl® to tell a
file was modified between snapshots, it is impossible to tell if there were multiple caidifis
in the intervening time. Further, access times are often absent and it is udiffadiyit, if not
impossible, to accurately group access and modification behaviors asefwy granularity.

Dynamic approaches are more difficult to implement but have the advarftagevo-
ing the real time activity and behavior of a system. However, a serious oeallean arise in

managing the volume and granularity of the data. Too fine a granularity caa takolume
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of data explode, especially in the multi-year time spans we are interested ine ©th#r end,
too coarse a granularity can miss—or misconstrue—key activities. A retd example of this
occurred in the access logs we obtained form the Washington State Digital/@s, covered in
more detail in Chapter 3. We found they omitted integrity checking of recardigh actually
would have accounted for over 99% of activity in the system.
A dynamic trace by itself also misses th&rting state of a system, which can be

vitally important in determining the nature of a system’s activities. For exampleider a
trace that notes activities touching 5,000 files in a single directory. Unlegnowe how many
files were in the system in total, we cannot tell much about the mutability and activibe
system as a whole. If there were only 5,000 files total we could state thatevgeaing a very
active directory. On the other hand, if there are 1,000,000 files in thetaliye@ctivities are
clearly restricted to a small subset of files present in it. In short, knowiagstart state of
a system can drastically change the conclusions that are drawn. A dytraggcon its own

means one can only estimate the full state of a corpus at any point in time.

2.4 The Need for New Archival Studies

In this section we begin by surveying prior studies and their pitfalls and mehigsw
applied to the archival storage field, showing that the current stateovfledge is insufficient
for understanding archival behavior. We then look at severahaictystems and describe how
various workload behaviors may impact their claims, as we have foundfteattbe workload
used to validate the system is based on conjecture.

2.4.1 Workload Impact on Archival Systems

While we show in the next section that the currently available studies ardidisiif
for understanding archival behavior, we need to motivalty it matters that we understand
archival behavior in the first place. We now look at several moderhivaal systems and tech-
niques and explore how different workload assumptions can impact them.

Disk spin-down is a technique whereby the mechanical portions of thelhaed—the
spindle and actuator—are powered off in order to obtain power savBesause of their pre-

sumed low-density of reads and writes, archival storage systemsasréodee prime candidates
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for spin-down based power savings, realized in the Pergamum and Mésgns [25, 76].

The authors of Pergamum state they assume a write-once, read-mayieadavith
a low-density of reads, while in MAID they test their system with a mass staggiem work-
load that was already seven years old at publication. Were their workksdnptions to prove
false, their power efficiency claims may fall short, and at worst, the systagnexhibit patho-
logical behavior with excessive power-cycles causing wear on the.dIgktil we have up to
date knowledge and understanding of a variety of archival workleadsan neither validate
nor refute claims made by the authors of Pergamum and MAID, and for hggréormance
network systems the spin-down based approach has been called inior{23)].

A more poignant example of power-efficiency claims being potentially inateur
comes from our own earlier work in simulating a large-scale distributed\argiij. We ex-
amined the impact of several broad data-placement policies, but outoadskwere simply
conjecture. As above, until we have up to date workload studies, wertewy validating or
refuting our conclusions, or even the workloads we used in our simulations

Another area frequently focused on in archival storage reseasplace efficiency, us-
ing techniques such as de-duplication and compression. Two exampleabsyistems focused
on this are Venti and Deep Store [64, 85]. Deep Store analyzes ddiatfomter and intra file
compression with content addressable storage, while Venti does fixaddike de-duplication
with immutable content addressable storage. While we do not study data tso@ggregate
file and record access patterns can influence whether or not deatigsliand compression are
worthwhile to use. Consider that de-duplication often fragments large fiiti¢entially requir-
ing many disk or tape seeks to read even a single file. If the rate of accaggvien archive is
low, this may not be of concern, but at higher access rates it can samtlficdegrade perfor-
mance. Understanding a variety of potential archival workloads will atawent and future
system designers and administrators to accurately judge for themselvethevbast tradeoffs

are given their resources and constraints.

2.4.2 Filesystem and Workload Studies

File system and workload studies have proven to be a boon to storagmsyste
searchers helping guide and verify current and future storagensgsgsigns [80]. For example,

the design of the Sprite log structured file system was directly influencece®986 study of a
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BSD file system [60, 68]. Similarly, workload studies have been of use inguand designing
high performance storage systems [49]. Workload and file system sardietso of use in pro-
viding guidance to synthetic workload generators [36] as well as creaadigtic file system
states for testing [9].

It also important to have periodic studies of a variety of systems. New stpidiesle
up-to-date information on the general structure and use of storagensystelder studies of
storage system behavior and structure are of use as well. When comtithedew studies
they can highlight trends and shifts in usage patterns as the hardwlivearscand user base
evolves.

Yet, despite their obvious utility in aiding system design and management, there ha
been no recent studies relevant to modern digital archive behavitre jpast decade, a variety
of storage systems have been examined ranging from HPC and corpodaémgineering file
systems, to academic, personal desktop and even peer-to-peee sgségms [10, 12, 29, 39,
51, 78]. None of the systems that were studied, however, can be ecedidrchival in nature.
For example, Leungt al. and Cheret al. studied enterprise storage usage at NetApp [24, 51]
while Roselli and Anderson studied desktop and web-server workl@]$7]. Table 2.2
provides a summary of many of the studies of the past 30 years. Note thatodies nearing
20 years old were of arguably archival systems.

Most older workload studies are also not archival in nature, while addaitiypbeing
obsolete given the technological progress of storage systems [BB,2&3, 49, 52, 60, 66, 73,
82,87]. For example, Bakeat al. and Liet al. looked at academic storage systems in the
early 1990s, which arguably has little relation to modern archives due to tér@eéning time
and wildly different use case. Even if any of these prior studies have sitieisato archival
workloads, we simply do not know given we have no “official” archmalrkloads with which
to compare.

The last study that looked at any facet of archival storage wasIB&@08 exami-
nation of several HPC systems at rest [26], which included a small nuaiilzchival stores.
However, the focus of his study was not specifically on archives fatider he only had ac-
cess to summarized snapshots of file system metadata. He could make no statdroeh
the behavior of the system over time. The last studies of dynamic archor&lamd behavior

were done in the early 1990s on scientific tertiary storage systems [46P5&)r to this, in
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Study Trace Year(s) | Approach | Duration System(s)

Smith [73] 1974-75 Dynamic | 12 months Sci. Storage
Ousterhouwt al.[60] 1985 Dynamic | 3 days Academic

Jensen and Reed [46] 1988-89 Dynamic | 24 Months Sci. Tertiary Storage
Gribbleet al.[37] 1991,94,96-97| Both 1-44 weeks | Academic, Government
Miller and Katz [55] 1990-92 Dynamic | 24 months Sci. Tertiary Storage
Bakeret al.[17] 1991 Dynamic | 8 Days Academic

Li etal.[52] 1991 Dynamic | 1-14 Days PC, Academic

Kotz and Nieuwejaar [49]| 19947 Dynamic | 7 Days HPC

Gibson and Miller [35] 1996-97 Snapshot | 6 Months Mixed Academic
Roselli and Anderson [66] 1996-97 Dynamic | 1-12 months| Desktop, Web Server
Roselliet al.[67] 1996-97, 2000| Dynamic | 1-12 months| Desktop, Web Server
Vogels [82] 1998 Both 2-4 Weeks Engineering, Scientific
Zhou and Smith [87] 1998 Dynamic | 5-45 Days Personal Computing
Doceur and Bolosky [28] | 1998 Snapshots| 13 Days Business, Engineering
Agrawalet al.[10] 2000-04 Snapshot | 60 Months Desktop

Ellard et al.[29] 2001 Dynamic | 3 Months Academic, Email
Gummadiet al.[39] 2002 Dynamic | 8 Months P2P File Sharing
Anderson [12] 2003-04,07 Dynamic | 7-10 Months| Animation
Tanenbaunet al[78] 2005 Both 4 days Web, Academic
Leunget al[51] 2007 Dynamic | 4 Months Engineering, Corporate
Dayal [26] 2008 Snapshot | 1 Day HPC Scientific Storage
Chenet al.[24] 2007 Dynamic | 4 Months Engineering, Corporate
Parker-Woocket al [61] 2012? Snapshot | - Scientific

Table 2.2: Filesystem and workload studies from the past 30 years. Weabbeung’s ter-
minology [51] to describe trace methodology. Dynamic refers to activelyihagfile system,
while snapshot refers to a static analysis of file system meteadata. Statth{ ithplies that
a particular study utilized both dynamic and snapshot techniques. Questika demote the
data capture periods were ambiguous. Note there are no archivaliarytsystems studied in
18+ years.

16



the early 1980s Smith studied the file system of the Stanford Linear Accelématioe con-
text of optimizing file migration algorithms and exploring the basic patterns of tgditarage
behavior [73, 74].

Given the radical growth in scale and performance of both their attachmegute
systems and the storage systems themselves, it would be naive to blindly dkatimedern
tertiary storage behavior has remained unchanged. One of the primalsyajdhe thesis is to
bring our knowledge of such tertiary storage systems, a traditionalaiatge case, back up to
date.

Even with new knowledge of tertiary systems, there are many new arclsigatases
which we remain completely ignorant about. Tertiary storage systems aréyraeefacet
of the modern archival storage space. There are growing numberthef long-term data
repositories, such as publicly accessible scientific and historical ascHit, 21, 57,59, 75, 84],
medical patient information [41], and document archives kept to satigé} tequirements [71].
To the best of our knowledge, there have beestudies on the usage patterns of these relatively
new archival systems. In this thesis we examine several of these nesvdiyptorage systems
in order to guide future research and design.

While the earlier studies we have explored do not directly help us unddrgtan
modern archival storage space, they still have applicability in providirdulisnetrics and
methodologies for understanding storage system behavior. File ingzenet intervals and
data lifetimes provide us with insight into how often, and how long, files areeygtutilized
which can guide caching and migration policies [17, 55, 67]. Understgriiintype popularity
can help guide how files should be physically grouped and cached a$5dEllLooking at
file sizes and how sparse the file is can guide how file system data and methdatd be
organized and optimized [26]. We use metrics inspired by these and soroem#fin design in
our studies, which we provide greater detail on in Chapters 3 and 4 wieeexamine public
content archive and tertiary storage behaviors respectively.

2.5 Log Validation

As described in the introduction, one of the biggest difficulties in our traedyais
has been in understanding a trace’s coverage, especially in the cohéeghival traces where
years worth of data may be needed to accurately understand an & diebavior. Due to
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this long time scale, seemingly trivial actions such as renaming a file, if omitted oojpapy
logged, can make accurate analysis of system behavior difficult or iibpmsSuch mistakes
can cause months or even years of trace data to be made useless, @rifdefs unfound,
silently corrupt analyses leading to flawed system designs, poor adntioistaad or unpre-
dictable system behavior. Because of this, we see a pressing needdarchers to be able to
both identify the coverage of a trace.

Our approach calledxpectation differencingor ExDiff, covered in detail in Chap-
ter 6, is to make use of both dynamic traces and snapshots in concert to dmifyid trace’s
coverage. The basic idea is to use a trace as a delta, to modify the stateapShario create
an estimate of the system’s metadata. We can then compare this estimate with wistetire s
metadata actually looks like, with the differences between the two providing elsiéo what
actions may be missing from a given trace.

In the rest of this section, we provide several use case examples terforttivate
the need for ExDiff, and then cover related works in the field to show tleaethre no existing
solutions to the log coverage problem.

2.5.1 Example Use Cases

Intrusion Detection and Forensic Analysis:Intrusion detection systems often com-
pare the state of the system to a known “healthy” state, with mismatches raisints §4&3].
In addition to providing log validation, ExDiff can assist in detecting alterationsither the
activity log or system metadata. By requiring an intruder to alter multiple dataxesuthe
difficulty of silent intrusions increases dramatically. Similarly, the field of feie analysis de-
pends heavily on the ability to recreate activity accurately and detect véeea lnave attempted
to cover their tracks

System Managementlogs analysis is common in storage system management [14].
ExDiff can identify when and where logs may be suspect, leading to impranatysis accu-
racy. For example, ExDiff can help eliminate false positives where a systayhave been
running correctly, but is dropping log entries. It can also identify saesavhere problems
exist in the logger itself, as opposed to the system being logged. Recagtiiaina log may
be inaccurate is important, because if entries are being dropped, thentatsnyming may

become pathological as the underlying system does not have an acgematd its own activity.
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Systems ResearchMany traces and snapshots are available to researchers. Unfor-
tunately, it is often impossible to speak with the original source administratarsiahitects
to understand their coverage. This is particularly challenging for relséato archival storage
systems where years of data may be required, along with changing logt$ositia little or no
documentation. Using a combination of snapshots and trace logs, remsarah use ExDiff to
derive an understanding of the log’s coverage without the need fmrtse from the original
system developers. ExDiff can also validate trace replays, by compaerexpected end state

after a trace replay with the actual replay result.

2.5.2 Related Works

To the best of our knowledge, there are no existing systems aimed explicigyiat
fying trace coverage despite the number of utilities used to capture opesgtitegn behavior,
such as blktrace [16] strace [3], dtrace [1], and ftrace [2]. Tk&cEs a customizable tracing
system existing in user-space that intercepts all calls to the file system$$5iems such as
Magpie [18], Stardust [79] and //TRACE [54] are designed to gainterelhd understanding
of larger systems. While all of these solutions are useful, none examin@vleeage of the
captured data.

DataSeries is a format with associated utilities designed around storing tacymts
of structured serial data, of which traces generally are [13]. While $¥atas offers excellent
performance and low overhead, its goal is efficiency and consisteatigentifying coverage
of the logs stored therein.

Our work shares similarity to log replay in transactional database systemetaied
log can be replayed from a set start-state to reproduce the currenvfstasgstem [20]. Snod-
gras<set al. took this idea a step further and included a hashing and “notary” servinake the
log tamper evident and more useful for validating the state of a system. Simjtanpaling
filesystems use metadata journals to restore a filesystem to a consistentistaecedsh [72].
While our high-level approach share similarities to some applications of agdit(tecreating
an expected system state and comparing it to reality), our underlying gdapproaches are
different. We aim to find out what is missing from a log by comparing what tigeskys is
occurring in a system to the observed reality, as opposed to assumiegtperdwledge.

SherLog improves log analysis by correlating it with source code to hefpwanos-

19



sible execution paths [86]. Similarly, Jiaegal. look at improving log analysis by combining
multiple log messages and events together [47]. In both of these casevdnptiie focus is on
improving the use of the logs, not confirming what they do and do not eaptur

Our work also shares some similarities with intrusion detection systems (ID8). Th
Tripwire system detects modifications to a filesystem by periodically comparagutrent
state of a system to a database that details what the sgbtauidlook like (analagous to our es-
timated state mentioned above), and raises an alarm if the system fails oneearhracks [48].
Hobgoblin is a language and interpreter that describes what propefiliesystem and its files
should have, such as permissions for a given user [6%5]S s a file system built around a
Tripwire like integrity checking system, but checks integrity on the fly, rathen at adminis-
tratively defined times [62]. Our work shares similarities to the above in thatectinique is
based around comparing system states to a ground trutl® Rt Tripwire and Hobgoblin rely
on what are effectively static rules, rather than an estimation based erveldsactivity. Abad
et al’s work on log correlation for intrusion detection uses multiple logs in cortoddentify
anomalies that may not be apparent from a single log [6]. While differedeiail, their work
shares a similar high-level approach of using multiple data sources inrtomé@®prove their
analysis. Lane and Brodley examine patterns of user actions comparddamed user pro-
file [50]. Their approach may be useful in extending our work for bettéomated detection fo
dropped and missed entries.

Forensics tools such as SleuthKit [5] and Log2timeline [38] make use of fita-me
data and logs for a variety of legal and technical purposes. Log2Timigliparticular uses
timestamps from both logs and file metadata to create a timeline of predicted actizKiisf.
also makes use of timestamps in metadata and trace logs, but is focused mtanutileg the
specifics of a particular log’s coverage, rather than trying to put togatbehesive picture of a
storage system.

With S4, Strunket al. describe a system with tamper evident logs and versioning
for the purposes of intrusion detection and recovery [77]. The Sdoaph provides for the
recreation of any system state in the past, butis purposed for easgrgcather than analyzing
log-coverage. Their logging techniques and versioning however maxgdsal for more pro-
active incarnations of our log validation approach.
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2.6 Chapter Summary

In this chapter, we have provided detailed background and motivatiomydhesis
work. We have shown that the currently available workload and file systedies are insuffi-
cient to describe the current state of archival storage due to theileslbsace and or unrelated
use cases. We showed that this lack of knowledge can negatively ioélwemrent and future
archival storage designs. We also showed that there is a seriousflaakloin validating
the coverage of traces. This lack of work on log validation influencesniyt our ability to
accurately analyze storage system behaviors, but many other aread,dacluding system
administration and security.
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Chapter 3

Public Content Archive Behavior

We are the only species on the planet, so far as we know, to
have invented a communal memory stored neither in our
genes nor in our brains. The warehouse of this memory is
called the library.

Carl Sagan

If anything illustrates the expanding nature of archival storage, it is xpésion
of long-term data now being served, and even ingested, via the welre @he many state
run digital archives that have appeared in the past five years[1715584] storing a variety of
historical documents such as marriage records and census datanAcadper archives [53],
as well as publicly accessible scientific and sensor data [21, 57], epenldy common place as
well. Even general web content, including personal websites and bliegspa being crawled
and stored at the Internet Archive in the hopes of being useful in toesf{45].

Despite this rapid growth, the behavior of such archives is poorly siwled; to the
best of our knowledge, there have beenstudies of public content repositories. Given that
storage systems should be optimized for the common cases, this is a presdtiatisn. We
as systems designers are left trying to design archival architectuised ba marginally related
workloads, and intuitive assumptions that may or may not hold true. In plarioue are
frequently left relying on the oft-quoted write-once, read-maybe dwsmn of archival storage.

The contribution of my thesis work in this chapter is in completing one of the first
studies ever done on file-level access behavior to publicly accessibiges. In this study, we
focus on examining the types of access locality, file popularity distributiordsaasessing the
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validity of write-once, read-maybe in content archives. We found thrathie content archives
we studied, there was little in the way of popular “hot” content, severely limitingffetive-
ness of read caching. Individual user sessions showed strotent@neferences-e-g.looking
exclusively through marriage records—which provided the relevantdatgas available, is a
useful heuristic for physically grouping and prefetching data. We asod several instances
where write-once, read-maybe did not hold, limiting this assumption as al ugkfwf thumb
in archival system design.

3.1 Public Content Dataset Descriptions

The first public content source we examine, illustrative of the shift therateand
lowering storage costs and have brought, is a public repository of digitimtdrical docu-
ments, the Washington State Digital Archives [75]. The second souresaveine is a publicly
accessible repository of water table reports—such as ground watés & salinity—from
the California Department of Water resources [21]. This source is phatig interesting as it
illustrates yet another new direction in the long-term data space. Smallepartthent special-
ized content repositories. Understanding the use of these small césgorportant, as many
may be stored on a single physical archive where the aggregate bemayide more important
than the individual behavior of a particular corpus.

Washington State Digital ArchivesThe publicly accessible Washington State Dig-
ital Archives serve a collection of digitized, historical artifacts—suchexssuas information,
military records, photographs, and land records—stored in an SQLad=ah the Washington
State Digital Archives. The database is the primary way of retrieving datesaed through
a web interface. All records are maintained on disk, with tape copies maidttonemer-
gency backup purposes. According to the administrators there waadcaehing, and this is
corroborated by results where we saw occasional re-retrievals shthe record within a few
seconds.

We refer to the data and metadata stored in this archive historical as refes ts
the historical corpus. At the time of capture, it contained approximately 90 million records,
28 million of which are accessible via their web interface; the rest must beseten-site, but
are otherwise unrestricted in access. Records occasionally move hetgbeaccessible and

on-site access based on content or explicit request. In this studycwe do the web viewable
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Field Name Example Null

Record ID 123555 No
Date 1 10-10-1910 Yes
Date 2 Yes
Type Marriage Record No

Ingest date 11-12-2008 12:25:06 No
Modify date 9-4-2009 12:52:00 | Yes
Num. of objects| 0 No

Table 3.1: Historical record metadata. A yes in the Null column indicates the wady be null.
Number of objects is the number of digital objects associated with a recasijppbozero. The
two date fields are used to hold record specific dates, such as birth atidtidees.

records, since this is the only portion of the corpus covered in the prbvsier access logs.

We obtained two logs for this corpus, spanning September 27, 2007 td Ju2e10.
The first log details per-record metadata, described in Table 3.1. Thadé&ca user access
log that records accesses to individual records. Each record islliokeero or more digital
objects—such as photographs and documents—but each digital objety @ssociated with
one record. The trace does not note whether the digital objects linked ttoett@d were
retrieved. Further, while the access log provides information to grougsaes from the same
session, we cannot link different sessions to specific individualssisho

It should be noted that these logs only reflect user retrieval of recaithin the
corpus database and do not reflect access to any other cantehtT ML pages. Additionally
the logs do not track the activity from data migration or integrity checkinggsses. As we
describe further in Sections 3.3 and 3.4, these administrative procetsalyamake up the
dominant fraction of accesses.

California Department of Water ResourcesThe second corpus in our study, the
water corpus, is a relatively small set of water table reports consisting of 57di@0ds. The
files were accessible through a simple web interface and directly downldiede the server.
We suspect there was no front-end caching of files due to our peribdéreation of files being
logged as re-downloaded within a few seconds of a prior downloadarlegs, any potential
flash traffic does not appear to have been filtered out due to cachithg@sasuch we assume our
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Field name Example

Site A00268

Site type Surface Water

Parameter Flow

Period of record 1997

File name GW_DEPTH.POINT_DATA
File size 13050

File type Plot

Table 3.2: Water record metadata, and representative values. Uniquégare identified using
a (Site, Period of Record, File Name) tuple.

data is representative of unfiltered user activities.

We have two traces for the water corpus. The first is a set of updatdrlmgsap-
proximately weekly and quarterly batch scripts. Each update log notesdbdsewritten to,
the date, and record metadata, summarized in Table 3.2. The second if asss traces
consisting of a per-user access log, where each entry contains theriésa that retrieved the
record, as well as the site, period of record, and record retrieveavih the historical corpus,
the logs do not reflect accesses to general web content, only dowrdb#us reports them-
selves. Similarly, if there are any internal indexing or integrity processasimg, they are not
reflected in the logs.

In the update trace, we identify a unique record using a tuple of site named joé
record, and file name. Complicating this, however, was an intermittent charigge naming
conventions that made it difficult to map old names to new, introducing the dafgeer-
counting files and mapping updates to incorrect file names. To addressvéhimnly count
updates to files that map to names in existence on the last day of the updatdtaghThis
discards approximately 50% of the 1.7 million updates, it ensures both athieecount and
an accurate lower-bound on file update activity. More updates may lesrerbquired to keep

the relevant files up to date, but no fewer.
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3.2 Public Content Archive Modifications

In this section we focus on data modification rates, where we found resafitsathin
to question the frequent assumption that archives are “write-oncag-t€rm content corpora
are actually quite dynamic. We observe that 50% of records in the wajgusogceived five or
more updates, often stemming from automatic data management processeslySifbarof
the records in the historical corpus saw at least one update during ¢ke tra

To begin with, we examine data updates within the publicly accessible watarscorp
One complication to note is that we can only deduce record creation in the skatieh by
noting a record’s first appearance in an update log. In the analysiasseziate each record
with a list of updates generated from the update logs. As described in B&clipwe filter
the updates such that only updates mapped to files present on the laseajneluded in
the analysis. Though this introduces the danger of under-countingagydaensures that the
results remain conservative and removes potentially misleading update causésl by record
renaming.

Examining the logs in the water sketch reveals a surprisingly high numbedates
caused by corpus management: automatic policy rules frequently overyaioéeated reports,
whether or not they had actually received updated data. Two scriptsticysar generated
a large volume of data updates. The first ran approximately weekly, andiedodny report
that had data updated within 30 days. The second ran on an irreguiaguglhly quarterly
schedule, and overwrote all reports in the corpus regardless of thepldete they received.

To identify the source of updates, we break our analysis into three staigedfirst
contains all the updates seen by the corpus. To isolate the results of tklg seraot, the second
set only considers updates that occur to a file after 30 days havelp&gseall this the30-day
filter. The last set takes the results of the 30-day filter, and removes all méatesphat touch
over 10,000 records. We call this thearter filter. Using this approach, we can identify a lower
bound on the number of necessary updates; more may have beendadquiezp the relevant
reports up to date, but no fewer.

The results, shown in Figure 3.1, demonstrate behavior that deviatestiti@ina
from the write-once assumption of traditional tertiary storage. When ncsféier applied, only
40% of the records receive 5 or fewer updates, and those thatec®@ior fewer updates still

only account for around 65% of all records. Applying the 30-day fiéf6 of the corpus still
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Figure 3.1: CDF of records, showing the number of updates per reserdhe duration of the
water sketch’s update trace.

receives 5 or more updates. A shift appears, however, if the glyangitates are filtered out,
as 60% of the records receive zero updates. This is still far from the-amce scenario; 10%
of the records receive 3 or more updates, and 20% receive one or Marg/ of updates are
for complete “Period of Record” reports (records) that are runnimgrsaries of all prior data
for a site.

The historical sketch contained each recoldst update times, but otherwise did
not make note of updates to individual records. This meant that while wiel adentify if a
record had been updated, we could not tell if it had received multipletepdBespite this, we
found that over 75% of records received at least a single maodificatieittter their metadata
or associated object. Like the activity we saw on water corpus, this is in cbartkast to the
oft-quoted write-once assumption.

There is a caveat to note in our analysis of content mutability, howeven tBeeigh
we have literally years of data, this may only be a small fraction of the cotjfetines. The
mutability we have observed, while it flies in the face of the write-once assumptiay be
focused on relatively new records in a given archive. A record neaty well “stabilize” after
several years.

When we examine the inter-arrival time of updates within the water corpusintee
between any two consecutive updates to a record, illustrated in Figute&.€ are surprisingly
large numbers of records with long inter-update periods. 35% of theozipmaitely 900,000
observed updates occurred after a period of over 64 days. Wh&0tiay and quarterly filters
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Figure 3.3: Histogram of time between a record’s creation, and its lasteipdkhin the water
corpus. Note records that receive no updates are not counted.

are applied, 70% and 50%, respectively, of updates occur with andnieal time of more than
64 days, though the total volume of updates drops significantly.

To further investigate update behavior within the water corpus, we exangmarige
of time over which records were receiving updates. Figure 3.3 showstagham of the time
between a record’s creation and its last known update. There aresvlegwiwo important
points to note with this histogram. First, it does not include records that vester mpdated
after creation as they would not contribute to the update count. Secondedbl’s ingest
time relative to the start and end of the trace period impacts the update rargeserge. For
example, arecord ingested two days before the end of trace wouldtraesta two day range.
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Figure 3.4: Histogram for the historical sketch, showing the range of tinveda® a record’s
ingest date and its last modification time. Note that records not updatedtareumted.

Nonetheless, this is still a valid method of demonstrating that records contirtgenmdified
long after their ingest time. Using this approach, we observe that overdQ%cords that
receive updates do so over a range of over 256 days. When we thepB0 day and quarter
filters the proportions remain roughly the same; approximately 50% of redbed received
updates were modified over 256 days after record creation. Howéeamumberof records
receiving updates drops due to the filtering.

In the historical sketch we do not have the same level of access grignakin the
water sketch; rather, we can only see a record’s last modification time.tifrteéseflects the
most recent time that any of a record’s fields or associated digital objecesmodified. This
level of detail is still sufficient to show that of the approximately 28 million publextgessible
records, over 21 million had a non-null modification date, meaning that gippately 75% of
the corpus content was updated at least once. This is significantly marthdtashown in both
Agrawal’s desktop filesystem study [10], where over 80% of files reathimwritten each year
for over five years; and the modern tertiary storage behavior illustratétgimre 4.2, where
approximately 80% of the corpus remained unmodified.

Update time ranges were also similar between the water and historical skététes
looking at the time between a historical record’s ingest and its last retondeification time,
shown in Figure 3.4, we note that 85% of the modification times show a differeh256 or
more days from a record’s creation.

The surprising amount of update activity we see across both the watdistadcal
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corpora is made possible—and easy—»by the use of cheap randore amdia. The use of tape
or optical media in the face of so many modifications would be problematic, ageheire
significant extra hardware to maintain high access rates. Additionally, tlgedoress times
of such media are a barrier to frequent modification of data. The relative ef updating
modern media may have subtle, but important, implications however. For examepéated
mass updates, like those seen in water corpus, can make identifying tlee sout nature
of an update difficult. While relatively innocuous in the water corpus, atgmk potentially
unnecessary, modifications of data can have profound implications insithationse.g.legal
rulings or scientific findings based on retrieved data.

3.3 Public Content Archive Accesses

In both the water and historical sketches, record modifications appeassi®n-less,
system-generated operations. In contrast, record accessesaiatasswith a distinct session.
In the historical sketch accesses were grouped into sessions with theégardata, while in the
water sketch we grouped accesses based on access intervals aluhldgs af the requesting
party. Specifically, we used a sliding window approach where if a retremaurred within 10
minutes of a prior access from the same IP address, it was grouped irgantigesession. Our
analysis in this section looks at both aggregate and session-orientsd aetevior.

3.3.1 Aggregate System Behaviors

Within the water and historical sketches, we find that accesses are damninate
few, often machine generated, large-scale retrievals, such as a Goagler integrity check-
ing process. In the historical sketch, we observe approximately 5.88 milsbinat accesses
between September 27, 2007 and June 16, 2010. The accessesasela@5 million user
sessions, accessing 2.28 million distinct records. From discussions witepbsitory admin-
istrators, we also know thatl records are integrity checked monthly. Though only 8% of the
28 million web viewable records were accessed by users over threg $68°6 of the records
were read via the integrity checking process each month. If integrity aigekconsidered to
be equivalent to record retrieval, then less than 1% of reads come frorasers. Even assum-

ing that files are checked for integrity at a much lower rate of once per g@aonly 10% of

30



read traffic would come from end users. This finding has significant inffditzon archive de-
sign. Effective, low-latency, end-user retrievals are critical to thegg®ion of a useful system,
but only make up a small fraction of the actual workload. On the other hedhdjnistrative
processes, which make up the bulk of accesses and are critical to théayréthe system, are
typically less latency-sensitive. As we describe further in this section hasvi; Section 3.4,
a separate batch interface for bulk accesses could be beneficialr® $ysiems.

In the water sketch, there are roughly 98,000 distinct retrievals betwagnsh 28,
2007 and July 1, 2010. By artificially grouping accesses originating trensame IP address
that arrive within 10 minutes of one another, we identify approximately 8,560sessions. We
chose 10 minutes as the threshold based on our observation that the mdfisd®sions created
by this grouping method taper off after approximately 10 minutes. We exclpi®amately
1,200 retrievals that had a null value for their files, accounting for agmately 1% of all
retrieval requests.

We find that approximately 70,500 of the 98,000 total accesses in the wateh sk
originated from Google, and 27,000 from other users. Since theresvede0 records in the
last quarterly update, and non-Google users made 27,000 requestbsarwe that no more
than 50% of the archive’s contents could be retrieved by non-Googls.u®n the other hand,
Google likely requested nearly all of the reports given the methodical eafutheir crawls,
though it cannot be conclusively stated given the file renaming issuested earlier.

One peculiar behavior we notice in both the water and historical sketchegait-
cant numbers of user-sessions re-retrieving the same record in thessasitan, often within a
few seconds. Communication with system administrators and architects yielgaghlanation
for this odd behavior. We note that these re-retrievals accounted faf 38€ retrievals in the
water-sensor log, and nearly 35%(!) (2.04 million) of the record retisefa the historical
archive. These re-retrievals have a noticeable impact on the resultseaadcount for them
explicitly in our experiments and analysis.

From the daily access counts in the historical sketch shown in Figure 3usdind
that the number of accesses on any given day is relatively stable, aimtexa slow growth
trend. We also note a number of moderate spikes, and one large spikel a@u900.

A microanalysis of the large day 900 spike finds that it is comprised almostgrair
sessions that only retrieved a single record, and that the recordsedtriere predominantly
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(over 90%) photographs. Further, the upper quartile of distinct dscaatrieved in the spike
received 5 or more accesses, as opposed to the usual one or two toprimodays examined.
Consultation with the system and corpus administrators yielded no clear atiptafor be-
havior seen in the spike—their only theory was that someone managed to lin&ritiee web
viewable photo set, and they admit that such an explanation is only a gusesst afurther, we
confirmed that external indexers, such as Google, only have accassuted 6,000 records in
the historical corpus, ruling out another possible explanation. Thowgbowld draw no con-
clusions from this spike, it is worth noting as it as an example of anomalowvioes that are
intuitively more likely to be seen in a long-term corpus served over manygyear

To explore the potential effectiveness of caching on daily traffic afte spitigation,
we ran the daily access count analysis with two different sizes of a simpledaRhing filter:
0.01% and 0.1% of the total number of retrievals, corresponding to 506G &0 records.
When we include re-retrievals during the same session in the count, eveallacache is
shown to be moderately effective at absorbing accesses, with ovierallibs of 37% and 38%
for a 500 and 5,000 record cache, respectively. When we remove-tegrievals the cache
effectiveness plummets, exhibiting an overall hit ratio of less than 7% for the 5,000 record
LRU cache.

Interestingly, as Figure 3.5(c) shows, the cache is effective atirglttee magnitude
of several of the access spikes. Even the small cache absorb&d5@®arof the traffic during
the day 900 spike. Thus, while their overall impact is low, read caches gitenm content
stores may be useful for handling flash traffic and record re-retsieva

Next, we examine daily access counts and cache effectiveness faatirerapository,
illustrated in Figure 3.6. One of the first things to note is an extended aqoiéss approxi-
mately between days 700 and 750. Using a reverse IP look up we confinisaslas Google
slowly crawling the repository contents. In total, Google accounted far 0% ofall record
retrievals. For the subsequent analysis of the water accesses, veglfitierlarge, external in-
dex crawl from the dataset. Note that while other user sessions did@cabhs exhibit bot-like
behavior (fast inter-retrieval times, and mass retrievals) we could motusively identify them
as such, and left them in the trace.

In the water sketch, as with the historical sketch, we see a moderate nufreer o

retrievals within user sessions, and examine the impact of caching with anolivitrese re-
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retrievals, shown in Figure 3.7. As with the previous observations, witktreevals included,
there is low to moderate cache effectiveness with hit rates of 12% foihe céme of 10 records,
and 17% for 100 records. When session level re-retrievals are eliditfegenit ratios drop to
2% and 8% respectively. In the water sketch, however, caching refaajedy ineffective even

on days with significantly increased traffic, as figure 3.7(b) illustrates.

3.3.2 Per-Session Behaviors

One of the first results we noticed in our session-based analysis wascthg saffic
skew; only a few sessions account for the majority of traffic. Figure 3.8titiies the number
of retrievals per session with and without re-retrievals. Interestinglypdth the historical and
water sketches, over 50% of sessions only retrieve a single recortheEuve observe that
the distribution quickly flattens out, with approximately 90% of sessions retgeManor fewer
records. Since many sessions are coming from humans interacting viaiatertdice, the time
between user retrievals is relatively long, often seconds to minutes.

While 50% of sessions—with re-retrievals—only retrieve a single recoosetises-
sions in the historical sketch account for fewer than 10% of the total vatsiecand fewer than
5% for the water sketch, as shown in Figure 3.9. The vast majority of dataeaessed from
larger sessions. In the historical sketch, 40% of all accesses comséssions of more than 20
retrievals, and nearly 80% in the water sketch are made during similarly lesg@ss. In the
water sketch, this skew is due to a Google index crawl of the corpus thatred over several
large sessions, each retrieving hundreds to thousands of rectrelprédvalence of these large
mass retrievals, much like the large integrity checking, suggests the utility dth inderface,
as which we describe more in Section 3.4.

Next, we look at content popularity, independent of sessions, to seedawidentify
a subset of records or content types that account for a dispropateidraction of accesses.
Figure 3.10 shows that all of the distributions exhibit a long tail, with the excepfithe types-
based popularity for the historical sketch. For example, the sites+water well location—in
the water corpus exhibit the second strongest popularity affinity with 208iies accounting
for 60% of accesses, but the next 20% of sites only account for @ng@f®% of accesses. At
file level granularity, this trend becomes even more pronounced. Notgevieo, that the file

naming issues within the water corpus may mask some amount of file popularéycohitent
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Figure 3.6: Daily access counts to the water corpus with and without thevedsrigy Google

popularity distribution corroborates our early findings showing and @ipawhy LRU read-
caching appears to be largely ineffective; while certain categoriestafata more popular,
individual records do not appear to be particularly more popular.

We next examine access locality within sessions to see if individual ussosssend
to access a single or few types of content. In our analysis, we first ienesketrievals from
all sessions and then exclude sessions in which only a single recordesedtr Additionally,
we eliminate records from the historical sketch that are found to be missingatef#ess than
0.5% of retrievals), as well as those with the category “Restricted Typgeesd records were
originally public and subsequently moved into the private archive, so weataletermine their
category. The restricted type retrievals account for 12% of accaefieesemoving re-retrievals
and excluding singleton sessions.

Figure 3.11 shows that, across both the historical and water sketchiegjuatiuser
sessions tend to retrieve strongly related content. We observed thigt5@%rof sessions in the
historical sketch retrieve three or fewer record types, and similarly 53%ssions in the water
sketch retrieve data pertaining to only a single site. When we include the2p8arof sessions
in the water sketch retrieve records within a single site-year combinatiostilbexhibit strong
per-session content locality.

Across sessions, however, a wide variety of content and indivichealrds are re-
trieved. This is evident in the poor cache performance, as shown earfiggures 3.5 and 3.7.
The strong individual session locality does suggest that grouping datdlon content along
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Figure 3.7: Daily access counts for the water corpus with and withowdtrievals, and asso-
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eliminated when re-retrievals are removed.
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Figure 3.9: CDF showing what fraction of total retrievals were contribyteddsession size
with and without re-retrievals for the water and historical corpora. Notmcated x-axis is
truncated at 100 to maintain readability as retrievals to the water corpus dodhinatefew

large sessions; sessions with over 300 retrievals account for 60% ttHi retrievals.
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x-axis values are ordered by popularity, that is, the most popular iten@atted first. With
the exception of the historical corpus record types all CDFs are sulbsgimp
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Figure 3.11: CDF showing the number of different content categoridgsved per session. In
the historical corpus, records have an associated category. In thecggous, we examine how
many distinct sites as well as site-year combinations are accessed psessen. The plot is
truncated at 30 types to avoid a distortion.
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with pre-fetching may be effective [83], provided the content type tadfaiently small num-
ber of records. For example, this would likely be more effective for theemeorpus where
any given site-year combination rarely has more than 15 or so recoadswttens of kilobytes
apiece, than for the historical corpus where there may be many millions @fdseconnected
by an associated category. In contrast, the lack of individually popetards we noted earlier
may impact systems that aim to conserve energy by duplicating or migrating cdynoseal
data [25,63]. This is because while strong statements can be made ahvidiuiidsession
behavior, aggregate system wide activity is largely unpredictable indegathe popularity of

records.

3.4 Lessons Learned and Implications

In this section, we cover overall lessons learned from our work in examjpublic
content archives.

Data modifications were frequent, widespread, and over a much longaiafuthan
expected suggesting that file immutability should be an enforceable policyandept of the
media type. This flexibility is even handy for explicitly immutable data—such as conuelia
stores—as such datasets often have a specific expiration date, aftertéh@vners would like
the data to be immediately deleted.

With respect to reads, we found that from the system perspective othater and
historical corpora were quite active. While user requested readsrelatvely rare, data man-
agement tasks, indexing requests, and the inevitable migration of long-tten rdake the
“read-maybe” pattern patently falsa] content is eventually read, and it is often regdmasse
This could severely impact the effectiveness of system designs thairrébyv read-rates. For
example, systems that rely on spun down disks for power savings magstiveate the cost
savings they can deliver [63, 76] unless accesses can be tightly kediiod scheduled.

Further, the results suggest a potential danger in optimizing for the wigergioons.
In the water trace, the vast majority of total accesses were from a fegr$a@e requests—such
as Google crawls—with the remainder originating from user accessesfthatomly retrieve
a single record. We argue, however, that these small numbers of amests are latency
sensitive, and critical to the users’ perception of effective, long-storage.

Within these user sessions, we found that there were a few favoréentdyppes,
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and the same data was often requested multiple times within a single sessiors &3si®nNS,
however, it was much more difficult to identify popular content. Thus, akml® assisting
with the re-retrieval problem, strategies that rely on migrating popular dateomaeffective
at best, and harmful at worst [63, 88]. In a disk spin-down scenswich movement could incur
additional energy penalties for little or no benefit. Depending on the sc@enty also make
the use of tape-based architectures, and those based upon immutable mesigidyificantly
less efficient.

It is important, however, not to downplay the importance of bulk accessesg they
dominate an archive’s workload. Recall that we observed integritykaigaccounting for 99%
of read accesses in the analysis of the historical sketch. The disparitgéndad small access
properties suggests that current archive interfaces are insutfi@erce the data suggests that
these large-scale accesses are often latency-insensitive adminigtratigeses, we suggest the
use of an asynchronous batch interface for large requests as a cognpl® the traditional
single record interface. The benefit to the system is that such a regoekt provide fulla
priori knowledge of the records in the requests, allowing the archive to optimizesitsirce
scheduling most effectively.

Such an interface would allow a client to specify the set of records desichedule
of when it needs the requests fulfilled by, and a means to alert the cliemt thikerequest
is complete. For writing to a corpus, this could be useful for data managefnertions:
We observed that public content archives provide anonymous regsscbut writes came
from the system itself. In the case of external indexing services, suattexface could help
shift the large-scale requests from appearing parasitic at an enestjyared workload spike
standpoint, to a more symbiotic relationship; the indexing service receivdata@nd provides
search capabilities, and the archive can efficiently provide the meansédos to retrieve it. To
prevent pathological use of the traditional, single-record accessadangsrdrchives could utilize

strategies such as throttling or retrieval caps.

3.5 Chapter Summary

In this chapter we explored the long-term workload behavior of two pubdictes-
sible content archives, representative of the expanded nature ofmanhival storage. We

obtained data from the Washington State Digital Archives and a repositatgter table reports
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maintained by the California Department of Water Resources.

From our analysis, our contributions take the form of three broad csiocis. First,
in both the water and historical sketches, we found activity that directlyradicts the write-
once, read-maybe assumption. We found that records are actuallgdpdten multiple times
over many months, and when integrity checking and indexing processesceounted for,
entire corpora are read. Second, we found that large, mass aeesseint for most of the
activity to a given corpus. For example, batch updates to records in tteg e@pus. This
suggests there may be merit in a separate batch interface for large staleylmsensitive
accesses to an archive and a separate high-priority interface for sri@#acy sensitive user
operations. Third, we noted that individual user-sessions tend togtieney content locality,
while aggregate behavior shows that any individual records populariiyited. Because of
this, it may be useful to physically group data based on semantic conterghtipopular data
concentration and caching may be of limited effectiveness.
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Chapter 4

Scientific Tertiary Storage System Behavior

The greater our knowledge increases the more our ignorance
unfolds.

John F. Kennedy

Despite the fact that tertiary storage systems continue to be used in lalgssea-
tific and enterprise systems as long term archives, it has been 20 yezrdte last detailed
study of such a system [55]. In that time, the scale of storage systemsdsdigally grown.
Even relatively small organizations have disk based storage that extteetbtal capacity of
the system studied at NCAR in 1993, which at the time was considered leatgesith ap-
proximately 26 TB of capacity. By contrast, a system we examined from lasmds National
Labs (LANL) had over 1.3etabyteof data and was expected to grow to over 2 PB by early
2011. Further, this archive is only one of several at LANL, and issimered a small archive
at that. This is to say nothing of the myriad other hardware and softwargdtions that have
permeated the super-computing community. Understanding modern behavibelp us vali-
date if older architectures are still optimal, and if not provide guidelinesutré systems and
optimizations.

In this chapter we begin bringing our knowledge of tertiary storage systprtsdate.
Our contributions in this chapter take the form of observations on tertiargg@ctivities and
architectural suggestions. First, much like the public content archivetsatibsty is automated
in nature. Because of this, we see merit in the use of asynchronougatelssing, particularly

for large-scale administrative accesses. Second, we see strong lofalitgess, where files
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tend to be accessed in groups in small portions of the hierarchical nareesplais suggests
that grouping files based on directory may be useful, particular for tagp@ther offline media
where accesses to many locations can be very expensive. Thirdywikaahere was no clear
subset of files responsible for most activity in the archive, much like thégcontent archives.
This means that read caching is largely ineffective, at least from tisp@etive of the archive.
Fourth, we saw fewer data updates relative to the public content aschuivestill enough that
the idea of a write-once archive is called into question for the scientificasesc We call this
out as write-once is often used as an assumption when designing &ecivigectures.

In the first section, we provide an overview of our two datasets, coming fros
Alamos National Laboratory (LANL) and the National Center for Atmosjieesearch (NCAR).
Following the dataset descriptions, we explore coarse-grained resuttstained from analysis
from LANL, followed by our analysis of the NCAR storage system. Ouryses of NCAR
and LANL are discretized due to the radically differing nature of the dtgamsaking low-level
comparisons difficult. We conclude this chapter with an overall summaryrdeatiary storage

system studies.

4.1 Dataset Descriptions

LANL: The system under consideration at LANL is one of their super-computing
archives. We refer to the archival data it stores agyeeral scientificorpus, and the archive
itself closely resembles the structure and intent of the classical view ofterngstorage as
tertiary storage. The corpus, at the end of the time our dataset cowatajrs approximately
60 million files, totaling 1.3 PB spread across disk and tape. The typical sseocaurs when
a user is allocated compute time; he or she is provided a top-level directorg arc¢hive for
storing his or her data.

The raw data we obtained on the LANL system is in the form of 13 months—from
May 2009 to June 2010—of daily histogram reports collected from a dagtylonf the sys-
tem’s inode metadata by FSstats [26]. One of the daily reports covers the fetisystem;
the second covers each top-level directory corresponding rouglslyntonaries of individual
projects. Table 4.1 describes the histograms we used. Note that atimes(aAow@stracking
was explicitly disabled in the file system, so we could not effectively anabtzieval patterns.

NCAR: The National Center for Atmospheric Research (NCAR) is dedicated to me-
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Histogram type | Description

Reported size | File length returned bgtat

Allocated space Number of bytes actually allocated

mtime File modification times
mtime (KB) File modification times, grouped by file size
Overhead Difference between reported size and allocated space

Table 4.1: FSstats histogram reports collected over the general sciesptibisitory. One set of
histograms covers the entire archive, and the other set is run oncactoiredividual top-level
directory, corresponding roughly to specific projects.

teorological and climate research and its associated impacts. Our analysisised on the
mass storage system (MSS), a tape-based storage archive uskdifior @ variety of datasets
for months to years.

The MSS consists of tape libraries with a disk cache “in front” to serve agt@ and
read cache for files under 10 GB as illustrated in Figure 4.1. For files W@d8B, clients write
directly to the disk cache; the files are later migrated to tape via an automated nmigrratess.
Files over 10 GB are written directly to tape. For reads, the first read lef gdes directly from
tape to the user. If another read of tsemefile occurs within 24 hours, it is then cached on
disk, assuming its size is under 10 GB. Because of these policies, theisg@cimearily utilized
as a write-buffer, which in turn generates large amounts of automated migtatfic as data
is moved to tape. The dataflow is illustrated in Figure 4.1.

Users interact with the MSS through a FIFO queue. Files are written to argnthy
mounted media that has sufficient space. Reads are queued to a sppeific thsk volume,
allowing for multiple reads from a single tape mount. Given the FIFO natumegofast handling
we see a relatively “pure” ordering of user-requests. Thus, oalysis reflects user behaviors
with less noise than an analysis of a system that aggressively re-ardegsoups requests.

As an example of MSS operation, consider a user wanting to archive a fil&B,
myData.dat. Initially, myData.dat is created on the disk cache. As space is needed on the
disk cache, theyData.dat file will be copied to the first tape that has sufficient space and
subsequently removed from the disk cachemylbata.dat is later read, the initial read will

go directly from tape to the user, bypassing the cache. If the file is readomd time within
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Date Hardware

Jan 2008 | 5 StorageTex Powderhorn Silos
40 TB Disk Cache

70 STK 9940B Drives

Jun 2008 | 5 StorageTex Powderhorn Silos
100 TB Disk Cache

70 STK 9940B Drives

Jan 2009 | 5 StorageTex Powderhorn Silos|t
2 SL8500 Tape Libraries
100 TB Disk Cache

70 STK 9940B Drives 1
70 STK T10000B drives
Mar 2010 | 2 SL8500 Tape Libraries
100 TB Disk Cache

70 STK T10000B drives

Table 4.2: Evolution of MSS hardware. January 2008 is the start statee gfygtem. With
the addition of the SL8500 libraries, the corpus was migrated from the Rbamhelibraries in
preparation for their decommissioning. t denotes hardware in the proicdssommissioning.

24 hourspyData.dat will be cached on disk.

Purges(permanent deletions) of files from the system are based upon a ftlergiomn
policy, or done by explicit request from a user. Each file has a reteptibay describing the
number of days it should be retained in the arche/ay. 360 days. If a file passes its retention
period without extension, it is considered to be in tlesh After 30 days in the trash, the file
is permanently deleted from the system and its removal is logged as an acttathidt the
default retention period and trash time are system parameters set by N&RRheugh actual
retention periods can be modified by users.

The hardware evolved significantly during the logged period, as sumrdarizea-
ble 4.2. As we show further in the following sections, the data migrations iassdowith
this technology change are not noted in our logs. No further hardviemreges occurred from
March 2010 until the end of our dataset.

The data corpus stored on the MSS, which we refer to abl®&R corpusis com-

prised of approximately 80% simulation output, 15% observational datalidetian and seed-
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Figure 4.1: This figure provides an overview of the NCAR MSS. Note thétes under 10 GB
that are created or written to are cached first on the disk cache, while aea only cached if a
file is read twice within 24 hours. Files greater than 10 GB in size are writtentljir® tape,
and all reads initially come from tape if they are not already present origheache.

ing of simulations, and 5% system backups. At the beginning of our datedahuary 2008,
the corpus was known to hold approximately 4 PB of data; at the end ofavaset, it held ap-
proximately 11.7 PB of data in 69 million files. However, approximately 3.3 PB w@epiicate
bytes: extra copies of files for reliability purposes. A typical long-term esse of data stored
in the archive is storing simulation output and retrieving it two to five years fatee-analysis
and validation.

4.2 LANL Analysis

We beging by comparing the LANL storage system to prior archives rbafmving
onto details on modification and update behavior.

4.2.1 LANL Storage Hardware and Scale Evolution

One of the first things we note in our examination of the LANL archive is thiaas
a significantly higher fraction of disk, relative to tape, for its storage coatpt prior studies.
Summarized in Table 4.3, the scientific corpus from LANL contained aboWRRB.&t the end
the report period, and is hosted on 1000 TB of tape, and 285 TB ofdvawels. Note however
that the LANL corpus was continuing to grow at the time of our analysis, eaawlestimated to
grow beyond 2 PB in 2011. While the LANL administrators have designed fieelifarary to
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Disk (TB) | Tape (TB)| Total (TB)

1993 0.1 26.2 26.3
2010 300 1000 1300
Ratio 1:3000 1:38.2 1:49.4
CAGR 60.2% 23.9% 25.8%

Table 4.3: Tertiary storage comparison between the NCAR system in theMliB&3study [55],
and the current LANL system, showing the ratio between the 1993 valuéhar2D10 value,
and compound annual growth rate (CAGR).

expand to partially accommodate this growth, overall system growth will stilkbpgstionally
dominated by disk. Compared to the scientific corpus of the NCAR studytfsbjotal corpus
exhibited a compound annual growth rate (CAGR) of 25.8%. However} ofafie growth
in capacity occurred in hard drive storage. Compared to the earlier, shelglata shows a
hard drive CAGR of 60.2%, though one must take this number with a graialo§isen the
varying nature and relative scales of the systems in question. Note thaswieted the hard
drive comparison to a holistic high level view, as the NCAR archive did setaommodity
hard drives, relying instead on proprietary storage modules. Integgstthat hardware was
fairly old when it was studied in 1993; the IBM 3380 systems [44] in the NCAdRisie were
introduced in 1980, with the final revisions released in 1987.

Similarly, the 1992 NCAR archive used IBM 3480 tapes, with a capacity 6f\2B
per tape. This format was introduced in 1984, making it nine years old &intkeof the study;
by 1992 IBM was producing the fourth generation 3490E IDRC tapes,antpacity improve-
ment of 12 times that of the 3480. By comparison, the 2010 LANL archies tiee relatively
recent LTO-4 format tapes, with 1 TB of capacity, 5000 times the storatie dBM 3480 tapes.
Even with the potentially exaggerated gap in tape capacity, we still see a CRZZ986, which
lags slightly behind the total storage CAGR of 25.8%. The impact of this shitirdsvmore
disk-centric—and in the near future potentially SSD—tertiary storage ondédgeiand migra-
tion patterns is of keen interest. In the NCAR system we describe later in tggashthe disks
are primarily used as a file cache, but with continuing increases in disktylessvell as new
media such as phase-change memory and high-density flash becominglevagamay see

moves towards disk becoming the primary storage medium in these largeregt.chi
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4.2.2 LANL Storage Data Modifications

We next look towards the mutability of the scientific corpus, examining file update
and locality. We found that despite despite rapid growth in the fraction oagéoprovided
by hard drives, a media that is much easier to update and access thamnadiienal tertiary
corpora continue to be fairly static; 60% of the LANL content we obsewasinot modified in
nearly a year.

Figure 4.2 illustrates the general scientific corpus’s aggregate updaagibewith
a heatmap. The y-axis corresponds to histogram bucket ranges,earéaitis the day of the
trace. The heat-scale on the right maps shade to the total fraction ofendiitents. Thus, a
corpus that exhibited a high degree of content modification across maswéldd be warmest
along the base of the y-axis; many records would have a recent modifitiatie.

When records are ingested into the archive, they tend to be ingested lre®adnd
they maintain their existing modification time, explaining why the temperature warmeas ar
other than the histogram bucket for 0—2 days. At the start of the tragertiive ingested a
batch of files with recent modification times. In Figure 4.2 this appears asaaraa near trace
day 0, for the histogram bucket with files 2—4 days old. As the trace pdsceéhose records
remain static, and age steadily. This is seen on the heat map by the high temgergion of
the histogram moving from the 2—4 day bucket to the 64—128 day buckie¢ dasace proceeds
from day O to day 100. Other ingests follow the same behavior, as seedaya60, 100, 150
and finally 310.

Despite the growing use of hard drives, the results show that aggmegaliécation
behavior in traditional tertiary storage appears much the same as it wa\r b@r 15 years
ago. That study showed that 65% of files referenced in the 24 monthwereeonly written
to a single time, and over 20% were read but never written to. Similarly, at ttheofethe
dataset’s duration, despite only having a 13-month trace, we see thaixapately 60% of
corpus records had modification dates more than 256 days in the past.oftentration of
heat towards the upper end of the heatmap, rather than periodic areht@tedower MTIME
values which one might expect with consistent periodic ingests, is due tatiars. First, the
archive is continuously growing. If data is remaining unmodified, most ofilit s@ntinue
to age and the relative fraction each new ingest makes up of the totaledrnpus will be
continuously decreasing. Second, the histogram buckets logarithmically. sEach bucket
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Figure 4.2: Heatmap of the general scientific corpus’s daily record matidic histograms
over 400 days. The color indicates the fraction of the total archive ntste-axis the day in
the trace, and y-axis the modification time histogram bucket. For example yo278eaof the
trace, 80% of archive contents received their most recent modifica2®~2b6 days ago. Note
y-axis is log scaled (to match the histogram report), and we truncate it &ftdrdays, as most
contents are below that age.
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covers twice the time range of the prior bucket, so higher values neitgssser more time,
and thus will cover a greater fraction of older files.

Unfortunately, given the coarse granularity of our data we can't giedimidual file
behavior. Given this and the relatively short time period our datasetgove are leery of mak-
ing strong suggestions towards system design based solely on our iatiestigf the LANL
data. That said, this sort of behavior suggests that older techniqdesretnitectures for file
migration and caching may still be relevant in modern tertiary storage systath&yia obser-
vation is reinforced in our study of the NCAR system, described next itidses. 3.

To examine update locality in the LANL sketch, we looked at the individualewpt
directory histograms as opposed to those showing aggregate systerviohdhas important to
keep in mind throughout this dicussion, however, the coarse granulétitg data we are work-
ing with comprised of histograms with logarithmically scaling in bucket sizes datively few
populated project directories.

Before any of the analysis was done, we filtered out directories that wewtained
any files, which was apparent based on histograms with 0 file counts &d $izis accounted
for approximately 500 of the 600 total project directories on the last daauwfmaries. We
consider a directory to be updated if at any time after the initial ingest—thel&iysa non-zero
file count is seen—the number of files present within the directory chaongeswe observe
change in the mean modification time of the files resident in the directory. We ¢hdecus
on the mean modification time as it was the simplest method given the very coansgagity
of the data we had. We had no observations of individual file behaviors.

Figure 4.3 shows a CDF illustrating the number of updates a typical directery r
ceives. It is important to note however that thisybe potentially misleading as we only see
activity at a day level granularity; a directory that receives updateryday but is only 17 days
old, will look to be average, when it may very well continue to be active fochmonger. Re-
gardless, we still see that 80% of directories receive 25 or fewertepddhis lines up with
the conventional wisdom that a relatively small fraction of a system reseivdisproportionate
amount of activity. Note this fact is only a part of the picture however; amnot easily tell
the magnitudeof the update(s). For example, a directory receiving a single, small fdatap
every day is extremely difficult distinguish from a directory with a very ldigdoeing modified

everyday, or similarly one with many files.
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Figure 4.4 shows the amount of time between a directory’s first populatiorfileish
and the last noted update. The times are relative to the first appeardiles iof the directory.
However, despite this we still see nearly 40% of directories having somefsactivity over
128 or more days. While we have evidence that there is activity over lomgggeof time, we
have no notion of the magnitude of the activity. For example, even though we begble to
see that 15,000 files are now marked as being in a bucket of mtimes betweér2 @ays prior
to the summary, we can tell nothing about the nature of the modifications. Thenidg have
been entirely replaced with new data or simply touched with a single bit flippedwsbere.

Figures 4.5 and 4.6 illustrate the distribution of inter-modification times to individual
project directories—recall the day level granularity of our histogramgeier. As we can see,
most updates occur within a few days of each other and quickly drof loi. follows behavior
similar to that shown in the 1993 NCAR study [55]. The same issues still apply dibove; we
have not come up with an effective way to gauge the magnitude of the changeconsistent
automated fashion for more than a single directory with the coarse natuve data.

Regardless, the preliminary evidence we have discovered here dpgssthat mod-
fication patterns are still similar to that of older studies such as the 1993 N@Afy. sWe
found moderate to strong temporal and namespace correlations to upilatieswe must keep
in mind the coarse granularity of this dataset, these results suggest teaighlyygrouping data
on user directories could yield performance and efficiency benefiishésis corroborated by
our NCAR MSS study as shown later in the chapter.

4.2.3 LANL File Size and Space Distributions

Here we describe the distribution of file sizes and allocated space aceokaMNL
sketch, again with comparisons to the 1992 NCAR study.

Moving to the file level, we next examined file sizes within the corpus. Figure 4.7
shows a CDF of file sizes calculated from the last day’s histogram in theatatdearly 50%
of the data written in the NCAR study consisted of files between 10 and 100mviigintrast,
we found that 40% of the total reported usage in the LANL corpus codsidtiles between 1
and 2 GB.

Interestingly, however, when comparing the reported file sizes to the drabsior-

age space actually allocated to files, note that 60% of allocated space isrmahdy files
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Figure 4.3: CDF of the number of updates per individual project dirgctor

30

25

N
(=]

Directory Counts
=
Ul

=
(=]

0-2 2-4 4-8 8-16 16-32 32-64 64-128 128-256256-512
Day Ranges
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trace. Volume refers to the aggregate amount of storage consumed (invkiB count refers

to the number of files. Sparse files have larger reported file size thantatiog@ace, causing
the difference between the curves.

between 2 and 8 MB in size. Thus, while the bulk of storage is consumed byttide are
considerably larger than the previous study, those files tend to be spaesea petabyte is
accounted for when looking at file sizes, but only around 100 TB is Hytabocated. This
behavior may be partially attributable to scientific super-computing’s useanédltheckpoint
files [19].

Figure 4.8 shows a CDF breaking down the fraction of space that eastiaty con-
tributes to the total archive. We observe that a relatively small fractioireétries contribute
the dominant fraction of space. The same holds true for raw file countel§sas shown in
Figure 4.9. More data is needed to see if this is an artifact of the specifensys LANL or is

a general trend across scientific tertiary storage archives.

4.3 NCAR Analysis

While the LANL sketch provided illuminating, if preliminary, results, its very sear
granularity limits our analysis. To address this, we have obtained a new detatbset covering

three years of file migration activity from NCAR. In this section we begin byvjaling an
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the total. Note this is the count on the last day of summaries, July 9 2010.
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overview of our methodologies, before diving into micro-analyses ddrsdvacets of the MSS

activities.

4.3.1 Methodology Overview

For the purpose of our analysis we group actions into three broad cia®gbhe first,
which we calluser activities consist of actions that create, read or update a file’'s data. These
actions almost always come from end-users of the archive. Thedéomgration activities
automated moves of data to and from the disk cache, as well as a small nurtdyes-to-tape
migrations and integrity checks of data stored on tape. The third categacyions argurges
the permanent deletion of files within the archive. We first describe thenacissociated with
user and migration activities. We do not go into greater detail on purges #iece is only a
single action, also called a purge, associated with that category.

There are three actions that we group under the category of usetiestivith which
we are concerned: creates, reads, and writes. A create is the ingefstidite and all of its
associated data into the MSS. A write iswgdateto a file already in existence in the archive.
When we refer to user activities, we use the terms write and update intgedday. A read is
simply a read of a file’s data.

There are two types of actions in the category of migration activities. Thedies
migration read which is simply a read of a file in preparation for writing the file elsewhere in the
system. The second ismigration write which is a write of the file data read from a preceding
migration read. With the exception of a small fraction of aborted or mis-loggedtas, every
migration write has a corresponding migration read. Thus, most user astitfiEse that are to
the disk cache) have &asttwo associated migration actions that will follow it at some point.
As we show in Section 4.3.2.1, these migration activities are actually respofwiltest of
the data movement in the system.

Throughout our workload study when we calculate the number of bytedvie in
any action or group of actions, we are summing the file sizes. As we lack estalting how

much data is actually moved or written, we use the file size to approximate anhgmped.
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Activity Type Count % of Total

All Actions 189,364,952 1009
User Acts. Total 65,980,770 34%
User Reads 22,272,374 12%
User Writes (Updates) 5,797,550 3%
User Creates 37,910,846 200
Migrate Acts. Total 111,895,464 59%
Migrate Read 55,952,916 30%
Migrate Writes 55,942,548 29%
Purges Total 11,488,718 6%

Table 4.4: Summary of actions observed during the trace period. Peageeottdotal is the
fraction of all actions counted. Migrate and user totals are the total nunflaetions within
those categories. Subtotal percentages are approximate to ensureflfd.

4.3.2 NCAR MSS Analysis

We now provide a top down analysis of activities in the NCAR MSS, starting with

aggregate system wide observations before moving on to user and fllahehgses.

4.3.2.1 NCAR Aggregate Observations

From January 1, 2008 to December 31, 2010 we identified approximat&yilion
unigue files in our logs. From our sketch, we know the total corpus cadapproximately
69 million files at the end of 2010; however our logs only account for figedaupon during
the 3 years of observation. We only know of the total corpus file coant fout-of-band com-
munication with administrators. As we describe in Section 3.4, these communicatioas
invaluable in aiding our understanding and observations.

Figure 4.10 provides a high-level overview of what the workload lookes diker the
course of a week. We see strong diurnal patterns linked to the worB@yeind note that there
is significantly more activity due to file migrations than user actions, which wesfigae more
later in this section.

Figure 4.11 is a cumulative distribution function (CDF) of file sizes obseoved the

three years of dataCountrefers to the fraction of files of a given size, whilelumerefers to
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near zero.
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Figure 4.11: CDF of file sizes by the fraction of files of a given size, aadilésizes responsible
for a given fraction of space.

the amount of space taken up by files of a given size [32]. We foun@@¥%tof observed files
are smaller than 100 MB, but most space is taken by files larger than 100 MBtypical file
size in the NCAR MSS is larger than that noted in Dayal’s study of HPC systerestd26],
though Dayal notes that there is significant variance in average filersizesfystem to system.

In our first set of observations, we examine the fraction of actionstddwvo file mi-
gration. This is of interest as “maintenance” and other supporting actiensasy candidates
for optimization—they are predictable and often latency-insensitive. Imadag these activ-
ities we found that automated file migrations make up the majority of data movement in the
MSS.

In Table 4.4, we show the number of user activities and migrate activities uoyt.co
Activities due to migration significantly outnumber those from user-soureads; creates and
writes. This observation is consistent with conclusions drawn from botér @tfchival and
enterprise systems in which the dominant fraction of activities are automatpddging” op-
erations such as integrity checking and metadata manipulations [8, 24,l82e#@son for this
large number of automated actions in the MSS is the use of the disk cache ging ataa file

for creations and caching file reads. If the data is not already on tapesitbe copied onto a
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tape prior to removal from the cache.

Over the period covered by our sketch, the archive was migrated to gemsvation
of equipment, ultimately resulting in the entire corpus being both read and writewever,
our logs did not note activities from this data migration. This provides us wittkyansights.
First, the oft-quoted “Write-Once, Read-Maybe” assumption within asshig false from a
system maintenance perspective. When we account for these inevitdielwy driven data
migrations, data is inevitably both read and written. There is still a grain of trutiVtde-
Once, Read-Maybe” from the user perspective, but as we dedatire this assumption is
not unequivocally true there either. Second, the lack of evidence sé thrégrations in our
logs highlights the importance of communicating with system administrators and atshde
understand the limitations of any data being provided. Without their input widdtave been
ignorant of the migrations from one set of hardware to the next.

We next examine the distribution of files and data across the namespacsddca
can offer hints as to how a system should physically group and organidatés Figure 4.12
shows two views of the distribution of files at different depths of the naamspAs we explore
in greater detail next, most files and data are concentrated around theelative directory
depth, though there is wide variation in the number of files and data in any dixectory.

Figure 4.12(a) shows a breakdown of the number of files and bytesicedt@cur-
sively at each directory as a fraction of all the data and files obseRadexample, the root of
the directory tree, depth 0, would contain 100% of the files and data sin@tuties everything
beneath it. We include files that were purged when calculating the distribdtfdesoand bytes
because many files were only observed upon deletion.

In contrast, Figure 4.12(b) shows the amount of files and datgattecular level,
approximately 90% of data and individual files are contained at depths threugh five, in-
clusive. Although most files are at depths three through five, there idisan variation in the
typical number of files per directory. The median at depth five is 11 fileglipectory, but the
mean is 70 and the standard deviation is 607. Since the vast majority of diesatontain a
modest number of files and bytes, physically grouping whole directorigsddridual physical
media is viable, and as we show in our analysis of user behaviors, may gid@dmpance and

efficiency benefits.
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Figure 4.12: Two views of the distribution of files and bytes by directonttdepor example,
/user/foo/ would be at depth 2. The distribution is across 50.5 million files in 1.4 million
directories. 61



4.3.2.2 NCAR User Behaviors

The raw data we obtained from NCAR did not have user actions groupeces-
sions, so to approximate them we artificially grouped activities from individsars into
temporally-based sessions. To do this, we used a sliding window of 15 mirAgsactions
(exclusive of purges since they were only logged once per weekjvia within 15 minutes
of the previous activity for a user were grouped into a session. Anyrectiat occurred after
a 15 minute idle period were put into a new session. The 15 minute idle periochwasn by
examining the number of sessions created as the window length grew. Sgtectismall of
an idle period resulted in many single action sessions, while using an idle peniger than
15 minutes yielded sessions with very few additional actions. Using this metbadentified
approximately 640,000 unique sessions.

We examine the distribution of activities on a per-user and per-sessiis dm#
allows us to understand typical user-behavior, which in turn is often thavier for which
a system should be optimized. In our examinations we found that most actiores fcom a
relatively small subset of users and sessions. Further, sessiocenapeised of only one type
of action.

We find that a relatively small fraction of users are responsible for nobiste in the
archive, particularly in regards to writes. 20% of the users were resdiple for nearly 90% of
the logged actions and 90% of the data volume accessed. At the sesslpwéesee a similar
distribution of data volume and activities. 10% of the sessions are resfofwmilmearly 90%
of the logged activities and 90% of the observed data movement.

In Figure 4.13 we show a breakdown of the number of user activitiegmoguluring
sessions; the majority of sessions have fewer than 100 actions. Figdrehbws the sum of
file sizes seen in a given session, providing an upper bound on the aofadeta that could
be manipulated or transferred during the session. Most sessions9Q@4gract on less than
100 GB of data.

We find that sessions never mix user action types. Rather, a givenrsisssionprised
of just creates, just reads, or just writes. This makes sense on an intevles it takes time
after reading a file to analyze the data and then write results. Moreoveaydhize is not a

“scratch” space meant for interactive jobs where mixtures of readsvetes are common.

The primary implication we draw here is that there is likely a benefit to having a
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priority-driven, asynchronous batch interface for very large s@ee Presumably, larger ac-
cesses are less latency-sensitive than smaller accesses, providitey §exibility than hard-
coded policies, and allowing large accesses to be intelligently orderedremty@d around
smaller, potentially latency-sensitive accesses. Working around lagemsjtive accesses is
especially important for systems that may have limited concurrency or qrimeup policies.

We next look at how session actions are distributed through the namdsigaae
chy. This can provide hints as to how archival systems should physicallypgiata to reduce
seek times and media activations. Here we find that most sessions stay wliivehg few
directories.

In Figure 4.15 we show the typical directory depth, number of directai@snumber
of files touched during sessions. The number of directories accedypditely nearly an order
of magnitude less than the number of files, meaning that sessions access rfildgpiéthin
each directory. The average directory depth per-session is typic@l® @ sessions) less
than 5, and the directory depth average almost always remains a wholensondgesting that
users tend to access files grouadhe same depthiraken together with earlier observations,
this finding suggests that it may be useful to physically group data baseseomnd directory
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depth. This technique could yield improved performance, minimizing seeédgraniding for
easy pre-fetching and streaming reads and writes for tape and low-pskebased systems.
Physically grouping data by user was similarly done by the RASH portion dBAB\MSS-

Il 'in the late 1980s [40, 81] where data was physically grouped by uskrdern systems,
such as HPSS [4], also provide tools for the automatic grouping of files tmdreaged as
a single administrative unit. For tape based systems as well as archivesdmikpun-down
disks [25, 76], this can be a boon because it would reduce the nedfigple media activations
and mounts.

Observation:

We examine the total activity of users to see how many were effectively idlagiu
the trace period. Depending on how the idle users’ data is utilized, it mayderavheuristic for
purging data. We find that many users did not have any operations delgbates associated
with them.

We identified 1400 users that had user and migration activities associatetievith—
this is what we focus our session level analyses on. However, we fouadditional 200 unique
users that were only associated with deleted files. That is, the only actw#tsexiated with
those users were purge actions. While we do not examine the temporaldistribf individual
user activities, this suggests some users and their data—see obsemafitafetimes—may
be transient members of the system.

4.3.2.3 NCAR File Level Behaviors

In this section we go deeper and look at the behavior of individual filesirwitie
system.

We examine file lifetimes for two reasons. First, archives are often cameside be
immutable datastores, and as we show, this is not the case. Second, idghidyiroften, and
when, files are deleted can help guide the organization and policies ofearsyé/e find that
around 15% of files are deleted within a year of creation.

In our analysis of file lifetimes, we only consider files for which we obsgévereate
during the logged period. Of the 50 million observed files, we saw 36 million enfde
creations, and 11 million deletes. We then correlated approximately 5 million débefiées

with observed creates. We focus our analysis on these files with obsereates as we can
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Figure 4.16: CDF of the distribution of the lifetime of files created during theetréaath year
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precisely determine their lifetimes, illustrated in Figure 4.16.

We make two primary observations in this area. First, it appears that apyaiety
80% of the files created in the first year are in existence at the end of siaggesting that the
majority of the files have long lifetimes. Second, of those files #&mnatdeleted, they are most
likely to be deleted from the system within one year of creation. While this stremgoral
spike is due in part to file retention policies—360 days is one of the most comrinactually
makes for a stronger basis in estimating user intentions as they are forcqulititlg decide
which files will remain in the system. This is further reinforced by the factubats are charged
for data stored in the archive.

These file lifetime results are interesting for several reasons. Firsiyaesdre clearly
not immutable data stores—a significant number of files are deleted. Sedoifelthe notion
of files being deleted relatively quickly, or not at all, is not new [17, 5], éhe deletes on the
archive occur after months, as opposed to within seconds of creatiemterprise and personal
storage. Because of these behaviors it may be useful to add anotieal fggobationary”
level to the storage hierarchy: a place where files that are likely to be deletestored before
entering a more “permanent” state in the system.

We examine the distribution of actions upon files because it can strongly impact
caching policies. When examining file activities, we do not include files treabaly acted
on by a purge. Thus, we study around 43 million files. We find that most #lesive few
actions. Exclusive of migration activities, 65% are only acted upon oncees fears.

Our observation is that, as a whole, actions are evenly distributed adesssafd
that most files are the target of relatively few actions, as shown in Figlive which illustrates
the distribution of actions across files. The line is relatively flat, indicating dodbns are
evenly distributed across files; a vanishingly small fraction (less than 0d®éive hundreds or
thousands of activities. This is further illustrated in Figure 4.18, wherenow $he distribution
of files by activity count. Across all user activities, 70% of the files weeoled only received
a single action, usually the initial create of the file.

Our suggestion, based on this observation, is one that NCAR already imypkeme
use the disk cache primarily to absorb creates/writes. Individual fileitiesiare sufficiently
spread out and rare that read caching in general would be largelgdatieé. The small number
of files that are very active, however, could easily be serviced orkacdizhe.

67



1.0

0.8}
wn
9 0.6}
w
‘6
C
S
9}
© 0.4
w
0.2 —
&—¢ All Activities
»— Migration Activities
+— User Activities
0.0 .

0.2 0.4 0.6 0.8 1.0
Fraction of Activities

Figure 4.17: CDF showing the fraction of files responsible for a givaction of total activities.
Note the user and migration plots do not start at O files since not all filesriipdiger activities
or only migration activities.

1.0

0.8

Fraction of Files
o
()]

°
N

0.2

&—& All Activities
»—+ Migration Activities
+—+ User Activities

O'00 5 10 15 20 25

Count of Activities

Figure 4.18: CDF of the fraction of files receiving particular activitiesrfrasers (reads,writes,
creates) and migration processes. We truncate the count at 25 benfuaeery small fraction
of files receive hundreds or thousands of activities.

68



1.0

— Mutability Range
Inter-Update Intervals

0.8

Fraction of Files
o
()]

°
N
T

0.2}

L

10° 104 103 1072 10? 10° 10! 10° 10°
Days
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the first and last mutation of a file. These files account for approximatelynlisn of the
observed 50 million files. The x-axis is on a log scale.

We examine the mutability of files since a common assumption in archival design is
the notion of “Write-Once” files. This can influence caching policies and thata is organized
within the system. We see that approximately 5% of files had updates to their idataost
updates occurring within one day of another. A small subset of filesveeopdates over long
periods of time (longer than 100 days).

Before we move on to our observation, we describe what we consideran bpdate,
ormutationto afile. If a particular file has been created multiple times, all creates afteitibé in
are counted as mutation to file state. A second create to a file overwrites timabdata; it
may be identical, or entirely different. Any write to a file is treated as an updait® data.

In Figure 4.19, we show the interval of time between successive updates same
file. A file is not accounted for if it does not have at least two createoamdites. Thus, we
observe inter-references for 2.5 million files, around 5% of the uniquedltserved during the
trace. Most updates (roughly 65%) occur within one day of anotheatepd\fter this, we see

a marked increase in the interval of time between updates. The next 2@¥watun ten days
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Figure 4.20: CDF of the inter-reference interval files under seveifarent filters. “user and
migration act includes all user and migration activities, while “user acts.” includegisea
writes and creates, and “user reads” includes just reads. Note f#t &Bly accounts for files
touched by the respective activities, and files only referenced oerasoaicounted because we
are unable to calculate an interval for them.

of each other, and the subsequent remainder occur between 10Ghday.

Figure 4.19 also shows the range of time between a file’s initial creation &br fir
observed write) and its last update or overwrite, which we refer to asititability range 40%
of the files for which we calculate a mutability range have ranges greatetahatays.

To further explore a file’s mutability we count the number of potential updaféde
could receive, only counting files that have at least one observeateip@his could be either
a create action overwriting an existing file or a write action updating a file’s dater 75%
received a single update, and over 95% of files receive fewer thauptiates. The remaining
files receive anywhere from 10-100 updates or more. Given thevelaghort inter-update
time for file data, caching should be able to absorb most updates beforegwéok to the
archive.

We examine inter-reference intervals for two reasons: to explore the irtigddile
migration has on a file's inter-reference period, and to measure thesfiegwf accesses to a
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file. Both factors may impact caching and data placement policies. Wherataiguthe inter-

reference interval including migration activities, we treated each migra#eaw @nd write, pos-
sibly to multiple copies of the same logical file) as a single reference, pregemtiisleadingly

high inter-reference count for files, particularly those with multiple copies.

When we account for automated file migrations in a file’s inter-referencevaiidile
inter-reference intervals appear superficially shorter. Considerilyguser actions causes files
to exhibit longer inter-reference intervals, albeit with fewer files actadifor.

Figure 4.20 shows the inter-reference intervals for files under a varfiéitters. Note
that in order to be counted a file must have had at least two actions undeidhant filter.
When we include migration activities, the general inter-reference intapgars superficially
shorter, due to daily migrations of files off of the disk cache. Howeveerwhigration activities
are filtered out, we see a larger fraction of files under consideration witfelantervals, though
this includesfewertotal files. In essence, automated migration processes can skew how the
workload is perceived. Consider, for example, how much the full migradiom to the tape
library upgrade would have skewed the overall inter-reference gherio

The second observation we make is that when we are only concernedeadh, r
the files that do see repeat reads (approximately 2.2 million) can see \tender periods of
time between them. This lines up with the anecdotes we were given about d tygecease:
retrieving stored data at long intervals to validate old experiments and seezhes.

4.4 Combined Analysis and Implications

Our experiences in analyzing activity on the general scientific (LANLJ BICAR
corpora lead to suggestions for long-term tertiary storage system design

Bring back the batch interface. We found that most accesses occur from a subset
of users and sessions, and are often very predictelde data migration processes and large
user-sourced scripted jobs, similar to the large-scale access behagisasv even in the public
content archives. With these behaviors, there may be significant bgaigfed from an asyn-
chronous batch interface that allows a scheduler to intelligently group lacd writes while
scheduling around more latency sensitive processes. Becaussasdte often less tolerant
of latency than something like an integrity checking process, the integritykitigecan easily

be given a lower-priority and run in batch mode in the background, impgavser quality-of-
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service while still providing for administrative and maintenance tasks.

User and namespace grouping may aid archives with offline mediaWe believe
that physically grouping data based on user and namespace heuristiggowayruitful. We
noticed that in the NCAR corpus files and bytes tended to be concentratgddathe same
levels and that user sessions tended to act within the same directory level.rigimiasaw
temporal and namespace locality in the general scientific LANL corpus.dditian, in the
NCAR corpus few files were shared across many users, so groupingds, like that done
in the MSS-II System [40, 81] may be a simple but effective approach ysigdlly grouping
data on media, and modern tertiary stores such as HPSS provide tools by $argenate such
grouping [4]. This grouping is of prime importance for archives with offlmedia, such as
spun-down disks or unmounted tapes, since they incur high seek peaaltiegartup costs.
This suggestion ties in with the previous suggestion for a batch interfacegelaying groups
of writes and batching them, we can better group them based on their ubeelationship
to the directory hierarchy. If rich metadata are available, more intelligent fdaping and
placement techniques can yield significant improvements in access times asstiaea by
Chenet al. [23] and their work on multi-dimensional grid data on tertiary storage systems.
Other types of grouping may also be relevant sucfilesules groups of co-accessed files that
are dynamically identified, suggested by Doraimani and Lamnitchi [27].

Write-Once, Read-Maybe doesn’t always holdAn interesting conclusion we have
come to is that fronuser perspective, the old assumption of “Write-Once, Read-Maybe” is
not unequivocally true. As far as “Write-Once” is concerned, while trfites (95%) were not
updated, a non-trivial fraction were eventually deleted from the agchivsmaller (5%), but
also non-trivial fraction received one or more updates to their dataselTtnedates came either
through explicit updates to the data, or complete overwrites.

The assumption of “Read-Maybe” appears to at least superficially Hetvever,
while three years is an enormous length of time compared to most prior stuéidgve only
seen a fraction of the potential behaviors if the data is intended to survperpetuity. We hy-
pothesize that continual data growth rates may superficially mask theaetbfr of an archive
likely to be read. Consider that we know via communication with administratorsititatis
often revisited up tdiveyears later, yet our logs only coverddeeyears of activity. However,
when we consider the silent migration of data to new technologies, “Reatbdlaonclusively
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becomes “Read-Eventually”. As long as the file otherwise survives, iinallitably be read as
it moves to new media.

All told, it is dangerous to rely on any rigid assumptions about the expeetatitre-
havior or mutability of files in a system, especially in light of potentially unpredletabpacts
of hard policies on user behavior. For example, Holloway found users attempted to subvert
file retention and migration policies through the use of scripts to update file nie{d@3

4.5 Chapter Summary

In this chapter we re-examined the behavior of scientific tertiary storagjerag. In
our study of a LANL archive we found modification behavior that is similar &t tf studies
from 20 years ago. We also found that while file sizes have grown somegetheral trend
that most data in the system is composed of larger files, while most files atigalglamall
has continued. However, we could not do a detailed access behaslgsiargiven the coarse
granularity of the data we obtained from LANL.

To address this, we have analyzed three years of logs detailing activitiee ICAR
mass storage system (MSS). We found that much like public content esghivost activity
comes from automated behaviors. We also discovered that while a smébrirat users are
responsible for the majority of activity, this activity is widely spread throughioe corpus. On
a per-user level however, individual users appear to show straagdjtio leading us to suggest
that physical grouping techniques based on namespace and comtérado performance and

efficiency improvements.
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Chapter 5

Combined Workload Discussion

| wanna make a jigsaw puzzle that's 40,000 pieces. And when
you finish it, it says ‘go outside.

Demetry Martin

In this chapter we provide a high-level analysis of all of our workloadlisiin
aggregate. We explore the common and divergent characteristics aotbsthe public content
and scientific tertiary archives. We also cover a variety of lessonsddannvorkload analysis
and provide advice and best practices for improving future workloatlestuwhich in turn lays

the ground work for our last chapter that looks towards validating tege-

5.1 Workload Characteristics

One of the most surprising results to come out of our workload analysewisimilar
the per-file/record popularity is across disparate corpora, illustratedyimé=5.1. The water
corpus was 4.5 GB of data, the historical around 10 TB, and the NCARI#®/@B. Despite
these enormous differences in scale and intended use case, the mabgtiNarity of records
and files accessed (recall that we only calculate based on the files aeitedlysed, not those
never touched during the trace) is very similar. This suggests that abebsard, any sort of
long-term hot-cold grouping or read caching is not likely to be effective.

Another commonality we saw across the various corpora was the presaélage,
automated accesses to the system. These came from a variety of sargesy from external
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Figure 5.1: CDF of file/record popularity as a fraction of all accesseg&em up by dataset.

indexing service such as Google, to internal administrative processleasintegrity checking
and media migrations. Given how common and heavy-weight these actividigaeareiterate
our suggestion for a separate asynchronous administrative interfaaedte these operations.
Such an interface can simplify administration by removing the need for maryatepstatic
policies for common tasks such as indexing and migration, and furtherdehbése latency-
insensitive tasks around the much more latency sensitive end-user.

However, despite all of the observed corpora having some form aé-angomated
access, the underlying causes and magnitudes were not universaxdarople, in the water
corpus Google was responsible for 70% of all retrievals, but this wisegnabsent in the
NCAR corpus as the system had no interface to through the Web. Similarlyigtezical
corpus had an aggressive integrity checking policy (all data and metadatahecksummed
once per month) that was absent in both the NCAR and water corpora.

In all of the corpora, the notion of write-once, read-maybe was plaitdg filsom the
system perspective. Any corpus that is migrated across hardwapenfaan activity given the
long lifetime of archival data) will inevitably be read and written. There &se mtegrity check-

ing and indexing processes that do wholesale reads of archivalkfata.the user perspective
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write-once, read-maybe still has a kernel of truth to it, but is weak. Weddhat exclusive of
system sourced reads, most archives only had 5-20% of the theirdfdesds read. The number
of records or files being updated was widely variable, with less than 5%esfifi the NCAR
corpus receiving updates, up to 100% of files in the water corpus. All toisl illustrates the
danger of over-reliance on rules of thumb, as well as overgenerafhzaiteny one data point.

The relatively high rates of file updates we observed also highlighted thee-un
dictability of humans in any system. In the NCAR corpus we found that manyeofipllates
came from a single user who may have been using the long-term archivadkups (the data
was ambiguous). In the water corpus, all reports in the archive wemgvaiten once a quarter
due to a mix of policies that made it possible for data updates to be otherwisedrassgkit
was simpler for them to simply re-run all scripts once-per quarter to erdludata was up to
date. A knee-jerk reaction to these sorts of activities would be to implemend @bkcy, but as
Holloway showed, policies that users find onerous will often be circutiedewith potentially
pathological impacts on the system [43].

While not covered in this thesis, a relevant side investigation we did was wn ho
a scientific archive evolves. NCAR has been dedicated to the same typseafrch in the
years since Miller and Katz’'s 1993 study, providing a unique opportunitjotan apples-to-
apples comparison to the 1993 study. We identified, with far less noise thald wtherwise
be possible due to NCAR’s narrow mission scope, evolutionary trendsseveral decades of
hardware and software evolution. We found several results of natieiding an inversion of
read-write rations (the system changed from write heavy from reagd/hy)eend an increase in
the latency to first byte for tape-based systems. Details are providedik étral’s study [33].

Object storage devices [31], where data is manipulated as objects rathéndivid-
ual blocks on a hard drive, are of growing interest in the storage cortyn@ur architectural
suggestions should work equally well in object stores. The same basigiggaechniques will
work with object stores, if not better, as object stores divorce therlymalg details of the stor-
age device from the actual use of the device itself. For example, usirgytheral namespace
clues (directory and file paths) to group data becomes simpler in an objexastthe dictated
‘path’ is completely independent of the underlying structure of the stoaéal dh contrast, tra-
ditional hierarchical file systems rely on the directory structure to physitajlput and locate

data on devices.
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One of the original sub-objectives of our study of archival storagtesns was to
develop a taxonomy of archival storage characteristics and workldaftde we have found
a variety common and divergent characteristics across archives, rd®neel above, we are
leery of over-generalizing our results. Given that most of the systenstwdéed had radically
different use cases, it would be premature to concretely define ¢bastics of any particular

category of archival use.

5.2 Lessonsin Logging and Tracing

In our work, we have run into many challenges in interpreting and unaelisig.the
data we have obtained. We learned several lessons that can aid intfatung and analysis
that informed our log-validation work described in the next chapter.

Communication is key. If there is a single lesson we have learned in our experiences,
it is the importance of communication with system administrators and architects. Tigne a
again we relied on them to understand the system architecture and artffdetsamrkload as
well as clarify what we did and did not observe in the logs. For examplegilNtBAR corpus,
without their input we would have been ignorant of file migration due to hardwpgrades.
As another example, this time in the water corpus, without administrator inputoutdlmave
been unaware of the silent file renames, drastically changing our reswtgytiout. Without
the shared knowledge provided by system experts we would have hgwifecantly degraded
and even potentially even inaccurate understanding of the archive.

A system start state is invaluable A good “complete” analysis of a system depends
on havingboth snapshots and an activity trace; just one or the other is often insufficient
answer many questions. For example, in this the NCAR dataset we lacked afvilee start
state of the system that a snapshot could have provided. Because wkthisre unable to
answer questions such as what fraction of files were left entirely unéoushwhat fraction of
the namespace does a given user occupy. However, having acaedyg smapshots without
a dynamic trace can be equally difficult because it limits the ability to understansbtirce,
timespan, and magnitude of activities occurring in a system.

Don’t add semantic meaning to field values.One specific issue we ran into with
the NCAR sketch was understanding semantic meanings encoded in field. ieddwmexample,

we observed situations where the base directory of a path was subthjlamity senamed,
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e.g. /USER/Foo/bar to /uSER/Foo/Bar/ to denote file being in the “trash”. This caused our
unique file counts to be off by 10% and our directory counts to be off ylp@0%. Luckily we
were able to communicate with an administrator to identify and understand the oathese
silent renames, but this cannot be relied upon for all datasets. Aswadiress to any group
that may provide data to others to avoid using field values to encode nonviatnitbrmation
unless they are carefully documented.

Be consistent, or be visibleWe encountered several subtle format changes in logged
activities across our datasets, including changes as trivial as a fieldgrmvécharacter over or
swapping field locations. At best, they cause annoying parser endfeece data reprocessing
with a band-aid fix. At worst, they can silently corrupt results and be mdhe difficult to
detect. Our suggestion is to ensure that format changes will breakex,gansvide an external
method for keeping the logs in a consistent format, or document the changes

Tag or explain activity drop-offs. Sudden reductions in activity rates are difficult to
deal with in an analysis since it is often difficult, if not impossible, to determinértireecause
of the reductione.g. it could be due to an actual reduction in the number of activities, a crash,
or even a holiday. Without understanding what caused a dip in activithawe to treat it as null
data and discard it, lest we misconstrue what is occurring. Our propggedach is to have the
logger take a more proactive approach and explicitly note when the gritatsgenerates the
log entries fails or otherwise times out. Another simple fix is to have the loggeramgtéme
it starts in the logs it keeps. This can help identify times when the logger is simpiiviea
versus ones that are a legitimate reduction in activity rates.

Identify the coverage of a datasetA question we are always asking about any trace
or log we have obtained from outside sources is “wdr@n’t we seeing in this trace?”. Put
another way, we don’t know what tteverageof a dataset is. For example, we only knew
about the data migration from one set of hardware to another via ouraf-bommunications
with system administrators. Our proposed solution is to take a snapshotysfeanss state
immediately prior to the start of logging/tracing, then after completion of the trdee da
additional snapshot. At this point, use the first snapshot and the traceedts to create a third
expectedsnapshot. We can then compare this expected snapshot with the one ftek¢hea
trace and identify where they differ, and help verify what the trace isi@ndt covering. This
idea provides the basis of ExDiff, described in the next chapter.
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Chapter 6

Log Validation Using Metadata Snapshots

The logic of validation allows us to move between the two
limits of dogmatism and skepticism.

Paul Ricoeur

Our original direction was informed by our problems with long-term storggeem
logs comprised of data gathered over multiple years, however, storaggrsgctivity logs are
used in a number of diverse areas. These areas range from sybt@nistration and design
to security auditing. A latent problem in all of these applications is identifyingtverageof
the collected logs; it is critical to know which events have been capturedvhiuth have been
omitted. With no form of validation or understanding of a log’s coverage, éaisy to form
incorrect conclusions from log analysis.

For example, consider a system that silently drops entries due to a loggfiteg-b
overflow or logging-process crash. A security or performance afidite system may mistak-
enly conclude that the system is behaving correctly, as no warning nesssage been logged.
Similarly, unless the developers who instrumented the system are presantpi¢ difficult to
identify precisely which activities are and are not being captured. The ttebe a particu-
larly vexing problem for debugging a system, as well as for anyone titgiggalyze a system
from captured traces.

To address this issue, we have developed a methodology wé&xdalff, that uses

expectation differencinp determine when the true state of a system diverges from the expected

state. ExDiff uses an initial file or object-level metadata snapshot [10aB4i] an activity log
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to derive theexpectedstate of a system. This expected state of the system is compared to a
second metadata snapshot capturing the system’s cueaity. ExDiff uses the resulting set
of differences between the expected and real state to identify loggingionsisfsom crashed
logging processes or unrecorded system activities.

Using ExDiff, we can accomplish three key validation tasks. First, ExDiffidantify
both when and for how long a logger may have dropped entries. Seitcad,highlight when
there may be activity that hasot been captured. Third, it can aid in identifying the specific
actions, such as a file creation that may have been dropped from a logeaptured in the first
place. Providing the ability to accomplish these taks is our primary contributiorsiciiapter.

Using a variety of simulated workloads and snapshots, we demonstrate’ExDif-
ity to retroactively identify periods where log entries are being droppéthlewunderlying sys-
tem is still functioning. We show ExDiff can accurately identify gaps in logs \wa&hmany as
500,000 actions, and given the relatively low rates of activity we've eskin our prior stud-
ies, this should work very well within archival storage settings. Additionally analyze how
log duration and the density of actions affect ExDiff's accuracy. We détail how ExDiff can
be used to identify specific types of dropped entries, such as an eiing acfile permission
change, and how the same issues that influence accuracy in recogyapisdn log coverage
can impact the ability to identify missing entries.

Note that in our work we use the terms log and trace inter-changeably, ahd th
gapestimation(recall a gap is a contiguous period of dropped entries) is a pair of timestamp
predicting the start and end times of a gap. When describing gaps, it is impristinguish
between wall-clock time and the number of dropped entries; a gap in wall-timek may

involve any number of actions.

6.1 ExDiff Design

ExDiff operates at the level of file or object metadata. We do not contfideaw data,
although ExDiff could be extended to incorporate data capture by cagtodntent hashes.
Note that while the overall methodology is agnostic to the underlying tracerapsot capture
methods, the data that comes from these captures will be specific to indisidiems.

The EXxDiff process (explained in greater detail in the following paragrapuld be

used for a variety of applications and systems well beyond our originaitinfeaiding trace
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Snapshot Log Snapshot

Initial L Trace J Reality 1)input Capture

2) Expectation
Calculation

Figure 6.1: An overview of ExDiff’s workflow. Yellow entries are capgdrdata from input
capture, while green (diff entries and expected snapshot) are derive

analysis. One potential application is as part of a periodic log verificatmregs. Whenever an
ExDiff run finds unexpected modifications to the system based on loggiedsiit can alert an
administrator of the issue. Another use is in verifying that the necessaaig af a system have
been instrumented. Consider a cloud service that charges per actisnmifyg each billable
action modifies some metadata state, ExDiff can be used to verify that allmeksstéons are
being properly accounted and charged for.

There are four steps to ExDiff. The first isput capture In this step annitial
metadata snapshot is taken, followed by activity tracing, and finally areality snapshot is
captured. The second stepdgpectation calculationwhere we combine the initial snapshot
and the activity log to derive an expected snapshot. The third ditfing, is where we take
our expected snapshot and compare it teadity snapshot, generating a list of differences. The
fourth and final step ianalysis where we utilize the list of differences, the activity trace, and
snapshots to analyze log coverage. Figure 6.1 illustrates ExDiff’s voavkfl

Input Capture: In the input capture step, the initial metadata snapshot, activity log
and reality snapshot are gathered. The initial snapshot is a picture wietaelata state of the
system immediately prior to a trace log of actions. The reality snapshot caph&etate of
the system at the end of a tracing period. While both snapshots reptieseground truth of
a system'’s state (we assume the file system metadata is correct), we refen tasttiee initial

and reality snapshots to keep them notationally distinct. The log must captimesdetween
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Trace Log

Initial Snapshot Expected Snapshot

READ Foo 1125

READ Baz 1240

File Foo ATIME 0955 <
File Bar ATIME 1000
File Baz ATIME 0840 <

File Foo ATIME 1125
File Bar ATIME 1000
File Baz ATIME 1240

Figure 6.2: Expectation Calculation. In this example, the expected statevediesi mapping
file ATIME's to read activities.

the initial and reality snapshots. Note that more than two snapshots cantbeedaput ExDiff
only calculates coverage between pairs of snapshots.

For ExDiff to function, the underlying system needs two characteristicst, Bne or
more action entries in the log should reflect changes to the system’s undarigiadata. For
example, if a snapshot captures a file’s permissions and a logged actesahanges to that
file’s permissions, we can then use that entry to predict the new state difiéfsapermission
metadata. Second, in order to estimate gaps, we require one or more metadstenipsehat
can be accurately mapped to activity log entries. For example, a read emxtpathbe mapped
to a files ATIME.

While some file systems provide snapshots through versioning [42, 70f,roay
snapshots is not always atomic, such as a recuigiendstat to capture metadata. Actions
may continue to mutate a system’s metadata state as a snapshot is being ceybiicteieh, turn
influences the diffing and analysis steps in difficult to predict ways. wark, we assume
snapshots are captured atomically, and relegate addressing non-atapsioats to future work.

Expectation Calculation: ExDiff uses the activity log to update the state of the initial
snapshot and create the expected snapshot, a prediction of the systdatdata state. As illus-
trated in Figure 6.2, this process is straightforward: an action in a log mateipde or more
parts of a file’s metadata. For example, in many file systems, a data modificatianpddte
the change time (CTIME), the modification time (MTIME) and the file size metadatav, H
and which, actions should be mapped is specific to the snapshots and aeliogsaptured.
Though this is a human driven, and potentially error prone, errors in imgoan be caught in
the diffing step and highlight misunderstandings of a trace’s coveratjgharsemantics of its
actions, which is useful in its own right.
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Expected Snapshot/ / Reality Snapshox

File Foo ATIME 1125 < P * File Foo ATIME 1200
File Bar ATIME 1000 <t ~—»» File Bar ATIME 1000
- 2 File Baz ATIME 1130

[ MD Mismatch ]

[ Expectation Drop ]

Figure 6.3: Diffing. File Foo's expected ATIME does not match reality, sd/dD mismatch
entry is produced. Similarly, Baz is not seen in the expected snapshat,esgactation drop
entry is created. Bar exists as expected, so produces no diff entry.

When deriving the expected snapshgrtial entries may be created. A partial entry
is created when there is an attempt to map an activity to file that is not known tdeasgid on
the current log and expected state, so ExDiff populates as much metageatssdde for that
particular file.

Diffing: After the expected snapshot is created, we compare it to the reality shapsh
and collect the differences between the two for analysis. As shown imd-88, ExDiff does
a file by file comparison of the two snapshots, comparing each piece of reetadsch other,
with a runtime ofO(N) as it is just a comparison of each file to its counterpart. Any time there
is a mismatch, either from a file being missing in one of the snapshots, or a piewdarlata
not matching as expected, we pull the files out and createtadata diff entryEach diff entry
also tracks which metadata came from the expected snapshot, and whicfraantiee reality
snapshot.

Each diff entry is categorized as one of three types, summarized in TableA6.1
reality drop entry is where a file is found in the expected snapshot but is missing from the
reality snapshot. Aexpectation drogntry, is the reverse of the reality entry; a file exists in the
reality snapshot but was not found in the expectethétadateor MD mismatchis where a file
exists in both the reality and expected snapshots, but one or more metadatddiaot match.

Analysis: ExDiff now diverges into two distinct types of analysis. The first is iden-
tifying gaps in log coverage. The second focuses on classifying log mmsst provide clues
as to which specific actions were omitted from the log.

Gap Identification: Given the requirement that at least some logged actions update

timestamps, ExDiff can leverage mismatches between expected and reality timegiadgn-

83



Diff Type Description

Reality drop File is in expected, but not reality snapshot

Expectation drop| File is in reality, but not expected snapshot

MD mismatch File exists as predicted, but metadata does not match

Table 6.1: Metadata diff entry types.

tify gaps. When an action that updates a timestamp is dropped from the log, léadIto an
MD mismatch as the expected and reality snapshots will not match on one or mostatinps.
These mismatched timestamps can be used to identify likely log gaps. Consideathgle
shown in Figure 6.3. The metadata mismatch notes that file Foo has an accest1208,0
while the expected entry gave Foo an access time of 1125. This tells ExDi#irirection that
occurred at 1200 was missed or dropped.

When identifying gaps, ExDiff pulls out all of the diff entries that come frtme
reality snapshot which have mismatched timestamps. A density based clusigonthen
is then run to group timestamps together based on their temporal distancenuangers of
similar timestamps from diff entries are indicative of a gap. After clusteringettrbest and
latest timestamps from each cluster are presented as a gap estimate.

We use DBSCAN (density based spatial clustering of applications with nfiise)
creating gap estimates [30]. We chose DBSCAN due to its simplicity, the facittdaes
not require detailed knowledge of the underlying data distribution, and ilisyab deal with
noise data points. Its ability to automatically handle noise is relevant becausavweeun into
situations where loggers periodically drop random individual entriesditiad to full coverage
gaps.

DBSCAN has two parameter®] (neighborhood size) andps(shape parameter).
Clusters are produced when a datapoint has at easher datapoints within a distancees
Any datapoint that is withire psof an already identified cluster is merged into that cluster, and
all others are discarded as noise. As with most clustering techniquesC BIB'S parameter
choice can influence its accuracy. We explore how varying DBSCAlMmaters influences
gap identification in detail in Section 6.3, but relegate automating parameteedidicture

work. Figure 6.4 provides a simple example.
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Figure 6.4: An example of DBSCAN clustering. The circles represent B ¥lue, n is 3.
Blue points are a cluster and the unshaded point is noise.

DBSCAN's primary bottleneck is in its use of a distance matrix, with a memory and
run time overhead overhead ©fn?). With large datasets we can use DBSCAN in conjunction
with a sliding window approach on the input timestamps. For example, if we hd@alay log
of actions, but can only fit a days worth of diffs into memory at a time, we c&nau24 hour
window, moving it 12 hours at a time. The windowing will not impact estimate agyuunless
a gap is longer than the window.

It is possible, however, tmaskomissions, and subsequently gaps. Consider a file
with one timestamp that is updated every time it is read or acted upon. If the tast tra
file is dropped, it will not be reflected in the expected snapshot and vailvslp as an MD
mismatch entry. However, if another action occurs after the droppedtibaexpected and
reality comparison will not trigger any diffs, as the expected and reality tinmgxtavill match
by both reflecting the result of the second action. We examine what inBgemasking in
greater detail in our evaluation in Section 6.3.

Omissions ldentificationln classification of omissions, ExDiff examines the meta-
data diffs for clues as to the specific types of underlying actions that areited (either a
drop or a miss) in the log. The key to classifying an omission is recognizimgdfssignature
the set of diffs and mismatched metadata produced by a particular misseappedraction.
Signatures are specific to both the snapshot metadata and the actions exyajitised in the
trace, and thus may vary from system to system. If one already has détailetedge of the
expected operations within the system (whether or not they are captuaegivaen trace), and
how they are expected to modify metadata, signature identification is relativeiytgforward.

However, even if the details of the underlying system are not perfectlgrsiood, there are
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many common operations that will leave predictable signatures when missbdasa delete
which always leaves a reality diff entry. Missed actions (those that dreapture but otherwise
modify metadata) still generate diffs, which in the worst case still alerts tHgzng party that

their log is missing actions. Given that signatures will vary depending onrtierlying system
and trace methodology, we describe signatures specific to our evaluat8eciions 6.2 and
6.3.

There are a few promising methods we have found for choaspsy One method,
is to simply “eyeball” a graph of activity rates over time, and pick based on tigtheof the
suspected logger failure(s). An alternative is to maintain running avermfgegged actions,
and when there is significant deviation from said average, identify hog tlom trace remains
beneath that average to inform the choice p$ PickingN is dependent on the amount of noise
and the estimated gap sizes. If we already know the log is reliable and dioesdomly drop

entries, any small value(g. 10) should work reasonably well.

6.2 Experimental Design

Workload and Snapshot Generation: We chose to generate synthetic workloads
and metadata for ExDiff's validation. We took this route for two reasonsst,Rive require a
variety of snapshots and workloads with verifiable ground truth in ordehégk the accuracy
of our methods. With real world traces we ourselves would not know tbegrage, weakening
our evaluation. Second, we need the ability to fine tune the workload to exé&mmearious
actions impact ExDiff's accuracy.

Each file in our workload corpus has common, POSIX-like metadata, dedarib
Table 6.2, and is uniquely identified by its filename; in our simulations this is a simpien
identifier. Generated activity logs are comprised of timestamped actions basszmmon,
POSIX commands. We summarize these actions in Table 6.3. Timestamps aresindeger
all actions have a unique timestamp. Currently, log timestamps and metadata tratentipses
match. We relegate metadata and log time skew to future versions of ExDiff.

Activity log entries consist of two elements: an action, and a file to perforrac¢tien
upon. Actions are randomly picked based on experiment-specific paramEtes are either
picked randomly or they are selected with locality, based on the experiments&\be random

picking as a control group as it is easy to understand and analyze, wkilegwith locality is
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Field Name || Description

BTIME File birth (creation) time

ATIME Last read time

MTIME Data modification time

CTIME Metadata change time

uiD User ID

GID Group ID

Permissions|| Text string denoting permissions
Name Unique numeric identifier for the file
Size File size in bytes

Table 6.2: Metadata tracked in our simulations.

’ Action H Description H Metadata Impact Notes H Drop Signature
CREATE || Creates new file in corpus Times initialized to create timg| Exp. drop
READ Read of a file Updates ATIME MD mis: ATIME mismatch
MODIFY Update of file data Changes M/CTIME and size MD mis: M/CTIME, size mismatch
DELETE Removes a file from the corpug - Rlty. drop
CHMOD Updates a file’s perm Changes CTIME and perm MD mis: CTIME, perm mismatch
CHOWN Change user ID of a file Changes CTIME and UID MD mis: CTIME, UID mismatch
CHGRP Change user ID of a file Changes CTIME and GID MD mis: CTIME, GID mismatch
RENAME Change file name Changes numeric ID RIt and Exp drop simultaneously

Table 6.3: Actions we simulate and their impact on metadata as well as their dnaiusig
Perm refers to file permissions. M/CTIME refers to both modification time anddaitahange

time.
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representative of real workloads; people often work on specifisedalof a storage system for
varying amounts of time.

We simulate locality of access by dividing the corpus into locality groups ofeal fix
size. When generating the workload, a locality group is picked, and aleunaimber of actions,
which we call the locality action count occur within that locality group; eadioads applied
to a file selected at random from the locality group. This process is repaati the action
count is reached, and then another locality group is picked.

The workloads we generate act on either a fixed or dynamic corpusndigg on the
needs of the experiment. In a fixed corpus, all files are present ptioe toace, and no files will
be created or deleted. In a dynamic corpus, files can be created atetidileing the course
of the trace.

Common Experimental Parameters: Unless otherwise specified, we use a fixed
corpus size of 100,000 files. We chose to do most of our experiments witteating or delet-
ing files as they added book-keeping overhead to the experiments withantngtully influ-
encing results specific to validating our log failure identification method. OMIEATE ac-
tions make ExDiff’s job easier as it triggers an unmaskable expectatioreditop DELETE ac-
tions provide no information either way about logger gaps using our meginoldyhen dropped
will simply show up as a reality drop entry.

To examine how the number of actions between the initial and reality snapshots in
fluences ExDiff’s accuracy, every experiment is run with workloadjies ranging from 50 to
500-thousand actions, respectively. We refer to these as 50k th&fi@hworkloads. This
models how increasing the duration between snapshots might impact Exiiffuether, are
well in excess of what we saw for daily activity rates under the variougara we observed,
making our results conservative when examined in the context of atctorage workloads.
For each workload length, we generateldB&eworkloads that each have 10 sets of randomly
generated gaps for a total of 100 runs, with results averaged adirosssa In each workload,
an action is generated every 1 to 10 time units, with the type of action selected Ugasn the
experiment specific parameters. Each base workload also has an irgiesher and reality
snapshot associated with it.

For each action there is a 1 in 15,000 (.00006%) chance of a gap ocruifhis
means a 50k length workload averages three gaps per run, while a 5@k lgorkload av-
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erages 32 gaps. Each generated gap drops between 100 and @) &ve chose this rapid
rate of gap generation for two reasons. First, the number of gaps has litéetimp ExDiff’s
ability to identify gaps, rather as we cover later, it is the number of actionsresking that
have influence. Second, this allows us to stress test the cluster baseddpgs larger numbers
of gaps increase the likelihood of estimations erroneously grouping digapst

For most experiments, we use fixed DBSCAN parameters, witkh eaue of 10 and
an epsvalue of 1800 time units. ThBl value is set low to encourage aggressive clustering
as a worst case scenario. Tépsvalue was chosen as a simple visual inspection of the logs
showed periods of no actions typically between 1000 and 10000 time unikés $®an intuitive
measure that could realistically be obtained withaytriori knowledge of the gaps, and is far
from perfect. In section 6.3 we examine how varying the DBSCAN parasétéuences
accuracy.

Metrics: Recall that a gap is a contiguous period of dropped entries, and an estimate
is the predicted start and end of that gap. We use two metrics to evaluate’ExDifity to
identify a gap:gap coveragendestimate utilization Gap coverage is the fraction of all gap
durations that have been covered by one or more estimates. For exaniptpyrie 6.5A, there
are two gaps running from times zero to time four and four to five, for a t@pllgngth of
three. There is one estimate covering the earlier gap entirely, and the laiter @yaissas no
estimate covers any portion. two of the three gaps’ time units are coverestimates, having
total gap coverage of 0.66.

Estimate utilization is the fraction of all estimates combined that cover gap durations
For example, an estimate of length five that completely covers a gap of lengihl@ have an
estimate utilization of 0.6. We call this @stimate overshoats the estimate is too long. An
estimate of length one that only covers a part of a longer gap would still dnan#ization of
1.0, but the coverage for that individual gap would be below 1.0. Wetltiglisecond case an
estimate undershoats the estimated time is shorter than the actual gap. Figure 6.5 B illustrate
these concepts.

To provide greater granularity in our examination of estimates, we also loodévat
overfit or aggressivethey are. The former, illustrated in Figure 6.5C, occurs when multiple
estimations are used in covering a single gap. In other words there are muiig#@eshooting
estimates for a single gap. The latter, illustrated in Figure 6.5D, is when a ssiigjfete covers
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multiple gaps. We also describe whether or not a gap hashieenmissed A gap hit occurs
when an estimate covers any portion of a gap, while a gap miss is one thats/eotd by any
estimates.

In all cases, high values for both gap coverage and estimate utilizatioresired
as this means that gaps and their duration are identified with high levels oghagcwith little
or no under or overshot estimates. A high gap coverage value with a towaés utilization
value suggests large numbers of overshot or agressive clusters: gafwcoverage with high
estimate utilization suggest gap misses and undershot estimates.

As mentioned in Section 6.1, we are also concerned with masking, wheredttersa
remove evidence of prior gaps. For example, a dropped ATIME updaidovibe evident as a
MD mismatch, but if a later ATIME update that was not dropped overwritesfillba ATIME,
it is no longer apparent that an entry was dropped. To examine maskingleathat is acted
on during gap is categorized as one of three types. The firstharaskedile, is a file where
no later actions cover up evidence of any gap. The secongastal mask where some, but
not all, of the evidence of the gap was overwrittentofal mask is where all evidence of a prior
gap has been overwritten. As covered later on in our evaluation, maskingrices both gap
identification and missed/dropped entry analysis.

6.3 Evaluation

Our evaluation is broken up into two sections. First, we quantitatively denadestr
ExDiff’s ability to automatically identify gaps in log coverage, and explore twdaa influence
its accuracy. Second, we provide a qualitative exploration of omissiosifitation and what
can influence its accuracy.

6.3.1 Identifying Logger Gaps

Proof of Concept: In this experiment, we run a workload that has all actions de-
scribed in Table 6.3 with the goal of demonstrating ExDiff’s ability to identify gjapVe
demonstrate that ExDiff can accurately identify log gaps and their duratithnhigh estimate
utilization and gap coverage values. This initial experiment uses a dynanpigscas locality

type accesses. Later experiments utilize micro-analysis to explore thedbotiBaDiff’s gap

90



Ve

Perfect Estimate

. Gap Coverage 0.66
Gap Miss Estimate Utilization 1.0
L Sum Gap Length(s) 3

Sum Estimate Lengths 2
9

1

Gap Coverage 0.75
Estimate Utilization 0.6
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Figure 6.5: These examples (A through D) illustrate our metrics and terminoldgs white
rectangles are gaps while the shaded rectangles are estimations. Geageayenotes the
fraction of all gaps covered by an estimate. Similarly, estimate utilization reféng tivaction

of estimates that cover a gap. Bolded words are the terms we use to descithes types of
estimates.
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Exp. Name | Create | Delete | Rename | Read | Data Update | Metadata Update
Simple 0 0 0 34 33 33
Reads+Meta 0O 0 0 95

Read-Only 0 0 0 95

POC 5 2 3 45 35 10

Table 6.4: Base workload parameters. All experiments are small variaticthese parameters,
with the variations described in the body text. Each number representsritenpehance of

that event being chosen when generating an action. Meta updatetoefieeschance of picking

a UID, GID or permissions change action. POC refers to the proof afegmrworkload.

identification accuracy.

Using the action probabilities described in Table 6.4, this workload uses logedity
sizes of 25 with action counts between 10 and 50. The initial corpus siz®j8QDfiles. We
observe that ExDiff is able to accurately identify gaps with a gap coveragsistently around
97-98% for all lengths, illustrated in Figure 6.6. Estimate utilized shows a sligtredse in
accuracy, and increase in variability as the workload length increagesawean of 92% and
standard deviation around 10% at 500k actions. This is due to the fathélanger workloads
have a higher likelihood of gaps being close enough together to caugg@ssive estimate.

Corroborating this, we find that less than 15% of the 50k runs had asjggessti-
mates, and never more than one, while over 25% of the 500k runs hagelsaiygr estimates,
maxing out at 4. With the parameters we used, we saw no over-fit estimatsyfavorkload
length, and surprisingly we only entirely missed gaps in less than 5% of tHel&0@th runs,
and missed zero gaps for any of the shorter workloads. This furtheogrates ExDiff’s
accuracy in gap identification.

Varying Timestamp Updates: In this set of experiments, we explore how chang-
ing the number of distinct timestamps influences ExDiff’s ability to producerategap esti-
mates. First, we find that masking has a strong effect on accuracy, ragef ldurations between
snapshots increase masking likelihoods. Second, larger numbers of tipestan markedly
improve ExDiff's accuracy by reducing total masking.

The first experiment uses tisempleworkload. In this workload, we have a fixed size
corpus of 100,000 files, and the workload picks each file to act on unlijcat random. Each
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POC Workload

Workload Length
50k

Fraction

Figure 6.6: A breakdown of how gap and estimation accuracy under tieviRitkload. Note
high gap identification accuracy across all workload lengths, as wellgsdstimate used
values. Error bars are standard deviations.
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action has an equal chance of being a data modification, a read, or a taetpdate such as a
permissions or GID/PID change.

As shown in the leftmost plot of Figure 6.7, there is only a small decreaseimasxy
as the workload length increases. This is due to the fact that we areralyifpicking both files
and actions, resulting in equal odds of modifying the three timestamps in thenfisdasdata
(CTIME, MTIME, and ATIME). This makes it difficult for arbitrary gaps coverage to be
totally masked by later actions overwriting timestamps, corroborated by théoveamount of
total masking illustrated in Figure 6.8. We did see a small, but consistent amcaggr@ssive
estimates for the longer workloads. The 500k workload saw 50% of rutisat/ least one
aggressive estimate, 75% saw over two and maxed out at five aggressimates per run.
However, the number markedly decreased with the shorter workloadstheitsOk workload
only showing 5% of runs with one or two aggressive estimates. We oluseovaverfit estimates
under this workload.

The next experiment used thmead onlyworkload. In the read only workload, all
actions are reads, subsequently ATIME is the only timestamp updated. Aswarsthe center
plot of Figure 6.7, this has a strong impact on the consistency and agafraaor method as
the workload increases in size, because total masking becomes much ev@iempras shown
in the center plot of Figure 6.8. This is due to only a single timestamp being udadpdated
relatively more frequently.

The final experiment looks purely at timestamps undere¢hes+metadatavorkload
to examine how even a small chance of a second timestamp being updated wamceiyjap
estimates. In this workload, each action has a 95% chance of being anealilasequent
ATIME update, while the other 5% may be a metadata action that updates CTritdEestingly,
even this relatively low chance of CTIME change has a significant impaotasking relative
to the read only workload as shown in the center plot of Figure 6.8, ansegqubntly has
significantly higher gap coverage than the read only workload as showreinight plot of
Figure 6.7. Note that there is a significant increase in coverage variabittiyandecrease in
mean coverage at the 500k length. While there is less masking than thenlgadeokload,
there is still quite a bit of total masking occurring. As in prior tests, we sawvaofitting
estimates, and the number of aggressive estimates decreased with wsrkéoad

One thing to note across all the timestamp varying experiments is that unlessasvo ga
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Figure 6.7: A breakdown of how coverage and estimates are influeryceaying timestamp
updates. Error bars are standard deviations. Note the read only wdiilads to much higher
variations on gap coverage as workload length increases.

were covered by an aggressive estimation, we never observedtangtesovershoot a gap and
completely subsume it. At most they perfectly matched the end points of a gapisTlue to
the fact that in our simulations we have perfect knowledge, and the lag@éther perfectly
functioning, or not at all, eliminating the possibility of extra diff entries causatge positives
or estimate overshooting.

Locality Influence: In our next set of experiments, we examine how adding simple
locality of access influences ExDiff. We illustrate how strong, focusealitygyroups in a work-
load have little impact in recognizing that there was a failure, but make d@eturdentifying
duration more difficult with wider variation in gap coverage.

For these experiments, we use a locality group size of 25. Fowdek locality
workload, we use an action count between 10 and 50. Irstiomg localityworkload, the
action count is picked between 100 and 200. Both workloads are otleeiggsatical to the
simple workload, where metadata update, data update, and read actiafiegrally likely.

In the weak locality workload we observe the same trends and amount ofngask
as the simple workload shown in Figure 6.7. Interestingly, the strong local&y2686 less
partially masked and 25% more unmasked files than the weak locality workldas.isTdue
to the fact that fewer total files were accessed in the strong locality testrasatiivities were

done per locality group. However, this means that within each locality grarp thias a higher
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Figure 6.8: Here we show how varying the number of timestamps being upitdligehces
masking. Error bars are standard deviations.

probability of actions temporally near one another causing maskitign a gap which our
metric does not measure.

When examining gap coverage, shown in Figure 6.10, we see that thg kioatity
test has a much greater variation in its coverage and estimate utilization thanakéwoaity.
This is due to the fact that with stronger locality, we see mashiitgin a gap as described
above, which in turn leads to significant amounts of estimate undershootigisTeinforced
when we see that in both the strong and weak locality tests over 95% of gapsawpart of
at least one estimate, but coverage noticeably decreases with worktagt, las shown in
Figure 6.9. We also looked at the locality workloads under a reads+metaztass pattern and
found it followed the same trends as shown in the initial reads+metadata wdrklo

Adding Noise: To explore how noise influences ExDiff, we take the simple and read
only workloads and add noise in the form of randomly dropped entriesditiaal to the full
gaps. We show that small amounts of noise do not seem to have a large ongggh hit and
miss rates, but can have a very strong influence on estimates as noiseaggkessive and
overshooting estimates more common.

All entries in the workload for these experiments have a 1 in 1500 chanlceirod
dropped. This can influence ExDiff's accuracy as there are nowitiiat may be erroneously
considered a part of a gap, thus changing the length of an estimation.

As we show in Figure 6.11, the gap coverage is not appreciably diff¢han the
original baseline tests. However, the estimations are significantly lessageciihis is due to
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Figure 6.9: File masking in the locality workloads.
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Figure 6.10: Gap coverage and estimate utilization under the locality workldémte strong
locality has much greater variation in coverage.

97



Simple Noise Read-Only Noise

ze

%%

4 %

£ i 1)

< 0.6/ 50k o 150
2 00pK S <
9] > Bl 100k 5] K<)
© o <X
el (i K

O
2N

55

"
:
3’3

4

96%%%

)4

wet

N - ‘_\\ . . N .
e ol v GaP e gst

Figure 6.11: Coverage and estimate utilization under the noise workloats dNwstic increase
in variability relative to the other workloads.

the fact that the noise makes it very easy for a gap estimation to overestimdteatien. This
can be mitigated by tuning the DBSCAN parameters, as we show in the nexinsdntierms
of gap hits and misses, as well as the incidence of aggressive antit@lasters, there were
no significant differences from the simple, read-only and reads+mtatéests. We omit the
masking charts as they are not noticeably different from the timestamp gagsts.

Varying DBSCAN Parameters: In this set of experiments, we examine how sensi-
tive our results are to varying DBSCAN parameters. We see that gapagegvand estimate
utilization is generally improved with lower values lfande psin noisy environments.

We take the same parameters as we used for our tests with noise, as tres®ese
case scenario in terms of difficulty for estimations; they are likely to lead to signifiover-
shoots estimations in failure durations. We omit the graphs from the readioisly workload
as their trends were similar.

The general trend we notice, illustrated in Figure 6.12 is that having bothlesees
and smalleiN value tends to increase estimation accuracy for our workloads, keepmipéh
we are micro-benchmarking. We see fewer aggressive clusterspatrdry to our expectations,
little impact on the number of over-fit estimates. Highevalues do tend to increase how likely
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Figure 6.12: Here we show how varying the parameters to DBSCAN inflgbgap coverage
and estimate utilization under the simple noise workload. Note smaller parametes \&ha
to produce better results.

we are to miss a small gap that has many masked entries, however. High&lues tend to

cause more aggressive estimations with estimates merging distinct gaps. It isampo note

though, that these trends will not be universal across all workldaaisexample, we found an
outlier case in the read-only noise workload where increasing the vali¢ dotually led to a

small increase in overfitting. This was due to the fact that the noise wamgahe density of

the perceived gap to be inconsistent.

Based on our observations, smaller parameters to DBSCAN tend to improiisEx
estimate accuracy, with the caveat that they be adjusted for the rate dfyaatid potential
masking in a given log. Second, despite having a noticeable impact on gammge, even
widely varying parameters rarely miss a gap. Third, while these trends ergemold, gaps
may superficially have multiple timestamp clusters of varying density, leading tdittag.
Visualization may help in some of these cases, as it is often readily appalemhsm observers

when multiple overfit clusters are in reality a single large cluster.

6.3.2 Omission Classification

We also explore how diff entries can help identify the type of entries that neay b

missing or dropped from a log. We begin by assuming we have perfesi&dge of all possible
activities in the system, and follow up with a examination of operating in a limited krugele
environment. In both cases, we leave a quantitative evaluation to futule amd focus on

exploring issues in identifying omitted entries.

Perfect Knowledge: The same set of actions and signatures described in Table 6.3
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are used in our examinations. Note that we use signatures from our &adskfor illustrative
purposes, and that signatures may vary from system to system.

A perfect knowledge scenario is likely when logging is included as a fass@ntity
in a system. Even with perfect knowledge, periodic validation of the logsragtddata is useful
in many scenarios, such as intrusion detection and debugging.

Basic signature detection is a straightforward comparison of known sigisatarsus
observed diff entries. For example, a missing group ID change entrg teaah MD mismatch
entry, with the expected and reality snapshots not matching on both the timestantpea
GID fields. Similarly, a missing data update action would cause an MD mismatcheititry
mismatches on the MTIME, CTIME, and possibly the file size. In short, in masgsa perfect
sighature match can point to a specific omitted action.

Masking persists as an issue in the perfect knowledge case, in additiorskingna
whole prior actions it can cause a signature to be less clear. ConsidepeedrGID change
entry, followed by dropped dropped UID change entry. While the diffg mate the mismatch
between CTIME, GID and UID, ExDiff loses information regarding the timéhefGID change
entry.

Actions that change file identifiers (renames) can also make signaturesumu®ig
A file rename causes both expectation and reality diff entries, as the migseteeneans
in the expected a file will exist that doesn’'t match to a file in the reality snapahdtyice
versa. Similarly, a dropped delete leads to a reality drop entry, and aatfappate causes a
expectation drop which superficially overlap with the signature from thamen

The ambiguities caused by a rename can be addressed by comparing itadity d
tries to all files in the reality snapshot. A match on a large fraction of fields ttlaerfilename
may indicate what file it actually is/it was renamed to. When this match is found) dlsa be
used to discard expectation drop entries that map to the same file, as theyakaawn and
can be removed to prevent them being classified as another action.

Partial Knowledge: Partial knowledge is less straightforward to work with as omit-
ted actions may be modifying metadata. Thus, the signatures of such actiote maknown.
Despite this, ExDiff has the ability to provide significant benefit. Unexpeditigl are at the
very least indicative that something is omitted from the log. Further, actiobhsllaage identi-

fiers, add or remove files—such as creates, deletes, and renames—ahjlbikobvious given
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the blatant mismatch between the expected and reality snapshots.

6.4 Chapter Summary

We have explored the problem of identifying log coverage; what is andtibeing
captured in a given trace. To address this issue, we have developf, Bxmethodology that
uses a combination of activity logs and metadata snapshots to validate loggevive show
that ExDiff can identify where a logger may have dropped entries whilernkdenlying system
is functioning. ExDiff's accuracy is strongly influenced by the numbeactfons that occur
between snapshots, as well as the number of timestamps that are availabl twitlvo We
also showed how ExDiff can provide insight into the specific actions tha baen omitted

from a log, and in certain situations may even be able to reconstruct entiragrizg entries.
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Chapter 7

Future Directions

Life is divided into three terms - that which was, which isgdan
which will be. Let us learn from the past to profit by the
present, and from the present, to live better in the future.

William Wordsworth

In this chapter, we explore future directions for both archival wordlaaalysis and

our work on log validation and coverage identification.

7.1 Workload Analyses

Though our work into understanding long-term archival workloadstieen exten-
sive, there are many remaining questions.

We see a pressing need to better understand metadata accesses texdagities our
belief that the metadata will be more frequently accessed and updated trdatdhiself. Our
reasoning behind this is based on a few observations and predictioss. fk@tadata search
will likely the primary method of accessing data in many archives as it is unliketyubers
will know precisely where the data they are interested in is stored. Selbaséd on anecdotal
evidence, we know that metadata is often updated after data ingest, indhidigg like the time
of last data modification and semantic tags. Third, the distinction between metadbtiata
is becoming increasingly blurry, particularly in observational science daiaexample, with
astronomy data, the actual data may be a few pixels on a flat backgrohitelfre metadata is

of prime interest, with information such as time, atmospheric conditions andtso With its
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use to end users and its importance to search, metadata is arguably just danirgethe data
itself. Unfortunately, none of the datasets we obtained clearly distingulsitaceen metadata
and data access or update, so we were unable to make any observagoggestions on its
use.

As touched on in section 2.1, we also see a need to understand how ieseafatthe
user base influence the workload. A search-based interface will likelg Hifferent patterns
of access than one that requires manual exploration of an archive. Bjnskilled users may
create pathological access patterns when working with an interface tigkegrferous.

It would be useful to explicitly examine multi-tenant and cloud based systethgrr
than estimate aggregate behavior based on individual corpora activifieide the results we
have presented have helped to expand our understanding of longdguas behavior, a num-
ber of trends motivate the need to understand the aggregate behavidtipferworpora hosted
by a single archive. First, the growth of cloud storage marks a shift tsveentralized data
centers. Second, increasingly digital workflows have spurred thiégpegion of small and mid-
sized corpora. This leads to potential problems in optimization, as superfialiar corpora
could be hosted on the same archive, despite the fact that they may fremefitifferent con-
figurations. For example, while both the historical and water corporaeth@ivong content
locality within user sessions, their record granularity is vastly differeningles record type in
the water corpus may only contain 20 or 30 records, while in the historicalsamne record
type may have millions of records. An optimal retrieval and data layout teabri@ one may
be pathological for another.

One of the shortfalls of our own studies was in being overly focused greggte
long-term behaviors. It may be worthwhile to return to our datasets to exarsage behaviors
on a daily or weekly basis to see if there are trends that can be leveragadifre system
designs. In particular, while we saw that in over long timescales files andd®did not see
much repeat access, it is possible that in shorter timescales there woulthbee sskewed
distribution of accesses.

In addition to examining activities at shorter timescales, it would be usefubimige
longer timescales as well in regards to digital archives. We examined ooartgdars in each
our analyses, but what if the corpora is in existence for 100 years? thkilbe any novel

patterns? And if so, will they be worth changing system designs for?
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Our work here has only covered a small number of the new archivatases out
there. There is also a need to study other systems such as legal complidnuersonal data
archives. We suspect that these systems may have colder data, pdyteaiapliance archives
where modification may be prohibited. However, until they are studied weotaay for cer-
tain.

Even in the class of archives we have studied, there will always bedsfoleperiodic
studies of any system’s behavior. There is a feedback cycle wherebpagshgeneration of
studies influence the next generation of systems, which in turn necessitater study. This is
to say nothing of the evolution of hardware, software, and human intexedttheir influence

how data is retrieved and manipulated.

7.2 Log Validation

Although our work on identifying log coverage has proven fruitful, it is eteithe
first step towards developing a mature set of techniques.

We would like to acquire verified, real-world workloads in order to exteigiun-
derstand the bounds of ExDiff as logs scale up to millions of actions. Fushen workloads
would likely exhibit non-uniform file modifications; most “real-world” systeimsve a subset
of popular files that may change over time, providing us a greater insighiiffEs behavior.

We would also like to explore cases where log entries may have inaccurate times
tamps and semantic information. For example, the clock used in generatingtieg emay not
perfectly match the timestamps used in the metadata. ExDiff may be able to handbesthis/c
allowing for some “wiggle” room when creating diff entries. An expected gality snapshot’s
timestamps that nearly match may be considered close enough to be conaideatzh.

As actions may continue to update the metadata state as the snapshot is being cap
tured, we would like to investigate methods to handle non-atomic snapshots weuddoads
can lead to situations where a diff entry may be produced even if the log ismaglkeeaccurate.
One approach is adding an additional timestamp to each file as it is being capivhen we
reach the mapping step we can prevent actions made after metadata captungdating our
expected state, thus preventing accidental diff entries from being peddu

Quantitative investigation of signature detection is also needed. We wish lmrexp

how different workloads and levels of information can change our abiliagtmirately recognize
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what types of actions are missing from the log. We could also examine teectimsy log

entries; certain signatures provide enough information to re-create misgiegtries.
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Chapter 8

Conclusion

| like to think of my behavior in the sixties as a “learning
experience.” Then again, | like to think of anything stupict|
done as a “learning experience.” It makes me feel less stupid

P. J. O’'Rourke

In this work we have asked questions pertaining to long-term storagarspstieav-
iors. First,what does modern archival storage system behavior look I{Re® understanding
of modern system behavior is out of date. There are many new arcligatases—personal,
scientific, medical, etc.—with unknown usage behavior. The same can befstid tradi-
tional view of archival storage as tertiary storage systems; the laststudie done nearly two
decades ago. To address this shortfall in our knowledge, we completegrinvary studies.
The first examining the behavior of web accessible archives. Thadexplored scientific ter-
tiary storage systems. The observations and suggestions (summarizaejlfbae each make
up two of the primary contributions of my thesis.

Ouir first study, covered in Chapter 3, focused on the relatively newcase of pub-
licly accessible content archives, serving historical and scientific édsa $Ve found several
results of note. First and foremost, we found that the write-once, medbe assumption is
severely weakened in many use cases. Data may be updated, and adinastogesses such
as indexers and integrity checkers often read éatanassesuggesting the use of a separate
batch interface for large-scale accesses. We also found thatessoiss show strong content
locality within sessions, but any individual record or file is at most modestly more pothalar
another. This implies that intelligent grouping and pre-fetching based mtemiotype may be
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useful for improving performance and efficiency, but naive cachimgjdata migration may be
of limited utility on modern archival storage systems.

Our second study, described in Chapter 4, is on scientific tertiary steyagems,
representative of the older, more traditional view of archival storsigeexamined file system
snapshot summaries from one of LANL'S super-computing archivesf@md that at a high
level, aggregate storage system behavior appears similar to that of tettieage systems from
two decades earlier. The LANL sketch, however, was of a coarsailgnity and limited the
depth of our analysis. To tackle this shortcoming we obtained a more detailededdtam
NCAR covering three years of activity from 2008 through the end of020th this dataset,
we found that in tertiary storage the idea of write-once, read-maybe isralakened. From
the system perspective, data will inevitably be read and written, due to dahgénistrative
tasks like media migration. Because of these large tasks, an asynchbatoluinterface much
like that we proposed for the public content archives may be usefuledls wrom the user-
perspective, we see strong per-user spatial and temporal locality é@ssgaeith modest rates
of data updates/overwrites after ingest into the system. Based on thivatimemwe have
two key suggestions for archival architectures. First, even naiwvepgng based on user and
directory may provide benefit for tape and other offline media basednsydig reducing the
number of media accesses. Second, even from the user perspedteence, read-maybe is
an unreliable rule of thumb.

Difficulties in interpreting our datasets led us to realize there is a lack of work in
identifying the coverage of a storage system trace, that is, undersgantat actions are and
are not being captured in a given trace. Without knowing a trace’'ssageeat best one is left
with a degraded understanding of a system’s behavior and at worglgimizorrect conclusions
may be drawn from an analysis. This leads to the second question we ask tihetsis,how
can we identify the coverage of a trace?

To address this, we have designed expectation difference, or ErDifgthodology
for identifying a trace’s coverage using a combination of file-level metagiapshots and trace
logs. ExDiff uses a trace and an initial snapshot of a system’s state i@ delniat weexpect
the system to look like. This expected state can then be compared to realitpismdtches
between the two provide clues as to what is and is not being captured iaratgace. With this
methodology, we have provided a way for researchers, administratatgngineers to validate
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what is and is not being captured in a given storage system. Researahearse ExDiff to better
understand the limitations of their datasets and administrators can use it toskamoblems
and eliminate potential false positives in their troubleshooting, or even aid ursiatr detection
analyses. As an example of use in intrusion detection, consider ExDiffgiibtat metadata did
not match as expected, illustrating that logs may have been tampered with.

Using simulation and analysis, we demonstrated ExDiff’s ability to accuratety ide
tify when a logger may have been dropping entries, as well as how Ex&ifbe used to even
recreate dropped or missed log entries. In total, our work has provioko-date knowledge
on archival storage behavior to help guide and validate future atadsgns, and we have
provided a new methodology for identifying what is and is not being cagtura given trace

to improve the accuracy of analyses based on storage system traces.
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