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Abstract

For many traits, including susceptibility to common diseases in humans, causal loci uncovered by 

genetic mapping studies explain only a minority of the heritable contribution to trait variation. 

Multiple explanations for this “missing heritability” have been proposed1. Here we use a large 

cross between two yeast strains to accurately estimate different sources of heritable variation for 

46 quantitative traits and to detect underlying loci with high statistical power. We find that the 

detected loci explain nearly the entire additive contribution to heritable variation for the traits 

studied. We also show that the contribution to heritability of gene-gene interactions varies among 

traits, from near zero to approximately 50%. Detected two-locus interactions explain only a 

minority of this contribution. These results substantially advance our understanding of the missing 

heritability problem and have important implications for future studies of complex and 

quantitative traits.

Individuals within species show heritable variation for many traits of biological and medical 

interest. Most heritable traits follow complex inheritance patterns, with multiple underlying 

genetic factors2,3. Finding these factors has been a central focus of modern genetic research 

in humans, as well as in model organisms and agriculturally important species4–7. Recent 

work, most notably genome-wide association studies (GWAS) in humans, has underscored 

the problem of “missing heritability” —although many genetic loci have been identified for 

a wide range of traits, these typically explain only a minority of the heritability of each trait, 

implying the existence of other, undiscovered genetic factors1.
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Multiple non-mutually-exclusive explanations have been proposed for missing heritability1. 

One possibility is that the undiscovered factors could have effects that are too small to be 

detected with current sample sizes, or even too small to ever be individually detected with 

statistical significance8,9. The existence of many small-effect variants is supported by 

studies showing that a large proportion of heritable trait variation is tagged when all GWAS 

markers are considered simultaneously10,11. Because GWAS can only detect variants that 

are common in the population, another possibility is that the undiscovered variants are too 

rare in the population to be captured by GWAS12. One recent proposal13 highlights the fact 

that non-additive interactions among loci (sometimes termed “epistasis”) may inflate 

heritability measures14. Other proposed contributions to missing heritability include inflated 

heritability estimates, structural variation, gene-environment interactions, parent-of-origin 

effects, heritable epigenetic factors, and “entirely unforeseen sources”1,15. A better 

understanding of the sources of missing heritability is crucial for designing studies to find 

the missing components.

We set out to investigate these questions in the yeast Saccharomyces cerevisiae. We and 

others have previously used a cross between a lab strain and a wine strain to investigate the 

genetic basis of many complex traits, including global gene expression, protein abundance, 

telomere length, cell shape, gene expression noise, and drug sensitivity, and we have 

demonstrated “missing heritability” in this system16,17. Recently, we used extreme 

quantitative trait locus (QTL) mapping (X-QTL) a bulk segregant approach that uses pools 

of millions of cross progeny (segregants), to detect many loci underlying heritable trait 

variation18. We showed that for one trait, loci detected by X-QTL explained most of the 

heritability. However, pooled approaches do not allow direct estimates of heritability, the 

contribution of gene-gene interactions or locus effect sizes. Here we use a large panel of 

individually genotyped and phenotyped yeast segregants to accurately measure the heritable 

components of many quantitative traits, discover the underlying loci, and examine the 

sources of missing heritability.

In order to estimate heritability and detect the underlying loci with high statistical power, we 

constructed a panel of 1008 prototrophic haploid segregants from a cross between a lab 

strain and a wine strain (Supplementary Fig. 1 and Methods). These strains differ by 0.5% at 

the sequence level19. We sequenced the parent strains to high coverage and compared the 

sequences to define 30,594 high-confidence single-nucleotide polymorphisms (SNPs) that 

distinguish the strains and densely cover the genome. We obtained comprehensive 

individual genotype information for each of 1008 segregants by highly multiplexed short-

read sequencing (Supplementary Fig. 1d).

We sought to accurately measure a large number of quantitative traits in the segregant panel. 

To do so, we implemented a high-throughput end-point colony size assay and measured 

growth in multiple conditions, including different temperatures, pHs, and carbon sources, as 

well as addition of metal ions and small molecules16,18 (Supplementary Fig. 1c). We defined 

each trait as endpoint colony size normalized relative to growth on control medium, 

(Methods) and obtained reproducible measurements with a strong heritable component for 

46 traits (Supplementary Table 1). Most of the traits were only weakly correlated with each 

other (Supplementary Fig. 2).
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Phenotypic variation in the segregant panel can be partitioned into the contribution of 

heritable genetic factors (broad-sense heritability) and measurement errors or other random 

environmental effects. Broad-sense heritability can in turn be partitioned into the 

contribution of additive genetic factors (narrow-sense heritability), dominance effects, gene-

gene interactions, and gene-environment interactions14. In our experiment, dominance 

effects are absent because the segregants are haploid, and gene-environment interactions for 

a given trait should also be absent as all the segregants are grown simultaneously under 

uniform conditions. Thus our estimates of broad-sense heritability include additive and 

gene-gene interaction components, while our estimates of narrow-sense heritability include 

only the additive component. The difference between the two heritability measures therefore 

provides an estimate of the contribution of gene-gene interactions.

We estimated broad-sense heritability from repeatability of trait measurements (Methods). 

Estimating narrow-sense heritability usually involves measuring phenotypic similarity for 

different degrees of relatedness. We took advantage of a recently developed genomic 

approach in which narrow-sense heritability is estimated by comparing phenotypic similarity 

among individuals with their actual genetic relatedness, computed from dense genotype data 

(Methods)20. Among the 46 traits, broad-sense heritability estimates ranged from 0.40 to 

0.96, with a median of 0.77. Narrow-sense heritability estimates ranged from 0.21 to 0.84, 

with a median of 0.52 (Fig. 1). An analysis which partitions additive genetic variation 

among chromosomes produced similar results (Supplementary Table 2). We used the 

difference between broad-sense and narrow-sense heritability to estimate the fraction of 

genetic variance due to gene-gene interactions, which ranged from 0.02 to 0.54, with a 

median of 0.30. Thus, the genetic basis for variation in some traits is almost entirely due to 

additive effects, while for others approximately half of the heritable component is due to 

gene-gene interactions.

Next, we sought to map the additive heritable variation to specific QTL. Simple linkage 

analysis of one marker at a time revealed multiple QTL per trait (Methods). To more 

accurately capture the effects of each QTL while controlling for the other QTL affecting the 

same trait, we used a step-wise forward-search approach to detect QTL and build a multiple-

regression model (Methods). With this approach, we detected a total of 591 QTL for 46 

traits at an empirical false-discovery rate (FDR) of 5% (Supplementary Table 3). We 

observed varying degrees of trait complexity, with a minimum of 5, a maximum of 29, and a 

median of 12 QTL per trait. These numbers of QTL are comparable to those previously seen 

for a smaller set of traits by X-QTL18. Consistent with theoretical predictions21 and previous 

observations, we detected many more QTL of small effect than of large effect 

(Supplementary Fig. 3). Some traits showed a distribution of QTL effect sizes roughly 

consistent with Orr’s evolutionary model21, whereas others showed one or more larger-than-

expected QTL (Supplementary Fig. 4).

Having identified QTL, we next measured the fraction of additive heritability explained by 

our model of detected QTL for each trait. To obtain unbiased estimates, we performed 10-

fold cross-validation by detecting QTL in a subset of the segregant panel and estimating the 

effects in the rest of the panel. Across the traits, the detected loci explained between 72% 

and 100% of the narrow-sense heritability, with a median of 88% (Fig. 2a). Thus, high 

Bloom et al. Page 3

Nature. Author manuscript; available in PMC 2014 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



statistical power provided by the large segregant panel allowed us to detect QTL that jointly 

explain most of the additive heritability for the traits studied here. By analyzing subsets of 

the data, we showed that “missing” narrow-sense heritability can be explained by 

insufficient sample sizes (Fig. 2b). For instance, we detected 16 significant QTL, which 

jointly explain 78% of narrow-sense heritability for growth in E6-berbamine, in a panel 

1000 segregants, (Fig. 3a), but only 2 of these, explaining 21% of narrow-sense heritability, 

also reached statistical significance in a smaller panel of 100 segregants (Fig. 3b). For traits 

with mostly additive genetics, the high fraction of variance explained by the detected QTL 

allowed us to accurately predict individual trait values from QTL genotypes (Fig. 4).

Differences between the estimates of broad-sense and narrow-sense heritability for many 

traits imply the presence of genetic interactions. We next sought to identify specific two-

locus interactions. For each trait, we first performed an exhaustive two-dimensional (2D) 

scan for pairwise interactions. At a LOD score of 6.2, corresponding to an empirical FDR of 

10%, we detected significant QTL-QTL interactions for 17 of the 46 traits, with a total of 23 

interacting locus pairs. A 2D scan has low statistical power due to the large search space. 

Power can be increased, at the cost of missing interactions between loci with no main 

effects, by testing only for interactions between each locus with significant additive effects 

and the rest of the genome22. Using this approach, we detected interactions for 24 of the 46 

traits, with a total of 78 QTL-QTL interactions at an FDR of 10%. We observed a minimum 

of 1 and a maximum of 16 pairwise interactions per trait. These 78 pairs included 20 of the 

23 locus pairs detected in the exhaustive 2D scan, suggesting that two-locus interactions in 

which neither locus has a detectable main effect are uncommon. For 47 of the 78 pairs, both 

loci were detected as significant in the single-locus search for additive effects. In the 

remaining 31 cases, the additive effect of the second locus was too small to reach genome-

wide significance, although it was nominally significant in 10 of these cases. These 

observations are broadly consistent with our previous work on genetic interactions that 

affect gene expression traits22,23.

For most of the traits with a sizeable difference between broad-sense and narrow-sense 

heritability, pairwise interactions were either not detected or explained little of the difference 

(Fig. 5). The detected interaction effects were typically small (a median of 1.1% of genetic 

variance per interaction or a median of 3% of genetic variance per trait). Only in a few cases 

did detected genetic interactions explain much of the difference between broad-sense and 

narrow-sense heritability. Most notably, in the case of growth on maltose, one strong 

interaction explained 14% of the genetic variance and 71% of the difference between broad-

sense and narrow-sense heritability (Fig. 5 inset).

We have used a large panel of segregants from a cross between two yeast strains to 

investigate the genetic architecture of 46 quantitative traits. We measured both the total and 

the additive contributions of genetic factors to trait variation, and showed that these often 

differ. The observed differences between total and additive heritability estimates suggest 

that the contribution of genetic interactions to broad-sense heritability ranges from near zero 

to 54%. However, with a few exceptions, the specific combinations of loci that account for 

these interactions remain elusive. There are several possible explanations for this result. 

First, the statistical power to detect interactions is lower than the power to detect main 

Bloom et al. Page 4

Nature. Author manuscript; available in PMC 2014 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



effects. Second, individual interaction effects are expected to be smaller than additive 

effects, and hence their detection requires even larger sample sizes13. Finally, higher-order 

interactions among more than two loci could also contribute24. Our estimates of the 

contribution of interactions in a cross may overestimate their contribution to trait heritability 

in a population, because a higher proportion of variance is expected to be additive as allele 

frequencies depart from one-half25.

The large size of the panel allowed us to detect specific loci that jointly account for the great 

majority of the additive (narrow-sense) heritability of each trait (72–100%). Human traits 

examined by GWAS vary in their genetic complexity1, ranging from macular degeneration, 

for which 5 variants in 3 genes explain roughly half of the genetic risk26, to height, for 

which 180 loci explain about 13% of heritability, implying the existence of a much larger 

number of undetected loci27. Compared to our results in a yeast cross, GWAS typically 

detect a larger number of loci explaining a smaller proportion of trait heritability. One 

obvious difference is that the number of variants segregating in a cross between two strains 

is smaller than the number of common variants segregating in a population sample. The 

difference is roughly a factor of three for a neutral allele frequency spectrum, and potentially 

much larger if functional variants are deleterious and hence shifted toward lower frequency 

(Methods). The human genome also offers a larger target size, perhaps by a factor of five, 

for variants affecting a trait (Methods). These very rough estimates suggest that we might 

expect at least 15 times more loci to be found by GWAS than the median of 12 loci per trait 

we observe in the yeast cross. Because of the resolution of linkage analysis in our cross, 

some QTL may contain multiple linked variants, further increasing the true number of loci. 

Several additional factors could lead to a larger “missing heritability” in humans: the 

fraction of heritability due to genetic interactions could be higher13, rare variants may 

account for a disproportionately large contribution of heritable variation28–30, and some 

human traits might be inherently more complex than yeast traits in that they integrate over 

physiological processes involving a larger number of underlying gene pathways. Within-

locus dominance effects represent an additional source of genetic complexity in diploid 

organisms.

Our results are consistent with the suggestions that missing additive (narrow-sense) 

heritability arises primarily from many loci with small but not infinitesimal effects. These 

loci can be discovered in studies with sufficiently large sample sizes, although the optimal 

study designs will depend on the population frequency spectra of the causative alleles. 

Because all alleles are fixed at a frequency of one-half in a cross, we cannot yet delineate the 

contributions of common and rare variants to inherited variation, but we plan to do so in 

future studies.

Online Methods

Construction of segregant panel

We crossed a prototrophic BY parent (derived from a cross of BY4716 and BY4700) that is 

MATa with a prototrophic RM parent (derived from RM11-1a) that is MATα 

hoΔ::HphMX4 flo8Δ::NatMX4 AMN1-BY. Diploid zygotes were recovered and sporulated 

for 5–7 days in SPO++ sporulation medium (http://dunham.gs.washington.edu/
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sporulationdissection.htm) in a roller drum at room temperature. Tetrads were dissected31 

using the MSM 400 dissection microscope (Singer Instrument Company Ltd.). Colonies 

from four-spore tetrads were innoculated into 150 µL of YNB + 2% glucose in 96 well 

plates (Corning; 07-200-656), grown for 48 hours at 30° without shaking, and stored as 

frozen stocks in 20% glycerol. 1056 four-spore tetrads that displayed 2:2 segregation of 

hygromycin resistance, G418 resistance, and mating type were retained. A Biomek FX 

(Beckman Coulter) was used to select one segregant from each four-spore tetrad for 

downstream analysis.

Power calculations

We calculated statistical power (1- β) for sample sizes of 100 and 1000 segregants in R 

using the ‘power.t.test’ function32. Power was calculated over a range of effect sizes, where 

effect size was calculated as the percent genetic variance explained by a single QTL. To 

correct for multiple testing over thousands of markers across the genome, a genome-wide 

significance threshold (α) of p < 2*10−4 was used.

DNA preparation and sequencing library construction

Segregants were innoculated into 1 mL deep-well 96-well plates (Thermo Scientific; 

12-565-395) in 800 µL of YPD and grown 2 days at 30° without shaking. Plates were sealed 

with Breathe-Easy gas-permeable membranes (Sigma-Aldrich; Z380059). DNA was 

extracted using 96-well DNEasy Blood & Tissue kits (Qiagen; 69582). DNA concentrations 

were determined using the Quant-it dsDNA high sensitivity DNA quantification kit 

(Invitrogen; Q-33120) and the Biotek Synergy 2 plate reader. DNA was diluted to 1.66 

ng/µL. Per sample, 15 µL of 1.66 ng/µL DNA was added to 4 µl of 5X Nextera HMW 

buffer, 0.95 µl of water, and 0.05 µl of Nextera Enzyme Mix (Epicentre; GA0911-96). The 

transposition reaction was performed for 5 minutes at 55°. 100 µl of water was added to each 

sample, and the samples were purified using the MinElute kit (Qiagen; 28053). 15 µl of the 

purified fragmented DNA was PCR-amplified and barcoded with custom 5 bp sequences 

using ExTaq polymerase (Takara, RR001A) and between 15 and 30 PCR cycles. 5 µl of 

each PCR-amplified sample was combined into one 96-plex library. The combined library 

was loaded on a 2% agarose gel, and the 350 bp to 650 bp region was excised and gel-

extracted using QiaQuick Gel Extraction Kit (Qiagen; 28704). Final libraries were diluted to 

3.3 ng/µl and sequenced using the single-end module on a HiSeq 2000 (Illumina) with 100 

bp reads.

Determining segregant genotypes

Custom R and python code was used to demultiplex the sequencing data and trim ends. 

Sequencing reads were assigned to segregants based on the 5 base-pair (bp) barcode at the 

beginning of each read. The internal 19 bp transposon sequence and 10 bp on the right end 

of each read were removed. Reads were aligned to the S288C reference genome using the 

Burrows-Wheeler Aligner (BWA)33 with the '-q 30' parameter. SAMTools34 was run with 

the ‘view’ command and ‘-bHsq 1' parameters to retain uniquely mapping reads. Sequence 

variants were identified using SAMTools34 with the ‘mpileup' command and parameters '-d 

10000 -D -u'. 42,689 high-confidence sequence variants between BY and RM were 

determined from sequencing the parental strains at greater than 50-fold coverage. Variants in 
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the segregants were restricted to these 42,689 expected sites using 'bcftools view'34 with the 

parameters '-N -c -g -v -P flat'. Genotype likelihoods for the BY and RM alleles for each 

genotypic variant were extracted from the VCF file using custom R code.

For each segregant and chromosome, a hidden Markov model (HMM) was used to calculate 

the posterior likelihood that the read data was coming from the BY allele, the RM allele, a 

BY gene-conversion event or an RM gene-conversion event. Genotypes were called as the 

BY variant if the log10 ratio of the BY posterior likelihood and the RM posterior likelihood 

was greater than 2, the RM variant if this ratio was less than −2, and missing data if between 

−2 and 2. 1,008 out of 1,056 segregants had between 25 and 120 recombination breakpoints 

and at least 35,000 markers with genotype calls, and these were retained for downstream 

analysis. Genotypic markers were excluded if their allele frequency was greater than 56% or 

less than 45%, or if they were not called in at least 99% of the segregants. This resulted in a 

final set of 30,594 genotypic markers. Markers with missing data were imputed using the 

Viterbi algorithm as implemented in the R/qtl package35. Adjacent markers with the same 

genotypes in all segregants were collapsed to one unique marker, resulting in a final set of 

11,623 unique genotypic markers.

Phenotyping by end-point growth on agar plates

Individual segregants were inoculated in at least 2 different plate configurations into 384-

well plates (Themo Scientific; 264574) with 50 mL of YPD and grown for 36 to 48 hours in 

a 30° degree incubator without shaking. Replicates here consisted of strains that were grown 

in independent 384-well plates and in different plate configurations. Each segregant was 

represented once in each plate configuration. Each target agar plate was made with 50 mL of 

media (YPD or YNB) and with drug or condition of choice (Supplementary Table 1). The 

Singer Rotor HDA pinning robot was used to pin the segregants to the agar plates. Before 

pinning, each 384-well plate was mixed for 1 minute at 2000 RPM using a MixMate 

(Eppendorf). Segregants were pinned to the agar plates with 100% pin pressure and 384 long 

pins (Singer Instruments; RP-MP-3L). After pinning, the plates were incubated at 30°, or the 

specified condition temperature (Supplementary Table 1), for approximately 48 hours. 

Plates were scanned face-up and without lids on an Epson 700 transparency scanner with 

400 dpi resolution and a greyscale bit-depth of 8. Images were saved as TIFFs or 99% 

quality JPEGs. The pixel coordinates of the centers of the four corner colonies for each plate 

were manually identified using ImageJ36.

Custom R code was written to determine the size of each colony. Expected colony positions 

were calculated using manually identified coordinates of the corner colonies for each plate. 

Images were segmented using k-means clustering on the distribution of pixel intensities 

across a plate. The Voronoi region of each 9-pixel diameter circular seed, corresponding to 

the expected location of a colony, was used together with the segmented image to match 

colonies to their expected positions. This was implemented using functions in the 

EBImage37 R package. The radius of each colony was calculated as . 

Colonies with more than 15 pixels touching the edge of the image and colonies larger than 

3,500 pixels were removed and treated as missing data in downstream analysis. Irregular 
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colonies, representing image processing or pinning artifacts, were removed if 

 and radius>20. These irregular colonies were also treated as missing 

data for downstream analysis. Colonies on each edge of a plate were tested for difference 

with all other colonies on the plate using a Wilcoxon rank-sum test. All colonies on an edge 

with p<0.05 were treated as missing data and excluded from downstream analysis. Images 

were further inspected manually, and colonies subject to pinning or image-processing 

artifacts were removed. To normalize for occasional subtle within-plate spatial growth 

artifacts, a robust locally weighted regression was fit to the radius measurements using 

functions in the locfit R package38. The residuals were used for downstream analysis. End-

point growth measurements were normalized for growth on control media by fitting a 

regression for effect of growth on control media and using the residuals for downstream 

analysis. 140 conditions were assayed. If multiple doses of a compound were tested, the 

dose with the highest heritability and phenotype data for at least 600 segregants was 

retained. Traits with narrow-sense heritability less than 25% were excluded from 

downstream analysis.

Calculating heritability

Broad-sense heritability was calculated using replicated segregant data and a random effects 

ANOVA. This was implemented using the ‘lmer’ function in the lme4 R package39. The 

variance components , the genetic variance due to effect of segregant, and , the error 

variance, were calculated, and broad sense-heritability was estimated as . Standard 

errors were calculated by delete-one jackknife.

Narrow-sense heritability was calculated for each trait using a linear mixed model40. This 

can be written as y = β1N + Zu + e. Here y is a vector of phenotype values for N segregants. 

For the comparison of broad-sense and narrow-sense heritabilities, y consists of one 

randomly chosen measurement of the replicate phenotype measurements for each segregant. 

This puts the comparison of broad-sense and narrow-sense heritability on the same scale. 

For the comparison of variance explained by each QTL model and narrow-sense heritability, 

y consists of the average of replicate phenotype measurements for each segregant. β is the 

overall mean, and 1N is a vector of N ones. Z is an N×N identity matrix, u is a vector of 

random effects (BLUPs or breeding values for each segregant), and e is a vector of residuals. 

The variance structure of the phenotypes is written as ,where A is the 

relatedness matrix between all pairs of segregants, estimated from our genotype data as the 

proportion of markers shared IBD between all pair of segregants, I is an N×N identity 

matrix,  is the polygenic additive genetic variance explained by the SNPs, and  is the 

error variance. Variance components were estimated using the rrBLUP R package41, and 

narrow-sense heritability was estimated as . Standard errors were calculated by 

delete-one jackknife. Estimates of narrow-sense heritability using the average of segregant 

replicates or one measurement for each segregant were similar.
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Although the average genetic relatedness among the segregants is 0.5, it varies due to 

random Mendelian segregation, and the actual relatedness for any pair of segregants can be 

calculated from high-density genotype data as the proportion of SNP alleles shared by these 

segregants. In our segregant panel, the standard deviation of relatedness was 0.048. For the 

partitioning of additive variance by chromosome, the relatedness matrix A between all pairs 

of segregants was estimated as the proportion of markers on a chromosome shared IBD 

between all pair of segregants42.

Mapping additive QTL

46 traits were chosen for QTL mapping based on the criteria described above. Each trait was 

scaled to have mean 0 and variance 1. We tested for linkage by calculating LOD scores for 

each genotypic marker and each trait as −n(ln(1 − R2)/2ln(10)), where R is the Pearson 

correlation coefficient between the segregant genotypes at the marker and segregant trait 

values43.

To estimate significance empirically, assignment of phenotype to each segregant was 

randomly permuted 1000 times while maintaining the correlation structure among 

phenotypes. The maximum LOD score for each chromosome and trait was retained44. The 

FDR was calculated as the ratio of expected peaks to observed peaks across different LOD 

thresholds. Genetic markers corresponding to QTL peaks which were significant at an FDR 

of 5% were added to a linear model for each trait. Trait-specific linear models that included 

the significant QTL genotypes as additive covariates were computed, and phenotypic 

residuals were estimated. Phenotypic residuals for each trait were then used for another 

round of QTL detection45. This process of peak detection, calculation of empirical 

significance thresholds, and expansion of the linear model for each trait to include 

significant QTLs detected at each step was repeated 4 times. The LOD thresholds 

corresponding to a 5% FDR at each step were 2.68, 2.92, 3.72 and 4.9.

Calculating effect size and variance explained by additive QTL

For each trait, a multiple regression linear model was computed with trait-specific QTL 

genotypes as independent variables. Phenotypes for each trait were scaled to have mean 0 

and variance 1. The multiple regression coefficients are the standardized differences in 

allelic means for each QTL while controlling for the effects of other segregating QTL. The 

square of the multiple regression coefficient is the fraction of phenotypic variance explained 

by a QTL. The fitted truncated exponential distribution in Supplementary Figure 3 is 

parameterized as , where x is the absolute value of the multiple regression 

coefficient pooled across traits and QTL, n is the number of bins, w is the bin size, l and r 

are left and right truncation points and b is estimated using maximum likelihood. Here 

l=0.12 and r=0.35 to correspond to the magnitude of effect sizes where power is nearly 

100% and to exclude large-effect QTL.

The total phenotypic variance explained by the multiple regression QTL model is the R2 

from the model, which was calculated using the ‘fitqtl’ function in R/qtl. Unbiased estimates 

of the total phenotypic variance explained by the multiple QTL model were calculated by 
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standard 10-fold cross validation. The segregants were randomly split into 10 equal-sized 

groups, 9 groups were combined for QTL detection using the algorithm described above, 

and the remaining group was used to estimate QTL effect sizes. This process was repeated 

for each of the 10 groups, and the average of the 10 estimates was calculated. A similar 

method was used for phenotypic prediction. The segregants were randomly split into 10 

equal-sized groups, but here 9 groups were combined for QTL detection and for estimation 

of QTL effect sizes. Phenotypes were then predicted for the remaining group (validation set) 

using only the genotypes from the validation set and the QTL model constructed from the 9 

other groups (training set). This was repeated such that each segregant was in the validation 

set one time and the training set nine times.

Detecting QTL-QTL interactions

For computational efficiency, the marker set was reduced to 4,420 by picking one marker 

closest to each centimorgan (cm) position on the genetic map. For the full genome scan for 

interacting QTL, a LOD score corresponding to the likelihood ratio of a model that includes 

an interaction term, y=ax+bz+cxz+d, to a model that does not, y=ax+bz+d, was computed 

for each trait and every marker pair. Here, y is the residuals vector for each trait after fitting 

the additive QTL model, x is the genotype vector at one position in the genome, z is the 

genotype vector at another position in the genome at least 25 cm away from x, and a,b,c, and 

d are estimated parameters specific to each trait and marker pair22,23. FDR at different LOD 

thresholds was calculated by dividing the average number of peaks obtained in 1000 

permutations of the data that scramble the segregant identities by the number of peaks 

observed in the real data.

To increase statistical power, we tested for interactions between each locus with significant 

additive effects and the rest of the genome. A LOD score for interaction was computed in 

exactly the same manner as for the full 2D scan described above, except that x was 

constrained to genotypes corresponding to trait-specific significant additive QTL. FDR was 

calculated as above. Non-additive genetic variance explained was calculated as the amount 

of variance explained by including QTL-QTL interactions in the model divided by the 

difference between broad-sense and narrow-sense heritability.

Conversion factors for yeast vs. human expected numbers of QTL

The number of variants segregating in a cross between two strains is smaller than the 

number of (common) variants segregating in a population sample. If the causal variants 

follow a neutral allele frequency spectrum, then under the standard neutral model of 

population genetics, the relationship between the number of variants segregating in a cross 

of two haploid strains (S2) and the number of common variants segregating in a population 

(Sf) with minor allele frequency ≥ f is  (ref.46). By setting f to 0.05, we 

obtain a ratio Sf/S2 of approximately three (2.94). The ratio is 2.2 for f = 0.1 and 4.6 for f = 

0.01. If the functional variants are at least weakly deleterious, and hence skewed toward 

lower frequency, the conversion factors will be larger.
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Several approaches can be used to obtain a rough idea of relative target size for mutation. 

The yeast genome is 12 Mb, whereas the coding regions of the human genome alone are ~30 

Mb, and at least the same amount of non-coding sequence is expected to be functional based 

on selective constraint47. If we assume that the number of loci involved in a trait is 

proportional to the number of bases available for mutations with functional consequences, 

human traits should be more complex than yeast traits by at least a factor of 5. Similarly, 

yeast has ~5700 genes compared to ~20,000 for humans, which gives a conversion factor of 

~3.5.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Heritability for 46 yeast traits
The broad-sense heritability (H2) for each trait (X-axis) is plotted against the narrow-sense 

heritability (h2; Y-axis). Error bars show standard errors in heritability estimates. The 

diagonal line represents h2 = H2 and is shown as a visual guide.
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Figure 2. Most additive heritability is explained by detected QTL
(A) The narrow-sense heritability (h2) for each trait (X-axis) is plotted against the total 

variance explained by detected QTL (Y-axis). Error bars show standard errors. The diagonal 

line represents (variance explained by detected QTL) = h2 and is shown as a visual guide. 

(B) The average fraction of additive genetic variance explained (Y-axis) is plotted against 

number of segregants used for QTL detection (X-axis). Error bars show standard errors. 

Alternating shaded bands denote chromosome boundaries.
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Figure 3. QTL detection for a complex trait
LOD score (log10 of the odds ratio for linkage) is plotted against the genetic map. Red stars 

indicate statistically significant QTL. (A) LOD score plot with 1005 segregants for growth 

in E6-berbamine. (B) LOD score plot with 100 segregants for growth in E6-berbamine. The 

15 significant QTL in A explain 78% of the narrow-sense heritability, compared with 21% 

for the 2 significant QTL in B.
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Figure 4. Prediction of segregant trait values from QTL phenotypes
The observed phenotypic values for growth in lithium chloride (Y-axis) are plotted against 

the predicted phenotypic values based on a cross-validated additive model of 22 QTL. The 

additive QTL model explains 88% of the narrow-sense heritability. The diagonal line 

represents (observed phenotype) = (predicted phenotype) and is shown as a visual guide.
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Figure 5. Non-additive genetic variance explained by QTL-QTL interactions
A histogram of the fraction of non-additive genetic variance explained by detected QTL-

QTL interactions per trait is plotted. The histogram is restricted to traits for which at least 

10% of the total genetic variation is non-additive. (Inset) Phenotypes for growth in maltose 

are shown, grouped by two-locus genotypes at the two interacting QTL on chromosomes 

VII and XI. This QTL-QTL interaction explained 71% of the difference between broad-

sense and narrow-sense heritability.
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