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Trauma is the most common cause of fatal injuries in the Unit-
ed States among individuals younger than 45 years. Globally, 

an estimated 6 million individuals die of traumatic injuries each 
year (1). Early accurate diagnosis and grading of traumatic in-
juries is critical in guiding clinical management and improving 
patient outcomes. CT plays a central role in the initial evalu-
ation of hemodynamically stable patients (2,3). For blunt and 
penetrating abdominal trauma, the American Association for the 
Surgery of Trauma (AAST) organ injury grading system is the 
most well-recognized system for grading solid organ injuries (4,5) 
and is critical in triaging patients for surgery, minimally invasive 
intervention, or conservative management (6).

While the AAST grading system is an important guide for as-
sessing solid organ injury, rapid interpretation of trauma studies 
is challenging given the large number of images to review and 
the potential for subtle findings. Diagnostic errors in the inter-
pretation of trauma are common (7), and there is high interrater 
variability in the AAST grading system (8,9). Furthermore, the 
large variation in protocols used at different hospitals, including 
a single portal venous phase, multiphasic imaging, and split bolus 
approaches (10), can further complicate this task.

Automated assessment of traumatic abdominal injuries is an 
excellent use case for artificial intelligence (AI) algorithms, given 
the potential to prioritize studies that may require more expe-
dient interpretations, as well as to augment radiologist accuracy 
and efficiency, which may be particularly valuable in areas where 

subspecialists are in short supply. Recent work on AI-based as-
sessment of abdominal trauma includes studies on automated de-
tection of splenic (11–14) and liver (15) injury, hemoperitoneum 
(16), and pneumoperitoneum (17). However, prior studies have 
typically been limited in scope to single organs and single institu-
tions, limiting generalizability into clinical practice. Thus, there 
is a need for large multi-institutional publicly available annotated 
abdominal trauma datasets to address this challenge.

The Radiological Society of North America (RSNA) col-
laborated with the American Society of Emergency Radiology 
(ASER) and the Society of Abdominal Radiology (SAR) to cu-
rate a large, publicly available expert-labeled dataset of abdominal 
CT images for traumatic injuries focusing on injuries to the liver, 
spleen, kidneys, bowel, and mesentery and active extravasation. 
This dataset was used for the RSNA 2023 Abdominal Trauma 
Detection competition, which attracted 1500 competitors from 
around the world to develop innovative machine learning (ML) 
models that detect traumatic injuries at abdominal CT.

Dataset Curation and Annotation
Figure 1 shows a flowchart of the RSNA Abdominal Traumatic 
Injury CT (RATIC) dataset curation and annotation process, 
with a detailed description provided in Appendix S1. In brief, 
sites provided initial labels for the presence of different trau-
matic injuries according to clinical reports. Radiologist anno-
tators recruited from the ASER and SAR then independently 
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annotated solid organ injury grades and locations of bowel and 

mesenteric injuries and active extravasation. The annotator pool 
consisted of 43 attending radiologists (32 academic, four pri-
vate practice, six hybrid, and one government), with 10.2 years 
± 6.9 (SD) of experience as an attending, and two fellows from 
38 different institutions. Annotator subspecialties consisted of 
19 abdominal radiologists, 21 emergency radiologists, four gen-
eral radiologists, and one interventional radiologist. Annotators 
annotated an average of 144 cases ± 123. Reference standard 
labels for the grading of each solid organ injury were established 
using majority voting among three different annotators and di-
vided into low- (AAST I–III) and high-grade (IV and V) injury 
groups. In the event of label disagreement among annotators, a 
member of the organizing committee acted as an adjudicator. 
Image-level labels for bowel and mesenteric injuries and active 
extravasation were based on the consensus of different annota-
tors. Voxelwise segmentations (Fig 2) were manually corrected 
after training an nnU-Net (18) on the TotalSegmentator dataset 
(19), focusing only on the organs being evaluated in the chal-
lenge: liver, spleen, left kidney, right kidney, and bowel (rep-
resenting a combination of esophagus, stomach, duodenum, 
small bowel, and colon).

Dataset Description and Usage
The RATIC dataset is composed of CT scans of the abdomen 
and pelvis in 4274 adult (≥18 years) patients, with a total of 
6481 image series from 23 institutions across 14 countries and 
six continents. A detailed breakdown of patient demographics 
and injuries across the different institutions is provided in Table 
1. The demographic and case-level composition of the competi-
tion training and test set is presented in Table 2. The breakdown 

of injury severity of solid organs for the training set is found in 
Table 3.

CT images are in Digital Imaging and Communications in 
Medicine (ie, DICOM) format. Study-level injury annotations 
and demographic information are provided in four comma-sep-
arated value files. The train_2024.csv file contains information 
about the presence of traumatic abdominal injuries (liver, kid-
ney, spleen, bowel, and mesentery and active extravasation) for 
each patient. The image_level_labels_2024.csv file provides im-
age-level labels for bowel and mesenteric injuries and active ex-
travasation. The train_series_meta.csv file contains information 
regarding the phase of imaging and anatomic coverage of each 
CT series. The train_demographics_2024.csv file contains infor-
mation about patient demographics. Pixel-level segmentations 
of abdominal organs are provided in Neuroimaging Informatics 
Technology Initiative (ie, NIfTI) format for a subset of 206 series 
from the training set. Data are available at https://www.kaggle.com/
competitions/rsna-2023-abdominal-trauma-detection and https://
imaging.rsna.org/dataset/5. 

Discussion
We curated a large, high-quality dataset of abdominal trauma 
CT studies, with contributions from 23 institutions in 14 coun-
tries and six continents. This represents the largest and most di-
verse publicly available dataset of abdominal trauma CT scans. 
This dataset provides annotations relating to injuries of the liver, 
spleen, kidneys, bowel, and mesentery, as well as active extrav-
asation. This rich dataset has further utility for investigators, as 
other injuries such as hematomas, fractures, and lower thoracic 
injuries are present within the dataset but were not explicitly 
annotated due to the challenge timeline and the intent of the 
challenge to focus on critical findings of the highest clinical im-
portance for patients with trauma.

We chose broad inclusion criteria for the CT scans in the data-
set. Our initial survey of potential contributing sites showed great 
variety in the protocols used for imaging patients with abdominal 
trauma. In fact, some institutions had multiple protocols and se-
lected a protocol based on the severity of the trauma. Aspects that 
varied across protocols included the parts of the body that were 
imaged, phases of imaging, and image thickness. Stringent inclu-
sion criteria that limited the dataset to only scans with a single 
homogeneous protocol (eg, thin-section, multiphasic CT scans 
of the abdomen and pelvis) would severely constrain the size and 
potential generalizability of this dataset. For this reason, we wid-
ened the inclusion criteria to facilitate a larger and more diverse 
dataset that could then be used to train more robust ML models. 
Biphasic (arterial and portal venous), split bolus, and portal ve-
nous phase protocols were considered acceptable.

Participating sites were asked to enrich the dataset with repre-
sentative injuries given the relatively low prevalence of traumatic 
abdominal injuries at CT encountered in clinical practice. De-
spite this request, the number of cases with injuries submitted was 
lower than the organizing committee had anticipated. Addressing 
class imbalances in curated datasets is particularly important in 
improving ML model robustness and reducing bias (20,21). An 
explicit effort was made by the organizing committee to reduce 
potential biases in the dataset by considering factors such as sex, 
age, injuries, and contributing site when assigning scans to the 
training, public test, and private test datasets.

Abbreviations
AAST = American Association for the Surgery of Trauma, AI = arti-
ficial intelligence, ASER = American Society of Emergency Radiolo-
gy, ML = machine learning, RATIC = RSNA Abdominal Traumatic 
Injury CT, RSNA = Radiological Society of North America, SAR = 
Society of Abdominal Radiology

Summary
The RSNA Abdominal Traumatic Injury CT (ie, RATIC) dataset 
contains 4274 abdominal CT studies with annotations related to 
traumatic injuries and is available at https://www.kaggle.com/competi-
tions/rsna-2023-abdominal-trauma-detection and https://imaging.rsna.
org/dataset/5.

Key Points
 ■ The RSNA Abdominal Traumatic Injury CT (ie, RATIC) dataset is 

the largest publicly available adult abdominal traumatic injury CT 
dataset, with contributions from 23 institutions across 14 countries 
and six continents.

 ■ The dataset consists of medical images, segmentations, and im-
age-level annotations, which were generated by subspecialist radiol-
ogists from the American Society of Emergency Radiology and the 
Society of Abdominal Radiology.

 ■ This dataset was used for the Radiological Society of North 
America 2023 Abdominal Trauma Detection competition and is 
made freely available to the research community for noncommer-
cial use.

Keywords
Trauma, Spleen, Liver, Kidney, Large Bowel, Small Bowel, CT
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the prizewinning models relied on study-level annotations and 
segmentations rather than bounding boxes (24). In addition, 
recent work has shown that strongly supervised models trained 
on slice-level labels from the RSNA Brain CT Hemorrhage 
dataset labels (25) do not outperform weakly supervised mod-
els trained on study-level labels (26). Pixel-level annotations of 
injuries, including bounding boxes, would be a time-consum-
ing task with likely poor reproducibility, as abdominal injuries 
can be quite complex, with ill-defined borders. We settled on 
providing segmentations of the relevant abdominal organ sys-
tems to assist with localization and organ labels at the study 
level. Image-level labels were provided for bowel and mesen-
teric injuries and active extravasation, as these injuries can be 
subtle, manifest in variable anatomic locations, and manifest 
on a limited number of images.

Individual annotators were assigned a single organ system to 
annotate rather than providing annotations for multiple organ 

Figure 1: Summary of the data curation and annotation process. * = bowel and mesenteric injuries were reviewed by two annotators. 
DICOM = Digital Imaging and Communications in Medicine.

A challenge we faced in curating this dataset was the dramatic 
differences in z-axis coverage in the included CT scans. For exam-
ple, some sites imaged from the skull vertex to feet, while many 
sites limited imaging to the abdomen and pelvis. To reduce the 
size of the dataset and to help ML model training by reducing 
the search space, we decided to limit scans to the abdomen and 
pelvis, using an upper bound of the mid heart and lower bound 
of the proximal femurs through an automated pipeline (22), and 
manually reviewed the processed scans.

Similar to prior challenges, we aimed to maximize use of 
the data and ensure high quality labels while not overburden-
ing annotators. Contributing sites prelabeled submitted scans 
with information extracted from the clinical report that al-
lowed annotators to focus on the abnormal scans. We con-
sidered a variety of annotation strategies that ranged from 
study- to pixel-level annotations. Our experience with the 
cervical spine fracture detection challenge (23) showed that 

http://radiology-ai.rsna.org
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systems on their assigned CT scans. The organizing committee 
felt this would improve the efficiency of the annotation process 
and label quality by allowing an annotator to focus on a single 
task and AAST injury grading scale. The annotators provided 
granular labels using the AAST grading scale for solid organ in-
juries. Due to the well-documented issues with interrater agree-
ment in the grading of solid organ injuries with AAST (9) and 
to help model training, AAST injury grades I–III were classified 
as low-grade injuries, while grades IV and V were classified as 
high-grade injuries. This grouping of injury grades still provides 
more information than a binary label for injury and reflects many 
clinical practices, as patients with grade IV and V injuries are 
more likely to undergo surgery or endovascular treatment (4–6). 
Rather than assigning a fixed number of CT scans for annotation, 
we utilized the crowdsourcing mode on the annotation platform. 
This allowed annotators to label as many cases as they wanted, 
with the public scoreboard providing motivation.

Each solid organ injury label was annotated independently 
by three radiologists, and the final reference standard labels were 
established by majority. In scenarios where all three annotators 
assigned different gradings (ie, no injury, low grade, and high 
grade), a member of the organizing committee adjudicated the 
case and assigned the final reference standard label. We felt that 
this approach would improve annotation quality by generating 
labels with better interrater agreement and avoiding the problem 
of poor-quality annotation in a single annotation scheme. With 

an approach that relies on a single annotator per scan, it can be 
difficult to detect poor annotators following completion of a set 
of training cases.

There are several limitations of this dataset. Reference stan-
dard labels for the grading of solid organ injuries were established 
through best of three majority voting. While this represents an 
improvement over a single annotator, there are inherent issues 
with AAST grading as a result of interrater variability. We recog-
nize the absence of delayed phase imaging as a limitation because 
it forms part of the AAST imaging criteria for grade II–IV renal 
injuries in terms of collecting system injuries. Delayed phase im-
aging was not included because it was not part of the routine 
protocol for most contributing sites, and we were concerned that 
its inclusion in cases with renal injuries would bias models, po-
tentially through spurious associations, rather than truly detect-
ing collecting system injuries. Finally, reference standard labels 
for solid organ injuries, bowel and mesenteric injuries, and active 
extravasation were made using a web-based annotation platform, 
which is limited when compared with real-world clinical practice 
with access to high-resolution monitors, multiplanar thin-section 
imaging, clinical information, and prior imaging examinations.

In summary, the RATIC dataset represents the largest and 
most geographically diverse, publicly available expert-annotated 
dataset of abdominal traumatic injury CT studies. With the re-
lease of this dataset, we hope to facilitate research and develop-
ment in ML and abdominal trauma that can lead to improved 

Figure 2: Example of abdominal organ segmentation, with each color representing different organs. (A) Axial CT DICOM image 
demonstrates a splenic laceration (arrow). (B) Image illustrates the segmentations for the liver (red), spleen (green), left kidney (blue), and 
gastrointestinal tract (brown) in the axial plane. (C) Image shows segmentation masks overlaying the corresponding CT image. (D) Image 
shows segmentation masks overlaying the corresponding organs on a reconstructed coronal CT DICOM image. DICOM = Digital Imaging 
and Communications in Medicine.

http://radiology-ai.rsna.org
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Table 1: Distribution of Positive and Negative Cases for Abdominal Injury with Breakdown of Injury Class per Institution

Site ID

Sex

Age (y)
Total 
Cases

Negative 
Injury

Positive Injury

Male Female UNK
Total 
Positive

Liver 
Injury

Spleen 
Injury

Kidney 
Injury

Bowel 
Injury

Active 
Extravasation

Site 1 195 55 0 52.9 ± 20.6
(18–90)

250 202 48 12 24 6 9 20

Site 2 49 1 45 37.1 ± 13.8
(19–71)
37 UNK

95 76 19 10 9 4 0 1

Site 3 72 22 0 45.1 ± 16.5
(18–88)

94 76 18 9 8 6 1 2

Site 4 200 93 0 41.8 ± 17.8
(20–90)

293 147 146 48 54 78 17 28

Site 5 16 4 0 41.8 ± 20.9
(20–85)

20 12 8 3 5 5 0 1

Site 6 343 190 0 56.3 ± 21.4
(18–90)

533 436 97 40 37 21 13 38

Site 7 141 50 0 47.2 ± 20.0
(18–90)

191 155 36 11 11 9 7 8

Site 8 148 45 0 46.2 ± 20.4
(20–90)

193 107 86 26 48 23 12 20

Site 9 109 51 0 44.5 ± 19.6
(19–90)

160 119 41 18 12 14 1 8

Site 10 96 38 0 43.7 ± 17.8
(18–90)

134 68 66 29 14 17 8 17

Site 11 17 21 0 51.9 ± 22.2
(20–90)

38 38 0 0 0 0 0 0

Site 12 102 31 0 42.1 ± 17.9
(18–90)

133 85 48 28 15 16 4 6

Site 13 127 63 0 49.8 ± 21.6
(18–90)

190 113 77 33 37 11 6 18

Site 14 179 68 0 46.9 ± 20.8
(18–90)

247 135 112 46 52 33 14 43

Site 15 110 52 0 46.2 ± 19.2
(18–90)

162 101 61 24 24 13 3 13

Site 16 117 77 0 46.4 ± 19.7
(18–90)

194 125 69 17 30 23 2 16

Site 17 99 34 0 38.4 ± 16.8
(18–90)

133 61 72 38 26 24 11 17

Site 18 63 11 0 47.9 ± 18.8
(18–85)

74 50 24 9 5 5 2 7

Site 19 116 61 0 56.1 ± 21.1
(18–90)

177 104 73 13 21 24 3 32

Site 20 162 145 0 57.1 ± 20.6
(19–90)
14 UNK

307 232 75 18 27 9 1 20

Site 21 253 95 0 43.5 ± 19.9
(18–90)
3 UNK

348 331 17 4 6 5 2 2

Site 22 68 37 0 44.4 ± 20.6
(18–90)

105 90 15 8 5 4 0 1

Site 23 155 48 0 42.4 ± 18.2
(18–88)

203 95 108 47 47 20 17 18

 Total 2937 1292 45 48.0 ± 20.6
(18–90)
54 UNK

4274 2958 1316 491 517 370 133 336

Note.—Ages are presented as means ± SDs, with ranges in parentheses. All other values are numbers. UNK = number of cases with unknown 
age or sex.

http://radiology-ai.rsna.org
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patient care and outcomes. This dataset is made freely available to 
all researchers for noncommercial use.
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