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Abstract 41 

cFOS is a pleiotropic transcription factor, which binds to the AP1 site in the promoter of target genes. In 42 

the pituitary gonadotropes, cFOS mediates induction of FSH and GnRH receptor genes. Herein, we 43 

analyzed reproductive function in the cFOS-deficient mice to determine its role in vivo. In the pituitary 44 

cFOS is necessary for gonadotropin subunit expression, while TSH is unaffected. Additionally, cFOS 45 

null animals have the same sex-steroid levels, although gametogenesis is impeded. In the brain, cFOS is 46 

not necessary for GnRH neuronal migration, axon targeting, cell number, or mRNA levels. Conversely, 47 

cFOS nulls, particularly females, have decreased Kiss1 neuron numbers and lower Kiss1 mRNA levels. 48 

Collectively, our novel findings suggest that cFOS plays a cell-specific role at multiple levels of the 49 

hypothalamic-pituitary-gonadal axis, affecting gonadotropes but not thyrotropes in the pituitary, and 50 

kisspeptin neurons but not GnRH neurons in the hypothalamus, thereby contributing to the overall control 51 

of reproduction. 52 
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Introduction 71 

72 

cFOS is a basic leucine-zipper protein which forms a heterodimer with the cJUN isoform, thus 73 

forming an AP1 transcription factor that binds the TPA-response element in the promoter of target genes. 74 

cFOS is an immediate-early gene that is activated rapidly and transiently in most cell types. It is induced 75 

by a variety of growth factors, cytokines, neurotransmitters, and hormonal signals, as well as 76 

environmental stimuli. In turn, cFOS controls a diverse array of cellular processes, including cell 77 

proliferation, differentiation, survival, and death. Of all of the eclectic variations of cellular functions in 78 

which it is involved, the primary role(s) of cFOS, in any given tissue, is dependent on the cell type and 79 

stimuli (1, 2). We have shown that although pituitary gonadotropes express receptors for EGF or insulin, 80 

which in other cells induce cFOS, in the gonadotrope only GnRH induces cFOS and through it GnRH-81 

target genes (3). Thus, cFOS although versatile, has cell-specific and stimulus-specific function in each 82 

cell type. 83 

To study roles of cFOS in vivo, two different cFOS deficient mice were created and their 84 

phenotypes were analyzed in mouse strains with mixed backgrounds (129/SvJ x C57Black6J). Similar 85 

abnormalities were reported for both mouse strains lacking cFOS (4, 5). cFOS nulls are born at the proper 86 

Mendelian ratio, demonstrating that cFOS is not necessary for embryonic development. However, after 87 

four weeks of age, cFOS null mice exhibit growth retardation, osteopetrosis, and ultimately, 88 

hematopoiesis deficiency. Although cFOS null mice exhibit impairments in peripheral organs such as 89 

bone and hematopoietic system, the alteration in the central nervous system (CNS) are cell-specific (6-8). 90 

For example, adult mice lacking cFOS in the CNS exhibited normal general and emotional behavior but 91 

were specifically impaired in hippocampus-dependent spatial and associative learning tasks (8). Johnson 92 

et al. reported infertility in both sexes, though the cause was not examined (4). Since cFOS null mice are 93 

viable, redundancy poses a question and the potential complementary role of a closely related protein, 94 

FOSB, was also examined in vivo. Unlike cFOS null mice, FOSB deficient mice were reported to be 95 

healthy, viable, fertile, and had a normal life expectancy (9). Thus, cFOS is crucial for fertility, whereas 96 
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FOSB is not. Moreover, intact, functional FOSB is unable to substitute for the loss of cFOS with regards 97 

to the reproductive system. This necessitates further examination of the roles of cFOS in modulating the 98 

hypothalamic-pituitary-gonadal axis. 99 

cFOS is rapidly induced in gonadotrope cells following GnRH treatment, both in vivo (10) and in 100 

model cell lines (11, 12). cFOS mediates GnRH induction of the FSH gonadotropin subunits by binding 101 

to the AP1 site in the proximal mouse FSH promoter (13). Furthermore, cFOS is involved in synergistic 102 

induction of FSH by GnRH and activin, which is specific for FSH and may play a role in differential 103 

expression of gonadotropin subunits (14). Specific decrease of cFOS protein turnover may contribute to 104 

the rise in FSH transcription during the time of low GnRH pulse frequency (15). Induction of the GnRH 105 

receptor by GnRH is also dependent on cFOS binding to both the AP1 site, to mediate GnRH 106 

responsiveness (16), and to the GRAS element where, through interaction with SMAD proteins and 107 

FOXL2, mediates the synergy between GnRH and activin (17, 18). 108 

In the brain, cFOS serves as a marker of neuronal activation and its expression is increased in 109 

GnRH neurons during the preovulatory LH surge and after kisspeptin treatment (19, 20). cFOS 110 

expression in kisspeptin neurons also coincides with a preovulatory LH surge (21, 22). However, a role of 111 

cFOS in GnRH and kisspeptin neurons is still poorly understood. In the gonads, as well, cFOS is 112 

expressed in germ cells and, granulosa and theca cells in females (23), and Sertoli cells in males (24), but 113 

its target genes are not known. Thus, a role for cFOS in the testes and ovaries is not elucidated.  114 

The involvement and necessity of cFOS at different levels of the reproductive axis is not well-115 

addressed, and therefore, the underlying cause(s) of infertility in mice lacking cFOS remains unknown. 116 

Here, we examined several levels of the hypothalamic-pituitary-gonadal axis in cFOS null mice of both 117 

sexes, to ascertain if gene expression impairments exist within the reproductive axis at either the brain, 118 

pituitary, and/or gonadal levels.  119 

 120 

 121 
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Materials and Methods 122 

 123 

cFOS-null mice  124 

 The cFOS-null mice were obtained from Jackson Laboratories, where the Papaioannou laboratory 125 

deposited them, and back crossed to C57Bl6J for six generations. Animals were maintained under a 12-126 

hour light, 12-hour dark cycle and received food and water ad libitum. All experiments were performed 127 

with approval from the University of California Animal Care and Use Committee and in accordance with 128 

the National Institutes of Health Animal Care and Use Guidelines using 5 and 6 weeks old animals. 129 

Genomic DNA was extracted from toe biopsies and analyzed with PCR according to JAX protocol. 130 

Animals of both sexes were studied to determine potential sex differences. At least 5 animals per sex per 131 

group (WT and null) were analyzed. Males and females were analyzed separately to determine the effect 132 

of genotype alone. 133 

 134 

Immunohistochemistry 135 

 Tissues from 6-week old animals were fixed in 4% paraformaldehyde overnight at 4°C and 136 

dehydrated in ethanol/water washes before embedding in paraffin. Embedded tissues were cut into 14-μm 137 

coronal sections with a microtome and floated onto SuperFrost Plus slides (Fisher Scientific, Auburn, 138 

Alabama). Slides were incubated at 60°C for 30 minutes, deparaffinized in xylene washes, and rehydrated 139 

in ethanol/water washes. Antigen unmasking was performed by heating for 10 minutes in a Tris-EDTA-140 

Tween20 mixture and endogenous peroxidase was quenched by incubating for 10 minutes in 0.3% 141 

hydrogen peroxide. After washing in phosphate-buffered saline (PBS), slides were blocked (PBS, 5% 142 

goat serum, 0.3% Triton X-100) for 45 minutes and incubated with primary antibodies against GnRH 143 

(1:1000, PA1-121, Pierce, Thermo Rockford, IL) overnight at 4°C. After washing, slides were incubated 144 

with biotinylated goat anti-rabbit IgG (1:300, Vector Laboratories) for 30 minutes. The Vectastain ABC 145 

elite kit (Vector Laboratories) was used per manufacturer's instructions and incubated for 30 minutes. 146 

After washing, the VIP peroxidase kit was used for colorimetric staining for 3 minutes. Slides were 147 
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dehydrated in an ethyl alcohol series and xylene, and cover-slipped using Vectamount (Vector 148 

Laboratories).  149 

 150 

qPCR analysis  151 

Tissues from 5-week old animals for were dissected, total RNA extracted and reverse transcribed 152 

using Superscript III (Invitrogen, CA). qPCR was performed using an iQ SYBR Green supermix and an 153 

IQ5 real-time PCR machine (Bio-Rad Laboratories, Hercules, CA), with primers listed in Table 1, under 154 

the following conditions: 95°C for 5 min, followed by 40 cycles at 95°C for 20 sec, 56°C for 30 sec, and 155 

72°C for 30 sec. A standard curve with dilutions of 10 pg/well, 1 pg/well, 100 fg/well, and 10 fg/well of a 156 

plasmid containing LH, FSH, or GAPDH cDNA was generated in each run with the samples. The 157 

amount of the gene of interest was calculated by comparing threshold cycle obtained for each sample with 158 

the standard curve generated in the same run. Replicates were averaged and divided by the mean value of 159 

GAPDH in the same sample. To quantify expression of genes for which cDNA-containing plasmid was 160 

unavailable to generate a standard curve, relative gene expression was calculated using 2
-Ct

. After each 161 

run, a melting curve analysis was performed to confirm that a single amplicon was generated. Five 162 

animals per group were used and males and females were analyzed separately. Statistical differences in 163 

expression between genotypes were determined by Student’s T-test, with Tukey-Kramer post hoc HSD 164 

for multiple comparisons using JMP software (SAS Institute; Cary, North Carolina).  165 

 166 

Serum collection 167 

For serum collection, 5-week old mice were sacrificed by isoflurane inhalation and blood was 168 

obtained from the inferior vena cava. The blood was left to coagulate for 15 minutes at room temperature, 169 

and then centrifuged at 2000 RCF for 15 minutes for serum separation. Hormone assays were performed 170 

by University of Virginia, Ligand Core. The University of Virginia Center for Research in Reproduction 171 

Ligand Assay and Analysis Core is a fee-for-service core facility and is in part supported by the Eunice 172 
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Kennedy Shriver NICHD/NIH (SCCPIR) Grant U54-HD28934. LH was analyzed using a sensitive two-173 

site sandwich immunoassay (25), and mouse LH reference prep (AFP5306A; provided by Dr. A.F. 174 

Parlow and the National Hormone and Peptide program) was used as standard. FSH was assayed by RIA 175 

using reagents provided by Dr. A.F. Parlow and the National Hormone and Peptide Program, as 176 

previously described (26). Mouse FSH reference prep AFP5308D was used for assay standards. Steroid 177 

hormone levels were analyzed using validated commercially available assays, information for which can 178 

be found on the core’s website: http://www.medicine.virginia.edu/research/institutes-and-179 

programs/crr/lab-facilities/assay-methods-page and reported in (27). Limits of detection were 0.24 ng/ml 180 

for LH, 2.4 ng/ml for FSH, 3 pg/ml for estradiol, and 10 ng/dL for testosterone. Intra- and inter-assay 181 

coefficients of variation were 6.4%/8.0%, 6.9%/7.5%, 6.0%/11.4% and 4.4%/6.4% for the LH, FSH, 182 

estrogen (E2) and testosterone (T), respectively. For the assays used for this manuscript, inter-assay 183 

coefficients of variation data are the result of 30 assays for LH and FSH, and 60 assays for E2 and T. Five 184 

animals per group were used for each hormone analysis and, males and females were analyzed separately 185 

to determine differences due to genotype. Statistical differences in hormone levels between wild-type and 186 

null groups were determined by Student’s T-test, and Tukey-Kramer post hoc HSD for multiple 187 

comparisons using JMP software (SAS Institute; Cary, North Carolina).  188 

 189 

 190 

Ovarian Stimulation and Histology 191 

For harvest of primary mouse granulosa cells, ovaries were dissected from 6-week old female 192 

mice in diestrus. Ovarian follicles were punctured with needles to release granulosa cells and oocytes. 193 

Cells were separated from debris by filtering through a 100-μm filter and subsequently, oocytes were 194 

removed from the granulosa cells by passing the cell suspension through 40-μm nylon mesh cell strainer. 195 

Granulosa cells were seeded at 0.2 x 10
6
 cells per well (24-well plate) and cultured in serum-free McCoys 196 

5A culture media containing antibiotics and incubated at 37 ˚C, 5% CO2 for at least 2 hours, prior to 197 

treatment with 50 ng/ml ovine FSH for 1 hour. Ovine FSH was obtained from Dr. A. F. Parlow at the 198 
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National Hormone and Peptide Program of the National Institute of Diabetes and Digestive and Kidney 199 

Diseases. After removal of media, cells were lysed, cAMP measured according to the manufacturer’s 200 

protocol using cAMP- Glo Assay kit (Promega Cat # V1501, Madison, Wisconsin, USA) and 201 

concentration was calculated using a standard curve. To stimulate ovulation, 6-week old female mice 202 

were injected i.p with 5 IU PMSG, followed by 5 IU hCG i.p. injection 48 hours later (both from Sigma-203 

Aldrich, St. Louis, Missouri). The following day, ovaries were collected for histological analysis and 204 

hematoxylin and eosin staining of paraffin sections. The Institutional Animal Care and Use Committee at 205 

the University of California, Riverside, approved all animal protocols. 206 

 207 

In Situ Hybridization 208 

 For Gnrh and Kiss1 gene expression analysis, brains from 6-week old mice were collected at 209 

sacrifice, frozen immediately on dry ice, and stored at -80°C. Brains were sectioned on a cryostat into five 210 

coronal series of 20 µm sections which were thaw-mounted onto Superfrost-plus slides and stored at -211 

80°C. Single-label in situ hybridization was performed as previously described (28, 29). Briefly, slide-212 

mounted brain sections encompassing the entire preoptic area and hypothalamus from one of the 5 sets of 213 

serial brain sections were fixed in 4% paraformaldehyde, pretreated with acetic anhydride, rinsed in 2X 214 

SSC (sodium citrate, sodium chloride), delipidated in chloroform, dehydrated in ethanol, and air-dried. 215 

Radiolabeled (
33

P) Kiss1 or Gnrh antisense riboprobe (0.04 pmol/ml) was combined with tRNA, heat-216 

denatured, added to hybridization buffer, and applied to each slide (100 l/slide). Slides were cover-217 

slipped and placed in a 55°C humidity chamber overnight. The slides were then washed in 4X SSC and 218 

placed into RNAse A treatment for 30 min at 37°C, then in RNAse buffer without RNase at 37°C for 30 219 

min. After washing in 2X SSC at room temperature, slides were washed in 0.1X SSC at 62°C for 1 hour, 220 

dehydrated in ethanol, and air-dried.  Slides were then dipped in Kodak NTB emulsion, air-dried, and 221 

stored at 4°C for 4-5 days (depending on the assay) before being developed and cover-slipped.  222 

 ISH slides were analyzed with an automated image processing system (Dr. Don Clifton, University 223 

of Washington) by a person blinded to the treatment group (30). The software counts the number of silver 224 
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grain clusters representing Kiss1 or Gnrh cells, as well as the number of silver grains over each individual 225 

cell, which provides a semi-quantitative count of Kiss1 or Gnrh mRNA expressed per cell. Cells were 226 

considered Kiss1 or Gnrh positive when the number of silver grains in a cluster exceeded that of 227 

background by 3-fold. Neuron numbers and mRNA levels per cell from males and females were analyzed 228 

with two-factor ANOVA and Tukey-Kramer HSD post hoc test, with a significance p<0.05, using JMP 229 

software (SAS Institute; Cary, North Carolina). 230 

 231 

 232 

Results 233 

Gonadotrope gene expression is lower in cFOS null mice 234 

 We determined previously that cFOS is a critical transcription factor through which GnRH 235 

induces FSH gene in the LT2 gonadotrope model cell line (13). It is also involved in differential 236 

expression of gonadotropin subunits that are necessary for reproductive fitness (14, 15). In this study, we 237 

analyzed a role of cFOS in reproduction in vivo, using cFOS null animals. As reported before (4), we 238 

observed that heterozygous crosses result in the Mendelian ratio of offspring at birth. There was no gene 239 

dosage effect, since heterozygous animals were not different from the wild types in any paradigm we 240 

examined; thus, we present only wild-type and null results. 241 

 Due to our interest in gonadotrope gene expression and a known role for cFOS in FSH and 242 

GnRH receptor induction by GnRH, we started our analysis of cFOS null animals by assessing 243 

gonadotrope gene expression (Fig. 1A-H). In both sexes at postnatal day 35 (p35), cFOS deficient mice 244 

had lower Lhb, Fshb, Cga (α-GSU) subunit, and Gnrhr mRNA expression than wild-types. Lhb was 83% 245 

lower in males and 76% lower in females; Fshb was 88% lower in males and 93% lower in females; Cga 246 

was 77% and 80% lower in males and females respectively, and Gnrhr was 57% and 80% lower, 247 

respectively. Since cFOS deficiency affected gonadotrope specific gene expression, and both 248 

gonadotropes and thyrotropes express a common α-GSU which heterodimerizes with the hormone-249 
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specific β subunits, we analyzed the expression of the third glycoprotein hormone β subunit.  Tshb mRNA 250 

levels were the same in wild-type and cFOS deficient animals in both males (Fig. 1I) and females (Fig. 251 

1J). Thus, cFOS is necessary for gonadotrope gene expression, but not for thyrotrope gene expression. 252 

Serum concentrations of circulating gonadotropin hormones were assayed to determine whether 253 

reduction in gonadotropin gene expression resulted in lower circulating hormone levels. Difference in 254 

serum baseline LH concentration in male animals did not reach statistical significance due to variability, 255 

although there was a trend for lower level in the nulls (Fig. 2A). There was no difference in baseline LH 256 

levels between wild-type and null females (Fig. 2B). FSH was 85% lower in mutants of both sexes (Fig. 257 

2C, D). To determine pituitary responsiveness to GnRH, we analyzed serum gonadotropin levels 10 258 

minutes following subcutaneous injection of GnRH. Absolute values of GnRH-induced LH were 259 

significantly lower in nulls compared to wild-type males (Fig. 2E), due to a different baseline levels. 260 

Interestingly, although null male mice started with lower baseline LH levels, both wild-type and null 261 

males exhibited a comparable 5-fold increase in LH serum concentration following GnRH injection 262 

(compare Figures 2A and 2E). Thus, in null males LH concentration increased in response to GnRH 263 

treatment. The response to GnRH in nulls implies sufficient expression of GnRH receptors in null males. 264 

In females, wild-types responded to GnRH with increased LH levels (Fig. 2F), while nulls retained the 265 

same level as prior to the GnRH treatment (compare Figures 2B and 2F), revealing a significant 266 

difference in GnRH-responsiveness between wild-type and null females. This sex difference in GnRH 267 

responsiveness may stem from the alterations in GnRH receptor expression that is more severe in null 268 

females (Fig. 1H). Although circulating FSH levels were not dramatically increased following GnRH 269 

injection, perhaps due to timing of blood collection, null mice of both sexes had 96% lower FSH in the 270 

circulation than the wild-types after the GnRH treatment (Fig. 4G, H). Collectively, both pituitary mRNA 271 

levels and serum hormone analyses indicate that cFOS is necessary for normal levels of gonadotropins, 272 

particularly FSH. 273 

 274 

 275 
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cFOS is not required for steroidogenesis 276 

Given that gonadotropin gene expression was diminished in null animals, we analyzed the effects 277 

of lower FSH levels on the gonads. Histological analysis of gonads at 6 weeks of age revealed that cFOS 278 

null females exhibited a block in folliculogenesis, reminiscent of a phenotype observed in FSH deficient 279 

mice (31). Specifically, female nulls lacked antral follicles and corpora lutea, indicating a lack of 280 

ovulation, while both antral follicles (AF) and corpora lutea (CL) were present in wild-type littermates 281 

(Fig. 3 top panels). Homozygous null ovaries contained normal primordial follicles, a greater number of 282 

secondary follicles with normal oocytes, and a thick granulosa cell layer, indicating normal early 283 

follicular development and typical granulosa cell proliferation, but no antrum development (Figure 3 top 284 

right panel). Testes analysis revealed that most seminiferous tubules in cFOS null males lacked 285 

spermatozoa (S1, Fig. 3 bottom panel). Spermatogonia were present (S2), but there was a smaller number 286 

of elongated spermatids (S3), indicating potential meiosis problems. Testes also contained a lower 287 

number of interstitial Leydig cells (L, Figure 3 bottom panel). Further examination revealed that cFOS 288 

null females do not exhibit vaginal opening, an external measure of puberty, by 42 days of age (6 weeks), 289 

while wild-type littermates had a mean onset of vaginal opening at p29.2 (data not shown). In the cFOS 290 

null males, there was no mature sperm in the epididymis by 6 weeks of age, while wild-type males 291 

presented with 4.7 x 10
6
/ml sperm count (data not shown). Therefore, cFOS is necessary for late 292 

folliculogenesis and spermatogenesis, but not for early germ cell development. 293 

  Since gonadal histology differed between the genotypes, we examined sex steroid hormone 294 

levels and expression of gonadotropin hormone receptors in the gonads. Lhr expression was 62% lower, 295 

specifically in female null mice (Fig. 4B), while in the null males there was a trend for a decrease that did 296 

not reach statistical significance (Fig. 4A). On the other hand, Fshr was significantly higher in null males 297 

than wild-types (1.66 fold, Fig. 4C), while null and wild-type females had the same expression of FSH 298 

receptor (Fig. 4D). To determine if ovaries can respond to FSH, since FSH treatment induces cFOS in 299 

granulosa cells (23, 32), we stimulated primary cultures of granulosa cells with FSH to elicit an increase 300 

in intracellular cAMP levels. Granulosa cells from both wild-type and null mice exhibited similar increase 301 
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in cAMP following 1-hour treatment with 50 ng/ml FSH, indicating that the FSH receptor are expressed 302 

and functional in the granulosa cells from null animals (Fig. 4E).  However, stimulation with pregnant 303 

mare serum gonadotropins (PMSG) followed by human chorionic gonadotropin (hCG) 48 hours later, did 304 

not elicit ovulation in null females, determined by a lack of corpora lutea in the ovarian histological 305 

sections (data not shown). We then analyzed concentration of sex-steroid hormones in the circulation. In 306 

males, serum testosterone was similar between genotypes (Fig. 4F). Although null males exhibited a trend 307 

for lower testosterone levels, the difference did not reach statistical significance, as with the level of LHR 308 

expression in males. In females, serum estrogen was the same between genotypes (Fig. 4G). Collectively, 309 

these results indicate that cFOS is necessary for gametogenesis, but not for steroidogenesis or 310 

gonadotropin hormone receptor expression in the gonads. 311 

 312 

GnRH neuron number and migration is not altered due to a lack of cFOS 313 

Given that both gonadotropin hormones, which are synthesized and secreted in response to 314 

GnRH, were reduced in null animals, we next examined GnRH expression and the number of GnRH 315 

neurons in the hypothalamus in 6 week old animals. Using immunohistochemistry, we elucidated that 316 

GnRH neurons are present in both genotypes, in both sexes, in a normal pattern in the preoptic area of the 317 

hypothalamus (Fig. 5A), indicating that cFOS is not necessary for developmental migration of GnRH 318 

neurons from the olfactory placode to their final adult location. Likewise, the median eminence in both 319 

genotypes stained with GnRH, demonstrating that axon targeting of GnRH neurons is not affected by a 320 

deletion of cFOS (Fig. 5B).  In situ hybridization was used to determine GnRH neuron number and 321 

mRNA expression levels (Fig. 5C). There was no difference in GnRH neuron number in males, while null 322 

females exhibited a 17% decrease compared to wild-types (Fig. 4D). Although statistically significant, 323 

this decrease is unlikely to affect fertility, since only 34% of the entire GnRH neuron population is 324 

sufficient for full reproductive function (33). Expression levels of GnRH mRNA per cell was also the 325 

same in both genotypes in both sexes (Fig. 5E), showing that cFOS is not necessary for normal GnRH 326 

gene expression. Therefore, although cFOS is activated by a variety of stimuli in GnRH neurons, GnRH 327 
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neuron migration, axon targeting, cell number, and gene expression are not altered by the deletion of 328 

cFOS. 329 

 330 

cFOS is necessary for kisspeptin neurons in female mice 331 

 cFOS deficiency resulted in diminished levels of both gonadotropin hormones, but no major 332 

alteration was found in GnRH number and mRNA expression levels. Therefore, we examined kisspeptin 333 

neurons because kisspeptin is necessary for GnRH secretion. Kisspeptin neuron number and mRNA 334 

expression levels in the anteroventral periventricular nucleus (AVPV) were sexually dimorphic, as 335 

previously shown, with females having a larger number of Kiss1 neurons (in situ hybridization of female 336 

(F) AVPV shown in Fig. 6A). cFOS deficiency resulted in a dramatic 84% decrease in the number of 337 

Kiss1 neurons in females (Fig. 6A, B), despite no genotype difference in circulating estrogen. In males, 338 

the decrease did not reach significance. Expression of Kiss1 mRNA levels per cell in AVPV neurons was 339 

38% lower in males and 80% lower in females (Fig. 6C). In the arcuate nucleus (ARC), again only female 340 

null mice demonstrated a significant decrease, with 66% fewer Kiss1 neurons detected versus wild-types 341 

(Fig. 6D, E). Contrary to AVPV neurons, kisspeptin neurons in the ARC of both sexes in both genotypes 342 

had the same levels of Kiss1 mRNA per cell (Fig. 6F). Together, our results indicate that cFOS is 343 

necessary for kisspeptin gene expression in both hypothalamic nuclei, with dramatic reductions observed 344 

primarily in females. 345 

 346 

 Discussion  347 

 Despite extensive studies on regulation of the gonadotropin subunit genes using cell models and 348 

dispersed pituitary cultures, little is known about in vivo roles of intermediary immediate early genes, 349 

such as cFOS, that are proposed to be involved in GnRH induction of gonadotrope specific genes. Studies 350 

using cell lines indicate that cFOS is a direct target of GnRH signaling that, upon induction, activates 351 

FSHβ and GnRH receptor gene transcription (13, 16). In the brain, cFOS is also often used as a marker of 352 

neuronal activation, in excitation of GnRH neurons and kisspeptin neurons (19, 21). The pleiotropic 353 
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transcription factor, cFOS, is induced by a variety of stimuli in various other cell types, but exhibits cell-354 

specific and stimuli-specific function in each tissue examined. Herein, we examined the role of cFOS in 355 

hypothalamic-pituitary-gonadal (HPG) axis gene expression in vivo, using cFOS-deficient mice, and 356 

demonstrate that there is a specificity of cFOS necessity for pituitary gene expression and neuronal gene 357 

induction.  358 

In the original report with cFOS null animals, Johnson et al. reported infertility due to impaired 359 

gametogenesis (4). Although lethality at two months of age is due to impaired hematopoiesis in adults, at 360 

birth, cFOS null mice are viable without gross developmental deficits, indicating that cFOS is not 361 

required for embryonic development (4). Several reports analyzing cFOS nulls in the central nervous 362 

system identified cell-specific effects, without severe global defects (6-8). Thus, although we cannot 363 

discount possible compensatory mechanisms or non-specific defects that impinge on the reproductive 364 

axis, our results indicate cell-specific and/or sex-dependent functions of cFOS in the HPG.  365 

As predicted from studies using gonadotrope-derived cell lines (13, 16), we show here in vivo that 366 

cFOS is necessary for expression of the FSHβ subunit and the GnRH receptor. Additionally, we 367 

determined that cFOS is necessary in vivo for LHβ and GSU gene expression. Since LHβ and GSU 368 

gene promoters have been analyzed in detail and cFOS/AP1 response elements have not been identified 369 

(34); nor does cFOS overexpression induce their promoters in the cell line (data not shown), the lower 370 

levels of these genes in null mice may stem from a decreased expression of the GnRH receptor. Lower 371 

FSHβ expression may either stem from a direct effect of cFOS on the FSHβ promoter, as has been shown 372 

in cell lines, or due to a decrease in GnRH receptor expression. A decrease in the GnRH receptor was a 373 

likely cause of the lack of LH secretion in null females following GnRH stimulus. Although LHβ gene 374 

expression and LH levels in response to GnRH are lower in nulls, basal circulatory levels of LH are the 375 

same between wild-type and null females. LHβ mRNA has a very long half-life (35), allowing for 376 

translational regulation (36) that may be compensatory in knockouts, resulting in the similar levels of LH 377 

in circulation. On the other hand, cFOS is not necessary for expression of a third pituitary glycoprotein 378 
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hormone, TSHβ. Thus, in the pituitary, cFOS is required for gene expression in the gonadotrope, but not 379 

in thyrotrope. 380 

Corresponding to relatively minor effects on gonadotropin hormone receptor gene expression in 381 

the gonads, sex steroid levels are the same between wild type and null mice, in males and females. LH 382 

receptor was affected in a sex-dependent manner, exhibiting a decrease only in females. Effect only in 383 

females would suggest a role for estrogen, however estrogen levels were the same in wild-type and null 384 

mice. Furthermore, estrogen receptor  knockout animals and aromatase null mice both exhibit an 385 

increase in LH receptor expression, pointing to a negative regulation of the LH receptor by estrogen (37, 386 

38). Thus, cFOS may regulate LH receptor expression directly in a sex-specific manner. In contrast to LH 387 

receptor, cFOS deficiency did not have an effect on the FSH receptor in females, but FSH receptor 388 

expression was increased in null males. This result is surprising, since a cFOS binding site was identified 389 

in the FSH receptor promoter and considered to play a role in FSH induction of its own receptor (39). 390 

Increased expression in null males point to a repressive role of cFOS for FSH receptor gene. 391 

Unexpectedly, sex steroid hormone levels were unchanged, implying that cFOS does not play a critical 392 

role in expression of steroidogenic enzymes. Contrary to steroid hormone levels, epididymides of male 393 

nulls exhibit absence of mature sperm, and ovaries of female nulls lack antral follicles and do not ovulate, 394 

even in response to exogenous gonadotropin treatment. In the testes, cFOS is expressed in spermatogonia, 395 

spermatocytes, and Sertoli cells (24). A role for cFOS in germ cells is not known, while in Sertoli cells 396 

multiple roles have been postulated, including proliferation and tight junction formation (40, 41).  Due to 397 

a lack of known cFOS target genes in germ cells, we were not able to delineate the cause of the block in 398 

spermatogenesis. In the ovaries, cFOS is present in granulosa cells, theca cells and oocytes (23, 42). In 399 

granulosa cells, cFOS is induced by FSH treatment (32). The amount of cFOS decreases with the growth 400 

of the follicle and diminishes after luteinization (23). It was therefore postulated, that cFOS plays a role in 401 

granulosa cells proliferation. Our results, however, do not agree with a role for cFOS in granulosa cell 402 

proliferation, since follicles in null animals had multiple layers of granulosa cells, but indicate a role for 403 

cFOS in antrum formation. Due to necessary intra-follicle signaling between theca, granulosa and oocyte, 404 
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throughout maturation (43), we were not able to explain the cause of anovulation.  Estrogen levels in 405 

females, and testosterone in males, were the same between genotypes, indicating that although cFOS is 406 

necessary for gametogenesis, it is superfluous for steroidogenesis.  407 

There was no effect of cFOS deficiency on GnRH neuron migration, number of GnRH neurons, 408 

or GnRH transcription. The minor decrease observed in null females is unlikely to be physiologically 409 

significant since the number of GnRH neurons can be substantially reduced without impairing fertility 410 

(33).  The observed minor decrease in cFOS null females may be caused by a reduction in upstream 411 

kisspeptin signaling (20, 44), since we detected significant decreases in Kiss1 neuron number and mRNA 412 

levels specifically in females. Although cFOS is activated by numerous neurotransmitters and 413 

neuropeptides, and is used as a marker for neuronal activation including in GnRH neurons, GnRH gene 414 

expression is not dramatically affected in cFOS nulls. This implies that the GnRH gene is not 415 

transcriptionally regulated by any of the signals that activate the neuron through cFOS induction and that 416 

cFOS is not necessary for proper GnRH transcription. Lack of major effect on GnRH expression points 417 

that the alteration in GnRH secretion rather than transcription is a cause of downstream reproductive 418 

consequences. Furthermore, despite a decrease in kisspeptin, absence of an effect on GnRH expression, 419 

indicates that kisspeptin does not regulate GnRH gene at the transcriptional level, since lower kisspeptin, 420 

particularly in females, is not reflected in dramatically lower GnRH expression at the level of GnRH 421 

neuron. Thus, these findings indicate that kisspeptin plays a major role on GnRH secretion or neuronal 422 

activation, but not transcription. Thus, this is a likely cause for the observed deficits in pituitary and 423 

gametogenesis. 424 

The observed decrease in the Kiss1 gene expression in both the AVPV and ARC, primarily in 425 

females, is intriguing. Molecular mechanisms of Kiss1 gene expression in the hypothalamus have not 426 

been elucidated and our results implicate cFOS as an important regulator of Kiss1 transcription in vivo. Li 427 

et al. reported that the human kisspeptin promoter contains two cFOS/AP1 sites at positions -1272 and -428 

418 (45), but did not examine whether these sites are functional, i.e. whether kisspeptin expression would 429 

be diminished if cFOS/AP1 elements were mutated. It is possible that cFOS binds these elements to 430 
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induce Kiss1 gene expression.  By what means these elements respond in a sex-dependent manner or 431 

more strikingly in the AVPV, is not clear. We postulate that cFOS is also involved in estrogen regulation 432 

of Kiss1 expression in AVPV. Explicitly, Kiss1 mRNA levels were decreased only in the AVPV, a brain 433 

site where Kiss1 is strongly upregulated by estradiol as part of estrogen positive feedback during the 434 

preovulatory LH surge (46). cFOS involvement in estrogen signaling has been shown in multiple tissues. 435 

cFOS is recruited to the estrogen response element in promoters that are induced by estrogen treatment 436 

(47). Additionally, estrogen responsive genes that do not contain estrogen responsive elements in their 437 

promoters are activated via estrogen receptor recruitment by cFOS to the AP1 site (48, 49). It is entirely 438 

possible that similar mechanisms, i.e. estrogen receptor recruitment to the AP1 site, are at play on the 439 

kisspeptin promoter in the AVPV. cFOS is very rapidly regulated and involvement of cFOS in the 440 

estrogen signaling and upregulation of AVPV Kiss1 expression may be required for a rapid increase of 441 

kisspeptin synthesis prior to the surge.  442 

In the ARC, female nulls also had lower kisspeptin cell numbers. The ARC may be involved in 443 

estrogen negative feedback, and estrogen treatment lowers Kiss1 expression in this region (46). Thus, if 444 

cFOS is involved in estrogen signaling in ARC by recruiting estrogen receptor to the AP1 site, it is 445 

expected that cFOS nulls would have a higher Kiss1 expression.  More recently, Dubois et al., however, 446 

determined that negative feedback does not require estrogen receptor  (50), which would agree with our 447 

results. Our data indicate that cFOS plays a role in specification of kisspeptin expressing cell in the ARC, 448 

likely due to binding to the putative cFOS/AP1 site in the promoter of the kisspeptin gene. However, to 449 

further delineate whether the effect on kisspeptin observed herein is due to direct cFOS binding to the 450 

Kiss1 promoter, promoter analysis using reporter assays or chromatin immunoprecipitation in isolated 451 

kisspeptin neurons should be performed.  452 

In summary, our analysis of the cFOS deficient mice reveals several important gene targets of this 453 

transcription factor in the hypothalamic-pituitary-gonadal axis, which contribute to impaired 454 

gametogenesis and infertility in these mice. We determined that gonadotropin gene expression and 455 
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kisspeptin neuron numbers were diminished, while GnRH neuron migration and numbers were 456 

unaffected. Interestingly, several targets in gonads, pituitary and hypothalamus, including kisspeptin 457 

neurons, exhibited sex-specific effects, which will be a focus of future studies. 458 

 459 

Conclusions 460 

We determined that cFOS plays a cell-specific role at multiple levels of the hypothalamic-461 

pituitary-gonadal axis in vivo. In the pituitary, cFOS is required for gene expression in the gonadotrope, 462 

but not in thyrotrope. Furthermore, cFOS is necessary for spermatogenesis and ovulation, but not for 463 

early gametogenesis or sex-steroid hormone synthesis. In the brain, cFOS is essential for kisspeptin 464 

expression and kisspeptin neuron number specifically in females, but not for GnRH neuron migration to 465 

the hypothalamus, axon targeting to median eminence, or GnRH gene expression. Striking effect on the 466 

Kiss1 gene expression in AVPV may implicate cFOS in the estrogen positive feedback, which is 467 

necessary for the preovulatory surge.  468 

 469 
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 605 

Figure Legends 606 

 607 

Figure 1. Gonadotrope and thyrotrope gene expression in cFOS null mice. Quantitative PCR of p35 608 

pituitaries shows that gonadotrope gene expression is significantly reduced in cFOS-null mice. Total 609 

RNA was purified from 5 male and 5 female mice per WT or KO group, reverse transcribed, and the level 610 

of hormone expression assayed by real-time PCR. In each sample, the amount of hormone mRNA, 611 

calculated from the standard curve, was compared to the amount of Gapdh, and presented as a ratio. Light 612 

bars, wild type (WT); black bars, cFOS nulls (KO). Data are presented as the group mean ± SEM; 613 

asterisks * indicate significant difference (p<0.05) in the expression in the cFOS-null animals from the 614 

wild type animals. 615 

 616 

Figure 2. Circulatory levels of gonadotropin hormones. A-D, Gonadotropin hormone levels in serum 617 

from the p35 day old animals, 5 per group, presented as the mean ± SEM. E-H, Animals were injected 618 

subcutaneously with 200 ng/kg GnRH and blood was collected 10 minutes post injection. Asterisks * 619 

indicate significant difference, p<0.05, in the levels between cFOS-null animals and the wild-type 620 

animals.  621 

 622 

Figure 3. Histology of cFOS-deficient gonads. Top panels, Hematoxylin and eosin staining of sectioned 623 

ovaries collected from wild-type (WT) and cFOS-null mice (KO) at 6 weeks of age demonstrated a lack 624 

of corpora lutea (CL) and antral follicles (AF), which were present in wild-type littermates. Bottom 625 

panels, Testes from null males at 6 weeks of age revealed reduced Leydig cells (L) and diminished 626 
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spermatogenesis, indicated with a lack of spermatozoa (S1) and lower number of spermatids (S3), but a 627 

presence of spermatogonia (S2).  628 

 629 

Figure 4. Normal sex steroid hormone levels in cFOS null mice. A-D, Total RNA was extracted from 630 

6-week old mice, 5 male and 5 female per WT or KO group, reverse transcribed, and the level of gene 631 

expression was assayed by real-time PCR. In each sample, the amount of mRNA of interest was 632 

compared to the amount of Gapdh, and presented as a ratio. Light bars, wild type (WT); black bars, cFOS 633 

nulls (KO). Results are presented as the group mean ± SEM and asterisks * indicate significant difference 634 

in the expression in the cFOS-null animals from the wild type animals. E, Primary granulosa cell cultures 635 

from 6-week old wild-type (WT) and null female (KO) were treated with 50 ng/ml ovine FSH for 1 hour, 636 

to elicit an increase in intracellular cAMP levels. The experiment was repeated 3 times and results, 637 

presented as the mean ± SEM, indicate no difference between phenotypes. F-G, Serum estradiol and 638 

testosterone levels from 6-week old mice (5 per group) exhibit no difference between phenotypes.  639 

 640 

Figure 5. GnRH is not affected with cFOS deficiency. A, Immunohistochemistry of the preoptic area 641 

with GnRH antibody was used to identify GnRH neurons in the hypothalami of 6-week old wild-type 642 

(WT) and null (KO) mice. B, Median eminence was stained for GnRH. C, In situ hybridization was 643 

performed to analyze GnRH neurons and quantification of neuron number presented as the group mean ± 644 

SEM of 5 animals per group in D, while quantification of the grains per cells to analyze mRNA 645 

expression is presented in E.  Light bars, wild type; black bars, cFOS nulls in D, E. Results of 646 

quantifications were presented as the mean ± SEM and asterisks (*) indicate significant difference 647 

(p<0.05) in null females in GnRH neuron number, as determined by two-factor ANOVA and Tukey-648 

Kramer HSD post hoc test.  649 

 650 

Figure 6. Lower number of Kiss1 neurons in female cFOS null mice determined by in situ 651 

hybridization. A, Representative image of the AVPV area in p42 day old female (F) mice. WT, wild 652 
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type; KO, cFOS-deficient mice. B, Quantification of Kiss1 neuron numbers from 5 animals per group 653 

shows a decrease specifically in cFOS null female mice compared to wild-type females (Light bars, wild 654 

type (WT); black bars, cFOS nulls (KO).  C, Expression levels of Kiss1 mRNA per cell, as determined by 655 

grains per cell, is decreased in both cFOS null males and females. Results of quantifications were 656 

presented as the mean ± SEM. *, indicates a significant decrease in cFOS nulls compared to the wild type 657 

within each sex. D, Representative image of the arcuate nucleus (ARC) in females. E, Kiss1 neuron 658 

number in the ARC is lower in female cFOS null mice. F, No genotype difference in Kiss1 mRNA levels 659 

per cell in the ARC in either male or female mice.  660 

 661 

TABLE 1 662 

Antibody Cat # Dilution Provider 
 

GnRH PA1-121 1:1000 Pierce, Thermo Scientific 

Primers Forward Reverse 

LH-R AATTCACCAGCCTACTGGTTG CCACTGAGTTCATTCTCCTCA 

FSH-R TTTGGAAGAATTGCCTGATGAT CATGACAAACTTGTCTAGACTA 

LHb CTGTCAACGCAACTCTGG ACAGGAGGCAAAGCAGC 

FSHb GCCGTTTCTGCATAAGC CAATCTTACGGTCTCGTATACC 

aGSU ATTCTGGTCATGCTGTCCATGT CAGCCCATACACTGGTAGATGG 

GnRH-R GCCCCTTGCTGTACAAAGC CCGTCTGCTAGGTAGATCATCC 

TSHb AAGAGCTGGGGTTGTTCAAA ACAAGCAAGAGCAAAAAGCAC 

GAPDH TGCACCACCAACTGCTTAG GGATGCAGGGATGATGTTC 

 663 



Highlights 

1. cFOS is necessary for gonadotropin-beta gene expression in vivo  

2. cFOS is superfluous for GnRH neuronal migration, cell number, and mRNA levels 

3. cFOS is unnecessary for granulosa cell proliferation or steroidogenesis  

4. cFOS is essential for antral follicle development and spermiogenesis 

5. cFOS is indispensable for normal kisspeptin neuron number in females in vivo  

 

 

*Highlights (for review)
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6 A,B,C
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Figure 6 D,E,F
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