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INVESTIGATION OF FINITE-VOLUME METHODS TO

CAPTURE SHOCKS AND TURBULENCE SPECTRA IN

COMPRESSIBLE FLOWS

EMMANUEL MOTHEAU AND JOHN WAKEFIELD

Abstract. The aim of the present paper is to provide a comparison be-

tween several finite-volume methods of different numerical accuracy: second-

order Godunov method with PPM interpolation and high-order finite-volume
WENO method. The results show that while on a smooth problem the high-

order method perform better than the second-order one, when the solution
contains a shock all the methods collapse to first-order accuracy. In the context

of the decay of compressible homogeneous isotropic turbulence with shocklets,

the actual overall order of accuracy of the methods reduces to second-order,
despite the use of fifth-order reconstruction schemes at cell interfaces. Most

important, results in terms of turbulent spectra are similar regardless of the

numerical methods employed, except that the PPM method fails to provide an
accurate representation in the high-frequency range of the spectra. It is found

that this specific issue comes from the slope-limiting procedure and a novel

hybrid PPM/WENO method is developed that has the ability to capture the
turbulent spectra with the accuracy of a high-order method, but at the cost of

the second-order Godunov method. Overall, it is shown that virtually the same

physical solution can be obtained much faster by refining a simulation with the
second-order method and carefully chosen numerical procedures, rather than

running a coarse high-order simulation. Our results demonstrate the impor-
tance of evaluating the accuracy of a numerical method in terms of its actual

spectral dissipation and dispersion properties on mixed smooth/shock cases,

rather than by the theoretical formal order of convergence rate.

1. Introduction

The utility of high-order accurate numerical methods has been a subject of dis-
cussion within the Computational Fluid Dynamics (CFD) community for several
decades. As suggested in the review paper of [29], one of the myths in the debate
over low versus high-order numerical methods is the ability the get an accurate
solution at a reduced computational cost. High-order methods are more costly on
a per point basis but can potentially obtain a solution of the desired accuracy on a
coarse mesh. Low-order methods are easier to implement, less costly per point but
require a finer mesh to obtain accuracy equivalent to a high-order method.

The theoretical order of accuracy k of a numerical method describes the order
of the truncation error made when approximating the derivative of a function via a
numerical discretization. In practice, the order of accuracy can be quantified by the
asymptotic rate of convergence of the solution error ε respect to the mesh size h,
namely ε ∝ hk. This type of theoretical asymptotic estimates argues for the utility
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2 CAPTURING SHOCKS AND TURBULENCE SPECTRA IN COMPRESSIBLE FLOWS

of high-order methods ([29] defines high-order for k > 3). However, realizing this
type of convergence depends on the smoothness of the solution.

In most CFD applications, particularly those involving turbulent flow, the so-
lution is adequately resolved well before reaching the asymptotic regime of the
numerical method (see discussion in [1]). This issue is exacerbated for compressible
flow. The solution can include shock waves that require local dissipation to prevent
the appearance of spurious nonphysical oscillations in the solution, reducing the
order of accuracy of the numerical method employed.

A more realistic way to assess a numerical method is to determine the cost needed
to obtain a desired accuracy. In the context of viscous compressible turbulent flow,
we can frame the question in terms of the resolution required to resolve the spectrum
of the turbulent flow. Indeed, it is emphasized that the performance of a numerical
method should not be defined only by the order of the convergence of the error for
smooth solutions. A better measure for the actual accuracy is the ability of the
numerical method to adequately resolve both the inertial range and the dissipation
range of the turbulent energy spectrum.

Unfortunately the literature on the development of numerical methods often
provides tests and comparisons based on canonical cases, which consist on the
propagation of smooth solutions or very specific cases with discontinuities. As
an alternative we propose investigating the performance of numerical schemes for
resolving the spectrum of a complex turbulent flow, especially in a context where
both shocks and a wide range of turbulent scales interact in the flow field. To
the author’s knowledge, only a few papers [4, 14] deal with such a complete study.
However, [4] only investigates incompressible flow, while in [14] the impact of the
mesh resolution is not investigated and simulations are only performed on a coarse
mesh. As it will be shown in the present paper, refinement of the mesh allows
spurious small structures to develop and may lead to inaccurate spectra in the
high-frequency range. We advocate that one of the most important features of a
numerical method should be its robustness to any discretization size.

Many different numerical methods exist to solve partial differential equations,
and each of them present pros and cons depending on the problem investigated.
For example compact finite difference schemes [16] are very efficient to capture ac-
curately turbulent energy spectrum, but their performances quickly degrade when
applied to geometries more complicated than a triple periodic cubic box, and/or
if the solution is not smooth enough. In the context of the simulation of flows in
engineering applications, complex geometries are often involved and multiphysics
phenomena can occur. See for example [22] where simulations of flames are per-
formed in a realistic gas turbine combustion chamber. For such complicated ap-
plications, finite-volume methods are often preferred because they are intrinsically
conservative, robust, and flexible enough to handle both unstructured and struc-
tured meshes. Moreover, finite-volume methods fit naturally within the paradigm
of Adaptive Mesh Refinement (AMR) using the concept of re-fluxing across multi-
grids to achieve conservation properties.

The goal of the present paper is to compare and investigate the performance
of several popular finite-volume methods for the compressible Navier-Stokes equa-
tions. Let’s recall that a finite-volume method seeks to reconstruct data at the
interface between cells, and then to solve a Riemann problem so as to evaluate
the fluxes that cross the cells. As explained above, a flow may contain shocks. In
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typical compressible Navier-Stokes the associated shock profiles are so thin that
they cannot for all practical purposes be represented by the points of a numerical
mesh. Because from one cell to another there is a strong difference in the states
of the flow, a specialized treatment is made to reconstruct fluxes that capture the
discontinuities without introducing spurious oscillations. Several techniques have
been proposed in the literature but a complete review is beyond the scope of the
present paper and can be found in reference textbooks [17, 27].

In the present paper, two techniques are considered. First, in the asymptotic
second-order Godunov method, the classical PPM interpolation procedure [8, 20]
considers several limiters to enforce the monotonicity, for example starting with the
van Leer method [28]. Second, the present paper also investigates the high-order
finite-volume method developed by [25], which is based on the Weighted Essentially
Non-Oscillatory (WENO) schemes. There is an extensive literature on different
variants of WENO schemes and a complete description is beyond the scope of the
present paper, a review can be found in [24]. The basic idea of WENO schemes is to
provide a high-order non-linear reconstruction method, which effectively captures
discontinuities but can also be dissipative on smooth solutions. Note that several
different WENO variants were tested during the present study and it has been found
that, in overall, they provide similar results despite exhibiting some robustness
discrepancies. Thus, for clarity purpose, only one WENO variant is employed in this
paper, but we provide in appendix C more comprehensive results to highlight the
performance and robustness issues that we encountered while testing the different
WENO variants.

Three test cases of increasing complexity are investigated in the present paper.
First, the convection of a smooth vortex is considered, followed by the simulation of
a classical shock-driven Shu-Osher problem. It is emphasized that these test cases
are chosen here because they are commonly employed in the literature to assess
performance of numerical schemes. Here the results show that while on a smooth
problem the high-order method perform better than the second-order one, when the
solution contains a shock all the methods collapse to first-order accuracy. Finally,
the decay of compressible homogeneous isotropic turbulence (HIT) with shocklets
is investigated. Comparisons reveal that a second-order Godunov method with
the classical PPM interpolation provides essentially the same results as a fourth-
order finite-volume WENO scheme but at a significant lower cost. It is emphasized
that virtually the same physical solution can be obtained much faster by refining a
simulation with the second-order method, rather than running a coarse high-order
simulation. However, the results also show that the refinement of the mesh presents
some limit when using the second-order Godunov procedure with the classical PPM
interpolation. Indeed, it is found that when the mesh is fine enough, a non-physical
pile-up of energy appears in the high-frequency range of the turbulent spectra. After
an intensive trial and error process, it has been found that the limiting procedures
employed by the PPM to ensure monotonicity are responsible to this pile-up of
energy in the high-frequency range of the spectra.

One of the most significant innovation of the present paper is to propose to
replace the interpolation and limiting procedures at cell interfaces in the classical
PPM algorithm by a WENO interpolation. It is shown that the novel proposed
hybrid PPM/WENO method has the ability to capture the turbulent spectra with
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the accuracy of a high-order method, but at the cost of the second-order Godunov
method.

This study makes use of CFD software developed in the Center for Compu-
tational Sciences and Engineering (CCSE) group1 at Lawrence Berkeley National
Laboratory in the USA. The codes are implemented in the AMReX framework2

that facilitates the development of a generic post-processing chain as well as the
assessment of computing costs via embedded profiling functionality. Note that
while the AMReX library supports AMR applications, only single level grids are
employed in the present paper. Two codes are being compared:

• PeleC, which is based on a second-order Godunov procedure. Interpo-
lation to evaluate data at cell faces is performed either with the orignial
unsplit PPM [20] method, or with the hybrid PPM/WENO developed in
the present paper. The diffusion operators are evaluated with a second-
order finite-volume discretization.
• RNS, which is based on a fourth-order finite-volume WENO method [25]

in space. Note that RNS was originally built for the development of the
Adaptive Multi-Level Spectral Deferred Correction (AMLSDC), which is
a fourth-order time integration method [9], but in the present paper the
classical Runge-Kutta algorithm is employed instead. Note that the dif-
fusion terms are discretized with a fourth-order conservative finite-volume
technique. First, the cell-averaged conserved variables are used to compute
fourth-order approximations to point values at cell centers using the proce-
dure outlined in McCorquodale and Colella [19] and then explicit formulae
are used to compute derivatives needed to compute the diffusive fluxes at
Gauss points on the cell-faces directly.

The remainder of the present paper is organized as follows. In section 2, the set of
equations solved by the codes are presented. In section 3 the RNS code is presented,
as well as a short description of the high-order finite-volume WENO scheme that is
employed for the spatial discretization. Next, in section 4 the PeleC code together
with the original PPM algorithm are presented, followed in section 4.3 by the novel
hybrid PPM/WENO method developed in the present paper that captures the
turbulent spectra with the accuracy of a high-order method at the cost of a second-
order Godunov method. Results are then presented in section 5. The convection
of a smooth vortex and the Shu-Osher problem are investigated in section 5.1 and
section 5.2, respectively, while the decay of compressible homogeneous isotropic
turbulence with shocklets is investigated in section 5.3.

2. Governing equations

The software employed in the present study was initially developed for the sim-
ulation of combustion problems and the codes solve the multicomponent reacting
Navier-Stokes equations. However, only non-reacting problems with no specific
mixture are investigated in the present study. Consequently, the set of equations
solved are significantly simplified and are given by

1https://ccse.lbl.gov/index.html
2https://amrex-codes.github.io/amrex/

https://ccse.lbl.gov/index.html
https://amrex-codes.github.io/amrex/
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∂ρ

∂t
+∇ · (ρu) = 0,(1)

∂ρu

∂t
+∇ · (ρu⊗ u) +∇p = ∇ · τ ,(2)

∂ρE

∂t
+∇ · [(ρE + p)u] = ∇ · (λ∇T ) +∇ · (τ · u) ,(3)

where ρ is the density, u is the velocity, p is the pressure, E = e + u · u/2 is the
total energy, T is the temperature and λ is the thermal conductivity. The viscous
stress tensor is given by

(4) τ = η(∇u+ (∇u)T ) + (ς − 2

3
η)(∇ · u)I,

where η and ς are the shear and bulk viscosities.
The system is closed by an equation of state (EOS) that specifies p as a function

of ρ and T . An ideal gas mixture for the EOS is assumed:

(5) p = ρTR,

where R is the specific gas constant. Here we set Cp and Cv the heat capacity at
constant pressure and volume, respectively, to follow an ideal gas law proportional
to the ratio of the specific heats γ so that equation (5) is equivalent to the following
relation:

(6) e = p/ (γ − 1) ρ

where e is the specific internal energy and γ is set to γ = 1.4.
Note that for the ease of simplicity, the system presented at equations (1) to (3)

is recast in the form of

(7)
∂U

∂t
+∇ · F = S,

where U is the vector of conservative variables, while F represents the convective
flux vector and S contains the diffusive terms, respectively.

3. RNS: a high-order WENO-based finite-volume solver

The RNS code implements high-order temporal and spatial AMR integration
methods for combustion applications. The major innovative feature of this code is
the development of the Adaptive Multi-Level Spectral Deferred Correction (AMLSDC)
method, which is fourth-order in time [9]. The Runge-Kutta method for AMR appli-
cations as presented in [19] is also implemented. In the present paper, second-order
explicit midpoint Runge-Kutta method is used. Note that although not shown in
the present paper, the results were compared to the fourth-order Runge-Kutta and
AMLSDC approaches, and results were virtually the same without impacting the
spatial solutions, which is attributed to the fact that the time-steps involved are
small, and the spatial errors introduced at shocks dominate the solution.

The diffusion terms are discretized using standard finite volume techniques.
First, the cell-averaged conserved variables are used to compute fourth-order ap-
proximations to point values at cell centers using the procedure outlined in Mc-
Corquodale and Colella [19]. These point values of conserved quantities are then
used to compute primitive variables, and explicit formulae are then used to compute
derivatives needed to evaluate the diffusive fluxes at Gauss points on the cell-faces
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directly. Similarly, diffusion coefficients are computed at cell centers using point
values and are then interpolated to Gauss points.

The spatial discretization of the advection terms in the algorithm uses the con-
servative finite-volume WENO reconstruction presented in [25]. The following ap-
proach is repeated for each stage of the Runge-Kutta integration scheme:

(1) For each cell, the conservative equation (7) is rewritten in terms of primitive
variables.

(2) The primitive variables are reconstructed at the cell interfaces with a fifth-
order WENO scheme in order to provide a left and right state for each face.
For 2D and 3D cases, the variables are first reconstructed to Gauss quad-
rature nodes to evaluate their average value in the direction normal to the
faces. This procedure is obviously computationally expensive, but as shown
by [30], a midpoint rule for integrating fluxes is not sufficiently accurate to
obtain fourth-order convergence. Note that although the solution is recon-
structed at cell interfaces with fifth-order WENO procedures, the method
is formally fourth-order accurate because a fourth-order quadrature rule is
employed to integrate the flux over faces.

(3) The HLLC algorithm [26] is employed to reconstruct the fluxes through the
faces.

In the present study, several different WENO schemes were investigated and
results show that the so-called WENO-Z variant [5] performs the best. Some ele-
ments of the comparisons results are presented in appendix C. As the conservative
finite-volume WENO method presented by [25] is based on the so-called WENO-
JS scheme generalized by Jiang and Shu [13], we first review the basic principles,
followed by a short description of the WENO-Z variant.

3.1. The WENO-JS method. For a given cell i, the principle of a WENO
method is to provide a high-order approximation of the variable q interpolated
on the left and the right side of a face, denoted q̂L

i+ 1
2

and q̂R
i− 1

2

. In the remainder

of this section, the procedures to evaluate q̂L
i+ 1

2

are provided. q̂R
i− 1

2

is evaluated

analogously.
In the WENO-JS method proposed by [13], a fifth-order polynomial approxi-

mation of q̂L
i+ 1

2

is constructed through a convex combination of the values q̂k
i+ 1

2

interpolated with a third degree polynomial on a three point stencil k, such that:

(8) q̂Li+ 1
2

=

2∑
k=0

ωkq̂
k
i+ 1

2

with

q̂0
i+ 1

2
=

1

6
(2qi−2 − 7qi−1 + 11qi) ,(9)

q̂1
i+ 1

2
=

1

6
(−qi−1 + 5qi + 2qi+1) ,(10)

q̂2
i+ 1

2
=

1

6
(2qi + 5qi+1 − qi+2) .(11)

Here, ωk are non-linear weights balancing the contribution of each stencil, and the
challenge is to find the best values to capture shocks the most accurately while
preserving the resolution of the spectrum of a solution.
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The weights ωk are defined as

(12) ωk =
αk∑2
l=0 αl

, αk =
dk

(βk + ε)
p ,

where dk are the so-called optimal weights because they reconstruct the fifth-order
upstream central scheme for the 5-points stencil, βk are the smoothness indicators,
αk are referred as the unnormalized weights and ε is a parameter set to avoid a
division by zero. The parameter p controls the adaption rate. According to [3],
a large value of p leads to unnecessarily high dissipation in smooth regions of the
flow. In the present study, the parameter is set to p = 1 for all the test cases.
Moreover, as suggested by [3], ε is set to ε = 10−40.

The smoothness indicators βk are given by

β0 =
13

12
(qi−2 − 2qi−1 + qi)

2
+

1

4
(qi−2 − 4qi−1 + 3qi)

2
,(13)

β1 =
13

12
(qi−1 − 2qi + qi+1)

2
+

1

4
(qi−1 − qi+1)

2
,(14)

β2 =
13

12
(qi − 2qi+1 + qi+2)

2
+

1

4
(3qi − 4qi+1 + qi+2)

2
.(15)

One of the feature of the conservative finite-volume WENO method is that the
optimal weights as well as the formulae for the reconstructed values differ if the in-
terpolation is performed in the normal direction at faces or at the Gauss integration
points ξ = ξi ±∆ξ/(2

√
3) (see [25]).

• For the normal direction through a face, the optimal weights are:

(16) d0 =
1

10
, d1 =

6

10
, d2 =

3

10
,

and q̂L
i+ 1

2

is given by:

(17) q̂Li+ 1
2

=
1

6
ω0 (2qi−2 − 7qi−1 + 11qi)

+
1

6
ω1 (−qi−1 + 5qi + 2qi+1) +

1

6
ω2 (2qi + 5qi+1 − qi+2) .

• For the first Gaussian integration point ξ = ξi + ∆ξ/(2
√

3), the optimal
weights are:

(18) d0 =
210−

√
3

1080
, d1 =

11

18
, d2 =

210 +
√

3

1080
,

and q
(
ξi + ∆ξ

2
√

3

)
is given by:

(19) q

(
ξi +

∆ξ

2
√

3

)
= ω0

[
qi − (−3qi + 4qi−1 − qi−2)

√
3

12

]

+ ω1

[
qi − (qi−1 − qi+1)

√
3

12

]
+ ω2

[
qi − (3qi − 4qi+1 + qi+2)

√
3

12

]
.

Recall here that a simple mirror-symmetric change to the coefficients and the for-

mulae will provide q̂R
i− 1

2

and q
(
ξi − ∆ξ

2
√

3

)
.
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3.2. The WENO-Z method. A well-known issue with the original WENO-JS
method is that the smoothness indicators βk employed to compute the weights
ωk fail to recover the maximum order of the scheme at critical points when the
derivatives of flux function vanish. Borges et al. [5] propose a different approach to
overcome the issues of the WENO-JS method by acting directly on the smoothness
indicator βk with a very simple formulation. The so-called WENO-Z method is
given by:

(20) ω
(z)
k =

α
(z)
k∑2

i=0 α
(z)
i

, with α
(z)
k = dk

(
1 +

τ5
βk + ε

)p
,

where

(21) τ5 = |β0 − β2|.
Similarly to the WENO-JS method, the parameter p controls the detection of the
smoothness of the solution. In the present study, the parameter is set to p = 1 to
reduce as much as possible the dissipation of the numerical scheme. Note that the
WENO-Z method simply provides a new way to compute the non-linear weights ωk
and can be directly implemented in the conservative finite-volume WENO method,
regardless if the interpolation is performed in the normal direction at faces or at
the Gauss integration points.

4. PeleC: the second-order Godunov-based finite-volume solver

The PeleC code is a second-order AMR finite-volume solver for reacting and
non-reacting fluid simulations with complex geometry and support for Lagrangian
spray particles. The simulations performed in the present paper only uses a fraction
of the capability of the software, namely the Godunov-based integration procedure
on a single level mesh grid. Note also that PeleC is part of the Pele Suite of codes,
which are publicly available and may be freely downloaded3, and that all the test
cases investigated in the present paper are available from the PeleC distribution
and can be reproduced.

The solution is advanced from time n to time n + 1 with the following second-
order Godunov method:

U∗ = Un −∆t∇ · Fn+1/2 + ∆t Sn,(22)

Un+1 = U∗ +
1

2
∆t (S∗ − Sn) ,(23)

where ∆t = tn+1− tn is the time step. The second step at equation (23) is a correc-
tion of the solution to ensure second-order accuracy by effectively time-centering
the diffusion source terms. The conserved state vector U is stored at cell centers
and the flux vectors are computed on cell edges.

The convective flux vector F that appears in equation (22) is constructed from
time-centered edge states computed with a conservative, shock-capturing, unsplit
Godunov method, which makes use of the Piecewise Parabolic Method (PPM) [8],
characteristic tracing and full corner coupling [2, 20]. As the present paper proposes
a modification of the PPM method, for ease of exposition the whole algorithm will
be detailed in 1D for the Euler equations. It is emphasized that the algorithm can
be extended to multi-dimensional problems and multi-component flows. Moreover,

3https://amrex-combustion.github.io/

https://amrex-combustion.github.io/
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since the publication of the original paper [8] presenting the PPM method, several
modifications have been proposed in the literature (see [20, 7, 6]). Consequently,
the algorithm implemented in the code PeleC incorporates some of the variants,
but it is emphasized that these changes only slightly differ from the original PPM
method. Many variants have been tested through this study, and while not reported
in the present paper, none change fundamentally the results.

4.1. System of primitive variables. The conservative equation (7) is rewritten
in terms of primitive variables, such that:

(24)
∂Q

∂t
+ A

∂Q

∂x
= SQ.

Here Q is the primitive state vector, A = ∂F/∂Q and SQ are the viscous source
terms reformulated in terms of the primitive variables.

In one dimension, this comes:

(25)


ρ
u
p
ρe


t

+


u ρ 0 0
0 u 1

ρ 0

0 ρc2 u 0
0 ρe+ p 0 u




ρ
u
p
ρe


x

= SQ

Note that here, the system of primitive variables has been extended to include
an additional equation for the internal energy, denoted e. This avoids several calls
to the equation of state, especially in the Riemann solver step.

The eigenvalues of the matrix Ax are given by:

(26) Λ (Ax) = {u− c, u, u, u+ c}.

The right column eigenvectors are:

(27) rx =


1 1 0 1
− c
ρ 0 0 c

ρ

c2 0 0 c2

h 0 1 h

 .

The left row eigenvectors, normalized so that lx · rx = I are:

(28) lx =


0 − ρ

2c
1

2c2 0
1 0 − 1

c2 0
0 0 − h

c2 0
0 ρ

2c
1

2c2 0

 .

Note that here, c and h are the sound speed and the enthalpy, respectively.

4.2. Edge state prediction. As discussed at the beginning of section 4, the fluxes
are reconstructed from time-centered edge state values. Thus, the primitive vari-
ables are first interpolated in space with the PPM method, then a characteristic
tracing operation is performed to extrapolate in time their values at n+ 1/2.



10 CAPTURING SHOCKS AND TURBULENCE SPECTRA IN COMPRESSIBLE FLOWS

4.2.1. Interpolation and slope limiting. Basically the goal of the algorithm is to
compute a left and a right state of the primitive variables at each edge in order to
provide inputs for the Riemann problem to solve.

First, the average cross-cell difference is computed for each primitive variable
with a quadratic interpolation as follows:

(29) δqi =
1

2
(qi+1 − qi−1) .

In order to enforce monotonicity, δqi is limited with the van Leer [28] method:

(30) δq∗i = min (|δqi|, 2|qi+1 − qi|, 2|qi − qi−1|) sgn (δqi) ,

and the interpolation of the primitive values to the cell face qi+ 1
2

is estimated with:

(31) qi+ 1
2

= qi +
1

2
(qi+1 − qi)−

1

6

(
δq∗i+1 − δq∗i

)
.

In order to enforce that qi+ 1
2

lies between the adjacent cell averages, the following

constraint is imposed:

(32) min (qi, qi+1) 6 qi+ 1
2
6 max (qi, qi+1) .

The next step is to set the values of qR,i− 1
2

and qL,i+ 1
2
, which are the right and

left state at the edges bounding a computational cell. Here, a quartic limiter is
employed in order to enforce that the interpolated parabolic profile is monotone.
The procedure proposed by [20] is adopted, which slightly differs from the original
one proposed in [8]. In [20], this specific procedure is followed by the imposition of
another limiter based on a flattening parameter to prevent artificial extrema in the
reconstructed values. In the present paper, the order of imposition of the different
limiting procedures is reversed.

First, the edge state values are defined as:

qL,i+ 1
2

= qi+ 1
2
,(33)

qR,i− 1
2

= qi− 1
2
.(34)

Then the flattening limiter is imposed as follows:

qL,i+ 1
2
← χiqL,i+ 1

2
+ (1 + χi) qi,(35)

qR,i− 1
2
← χiqR,i− 1

2
+ (1 + χi) qi,(36)

where χi is a flattening coefficient computed from the local pressure, and its eval-
uation is presented in appendix A.

Finally, the monotonization is performed with the following procedure:

qL,i+ 1
2

= qR,i− 1
2

= qi if
(
qL,i+ 1

2
− qi

)(
qi − qR,i− 1

2

)
> 0,(37)

qL,i+ 1
2

= 3qi − 2qR,i− 1
2

if |qL,i+ 1
2
− qi| > 2|qR,i− 1

2
− qi|,(38)

qR,i− 1
2

= 3qi − 2qL,i+ 1
2

if |qR,i− 1
2
− qi| > 2|qL,i+ 1

2
− qi|.(39)

4.2.2. Piecewise Parabolic Reconstruction. Once the limited values qR,i− 1
2

and qL,i+ 1
2

are known, the limited piecewise parabolic reconstruction in each cell is done by
computing the average value swept out by parabola profile across a face, assuming



CAPTURING SHOCKS AND TURBULENCE SPECTRA IN COMPRESSIBLE FLOWS 11

that it moves at the speed of a characteristic wave λk. The average is defined by
the following integrals:

I(k)
+ (qi) =

1

σk∆x

∫ (i+1/2)∆x

((i+1/2)−σk)∆x

qIi (x) dx,(40)

I(k)
− (qi) =

1

σk∆x

∫ ((i−1/2)+σk)∆x

(i−1/2)∆x

qIi (x) dx,(41)

with σk = |λk|∆t/∆x, where λk = {u − c, u, u, u + c}, while ∆t and ∆x are the
discretization step in time and space, respectively, with the assumption that ∆x is
constant in the computational domain.

The parabolic profile is defined by

(42) qIi (x) = qR,i− 1
2

+ ξ (x)
[
qL,i+ 1

2
− qR,i− 1

2
+ qi,6 (1− ξ (x))

]
with

(43) qi,6 = 6qi − 3
(
qR,i− 1

2
+ qL,i+ 1

2

)
.

and

(44) ξ (x) =
x− xi− 1

2

∆x
, xi− 1

2
6 x 6 xi+ 1

2

Substituting equation (43) in equations (40) and (41) leads to the following
explicit formulations:

I(k)
+ (qi) = qL,i+ 1

2
− σk

2

[
qL,i+ 1

2
− qL,i+ 1

2
−
(

1− 2

3
σk

)
qi,6

]
,(45)

I(k)
− (qi) = qR,i− 1

2
+
σk
2

[
qL,i+ 1

2
− qL,i+ 1

2
+

(
1− 2

3
σk

)
qi,6

]
.(46)

4.2.3. Characteristic tracing and flux reconstruction. The next step is to extrapo-

late in time the integrals I(k)
± to get the left and right edge states at time n+ 1/2.

This procedure is complex, especially in multi-dimensions where transverse terms
are taken into account; the complete detailed procedure can be found in [20]. In
1D, the left and right edge states are computed as follows:

q
n+ 1

2

L,i+ 1
2

= I(k=u+c)
+ −

∑
k:λk>0

βklk ·
[
I(k=u+c)

+ − I(k)
+

]
rk +

∆t

2
Sni ,(47)

q
n+ 1

2

R,i− 1
2

= I(k=u−c)
− −

∑
k:λk60

βklk ·
[
I(k=u−c)
− − I(k)

−

]
rk +

∆t

2
Sni .(48)

(49)

where

(50) βk =

{
1
2 , if λk = 0,

1, otherwise,

and lk and rk are the left row and right column of the matrices defined at equa-
tions (27) and (28) for each eigenvalue k. Note that here, Sni represents any source
terms at time n to include in the characteristic tracing operation.

Finally, the time-centered fluxes are computed using an approximate Riemann
problem solver. Here the HLLC algorithm [26] is employed. At the end of this



12 CAPTURING SHOCKS AND TURBULENCE SPECTRA IN COMPRESSIBLE FLOWS

procedure the primitive variables are centered in time at n + 1/2, and in space at
the edges of a cell. This is the so-called Godunov state and the convective fluxes
can be computed to advance equation (22).

4.3. The hybrid PPM/WENO method. As it will be shown in the results
section 5, the PPM method presented above gives good results for a small com-
putational time compared to the fourth-order finite-volume WENO strategy that
is costly. However, for fine meshes, the PPM method exhibits a significant pile-
up of energy in the high-frequency range of the spectra, which is undesirable and
limits mesh refinement. It has been found that the pile-up of energy at the high-
frequencies was sensitive to the slope-limiting procedure presented at section 4.2.1.
As many variants can be found in the literature, an attempt to tweak this procedure
was tried, for example by playing with the numerical parameters (see appendix A)
or by removing the slope limiting operation completely. Also, the procedure given
in [7] was tested. For all cases, the results were very similar and the impact on the
pile-up of energy was modest and not satisfying.

After an intensive trial and error process, it became apparent that the interpola-
tion and slope-limiting procedure described in section 4.2.1 was not robust, leading
to poor results in the high-frequency range. Here we consider replacing this whole
procedure by a WENO interpolation.

Basically, the purpose of the hybrid PPM/WENO method is only to replace the
procedure in section 4.2.1, and qL

i+ 1
2

and qR
i− 1

2

are instead given by equation (17).

Then the PPM algorithm continues exactly the same as in section 4.2.2.
As shown in appendix C, as the WENO-Z [5] appears to be the most robust and

gives satisfying results for a small computational cost compared to other WENO
methods, only the WENO-Z method is employed below, but it is emphasized that
any other WENO reconstruction methods can be employed. For the ease of ex-
position, the hybrid method will be called PPM/WENO in the remainder of the
paper, but one has to keep in mind that the WENO-Z method has been used for
the reconstruction at faces.

5. Results

The numerical methods presented in the previous section are tested and com-
pared on three very different test cases. The first one is the convection of a smooth
compressible vortex. This test case is chosen because it highlights the theoretical
order of accuracy of the numerical methods. The second test case is the Shu-Osher
problem, which represents the extreme opposite of the smooth vortex test case.
The Shu-Osher problem is very difficult to solve numerically, because a shock wave
is propagating in an oscillating entropy field, and the challenge is to capture the
shock while resolving the phase and amplitude of the fluctuating entropy. As will
be shown, all the methods perform correctly, but for all of them the rate of con-
vergence collapses to first-order. The last test case is the decay of compressible
homogeneous isotropic turbulence in the presence of eddy shocklets. This test case
can be viewed as a combination of the two previous test case, because it contains
both shocks and discontinuities, as well as smooth turbulence structures that lie in
a large-bandwidth turbulent spectrum. More specifically, this test case is represen-
tative of flows that are encountered in practical CFD applications (see [22] for an
example). Note that in the remainder of this section, the initial solution comes from
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either an analytical solution or a synthetic manufactured solution. It is important
to note that there is an averaging process over the volume to provide a consistent
initial solution. For the fourth-order method, the procedure is slightly different to
preserve a high-order accuracy: the solution is first expressed at the Gauss points,
and the integration over the volume is performed via the quadrature rule.

5.1. 2D convection of a smooth compressible vortex. The following test
case consists of the convection of a 2D compressible vortex. This test case has been
used frequently in the literature to assess the performance of outflow characteristic
boundary conditions [21, 23]. The interest for this test case is that the solution
is smooth and presents weak compressibility effects. Here, the vortex is convected
in a periodic domain so as to accumulate numerical errors from the discretization
schemes. For each numerical method, the same test case is simulated with increasing
mesh resolution. The time-step is computed based on the mesh resolution via a
constraint on the CFL number, set to 0.7. At the end of a simulation, convergence
is measured using the L1-norm of the difference of the x-velocity between the final
computed solution and the analytical solution:

(51) εu = L1
u (Ssol − Sinit) =

∑N
1 |usol − uinit|

N
,

where subscripts sol and ref identify the numerical solution and the initial solution,
and N is the number of computational cells.

The configuration is a single vortex superimposed on a uniform flow field along
the x-direction. The stream function Ψ of the initial vortex is given by

(52) Ψ = Γ exp

(
−r2

2R2
v

)
,

where r =

√
(x− xv)2

+ (y − yv)2
is the radial distance from the center of the

vortex located at [xv, yv], while Γ and Rv are the vortex strength and radius,
respectively. The velocity field is then defined as

(53) u =
∂Ψ

∂y
+ u0, v = −∂Ψ

∂x
.

The initial pressure field is expressed as

(54) p (r) = pref exp

(
−γ

2

(
Γ

cRv

)2

exp

(
− r

2

R2
v

))
,

and the corresponding density field is given by

(55) ρ (r) =
p (r)

RTref
,

where Tref is assumed constant. Note that here, γ is the ratio of specific heats and
is set to γ = 1.4.

The computational domain is a square of dimension L = 0.01 m. The reference
temperature Tref and pressure pref are set to 300 K and 101320 Pa, respectively.
The vortex is located at [xv, yv] = [0, 0], and its parameters are set to Γ = 0.11 m2/s
and Rv = 0.1L. The initial flow velocity is u0 = 100 m/s. In the present test case,
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only the Euler equations are solved. Thus, the transport coefficients η, ς and λ in
equations (1) to (3) are set to zero.

The simulations are performed over a physical time of 5 ms, corresponding to
5 flow through times (FTT), in order to accumulate enough numerical errors from
the spatial discretization schemes.

Results are shown in figure 1. The solid and dotted grey lines represent second-
and fourth-order slopes, respectively. As expected, because the solution is smooth,
all the numerical methods exhibit a convergence rate that follows their theoretical
order of accuracy. The PeleC code (see section 4) using a second-order Godunov
method with either the PPM or the hybrid PPM/WENO method for interpola-
tion presents an almost constant second-order convergence rate. The finite-volume
WENO method of the RNS code exhibits fourth-order convergence. From the
results depicted in figure 1, it is clear that a high-order method is superior to a
second-order numerical method, because for the same mesh resolution the numeri-
cal error of the solutions is significantly lower. However, this superiority is possible
because the solution is smooth, and as it will be shown below, this observation no
longer holds when the solution features shocks and high gradients in the flow.

4th	order	WENO-Z
PPM	with	slope	limiting
Hybrid	PPM/WENO

-2

-4

ε u

10−4

10−3

0.01

0.1

Nx
16 32 64 128

Figure 1. Convection of a vortex, evolution of the L1-norm of
the error of the x−velocity for different mesh size Nx.

5.2. Shock-driven test case: the Shu-Osher problem. The so-called Shu-
Osher test case simulates the one-dimensional propagation of a normal shock wave
interacting with a fluctuating entropy wave, generating a flow field containing both
small scale structures as well as discontinuities. The initial conditions are given by:

(56) (ρ, u, p) =

{
(3.857143, 2.629369, 10.3333) , if x 6 1,

(1 + 0.2 sin (5x) , 0, 1) , otherwise.
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The length of the computational domain is x ∈ [0, 10] and the solution is ad-
vanced in time to t = 1.2. For all numerical methods investigated, the mesh is
progressively refined from Nx = 256 to Nx = 2048. The convergence is measured
using the L1-norm (see equation (51)) of the difference in density between the final
computed solution and a reference solution defined to be the solution computed
with the second-order Godunov method with PPM interpolation and with a very
fine mesh Nx = 32768. In all simulations the CFL number is set to 0.5.

The density field at t = 1.2 computed with Nx = 256, 512, 1024 and 2048 is
shown in figures 2 to 5, respectively. In these figures, the blue square, red circle
and purple cross represents the fourth-order finite-volume WENO method with the
WENO-Z variant, the original PPM method with slope limiting and the hybrid
PPM/WENO method developed in the present paper, respectively (see legend in
figure 2b). Note that the panels (a) and (b) in figure 2, figure 3 and figure 4 present
the full domain and a zoom in the domain, respectively, while figure 5 is only a
zoom in the domain. Note also that there is no relation between the symbols and
the number of grid points. Several symbols have been removed from the figures for
clarity purpose.

For a coarse mesh (Nx = 256), a close look at figure 2b reveals that the fourth-
order finite-volume WENO method is able to capture the correct phase of the
waves, despite a damping of the amplitude. The second-order Godunov method
with the original PPM interpolation and the slope limiting procedure does not
accurately capture the correct profile of density. However, the hybrid PPM/WENO
method presents a profile very similar to the one captured by the fourth-order
finite-volume method. It turns out that changing the slope-limiting procedure in
the PPM method to the WENO interpolation makes the second-order Godunov
method recover the correct profile of density. This can be explained by the fact
that the shock is better resolved by the WENO interpolation and that the slope
limiting procedure introduces spurious wiggles in the density waves.

As seen in figure 3b, a mesh refinement by a factor 2 makes all the methods
to accurately capture the phase of the density waves. However the original PPM
method with slope-limiting (red circle symbols) shows a damping of the amplitude,
while the hybrid PPM/WENO method solution correctly captures both the phase
and the amplitude, and is very close to the solution computed with the fourth-order
finite-volume WENO method.

As the mesh is further refined, all the methods tend to collapse to the same
solution. However, as can be seen in figure 5 for a fine mesh (Nx = 2048), the
fourth-order finite-volume WENO method shows a slight damping of the ampli-
tude of the density wave, whereas the second-order Godunov method with PPM
interpolation and slope-limiting exhibits some smooth high-frequency oscillations.
The best solution is the one computed with the second-order Godunov method and
the hybrid PPM/WENO method. The shape and amplitude of the density are
closer to the reference solution.

Overall, it turns out that for this specific test case, the use of high-order methods
is questionable. This is highlighted by the study of the convergence rate of the L1-
norm of the error on the density profile. The error ερ is reported in figure 6 and
the convergence rate computed with a best-fitting curve method is reported in
table 1. It is obvious that all the numerical methods, either theoretically second-
or fourth-order accurate, collapse to less than first-order accuracy because of the
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presence of the discontinuity. Overall, the present study suggests that reaching a
correct approximation of a flow solution can be achieved by a second-order method
and sufficient mesh resolution. In the following section, a more realistic three-
dimensional compressible turbulent flow is simulated to investigate the capabilities
of the second- and fourth-order numerical methods, as well as their effective cost
in terms of mesh resolution, when both shocks and small turbulence structures
interact in the same domain.
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Figure 2. Shu-Osher test case: profile of density for Nx = 256.
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Figure 3. Shu-Osher test case: profile of density for Nx = 512.

5.3. Three-dimensional isotropic compressible turbulence decay. The present
test case consists on the simulation of the decay of a compressible isotropic tur-
bulent field with the presence of eddy shocklets. Originally a physical study of
turbulence in the work of Lee et al. [15], these simulations have become a frame-
work to study the properties of numerical schemes to capture turbulence spectra
and the decay of physical quantities. Here, the numerical setup described in [14] is
reproduced.
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Figure 4. Shu-Osher test case: profile of density for Nx = 1024.
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Figure 5. Shu-Osher test case: profile of density for Nx = 2048.

Table 1. Shu-Osher test case: convergence rate of the L1-norm
of the error on the density.

Method O (ερ)

PPM with slope-limiting 0.92
4th-order WENO-Z 0.89

Hybrid PPM/WENO 0.96
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Figure 6. Shu-Osher test case: L1-norm of the error on the density.

The initial condition is built by generating a solenoidal velocity field u0 that
satisfies:

(57) E (k) ∼ k4 exp
(
−2 (k/k0)

2
)
,

3u2
rms,0

2
=
< u0 · u0 >

2
=

∫ ∞
0

E (k) dk

Here, k0 is the most energetic wavenumber and is set to k0 = 4. The simulation is
controlled by two non-dimensional parameters: the turbulent Mach number

(58) Mt,0 =

√
< u0 · u0 >

c0

where c0 is the sound speed in the initial solution, and the Taylor-scale Reynolds
number defined as

(59) Reψ,0 =
ρ0ψ0urms,0

η0

where

(60) urms,0 =

√
< u0 · u0 >

3
, ψ0 =

2

k0
.

In the present simulation, Mt,0 = 0.6 and Reλ,0 = 100. These values are set
such that weak shock waves can develop spontaneously from the turbulent motions
[14], and allow numerical convergence for relatively coarse mesh grids to keep the
computational cost reasonable. Once Mt,0 and Reψ,0 are set, urms,0 can be deduced
from equation (58) with the known sound speed, and the viscosity η0 can be deduced
from equation (59). Unlike the simulations presented in [14], in the present study
the viscosity is held constant throughout the simulation. Moreover, a constant
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thermal conductivity is set according to

(61) λ0 =
η0Cp
Pr

where Cp is the specific heat capacity, set to Cp = 1.173 kJ/kg.K and the Prandtl
number Pr is set to Pr = 0.71. Moreover, the initial temperature and pressure in
the flow are set to T0 = 1200 K and p0 = 1 atm.

All the simulations are performed over a non-dimensional time set to t/τ = 4
where τ = ψ0/urms,0. Several mesh resolutions are investigated: Nx = 64, Nx =
128, Nx = 256 and Nx = 512, and the CFL number is kept constant at 0.5. Note
that the practical procedure to generate the velocity fields u0 is detailed in [14]. It
is also important to note that the initial turbulent velocity fields are first generated
on a grid of Nx = 512 and then integrated over each cell in the mesh. Moreover,
the initial solution is exactly the same for all simulations, regardless of the codes,
numerical methods or mesh grids employed.

In order to assess the performance of the second-order Godunov methods and the
fourth-order finite volume WENO method, a reference solution is generated with
the very high-order code SMC [10] that employs eighth-order accurate centered
finite-difference schemes for the spatial discretization, and a fourth-order Runge-
Kutta algorithm for the time advancement. A convergence study for the reference
solution is presented in appendix B. This reference solution will be depicted with
a black solid line in the remainder of the paper.

Figures 7a to 7d present the temporal evolution of the kinetic energy, the enstro-
phy, the variance of temperature and the dilatation from t = 0 to t/τ = 4. It can
be seen that strong compressibility effects are generated quickly after the beginning
of the simulation, suggesting the generation of eddy shocklets in the domain until
t/τ ≈ 0.5. After t/τ ≈ 1, compressible shocks are no longer generated and they start
to decay in a monotone way. Figures 8a to 8d present the spectra taken at t/τ = 4
for the kinetic energy, the vorticity, the dilatation and the density. In these fig-
ures, the circle, cross and square symbols represent the second-order Godunov with
PPM interpolation and slope-limiting, the second-order Godunov method with the
hybrid PPM/WENO procedure, and the fourth-order finite-volume WENO strat-
egy, respectively. The red, blue, purple and orange colors represent simulations
performed with Nx = 64, Nx = 128, Nx = 256 and Nx = 512, respectively. It is
emphasized that these figures contain a significant number of curves. For clarity,
the legend is recalled in figure 9 and a zoom on the high-end of the spectra for
the kinetic energy is shown in figure 10 for each mesh resolution. Note that the
behavior of the numerical methods highlighted in figure 10 is virtually the same for
the spectra of other physical quantities.

From the temporal evolution of physical quantities presented in figure 7, it is clear
that the second-order Godunov method, with either the PPM interpolation method
with slope limiting or the hybrid PPM/WENO method, gives virtually the same
results, with the exception of the very coarse mesh where some slight differences
exist. In any case, for the same mesh resolution, the fourth-order finite-volume
WENO method provides a better solution.

However, the spectra depicted in figure 8 do not follow the same behavior as
for the temporal series. Indeed, given a mesh resolution all the numerical methods
give virtually the same spectra, but as the refinement of the mesh allows small tur-
bulent structures to be resolved, it turns out that the different numerical methods



20 CAPTURING SHOCKS AND TURBULENCE SPECTRA IN COMPRESSIBLE FLOWS

〈u
iu

i〉/
(3
u2 rm

s,0
)

0.2

0.4

0.6

0.8

1

t/τ
0 1 3 4

(a) Kinetic Energy

〈ω
iω

i〉/
(u

2 rm
s,0
/λ

2 0)

5

10

15

20

25

30

t/τ
0 1 3 4

(b) Enstrophy

〈T
'T
'〉/
((γ

	-1
)T

0M
2 t,0
)2

0

0.025

0.05

0.1

0.125

t/τ
0 1 3 4

(c) Temperature

〈θ
θ〉
/(u

2 rm
s,0
/λ

2 0)

0

0.25

0.5

0.75

1

1.25

1.5

t/τ
0 1 3 4

(d) Dilatation, θ = ∂juj

Figure 7. Time series of selected physical quantities for simu-
lations performed with different mesh resolution and numerical
methods. Legend is recalled in the text and in figure 9.

do not perform equally in the high-frequencies of the spectrum. As it can be seen
in figure 10, whereas all methods present a pile-up of energy in the high-frequency
range, the fourth-order finite-volume WENO method resolves the spectra with a
monotone decreasing energy, which is not the case for the second-order Godunov
method with PPM interpolation and slope limiting. Most interesting, the second-
order Godunov method with the hybrid PPM/WENO reconstruction method is able
to reproduce virtually the same spectra as the fourth-order finite-volume WENO
method, meaning that replacing the slope-limiting procedure by the WENO recon-
struction method recovers a monotone spectra close to the reference solution.

Among these general trends, what emerges from all the figures is that for a
given mesh resolution, the solutions are very close to each other regardless of the
numerical method employed, with the exception of the high-end frequencies at fine
mesh resolution. Such observations make sense, because as the turbulent Mach
number is 0.6, the present 3D HIT test case can be seen as a mix between the
Shu-Osher test case (see section 5.2) where all the methods collapse to first-order,
and the smooth solution test case presented at section 5.1 where each numerical
method follows its own theoretical order of convergence. This is highlighted by
the study of the convergence rate with the L1-norm of the error on the x-velocity
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Figure 8. Spectra of selected physical quantities for simulations
performed with different mesh resolution and numerical methods.
Legend is recalled in the text and in figure 9.
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Figure 9. Symbols and color legend for figures 7, 8, and 10.

profile. The error εu is reported in figure 11 and the convergence rate computed
with a best-fitting curve method is reported in table 2. Overall, all the numerical
methods present a second-order convergence rate. It is emphasized that this finding
is the opposite to the conclusion in [1], where the fourth-order method always gives
better results than the second-order one. This again makes sense, because the
decay of turbulence investigated in [1] is simulated in an incompressible regime,
leading to a solution always smooth. In that case, the findings of the study in [1]
are consistent with the behavior shown in our study in section 5.1, where a smooth
vortex is simulated and where all the numerical methods follow their theoretical
order of convergence. Our study highlights that in presence of strong compressibility
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Figure 10. Zoom of the spectra of kinetic energy in figure 8 for
results computed with different mesh resolutions.

effects, the theoretical expectations of a numerical method no longer hold because
of the interaction with shocks.

Table 2. HIT test case: convergence rate of the L1-norm of the
error on the density

Method O (ερ)

PPM with slope-limiting 2.15
4th-order WENO-Z 2.22

Hybrid PPM/WENO 2.08

All the results presented so far are investigations of the accuracy of the solutions,
but another important parameter to take into account is the computational cost of
each numerical method. As the PeleC and RNS codes are based on the AMReX
framework, the profiling functionality of the library has been used to extract the
actual computational cost to evaluate the hyperbolic terms in the set of governing
equations. In practice, a timer has been put around the main routine called to
compute the terms. Table 3 presents the average of the computational time for
the evaluation of the routines involved in the computation of the hyperbolic con-
vection term, divided by the number of calls during the whole simulation. This
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Figure 11. HIT test case: L1-norm of the error on the density.

nondimensionalization is adopted here because the second-order Godunov proce-
dure requires only one evaluation of the convection term, whereas the finite-volume
WENO method is implemented with a Runge-Kutta time integration procedure
that requires many calls by time iteration. Also, the simulations are performed
with the same mesh resolution of Nx = 256 and with the same parallelization over
512 MPI process. It turns out that the fourth-order finite-volume WENO method
is about 200 times more computationally expensive than the second-order Godunov
method. For the Godunov method, the new hybrid PPM/WENO method proposed
in the present paper has roughly the same computational cost as the original PPM
method with slope-limiting.

This significant difference can be explained by the number of interpolation pro-
cedures required for each cell and by time-step. If we consider only one component
in the system of equations, the PPM method requires only 6 interpolations in to-
tal (one by face), whereas for the high-order finite-volume method, the required
number of interpolations is estimated with the following equation:

(62) 2D
(
2D − 1

)
× 2

where D is the number of dimensions in the computational domain and the factor
2 in the right hand side stems for the number of Runge-Kutta stages. In three
dimensions, achieving fourth-order accuracy requires 14 times more interpolation
procedures by cell than with the PPM algorithm, because data have to be evaluated
through Gauss integration points. It is emphasized that this computational burden
does not only depend on the interpolation procedures via the WENO schemes, to
this count must be added the number of calls to the Riemann solver and all the
conversions between conservative and primitive variables.

Overall, from the results presented in this section, it becomes apparent that an
accurate representation of a compressible turbulent flow can be achieved faster
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with a second-order accurate Godunov method, together with the new hybrid
PPM/WENO strategy for the reconstruction of physical values at faces that can
achieve the same spectra resolution as a more complex and costly high-order method.
Because the computational cost of the second-order Godunov method with PPM in-
terpolation is significantly lower than the high-order finite-volume WENO method,
it turns out that refining a simulation with the second-order method is still less
costly than running a coarse high-order simulation. In this test case, it appears
that the use of a fourth-order finite-volume WENO method is unnecessary in prac-
tice. The major finding of this study is that for finite-volume methods, the accuracy
of the reconstruction of fluxes at cells interface has significantly more impact than
the formal order of the method.

Table 3. HIT computational time

Method Nondimensional CPU time [s]

PPM with slope-limiting 5.06× 10−3

4th-order WENO-Z 1.1149
Hybrid PPM/WENO 5.03× 10−3

6. Conclusions

A comparison between low-order and high-order finite-volume methods has been
performed on a series of test cases: the convection of a smooth 2D vortex, the
Shu-Osher problem, and the decay of 3D homogeneous isotropic turbulence. The
choice to assess the performance of finite-volume methods is justified by the fact
that they are more robust and flexible to use in the context of simulations of in-
dustrial applications. The study focus on the second-order Godunov method, as
well as the fourth-order finite-volume WENO method. Results show that while
on a smooth problem the high-order method perform better than the second-order
one, when the solution contains a shock all the methods collapse to first-order ac-
curacy. The study of the decay of compressible homogeneous isotropic turbulence
with shocklets shows that the actual overall order of accuracy of the methods re-
duces to near second-order, despite the use of fifth-order reconstruction schemes.
Most important, results in terms of turbulent spectra are similar regardless of the
numerical methods employed, except for the higher end of the frequencies. Be-
cause our results show that the original PPM method with slope limiting fails to
provide an accurate representation in the high-frequency range of the spectra, a
novel hybrid PPM/WENO method is proposed. It is demonstrated that such hy-
brid PPM/WENO method has the ability to capture the turbulent spectra with
the accuracy of a formally high-order method, but at the cost of the second-order
Godunov method. Moreover, this study highlights that for finite-volume methods,
the accuracy of the reconstruction of fluxes at cells interface has significantly more
impact than the formal order of the method. Overall, the present study demon-
strates the importance of evaluating the accuracy of a numerical method in terms
of its actual spectral dissipation and dispersion properties on mixed smooth/shock
cases, rather than by the theoretical formal order of convergence rate.
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Appendix A. Slope-flattening procedure

In section 4.2.1 a flattening limiter is imposed at equations (35) and (36) through
a flattening coefficient χi. The coefficient χi ∈ [0, 1], where χi = 1 indicates that
no additional limiting take place, whereas χi = 0 means that the Godunov method
is dropped to first-order accuracy. The computation of χi is performed as follows:

(1) First, a dimensionless measure of the shock resolution is computed with

(63) ςi =
pi+1 − pi−1

max (psmall, |pi+2 − pi−2|)
where p is the pressure and psmall is a very small value to avoid a division
by zero.

(2) Then the parameter χ̃i is defined as

(64) χ̃i = min{1,max [0, a (ςi − b)]}
where a = 10 and b = 0.75 are parameters set by the user. In order to
confine χ̃i in the range [0, 1], χ̃i = 0 if either ui+1 − ui−1 < 0 or

(65)
pi+1 − pi−1

min (pi+1, pi−1)
6 c

with c a parameter set by the user, which take the value of c = 1/3 here.
(3) Finally χi is computed as follows:

(66) χi =

{
1−max (χ̃i, χ̃i−1) , if pi+1 − pi−1 > 0,

1−max (χ̃i, χ̃i+1) , otherwise.

Appendix B. Reference solution with the very high-order SMC code
for the decay of homogeneous isotropic turbulence

In order to generate a reference solution, simulations are performed with the very
high-order code SMC [10], which employs eighth-order accurate centered finite-
difference schemes for the spatial discretization, and a fourth-order Runge-Kutta
algorithm for the time advancement. Figures 12a to 12d present the temporal
evolution of the kinetic energy, the enstrophy, the variance of temperature and the
dilatation from t = 0 to t/τ = 4. Figures 13a to 13d present the spectra taken at
t/τ = 4 for the kinetic energy, the vorticity, the dilatation and the density. In these
figures, the red dotted line, the blue dashed line, the green dashed-dotted line and
the solid black line represent the solutions computed on a mesh grid discretized
with Nx = 64, Nx = 128, Nx = 256 and Nx = 512, respectively. As can be seen in
figure 12, the simulation computed with Nx = 64 is unable to complete and crashes
at approximately t/τ = 1, because the mesh is too coarse to resolve the diffusion up
to the Kolmogorov scale. The solution computed with Nx = 512 (solid black line)
differs slightly from the one computed with Nx = 256, and is considered converged
and will be used at the reference solution.

Appendix C. WENO comparisons

As recalled in section 3.2, a significant amount of schemes for the reconstruction
of data at interfaces are based on the WENO paradigm. Indeed, the classical
WENO-JS scheme is not optimal and is often considered too dissipative in smooth
regions. Many variants have been developed to overcome such isue. Among all of
these variants, we have chosen to focus on the most popular ones to assess their
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Figure 12. Temporal evolution of selected physical quantities for
SMC simulations with different mesh resolution. The red dot-
ted line, the blue dashed line, the green dashed-dotted line and
the black line represent the solutions computed on a mesh grid
discretized with Nx = 64, Nx = 128, Nx = 256 and Nx = 512.

robustness and performance on the test cases investigated in the present paper. A
complete description of the variations introduced by these schemes is beyond the
scope of the paper. So far, the WENO variants tested in this study are: WENO-JS
[13], WENO-M [12], WENO-Z [5], WENO-MDCD [18] and TENO [11].

C.1. Shu-Osher test case. The density at t = 1.2 computed withNx = 256, 512, 1024,
and 2048 is shown in figures 14 to 17, respectively. In these figures, the blue dia-
mond, green cross, purple square, orange plus and maroon star symbols represent
the WENO-JS, WENO-M, WENO-Z, WENO-MDCD and TENO methods, respec-
tively (see legend in figure 14b). Note also that the panels (a) and (b) in figure 14,
figure 15 and figure 16 present the full domain and a zoom in the domain, respec-
tively, while figure 17 is only a zoom in the domain.

For the coarse mesh, a close look at figure 14 reveals that all the WENO variants
reproduce the correct phase of the oscillation. The WENO-M, WENO-Z and TENO
methods give virtually similar results in terms of estimation of the amplitudes of
the waves, while the WENO-JS and WENO-MDCD methods are equivalently the
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Figure 13. Spectra of selected physical quantities for SMC sim-
ulations with different mesh resolution. The red dotted line, the
blue dashed line, the green dashed-dotted line and the black line
represent the solutions computed on a mesh grid discretized with
Nx = 64, Nx = 128, Nx = 256 and Nx = 512.

least accurate of the WENO variants. As shown in figure 15, an increase of the
mesh resolution by a factor 2 leads all the WENO variants to virtually collapse to
the same curve.

As shown in figure 16, with an another increase of the mesh resolution by a
factor 2, all the numerical methods investigated in the present study are virtually
equivalent and very close to the reference solution computed on a very fine mesh.
However, as can be seen at x ≈ 5.25 after another increase of the mesh resolution by
a factor 2 in figure 16b, the TENO method provides an incorrect representation of
the discontinuity. As shown in figure 17, this trend becomes worse when the mesh
is refined again by a factor 2. As can be seen in the detailed zoom, the solution
computed with the TENO scheme shows large oscillations in the smooth regions.
All other WENO variants are, however, robust.

This present study shows that when the mesh is small enough, it allows high-
frequency waves to be resolved but small oscillations around discontinuities can
appear and propagate, because the mesh is no longer coarse enough to filter them
out. The most surprising result is the fact that TENO variant, which appears to
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Figure 14. Shu-Osher test case: profile of density with PPM and
WENO methods for Nx = 256.
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Figure 15. Shu-Osher test case: profile of density with PPM and
WENO methods for Nx = 512.
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Figure 16. Shu-Osher test case: profile of density with PPM and
WENO methods for Nx = 1024.
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Figure 17. Shu-Osher test case: profile of density with PPM and
WENO methods for Nx = 2048.

be a good choice on a coarse mesh, becomes the worst on a fine mesh. This can
be attributed to the fact that the method fails to properly avoid the application of
the central linear scheme in the region of large gradients. Furthermore, consistently
with the convergence rate analysis performed at section 5.2, it should be noted that
all the WENO variants provide the same rate of convergence of the error, which is
approximately O(0.9) here for this test case.

C.2. Decay of compressible isotropic turbulence. The decay of compressible
isotropic turbulence is now simulated. Figures 18a to 18d present the temporal
evolution of the kinetic energy, the enstrophy, the variance of temperature and the
dilatation from t = 0 to t/τ = 4. Figures 19a to 19d present the spectra taken at
t/τ = 4 for the kinetic energy, the vorticity, the dilatation and the density. In these
figures, the diamond, cross, square, plus and star symbols represent the WENO-
JS, WENO-M, WENO-Z, WENO-MDCD and TENO methods, respectively. The
red, blue, purple and orange colors represent simulations performed with Nx = 64,
Nx = 128, Nx = 256 and Nx = 512, respectively. It is emphasized that these figures
contain a significant number of curves. For clarity, a zoom on the high-end of the
spectra of kinetic energy is shown in figure 20 for each mesh resolution.

Overall, two general trends can be seen in figures 18 and 19. For the temporal
evolution of physical quantities, the different WENO variants investigated present
significant differences when the mesh is coarse. However, when the mesh is refined,
they quickly collapse to give similar results. However, as shown in figure 19, all the
different WENO variants give virtually the same spectra, at the exception of the
very high-frequencies of the spectrum when the mesh in refined enough to allow
small turbulent structures to be resolved (see figure 20d). Similarly to the previous
section, a convergence rate analysis has been performed and all the different WENO
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Figure 18. Time series of selected physical quantities for simula-
tions performed with different WENO reconstruction schemes and
with different mesh resolution. The diamond, cross, square, plus
and star symbols represent the WENO-JS, WENO-M, WENO-
Z, WENO-MDCD and TENO methods, respectively. The red,
blue, purple and orange colors represent simulations performed
with Nx = 64, Nx = 128, Nx = 256 and Nx = 512, respectively.

variants exhibit a second-order convergence rate. Furthermore, figure 21 presents
the computational time of each WENO variant. Recall here that the normalized
CPU time is defined as the averaged wall-clock time spent in the routines required
for the computation of the hyperbolic terms, divided by the number of iterations
performed during the simulation and the number of CPUs employed. It can be
seen that the computational cost of the WENO-M variant is higher, followed by
the TENO, whereas the WENO-JS, WENO-Z and WENO MDCD are virtually the
same.

Based on these results, the present comparison study reveals that the TENO
is not robust enough to avoid instabilities near strong shocks (see appendix C.1).
Other WENO variants are found to be robust, but the WENO-M is more costly.
Among the remaining variants, the WENO-Z scheme presents slightly better results,
and is thus adopted as the best WENO reconstruction scheme for the whole study
presented in this paper.
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Figure 19. Spectra of selected physical quantities for simula-
tions performed with different WENO reconstruction schemes and
with different mesh resolution. The diamond, cross, square, plus
and star symbols represent the WENO-JS, WENO-M, WENO-
Z, WENO-MDCD and TENO methods, respectively. The red,
blue, purple and orange colors represent simulations performed
with Nx = 64, Nx = 128, Nx = 256 and Nx = 512, respectively.
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and Sanjiva K. Lele, Assessment of high-resolution methods for numerical simulations of
compressible turbulence with shock waves, J. Comput. Phys. 229 (2010), no. 4, 1213–1237.

15. Sangsan Lee, Sanjiva K. Lele, and Parviz Moin, Eddy shocklets in decaying compressible

turbulence, Phys. Fluids 3 (1991), no. 4, 657–664.
16. Sanjiva K. Lele, Compact finite difference schemes with spectral-like resolution, J. Comput.

Phys. 103 (1992), no. 1, 16–42.
17. Randall J. LeVeque, Finite volume methods for hyperbolic problems, Cambridge texts in ap-

plied mathematics, Cambridge University Press, Cambridge, New York, 2002.
18. M.P. Mart́ın, E.M. Taylor, M. Wu, and V.G. Weirs, A bandwidth-optimized WENO scheme

for the effective direct numerical simulation of compressible turbulence, J. Comput. Phys.
220 (2006), no. 1, 270–289.

19. Peter McCorquodale and Phillip Colella, A high-order finite-volume method for conservation
laws on locally refined grids, Comm. Appl. Math Comput. Sci. 6 (2011), no. 1, 1–25.

20. G.H. Miller and P. Colella, A Conservative Three-Dimensional Eulerian Method for Coupled
Solid–Fluid Shock Capturing, J. Comput. Phys. 183 (2002), no. 1, 26–82.

21. Emmanuel Motheau, Ann Almgren, and John B. Bell, Navier–Stokes Characteristic Boundary

Conditions Using Ghost Cells, AIAA Journal (2017), 1–10.



34 CAPTURING SHOCKS AND TURBULENCE SPECTRA IN COMPRESSIBLE FLOWS

22. Emmanuel Motheau, Franck Nicoud, and Thierry Poinsot, Mixed acoustic-entropy combustion

instabilities in gas turbines, J. Fluid Mech. 749 (2014), 542–576.

23. T. Poinsot and S. Lele, Boundary conditions for direct simulations of compressible viscous
flows, J. Comput. Phys. 101 (1992), no. 1, 104–129.

24. Chi-Wang Shu, High order WENO and DG methods for time-dependent convection-dominated

PDEs: A brief survey of several recent developments, J. Comput. Phys. 316 (2016), 598–613.
25. V.A. Titarev and E.F. Toro, Finite-volume WENO schemes for three-dimensional conserva-

tion laws, J. Comput. Phys 201 (2004), no. 1, 238–260.

26. E. F. Toro, M. Spruce, and W. Speares, Restoration of the contact surface in the HLL-
Riemann solver, Shock Waves 4 (1994), no. 1, 25–34.

27. Eleuterio F Toro, Riemann solvers and numerical methods for fluid dynamics: a practical

introduction, Springer Science & Business Media, 2013.
28. Bram van Leer, Towards the ultimate conservative difference scheme. V. A second-order

sequel to Godunov’s method, J. Comput. Phys. 32 (1979), no. 1, 101–136.
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