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Summary:

Vowels, a fundamental component of human speech across all languages, are cued acoustically 

by formants, resonance frequencies of the vocal tract shape during speaking. An outstanding 

question in neurolinguistics is how formants are processed neurally during speech perception. To 

address this, we collected high-density intracranial recordings from the human speech cortex on 

the superior temporal gyrus (STG) while participants listened to continuous speech. We found that 

two-dimensional receptive fields based on the first two formants provided the best characterization 

of vowel sound representation. Neural activity at single sites was highly selective for zones in 

this formant space. Furthermore, formant tuning adjusted dynamically for speaker-specific spectral 

context. Yet, the entire population of formant-encoding sites was required to accurately decode 

single vowels. Overall, our results reveal that complex acoustic tuning in two-dimensional formant 

space underlies local vowel representations in STG. As a population code this gives rise to 

phonological vowel perception.
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eTOC burb

Vowels, such as /a/ in had or /u/ in hood, are the centerpieces of speech across languages. Oganian 

et al. use direct electrophysiological recordings from the human speech cortex to reveal that local 

two-dimensional spectral receptive fields underlie a distributed representation of vowel categories.

Introduction:

Vowels are a significant component of all the world’s languages, and they play a critical 

role in our ability to comprehend speech 1,2. Vowel sounds are produced when vocal fold 

vibration is unobstructed, allowing a clear passage of air through the mouth, shaped by 

different positions of the jaw, tongue, and lips. For instance, the vowel sounds /i/ (as in 

“heed”) is produced with the tongue close to the front of the mouth, whereas /a/ (as in 

“had”) is produced with the tongue further back. These articulatory positions create distinct 

vowel sounds, distinguished acoustically by the value of the lowest two vocal tract resonance 

frequencies, which are known as the first and second formants (F1 and F2). Formants are 

considered the primary acoustic cues to vowel identity 3.

Sounds with different vowel identities can be very similar in absolute formant values when 

produced by different speakers. For example, /o/ (as in “hoed”) produced by a speaker with 

a long vocal tract (and thus low voice) could have the same absolute formant values as /u/ 

(as in “who’d”) produced by a speaker with a short vocal tract (and thus high voice). As 

a result, the accurate mapping of formant values to vowel identity requires a normalization 

operation that computes formant frequencies relative to the speaker’s voice 4. In sum, a rapid 
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and correct mapping of formants to vowel identity relies on both the precise identification of 

the formant frequencies as well as their interpretation given the speaker context.

In linguistics, the mental representation of formants, specifically the independence of F1 

and F2 and how this representation supports vowel normalization, has been long debated. 

One fundamental theory suggests that they are independently extracted and represented, 

mapping individual vowel sound segments onto coordinates in two-dimensional F1-F2 

space 5,6. To account for speaker context, proponents of this theory have advocated for 

an explicit normalization on both F1 and F2 values using features such as speaker pitch or 

higher formants. Alternatively, it has been suggested that vowel identification relies on the 

relationship between formants, such as the one-dimensional distance between F1 and F2 7. 

This theory of vowel perception is bolstered by the fact that the relationship between F1 and 

F2 is more consistent across speakers than the independent absolute values, thus implicitly 

accounting for speaker context 8,9. Examining neural responses to vowel sounds in the 

human speech cortex provides us with a unique opportunity to dissociate these theoretical 

models and elucidate the mechanisms that underlie speaker-normalized vowel identification.

Several studies have shown that neural activity in the human auditory cortex is sensitive 

to vowel sounds and that it discriminates vowel identity in highly controlled acoustic 

contexts 10–12. In the primary auditory cortex (PAC), a tonotopically organized area 13 

that is activated regardless of whether the presented stimulus is human speech (e.g. pure 

tones), this sensitivity is driven by narrow tuning to individual formant frequency bands 
14,15. In contrast, in the human speech cortex on the lateral superior temporal gyrus (STG), 

the majority of neural representations are spectrally complex and broadband 14. Further, 

the STG shows stronger activity in response to speech and other complex natural sounds 

(e.g. music, 16,17 than to other sound stimuli, and this activity is more closely reflective 

of perceptual processing 18,19. It thus remains an open question what neural representation 

in the STG underlies vowel perception in continuous, natural speech 20–22. Specifically, it 

is not yet clear whether formants are represented separately or in combination and further, 

whether this representation is tuned to narrow-band frequencies, possibly centered on single 

vowel categories 23, or broad formant ranges.

To address this, we utilized high-density direct intracranial recordings of neural activity 

from the surface of the human STG. The highly resolved spatial scale afforded by this 

recording technique was critical, as neighboring cortical sites that are just a few millimeters 

apart can differ significantly in their spectral tuning 24,25. The high temporal resolution of 

intracranial recordings allowed us to examine neural responses at the temporal scale of a 

single vowel sound. We used natural speech stimuli produced by a wide variety of speakers, 

which allowed us to record neural responses to a large set of vowel sounds, spanning the 

entire formant space.

With this approach we addressed four primary research questions. First, we asked how 

neural responses recorded at single electrodes in the STG were tuned to F1 and F2 in 

natural, continuous speech. We analyzed two-dimensional formant receptive fields of neural 

responses to determine whether neural tuning to F1 and F2 frequency ranges in human 

speech cortex is independent, and to characterize the mathematical properties of these tuning 
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functions 26,27. Second, we asked how vowel information can be extracted from the neural 

representation of formants using a population decoding approach. Third, we asked how and 

to what extent formant receptive fields in the STG are normalized for speaker properties. 

Finally, we used a controlled set of artificial vowel-like sounds extending beyond the natural 

vowel formant space with experimentally decorrelated F1 and F2 to definitively test the 

independence of formant encodings.

We found that neural responses on most single electrode sites in the STG were jointly tuned 

to both F1 and F2, resulting in heightened sensitivity to a specific zone within the vowel 

formant space. This sensitivity was non-linear and sigmoidal along each of the separate 

formant dimensions (F1 and F2). However, the location of heightened sensitivity did not 

coincide with boundaries between single vowels, and we did not find single electrode 

sites with selectivity for a single vowel. Rather, single vowels could only be decoded at 

the population level, when information from differently tuned electrode sites was pooled 

together. Comparisons between neural responses produced by speakers with different vocal 

tract lengths showed that electrodes in the STG contain normalized, not absolute, formant 

representations, distinguishing it from the narrow-band frequency tuning in PAC. Though 

formant tuning on many active electrodes showed inverse tuning to the two formants 

(e.g., tuned to high F1 and low F2) when presented with natural speech, decorrelating the 

formants using a set of artificial vowels revealed a set of electrodes with the same direction 

of tuning to both formants (e.g., high F1 and high F2). This confirms that there exists a 

range of formant encoding types in the STG, and that F1 and F2 are neurally represented as 

coordinates in a two-dimensional formant space rather than as a ratio or distance.

Results:

Cortical activity at single electrodes over human STG is sensitive to vowel differences

In Experiment 1, Spanish monolingual patients (n=8, Table S1) listened to naturally 

produced Spanish sentences (Fig. 1A), while we recorded neural activity from the lateral 

surface of the STG using high-density ECoG electrode grids. The Spanish vowel system is 

well suited to study vowel representation for multiple reasons: Spanish has only 5 vowel 

sounds (as opposed to e.g., up to 20 in some English dialects, 28), that span a large range 

of formant values. Thus, Spanish vowel categories clearly easily separated in the acoustic 

formant space: The median formant values for single vowel instances correspond strongly 

with their vowel label (Fig. 1B and C vowel clustering: median silhouette score = 0.099, 

permutation test with 500 repetitions; p<0.002). Moreover, while F1 and F2 tend to be 

inversely correlated across languages, this is less the case for Spanish than for English 

(Spanish r = −0.01, p = 0.31 in our stimulus set; English r = −0.21, p<0.0001 calculated 

from speech stimuli used in prior studies, e.g., 29.

In our analyses we focused on evoked responses in the high gamma range (HGA). We 

found that evoked HGA responses on a subset of STG electrodes discriminated between 

vowel categories (n = 125 of 291 speech responsive, range: 2–26 per participant, one-way 

peak F-statistic across vowel categories > 5, Fig. 1E). Responses peaked at about 100–150 

ms post vowel onset, with different response magnitudes corresponding to different vowels. 

For example, each of the three prototypical example electrodes E1-E3 (Fig. 1D) exhibited 
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strongest responses for a different vowel, with graded response magnitudes to all other 

vowels.

Notably, none of these electrode responses show a preference for a single vowel. That is, we 

did not observe instances where there was selectivity to a single vowel and no response to all 

other vowel sounds. All subsequent analyses included electrodes that discriminated between 

vowels (colored green in Fig. S1A).

Non-linear monotonic tuning to vowel formant frequencies in human STG

We first asked how vowel formants are represented by vowel-discriminating populations. 

Specifically, we evaluated three alternative hypotheses: Narrow-band nonlinear frequency 

tuning centered on vowel categories (Fig. 2A left), linear monotonic encoding of an entire 

vowel formant range (Fig. 2A, middle panel), or nonlinear monotonic encoding of formants 

within a limited dynamic range (Fig. 2A, right panel). In the case of narrow-band frequency 

tuning, we expect neural populations to preferentially respond to a narrow range of formant 

frequencies, as is typical for frequency-tuning in primary auditory cortices 14,30. This 

model implies that the maximal neural response could be located in the center of the 

vowel’s formant range. In contrast, in case of monotonic formant encoding, we expect 

neural responses to increase across the range of possible formant values, with the maximal 

response located at the edges of the formant range. While linear encoding implies equal 

sensitivity to formant differences across the entire range, nonlinear encoding would result in 

heightened sensitivity to a narrower range of formant frequencies, and little to no sensitivity 

to frequencies outside of this range.

We tested which of these models captured neural activity best separately for every 

single electrode. First, to distinguish between narrow non-monotonic formant tuning and 

monotonic encoding, we examined whether neural responses peaked at the edges or in 

the center of the formant frequency range (Fig. 2F). Then, to discriminate between linear 

and non-linear encoding, we compared linear and sigmoidal models of neural responses 

using cross-validated R2. We estimated the neural response to vowel formants using feature 

temporal receptive field modeling, F-TRF 31,32). Model features of interest were the spectro-

temporal content of the speech signal in the formant frequency ranges. The model produced 

a regression weight time series (beta weights) for each frequency bin. For the main analysis, 

we extracted mean beta weights in a 50ms window around the peak in the beta weight time 

course (125 – 175 ms) and fit formant encoding models to these values.

For the representative electrodes E2 (Fig. 2B–C) and E3 (Fig. 2D–E), we found that 

responses were strongest towards one end of the vowel formant space, suggesting monotonic 

encoding of formant frequencies. On E2, response magnitudes and model beta weights 

increased with increases in F1 but decreased with increases in F2. In contrast, in electrode 

E3, beta weights were strongest for high F1 and low F2 values.

Across all vowel-discriminating electrodes, we found that neural responses peaked near the 

boundaries of the vowel formant space, reflected in the bimodal distribution of maximal 

beta values for both formants (Fig. 2F, mixed-effects F1: beta = −0.21, SE = 0.025, t(96) 

= −8.64, p<0.001; F2: beta = −0.99, SE = 0.082, t(96) = −12.1, p<0.001). We thus focused 
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our attention on the comparison between linear and sigmoidal encoding of vowel formants. 

Across electrodes, we found that cross-validated R2 values were higher for the sigmoidal 

model than the linear model on 82.4% of electrodes for F1 and 81.5% of electrodes for 

F2. We found a mixture of preference for high and low formant values in both F1 and F2. 

This shows that STG neural populations have limited dynamic ranges: Each local population 

represents a subspace of the vowel formant space, such that a representation of the entire 

range emerges across the entire population.

Finally, we wanted to characterize the extent to which both formants are jointly encoded 

at a single electrode. Across electrodes, we found an inverse correlation between tuning to 

F1 and F2 (Fig. 2H, mixed-effects beta = −0.61, SE = 0.10, t(103) = −5.90, p<0.001, see 

Fig S2 for anatomical location of electrodes). That is, electrodes with preference for high 

F1 values also preferred low F2 values, and vice versa, as previously found for an English 

language dataset 29. Here, we found that this trend was driven by two main patterns. First, 

most electrodes jointly encoded both formants (67 out of 80 electrodes), with a preference 

for negative tuning in F1 and positive tuning in F2 (41 out of 80 electrodes). In contrast, 

while a small subset of electrodes (n=10) had negative tuning to both formants, only a 

single electrode in our dataset had positive tuning to both formants. This raises the question: 

Does the lack of electrode sites with positive tuning to both formants reflect a specialization 

of STG for speech sound harmonics? Alternatively, it might be a confound of the limited 

formant frequency ranges in natural speech. We will address this question with Experiment 2 

below.

Overall, these results show that neural activity at single electrode sites is only discriminative 

in a subspace of the overall vowel formant space. However, across electrodes, the range 

of formant tuning at the population level should be sufficient to represent the entire vowel 

space with a high fidelity. We directly test this in the next analysis step using population 

decoding.

Discrimination between vowel categories emerges at the population level

We evaluated whether single vowel categories are represented at the population level by 

comparing the accuracy of vowel decoding on different electrode subsets using a linear 

SVM approach. First, we compared classifier accuracies derived from single electrodes 

versus from the entire electrode population (Fig. 3A). We found that decoding from 

the entire electrode population was significantly more accurate when considering all 

pairwise comparisons (average improvement: 2.2 – 9.1% correct averaged across pairwise 

comparisons, t-test showed significant difference between all single electrodes versus the 

entire population accuracies with p<0.0001, Fig. 3A). Notably, the best single electrodes did 

not necessarily show selective responses to a single vowel (Fig. 3A right panel).

The improvement in classification accuracy from single electrode to the population could be 

due to an increase in the signal-to-noise ratio. However, this improvement may also reflect 

complementary vowel encoding. That is, single electrodes represent only select regions of 

the vowel formant range in high detail, and as a result, pooling information across electrodes 

with sensitivity to different select regions may be key to decoding vowel categories across 

all pairwise comparisons. To determine whether this was the case, we split electrodes into 
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the two dominant tuning subsets, namely (F1−/F2+) and (F1+/F2−) type-electrodes. Formant 

receptive fields averaged across electrodes with the same directionality of F1/F2 tuning 

(F1−/F2+: n = 36 electrodes; F1+/F2−: n = 15 electrodes, Fig. 3C) suggested that each 

set would be critical for a subset of comparisons. For instance, average receptive fields 

suggested that F1+/F2− populations would be able to discriminate between /a/, /e/, and /i/, 

whereas this would not be the case for the F1−/F2+ population.

Decoding performed separately on the two subsets of electrodes confirmed this prediction, 

as can be seen in Fig. 3D for five exemplary comparisons (p<0.001 for significant 

comparisons between decoding accuracies on different subsets, see Table S4 for details of 

pairwise comparisons). Moreover, this analysis clearly demonstrates that increased decoding 

accuracies at the population level reflect the addition of informational content rather than 

increases in signal-to-noise ratio. This is because accuracy of decoders based on the best 

electrode subset and both electrode subsets together did not significantly differ. Finally, 

Fig. 3D summarizes the accuracies of all pairwise comparisons, showing that the two 

subsets of electrodes discriminate different sets of vowel pairs. The F1−/F2+ electrodes 

show significantly higher accuracy for the /i/ − /o/ and /o/ − /u/ pairwise classification, 

while the F1+/F2− electrodes show higher accuracy for the /i/ − /a/, /i/ − /u/, and /e/ − /a/ 

classification. However, in conjunction, these two electrode sets contain the complementary 

information necessary to significantly discriminate between all vowel pairs.

Shifting dynamic ranges underlie normalization of vowel representation for speaker vocal 
tract length

It is well established that the mapping between vowel formants and vowel categories 

depends on a speaker’s vocal tract length which is correlated with voice pitch 4,33. We 

thus wanted to determine whether the formant tuning of neural populations in STG shifts 

with speaker voice quality during listening to continuous speech.

In line with prior work, we found that vowel formant frequencies increase with speaker 

pitch (Fig. 4A) and that normalizing for speaker pitch reduces the formant variance within 

vowel categories (Fig. 4B). We hypothesized that STG encoding of formants would reflect 

speaker-normalized rather than absolute formant frequencies. To test how speaker pitch 

affects the representation of vowel formants in human STG, we re-fit feature temporal 

receptive field models separately on subsets of data with low and high (>170 Hz) pitch 

levels, and estimate the sigmoidal fits to F1 and F2 model weights separately for each of the 

models. If STG representation of vowel formants reflects absolute formant frequencies, we 

expect to see no difference in formant tuning between models (Fig. 4C left). In contrast, if 

STG representations are normalized for speaker properties, we expect to see a shift in STG 

dynamic ranges, matching the shift in vowel formant space between single models (Fig. 4C 

right).

Fig. 4D–E shows tuning curves for low and high pitch speakers on a single example 

electrode. For this exemplary electrode, neural responses shifted their dynamic ranges to 

higher frequencies in response to vowels produced by speakers with a high pitch, in line 

with speaker normalization for both F1 and F2. To quantify the magnitude and extent of 

this shift on STG across all electrodes with significant formant frequency tuning (n = 105), 
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we focused on electrodes with robust frequency tuning curves for vowels produced by both 

high and low pitch speakers (F1 n = 25, F2 n = 45 (unique electrodes n = 68), 64.8% of 

electrodes). We extracted the sigmoidal fit inflection Points (IP) for each subset of speakers 

separately and assessed the difference in IP between models across electrode sites using 

linear mixed effects modeling (see methods for model details).

We found a systematic and robust shift of tuning curve inflection points (IP) on these 

electrodes towards higher formant ranges with increases in speaker pitch, with a most robust 

shift present on electrodes with overall good model fits for single formants (mixed-effects 

F1: pitch beta = 35.38, SE = 9.46, t(111) = 3.7, p < 0.001; F2: pitch beta = 95.03, SE = 

31.7, t(138) =2.99 p = 0.003; see Tables S2 and S3 for all fixed effects, Figure 4F, G). 

Remarkably, the average magnitude of the inflection point shift across electrodes mirrored 

the difference in average formant frequency between high and low pitch speakers (red lines 

in Fig. 4F, G). Finally, we also found that all electrodes with robust encoding of F1 and 

F2 also showed speaker normalization for both formants, Fig. 4H. Taken together, these 

analyses show that formant normalization for speaker voice characteristics is a general 

feature of formant encoding neural populations in the human STG.

Vowel formant encoding emerges from general complex frequency tuning on STG

Our analysis of the representation of vowel formants in STG raised two questions. First, are 

the opposite directions of preference for F1 and F2 due to the limited range and covariance 

between F1/F2 in natural speech? That is, when presented with complex harmonic sounds 

with a broader range of F1 and F2 values, will neural populations show sensitivity to 

formant values with the same direction of tuning? Second, does each formant value 

affect the neural responses independently (Fig. 5A top and middle row, joint independent 

encoding), or are co-encoding neural populations additionally integrating across F1 and F2, 

i.e. do responses to each formant depend on the value of the other formant (Fig. 5A bottom, 

joint interactive encoding)? Notably, the qualitative patterns differ between independent and 

interactive co-encoding: the latter shows a u-shaped tuning along one of the diagonals. 

Finally, we wanted to know whether STG encoding of the formant structure in sounds would 

continue outside the boundaries of the human vowel formant space. Alternatively, STG 

may contain separate neural populations encoding sound harmonic structure in speech and 

non-speech frequency ranges.

To test these questions, we presented a group of ECoG patients (n=8) with a set of 

isolated artificial vowel-like sounds with F1 and F2 values in and outside the natural 

vowel space (Black outline in Fig 5B, see Fig S3 for perceptual rating of stimuli). We 

report all results across English and Spanish native speakers; but note that no systematic 

differences between native speakers of the two languages were found. Notably, this task 

was language independent, as vowels across languages fall within the same space due to 

physical constraints on vowel production. We chose to use isolated harmonic sounds rather 

than consonant-vowel combinations to reduce any effects of coarticulation and to ensure 

that tokens outside the vowel formant range could be perceived as non-linguistic. We found 

robust evoked HGA responses to single stimulus tokens on a subset of STG electrodes, 

which stereotypically peaked 150–200 ms after stimulus onset, in line with responses to 
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natural speech. We first tested whether electrodes responded differently to tokens within and 

outside the natural formant range (black vs gray in Fig. 5B). Then, to model the encoding 

of F1 and F2, we extracted peak HGA for each stimulus token and evaluated the effects 

of F1, F2, and their linear interaction (IA, F1*F2) on peak HGA magnitude. Across all 8 

patients, analyses were focused on 160 electrodes (10–33 per patient), for which the best 

linear regression model explained at least 10% of total response variance.

Fig. 5C–E shows patterns of neural responses for three exemplary electrodes. Electrode 

E1 responded equally to tokens inside and outside the natural formant range (Fig. 5C 

left), with the strongest responses to high F2 values (Fig. 5D left), and no effect of F1 

or the interaction term (Fig. 5D bottom). In contrast, responses on electrode E2 were 

highest for the combination of low F1 and high F2 values, as supported by the significant 

interaction term on this electrode (Fig. 5D middle). Finally, electrode E3 responded stronger 

to tokens outside the vowel formant range (Fig. 5C right), which was due to a significant 

positive interaction effect (Fig. 5D right). On all three electrodes the pattern of responses 

is generally smooth around the vowel space boundaries, suggesting that any difference 

between responses inside and outside this space are due to spectral and not speech tuning. 

Crucially, we found a high overlap between formant receptive fields derived from the 

synthetic vowel tokens and from natural speech stimuli, suggesting that both stimuli drive 

neural responses on STG to the same degree and in a comparable manner (Fig. 5E).

Comparison between formant encoding in synthetic vowel sounds and in natural speech

Across all electrodes, we found that the main effects of F1 and F2 explained the most 

unique variance on single electrodes (F1: R2 median=0.07, max=0.71; F2: R2 median=0.07, 

max=0.72), with a minor but significant contribution of interaction terms (F1*F2: R2 

median=0.03, max=0.32; Fig. 6A). Notably, effect magnitudes for F1 and F2 were not 

correlated (r =−0.1, p=0.2, mixed-effects model t(158) = −1.48,n.s., Fig. 6B), suggesting 

that each contributes independently to neural responses. In contrast, main and interaction 

effect magnitudes were negatively correlated (r=−0.52, p<0.001, mixed-effects model t(158) 

= −6.4, p<.001, Fig. 6C). That is, electrodes with large interaction effects had little 

independent contribution of F1 and F2 main effects and low R2 overall. This suggests 

that encoding of F1 and F2 and integration across formants are implemented by distinct 

STG populations with independent joint encoding of F1 and F2 dominating neural response 

patterns.

In a second step, we asked whether STG representation of vowel formants is tailored to 

formant ranges found in natural speech. Unlike in natural speech, in our synthetic vowel 

stimuli we found only a weak negative correlation between F1 and F2 model weights (r = 

−0.2, p=0.01, mixed-effects model: t(158) = −3.31, p=.001, Fig. 6D). Importantly, the range 

of tuning to different combinations of F1 and F2 values (N: +/+ 36, −/− 44, +/− 28, −/+ 52 

tuning direction) in our data speaks in favor of independent co-encoding of F1 and F2, rather 

than differential joint encoding.

We hypothesized that this discrepancy was due to the naturally limited range of F1 and F2 

values in natural speech. To test this, we reran our analyses on a subset of stimuli with 

formants falling within the natural formant frequency range (as marked in Fig. 5B). Figure 
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6F shows the model R2 for full and subset models by electrode formant tuning. We found 

that in addition to the expected overall lower model R2 with a subset of stimuli (main effect 

of model: b = −0.21, SE = 0.04, t(316) = −5.94, p<.001) and marginally higher R2 values in 

electrodes with opposite tuning to F1 and F2 (main effect of tuning directions: b = 0.16, SE 

= 0.08, t(316) = 2.02, p=0.04), this reduction was more pronounced for electrodes with the 

same direction of tuning for both formants (interaction of model and tuning direction: b = 

−0.19, SE = 0.05, t(316) = −3.67, p<.001, Fig. 6G). Overall, this shows that populations with 

the same directionality of tuning for both formants are not as strongly activated by vowels 

but rather tuned to other harmonic sounds.

Discussion

This study provides a comprehensive account of the representation of vowels in the human 

speech cortex on lateral superior temporal gyrus (STG). We found that vowel responses 

at local electrode sites in the STG were best characterized by complex two-dimensional 

receptive fields, defined by the first two formant frequencies, and normalized for speaker 

voice characteristics. Along each formant range (or receptive field axis), electrode sites 

showed nonlinear, monotonic frequency tuning, with high sensitivity to a specific zone 

in the natural formant space. Because the spectral location of this zone often did not 

correspond to any single vowel, discrimination between vowel categories at single electrode 

sites was unreliable. However, when neural population response patterns were aggregated 

across electrode sites, vowel categories could be decoded with high accuracy. Finally, neural 

responses to artificial vowel-like sounds with experimentally de-correlated F1 and F2 values 

showed that the complex tuning to formants in the STG independently represents F1 and F2, 

and extends beyond the natural vowel formant range.

The primary objective of this study was to use neural data to adjudicate linguistically 

informed theoretical models of vowel representation. Two fundamental models of vowel 

representation have been proposed, one in which the mental representation of vowels is 

described by a one-dimensions relationship between F1 and F2 (F1-F2) 7 and another in 

which it is described by a two-dimensional coordinate in (F1, F2) space 5,6. While the neural 

responses to vowel sounds in this and earlier studies 29,34,35 seem to support the former 

theory, the results from our synthesized vowel experiment suggest that this interpretation is 

misleading due to the limited range of formants in natural speech. By presenting subjects 

with formant combinations that extended beyond the range found in natural speech, we show 

that though a majority of electrode sites inversely encode F1 and F2 (high F1 values and 

low F2 values, or vice versa), there exist electrode sites with other joint encoding patterns 

(e.g., high F1 values and high F2 values) or encoding to only a single formant. The fact that 

the encoding of formants on individual electrode sites spans all possible tuning combinations 

suggests that neural populations on the human speech cortex represent F1 and F2 as two 

distinct dimensions of the vowel space, rather than a relationship between them 7,36.

Our second objective was to determine how the neural encoding of formants gives 

rise to representation of vowel information and speculate as to why the encoding of 

formants should organize in this way 20,21. Although prior studies found categorical vowel 

representations in auditory cortex 12,37, our decoding analysis revealed no evidence for the 
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categorical representation of vowels at local electrode sites on the STG. That is, electrode 

sites responded strongly to subareas of the two-dimensional formant space, but these zones 

were not centered on single vowel categories. However, population-level decoding, where 

neural responses at single electrode sites were aggregated, allowed for the robust decoding 

of vowel categories. This is in line with an accumulating number of ECoG studies on the 

neural representation of consonants that also reported that specific discrete phonemes can 

only be reliably decoded at the population level 24,25,29.

Our decoding results add to the existing evidence that a distributed representation of vowel 

sounds on the lateral STG is organized as a heterogeneous spatial code 10,11,18,19,38. 

Electrode sites that jointly encoded F1 and F2 belonged to two spatially interspersed 

encoding types: those with the strongest neural responses to high F1 and low F2 and vice 

versa. Together, the two encoding types represented the complementary formant information 

necessary to decode vowel categories. Since a majority of electrode sites were nonlinearly 

tuned to F1 and F2 (Fig. 2) resulting in maximal neural responses at the edges of the formant 

range, formant encoding on the STG is also likely the basis for nonlinear, categorical vowel 

perception and perceptual magnet effects 39–41.

The third objective of this study was to determine the degree to which speaker normalization 

takes place on the lateral STG. Building on prior work that used active, isolated word-level 

tasks 33,42, we found that local electrode sites on the STG represented vowel formant 

frequencies normalized for the speaker even when subjects passively listened to natural 

speech. These results strongly support the notion that neural representations of speech on 

the lateral STG are context-sensitive and contradict recent findings suggesting that these 

representations reflect absolute frequency content of harmonic sounds 43. This discrepancy 

may be in part due to the different spatial resolutions of ECoG and EEG scalp recordings 44.

To perform speaker normalization in natural speech, the auditory system can draw on several 

distinct and often co-occurring acoustic cues 45, such as the distributions of F1 and F2 for 

the speaker 42, the ratio between F1 and F3 36, and the average F0 of the speaker (e.g. 
46). We did not experimentally isolate these cues and thus are unable to make a definitive 

argument regarding the cue used by neural populations on the STG to initiate speaker 

normalization. However, our results did show that the degree of normalization on single 

neural populations matched the distance between the average formants of speakers with low 

and high pitch, differing from previous ECoG studies that report only partial normalization 
42. It is possible that the larger magnitude normalization effects observed in natural speech 

are due to the presence of co-occurring acoustic cues versus only speaker F1 values that 

were manipulated in the prior study 42.

We can briefly speculate about the mechanisms that may account for the observed 

normalization effect 4. First, these effects may be explained by the general auditory 

mechanisms that give rise to adaptation and contrast-enhancing sensory representations in 

both speech and non-speech contexts 47,48; examples of such mechanisms include stimulus 

specific adaptation and gain control 4,49,50 or critical band behavior sensitive to the density 

of harmonics 51. It is also possible that speaker normalization reflects an integration of 

spatially interspersed but functionally distinct cortical areas encoding talker identity and 
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might involve other parts of the temporal cortex, such as the superior temporal sulcus 
10,11,52,53. We note that the possibilities listed here as mechanisms for normalization 

processes are not mutually exclusive and may both play a role in causing the effects we 

observe.

Finally, we were interested in understanding to what extent STG representation of complex 

harmonic sounds is specialized for human vowels. While it is well established that vowel 

representation in PAC relies on narrowband frequency tuning of tonotopically organized 

neural populations that are not specifically tuned to human speech 54–56, the vowel 

representation in non-primary auditory areas has not been fully explored. Here, we show 

that vowel-discriminating neural populations in the STG encode F1 and F2, with nonlinear, 

sigmoidal tuning along each separate formant dimension. Notably, our artificial vowel data 

showed that such representations also support the encoding of other harmonic sounds in 

the environment, namely, formant combinations outside those found in naturally produced 

vowels. The specialization for different harmonic ranges may support discrimination of 

non-speech complex harmonic sounds and possibly underlies recent findings of distinct 

neural populations for speech and music in this area 16,57.

Importantly, this study relied on two passive listening paradigms, one in which subjects 

listened to natural speech and one in which subjects listened to synthetic sound stimuli. 

We thus cannot exclude the possibility that task-dependent effects modulated the recorded 

neural responses. It is known that when subjects attend to and comprehend natural, 

meaningful speech, speech-relevant receptive fields are enhanced 58 and further, that task 

demands and complexity critically alter connectivity patterns across speech and language 

cortical networks 59,60. Task-specific enhancement effects may reflect top-down inputs 

from prefrontal areas 61 via task-dependent oscillatory phase alignment 62 or selective 

enhancement of receptive fields for task-relevance (e.g. 63,64). However, prior work 

comparing data from active and passive listening paradigms found qualitatively similar 

fMRI responses across task conditions in PAC and STG 65 and comparable receptive fields 

in ECoG 24, suggesting that the effect of an active versus a passive task paradigm is more 

likely to fine tune existing representations rather than alter them completely.

The current study on the neural representation of vowel formants in the human speech 

cortex leaves several important questions open. First, we focused analysis on discrete 

vowel categories and static formant values, and as a result, did not explore the effects 

of vowel duration or formant temporal dynamics on neural activity in the STG. 66–70. 

We believe that this study lays the groundwork for the future exploration of the neural 

encoding of such complex formant dynamics. Second, we did not explicitly address the 

extent to which language experience affects neural vowel representation in the current work. 

Language experience influences vowel recognition 71–73 and a targeted paradigm is needed 

to address this. Finally, unlike past findings of functional asymmetries in speech processing 

across hemispheres 74–77, but in line with prior ECoG studies 29,78, we did not observe 

hemispheric differences with respect to any of our findings. This indicates at least some level 

of bilateral involvement in vowel processing. However, alternative neuroimaging modalities 

with bilateral coverage in single subjects are better suited to make claims about hemispheric 

asymmetries.
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In conclusion, the results of this study demonstrate the broad and complex tuning of local 

electrode sites on the lateral STG to the formants in natural vowel sounds. This tuning is best 

described by nonlinear, two-dimensional formant receptive fields that adapt to speaker voice. 

While most local electrode sites jointly encode the first two formants, without a strong 

preference for a single vowel, vowel categories can be extracted from the neural responses 

if aggregated across the population. Overall, we provide a comprehensive account of the 

representation of vowels in non-tonotopic areas of the auditory parabelt instrumental in the 

sensory processing of speech.

STAR Methods

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Edward F. Chang 

(edward.chang@ucsf.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• The data that support the findings of this study are available on request from the 

lead contact. The data are not publicly available because they could compromise 

research participant privacy and consent.

• All original code and summary data for figure replication has been deposited on 

zenodo.org and will be publicly available as of the date of publication. Details 

are listed in the Key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The study was approved by the University of California, San Francisco Committee on 

Human Research and all participants gave informed written consent before experimental 

testing. Fifteen (7 female) patients were implanted with 256-channel, 4-mm electrode 

distance, subdural ECoG grids as part of their treatment for intractable epilepsy. Electrode 

grids were placed over the peri-Sylvian region of one of the patients’ hemispheres, as 

determined by clinical assessment. Eight Spanish-native speakers (5 male, 4 LH) with little 

to no knowledge of English participated in the DIMEx corpus speech experiment. Eight 

participants (2 Spanish-native; 6 English-native, 7LH) listened to the synthesized vowel 

tokens of Experiment 2 (SOM Table S1). Participants in the synthesized vowel experiment 

also listened to the DIMEx corpus. Two Spanish-native participants took part in both 

experiments.

All participants had normal hearing and left-dominant language functions.

Participant demographics and further implantation and resection details can be found in 

Table S1.
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METHOD DETAILS

Data acquisition methods closely follow those reported in our previous work 14,80.

Neural data acquisition—ECoG signals were recorded with a multichannel PZ2 

amplifier, connected to an RZ2 digital signal acquisition system [TuckerDavis Technologies 

(TDT), Alachua, FL, USA], with a sampling rate of 3052 Hz. The audio stimulus was split 

from the output of the presentation computer and recorded in the TDT circuit, time-aligned 

with the ECoG signal. In addition, the audio stimulus was recorded with a microphone and 

also input to the RZ2. Data were online referenced in the amplifier without any further 

re-referencing.

Data preprocessing—All data analyses were based on the analytic amplitude of neural 

responses in the high gamma range (HGA; 70 to 150 Hz), which is closely related to 

local neuronal firing and tracks neural activity at the temporal scales of natural speech 
44,81. Offline preprocessing of the data included (in this order) downsampling to 400 Hz, 

notch-filtering of line noise at 60, 120, and 180 Hz, extraction of the analytic amplitude 

in the high-gamma frequency range (70 to 150 Hz, HGA), exclusion of bad channels, and 

exclusion of bad time intervals.

HGA was extracted using eight band-pass filters [Gaussian filters, logarithmically increasing 

center frequencies (70 to 150 Hz) with semi-logarithmically increasing bandwidths] with 

the Hilbert transform. The high-gamma amplitude was calculated as the first principal 

component of the signal in each electrode across all eight high-gamma bands, using 

principal components analysis. Bad channels were defined by visual inspection as channels 

with excessive noise. Bad time points were defined as time points with noise activity 

in HG band, which typically stemmed from movement artifacts, interictal spiking, or non-

physiological noise.

Last, the HGA was downsampled to 100 Hz, and z-scored relative to the mean and SD of the 

data within each experimental block. All further analyses were based on the resulting time 

series.

Electrode localization—For anatomical localization, electrode positions were extracted 

from postimplantation computer tomography scans, coregistered to the patients’ structural 

magnetic resonance imaging and superimposed on three-dimensional reconstructions of the 

patients’ cortical surfaces using a custom-written imaging pipeline 82. Freesurfer was used 

to create a 3d model of the individual subjects’ pial surfaces, run automatic parcellation 

to get individual anatomical labels, and warp the individual subject surfaces into the 

cvs_avg35_inMNI152 average template.

Experiment 1: Continuous speech (DIMEx)

Stimuli and procedure

Participants passively listened to a selection of 500 Spanish sentences from the DIMEx 

corpus 79,83, spoken by a variety of native Mexican-Spanish speakers. Data in this task were 

recorded in five blocks of approximately 7-min duration each. Four blocks contained distinct 

Oganian et al. Page 14

Neuron. Author manuscript; available in PMC 2024 July 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sentences, and one block contained 10 repetitions of 10 sentences. Sentences were 2.5 to 

8.03 s long and presented with an intertrial interval of 800 ms. The repeated block was used 

for validation of temporal receptive field models (TRF; see details below).

All stimuli were presented at a comfortable ambient loudness (~70 dB) through free-field 

speakers (Logitech) placed approximately 80 cm in front of the patients’ head using custom-

written MATLAB R2016b (MathWorks, www.mathworks.com) scripts. Speech stimuli were 

sampled at 16000 Hz for presentation in the experiment. Participants were asked to listen to 

the stimuli attentively and were free to keep their eyes open or closed during the stimulus 

presentation.

Stimulus spectrograms were calculated using the NSL toolbox (http://nsl.isr.umd.edu/

downloads.html) for Matlab. Continuous formant values were extracted using the praat 

software 84, https://www.fon.hum.uva.nl/praat/, ). We found that median formant values 

discriminate between vowel categories with a high accuracy. Thus all depictions of vowel 

tokens in two dimensional formant space reflect the token’s median formant values.

Electrode selection

Analyses included electrodes located on the STG, for which the per electrode peak HGA 

response (over a contiguous window of 50 ms) after vowel onset significantly discriminated 

between vowel categories (using a one-way F-test and a non-corrected threshold of p < 

0.001). Final analyses included 122 electrodes, 2 to 26 within single patients (median = 

12). Selected electrodes were equally distributed across hemispheres, with no hemispheric 

differences in vowel discriminability or electrode location along the anterior-posterior axis 

of the STG (Fig. S2). For each of the below analysis, a subset of electrodes from this set 

were selected based on relevant criteria.

Feature temporal receptive field analysis (F-TRF)

We fit neural data with a linear temporal receptive field (F-TRF) model with different sets of 

speech features as predictors. In this model, the neural response at each time point [HGA(t)] 

is modeled as a weighted linear combination of features (f) of the acoustic stimulus (X) in 

a window of 600 ms before that time point, resulting in a set of model coefficients, b1…, d for 

each feature f, with d = 60 for a sampling frequency of 100 Hz and inclusion of features 

from a 600 ms window (See previous work, 29.

HGA t = ∑
k = 1

d
∑

f = 1

F
b k, f X f, t − k

The models were estimated separately for each electrode, using five-fold cross-validation 

(80% train, 20% test). The regularization parameter was estimated using a 10-way bootstrap 

procedure on the training dataset for each electrode separately. Then, a final value was 

chosen as the average of optimal values across all electrodes for each patient. For all models, 

predictors and dependent variables were z-scored and scaled to between −1 and 1 before 

entering the model. This approach ensured that all estimated beta values were scale free and 
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could be directly compared across predictors, with beta magnitude interpreted as an index 

for the contribution of a predictor to model performance.

Predictors in the model included spectral ranges that spanned the 5–95th percentile of 

frequency values for the first two formants for all vowels (F1: 250 – 800 Hz, F2: 1000 – 

2500 Hz), as well as sentence onsets, vowel onsets, and predictors for timing and magnitude 

of peakRate, a marker of rising envelope edge dynamics (for peakRate feature structure see 

Oganian & Chang, 2019). Vowel and sentence onset predictors were timed to onsets of the 

respective phonemes in the speech.

Linear and sigmoidal model comparisons on F-TRF betas

Linear and sigmoidal curves were fit to the mean beta weights around the beta peak in a 

600 ms window (125–175ms), as estimated by the F-TRF model described above. Curve 

fitting for all model types was leave-one-out cross-validated (16 and 26 times for F1 and 

F2 bins respectively). This allowed us to directly compare models with different numbers 

of free parameters. Corresponding model R2 values were calculated based on the average 

error derived from the cross-validated predictions. R2 values were calculated as 1 − RSS/

SST, where RSS is defined as the residual sum of squares and SST is defined as the total 

sum of squares. Note, this coefficient of determination measure (R2) could be negative if 

the regression predictions are further from the true value than a model that predicts the 

sample average. Bayesian Information Criterion (BIC) was used to validate the R2 values. 

According to this metric, the sigmoidal model outperformed the linear model on 31.4 % of 

electrodes for F1 and 25.7% of electrodes for F2. To test for bimodality, effects of tuning 

direction on the frequency value of maximal beta weight were assessed using linear mixed 

effects modeling with fixed effects of tuning direction, and random intercepts and slopes 

for subject and electrode (Maximal Beta Position ~Tuning Direction + (1 | Subject) + (1 | 

Electrode:Subject)).

Vowel decoding

Binary SVM linear classifiers (using pre-built function from Matlab Statistics and Machine 

Learning Toolboxes) were trained on neural data to distinguish pairs of vowel (all possible 

pairs of the five Spanish vowel categories, /a/, /e/, /i/, /o/, /u/) from a fixed window of 

50 ms around the time point of peak discriminability between vowels (centered at 

approximately 150 ms post-vowel onset). Four types of classifiers were constructed: 

population level classifiers, two sets of population-subset classifiers, and single electrode 

classifiers. Population level classifiers were trained and tested on the output of principal 

component analysis (PCA) applied to neural activity from a population of electrodes (n 

= 54) spanning 4 subjects with sufficiently overlapping stimulus sets. To ensure that the 

pairwise decoding accuracy was comparable across pairs, data were subset to contain equal 

numbers of samples per vowel, equal to the number of samples for the least frequent vowel 

(/u/) resulting in approximately 110 samples per vowel. Population-subset classifiers were 

also trained and tested on the output of a PCA and included electrodes with either F1+/F2− 

(n = 40) or F1−/F2+ (n = 14) individual tuning profiles derived from previous analysis. 

Single electrode classifiers were trained and tested on the neural activity recorded at 

single electrodes (n=105). Each classifier was 5-fold cross-validated and reported accuracy 
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measures were averaged across each of the cross-validation sets. Significance testing was 

based on classification accuracies for data with permuted vowel labels, based on 50 

permutations.

Speaker normalization

To determine the extent to which cortical responses to formants depend on speaker 

physiology, separate F-TRF models were were fit to neural data using subsets of speakers 

with an average fundamental frequency across the sentence of either less than or greater than 

170 Hz, using the same predictors as the model described above. A total of 233 sentences 

(4840 vowel instances) were used in the low pitch speaker model and 267 sentences (5750 

vowel instances) were used in the model corresponding to high pitch speakers. Curve 

fitting was performed on the speaker subset F-TRF model beta weights in the same way as 

described above. Inflection point shifts were calculated using the parameters derived from 

each of the F-TRF model types.

Effects of speaker subset on inflection point shift was determined using linear mixed effects 

modeling (using the Matlab Statistics and Machine Learning Toolbox) with fixed effects 

of model R2, speaker subset, and their interaction, and random intercepts and slopes for 

speaker within electrode (Inflection Point Position ~ Model R2 * SpeakerSubset + (1 | 

Subject) + (1 | Electrode:Subject)).

Experiment 2: Synthetic vowels

Stimuli and procedure

Participants passively listened to a set of synthesized vowel tokens. Stimuli were synthesized 

using an online version of the Klatt vowel synthesizer (www.source-code.biz/klattSyn/), 

with fixed pitch (250 Hz), F3 (3.1 kHz) and F4 (3.3 kHz). F1 and F2 were varied 

orthogonally to cover the entire vowel formant range as well as values outside those 

occurring in natural speech. For F1, we selected 10 values between 200 and 100 Hz (200, 

255, 310, 420, 530, 640, 750, 860, 915, 970); for F2 we selected 10 values between 500 

and 3000 Hz (500, 650,850,1200,1550, 1900, 2250, 2600, 2800, 2950). Stimuli covered all 

F1/F2 combinations with F2 larger than F1. Data in this task were recorded in five blocks of 

approximately 4-min duration each, resulting in 8 to 10 repetitions per token in each patient. 

Tokens were 300 ms long and were presented with an average intertrial interval of 800 ms, 

randomly sampled from a uniform distribution between 700 and 900 ms.

All stimuli were presented at a comfortable ambient loudness (~70 dB) through free-field 

speakers (Logitech) placed approximately 80 cm in front of the patients’ head using custom-

written MATLAB R2016b (MathWorks, www.mathworks.com) scripts and psychtoolbox 
85–87. Stimuli were sampled at 16 kHz for presentation in the experiment. Participants were 

asked to listen to the stimuli attentively and were free to keep their eyes open or closed 

during the stimulus presentation.
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Analysis

Electrode selection: Analyses included electrodes located on the STG, which showed 

robust evoked responses to vowel stimuli, defined as electrodes for which the best linear 

model, either with only main effects or with main effects and interaction terms, explained 

at least 10 % of the variance. Analyses contained 160 electrodes, 10 to 33 within single 

patients.

Analysis of variance: As neural responses had a stereotypical evoked response peaking 

between 100 and 400 ms after stimulus onset, we focused our analyses on the mean HGA 

in that time window. Single time point analyses of the entire HGA time course produced 

qualitatively the same results. We modeled the main effects of F1, F2 and their linear 

interaction (F1*F2) onto evoked HGA responses to synthetic vowel onset using linear 

models. To assess the unique variance for main effects, we compared a main effect model 

(HGA ~ F1 + F2) to models containing only one formant (e.g., HGA ~ F1). To assess 

the unique variance explained by the interaction term, a full model (HGA ~ F1 + F2 + 

F1*F2) was compared to the model containing main effects only (HGA ~ F1 + F2). For 

comparability across electrodes, predictors and HGA were z-scored prior to model fitting. 

For comparison to natural speech data, S-TRF models were fitted to natural speech response 

data on the same electrodes, using the same procedures as described above. To assess the 

effect of the formant range onto electrode response properties, models were fitted twice: 

First using all stimulus tokens, and second using only the subset of stimuli with formant 

values within the DIMEx vowel formant range.

Analyses across electrodes: For the correlations between beta weights across electrodes the 

model was beta(F2) ~ beta(F1) + (1|subj) + (1|el:subj).

For the comparison between models on full data and reduced stimulus sets the model was: 

Rsq ~model*tuningDirection + (1|subj) + (1|el:mod).

QUANTIFICATION AND STATISTICAL ANALYSIS

We used R^2 as a metric of model fit for model comparisons between linear and sigmoidal 

models.

Analysis across electrodes—Analysis across electrodes were conducted using 

Pearson’s correlations across all electrodes as well as with mixed-effects modeling with 

random intercepts and slopes for subjects and electrodes. Mixed effects models fit using the 

matlab function fitlme. Specific models are listed in the corresponding sections above.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Human speech cortex represents vowels based on local 2D formant tuning 

maps

• Formant tuning is sigmoidal along the speaker pitch-normalized formant 

range

• Vowel category representation emerges at the population-level

• Formant tuning reflects spectral content of harmonic sounds, not just speech
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Figure 1. Neural activity on single electrodes in bilateral human STG is sensitive to vowels.
A. Example Spanish stimulus sentence waveform (top), spectrogram (middle) and extracted 

formant trajectories (bottom). Vertical lines mark vowel onsets, colored by vowel identity. 

B. Median frequency spectrum for a single speaker per vowel. Formant spectral peaks are 

marked by filled circles C. Median F1 and F2 values across all vowel instances in our 

stimulus set. D. Differential average HGA responses to single vowel categories on three 

example STG electrodes. Error bars indicate standard error of the mean, gray shaded area 

marks time window of averaging for electrode selection. E. Vowel discriminative electrodes 

for a single participant. Gray circles demarcate all grid electrodes, example electrodes from 

panel D are marked in red. See Figure S1B and C for anatomical information across all 

participants.
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Figure 2. Non-linear monotonic encoding of vowel formant frequencies in human STG.
A. Three alternative hypotheses for encoding of vowel formants on single electrodes. B, D. 
Example electrodes’ formant receptive fields. C, E. Formant tuning curves of the electrodes 

in B and D. Red: Decrease in beta weight as formant values increase; blue: increase in beta 

weight as formant values increase. F. Frequency of maximal beta weights in F1 and F2 

ranges. G. Comparison between linear and sigmoid model fits for F1 (top) and F2 (bottom). 

H. Distribution of slopes for F1 and F2 across vowel-responsive electrodes- see Figure S2 

for anatomical maps. I. Inset showing the total number of electrodes that encode F1 and F2 

and the direction of their slopes, corresponding to the number of electrodes in each quadrant 

in H.
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Figure 3: Emergent vowel representation at the population level.
A. Vowel decoding accuracy from the best single electrode per vowel (five unique electrodes 

across four subjects) as compared to the decoding accuracy using all electrodes. All 

accuracies averaged across ten pairwise comparisons. Right: Average HG response to each 

vowel in five electrodes used in single electrode decoding in the leftmost panel. Solid line 

corresponds to the vowel for which the selected electrode shows best average accuracy, 

dashed lines correspond to all other categories. Gray shaded bar indicates empirical chance 

performance over repetitions. B. Average formant receptive fields for electrodes with 

different tuning types and corresponding F1/F2 sigmoidal model R2. C. Decoding accuracy 

from five vowel pairs separated by electrode sub-group (best single electrode, each tuning 

type, both tuning types). D. Summary of decoding accuracy across vowel pairs (all pairwise 

statistics in Table S4).
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Figure 4. Shifting dynamic ranges underlie normalization of vowel representation for speaker 
pitch
A. Vowel formants shift between speakers with short and long vocal tracts (and thus high 

and low pitch). B. Formant normalization in two groups by high/low pitch reduces formant 

variability within vowel categories. C. Hypotheses for absolute (left) and pitch-normalized 

(right) encoding of vowel formants. D. Formant receptive field for an exemplary electrode. 

E. Formant frequency tuning for F1 (left) and F2 (right) on the same exemplary electrode, 

split by speaker pitch. F-G. Tuning curve inflection points (IP), calculated separately for 

sentences with high and low speaker pitch, across all F1 (F) and F2 (G) encoding electrodes. 

H. IP shift for F1 and F2 on electrodes encoding both formants.
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Figure 5. Vowel formant tuning emerges from complex frequency tuning on STG.
A. Schematic of independent (top two rows) and interactive encoding of F1 and F2 (bottom 

row). B. Stimulus design for synthetic vowel task; Top: example token waveform. Bottom: 

F1 and F2 values task. see Figure S3 for perceptual ratings of all stimuli. C. Mean responses 

(+-SEM) to stimulus tokens that fall within and outside the Spanish vowel space on three 

example STG electrodes. Dark background marks peak area for averaging and further 

analyses. D. Formant receptive fields (top) and linear model effect R2 (bottom) for the same 

example electrodes. Black outline in formant receptive fields shows the vowel formant range 

in continuous Spanish sentences in the natural speech task. E. Formant receptive fields 

derived from the DIMEx corpus of Mexican Spanish 79 for the same example electrodes.
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Figure 6. 
Comparison between formant encoding in synthetic vowel sounds and in natural speech. A. 
Effect R2 distribution across electrodes. B-C. Correlation between effect R2 for main effects 

of F1 and F2 (B) and between main effects and the linear interaction effect (C). D-E. Across 

all electrodes, direction of effects for F1 and F2 is less correlated in the synthetic vowel task 

(D) than in the natural speech corpus (E). F. Model R2 for model fit on the entire vowel task 

stimulus set vs only on stimuli with formants located within the natural formant space. G. 

R2 values for models fit on the full and reduced stimulus sets.
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Matlab 2021b Mathworks.com

Custom code and data This paper Zenodo DOI 10.5281/zenodo.7620900

Imaging pipeline for coregistration of electrodes to CT and MRI scans Hamilton et al. 2019 10.3389/fninf.2017.00062

Other

Human patient participants recruited from neurosurgical patients at UCSF 
(see Table S1).

This paper N/A
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