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Fast and Memory Efficient Text Image
Compression With JBIG2

Yan Ye, Member, IEEE,and Pamela Cosman, Senior Member, IEEE

Abstract—In this paper, we investigate ways to reduce encoding
time, memory consumption and substitution errors for text image
compression with JBIG2. We first look at page striping where
the encoder splits the input image into horizontal stripes and
processes one stripe at a time. We propose dynamic dictionary
updating procedures for page striping to reduce the bit rate
penalty it incurs. Experiments show that splitting the image
into two stripes can save 30% of encoding time and 40% of
physical memory with a small coding loss of about 1.5%. Using
more stripes brings further savings in time and memory but the
return diminishes. We also propose an adaptive way to update
the dictionary only when it has become out-of-date. The adaptive
updating scheme can resolve the time versus bit rate tradeoff and
the memory versus bit rate tradeoff well simultaneously. We then
propose three speedup techniques for pattern matching, the most
time-consuming encoding activity in JBIG2. When combined
together, these speedup techniques can save up to 75% of the total
encoding time with at most 1.7% of bit rate penalty. Finally, we
look at improving reconstructed image quality for lossy compres-
sion. We propose enhanced prescreening and feature monitored
shape unifying to significantly reduce substitution errors in the
reconstructed images.

Index Terms—JBIG2, pattern matching, soft pattern matching,
substitution, text image compression.

I. INTRODUCTION

T HE JBIG2 standard [1], [2] is the new international stan-
dard for bilevel image compression. Bilevel images have

only one bit-plane, where each pixel takes one of two possible
colors. Prior to JBIG2, facsimile standards such as ITU-T rec-
ommendations T.4, T.6, and T.82 (JBIG1) [3]–[7] provided only
for lossless compression of bilevel images. JBIG2 is the first one
that also provides for lossy compression. A properly designed
JBIG2 encoder not only achieves higher lossless compression
ratios than the other existing standards, but also enables very
efficient lossy compression with almost unnoticeable informa-
tion loss [8].

A typical JBIG2 encoder first segments an image into
different regions [9] and then uses different coding mechanisms
for text and for halftones. In this paper, we are concerned with
compressing text images. We define text images as bilevel
images which consist mainly of repeated text characters and
possibly some general graphic data (e.g., line art) but no
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halftones. In JBIG2, the coding of text is based on pattern
matching techniques [1]. JBIG2 defines two modes for text
compression:pattern matching and substitution(PM&S) [10],
[11] andsoft pattern matching(SPM) [12]. For general graphic
data not identified as text, the encoder uses a basic bitmap
coder such as specified by JBIG1 or T.6. This is called cleanup
coding.

On a typical page of text, there are many repeated characters.
We call the bitmap of a character instance a “symbol.” We
can extract symbols from the input image using a standard
connected component analysis algorithm [13]. In English and
many other languages, most characters are represented by one
connected piece and hence are extracted as one symbol. For
characters that contain separated parts, e.g., English letter “i”
or “j,” we use a postprocessing step to identify a dot (a small
symbol) and put it back onto its stem to form one symbol.

Rather than coding all the pixels of each symbol on the page,
we code the bitmaps of a representative subset and put them
into thesymbol dictionary. Then, each symbol on the page is
coded by giving its position on the page and the index of its
best matching symbol in the dictionary. In the PM&S mode,
the bitmap of the best match dictionary symbol gets directly
substituted for the current symbol on the reconstructed page.
In the SPM mode, we transmit a lossless coding of the current
symbol’s actual bitmap based on that of its matching dictionary
symbol. This lossless coding, called refinement coding, is done
by context-based arithmetic coding using a context drawn from
both the best match bitmap, and the already coded part of the
current bitmap [1]. In our work, we use the Hamming distance
based matching criterion which measures the percentage of dif-
ferent pixels between two symbols.

The idea of text image compression based on pattern
matching appeared several decades ago [10], [11]. However,
the main obstacle to its practical implementation was its high
cost. From the point of view of physical memory consumption,
buffering the entire input page (or a big portion of it as in page
striping) is much more expensive than buffering only a few
lines of the input page, as needed in T.4, T.6, or T.82 (JBIG1).
From the point of view of encoding time, pattern matching is
computationally very intensive. Recent advances in the CPU
and memory technologies have made it possible to practically
implement pattern matching based text image coding systems.
However, it is still of great importance for many applications
to limit physical memory consumption and/or to encode
faster. In this paper, we investigate several techniques to lower
memory consumption and to reduce encoding time in JBIG2.
To save physical memory, JBIG2 allowspage stripingwhere
the encoder splits a page image into horizontal stripes of
approximately equal sizes and processes one stripe at a time.
Because the encoder deals with fewer symbols at a time, page
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striping also reduces encoding time. The disadvantage of page
striping is that it offers lower compression efficiency compared
to coding the page as a whole. However, since text symbols
on the same page are usually very similar, when coding the
current stripe, some of the existing dictionary symbols can be
re-used to reduce the compression loss. In JBIG2, this is done
by sending a 1-bit flag for each dictionary symbol to signal
to the decoder whether the current symbol is to be retained
or discarded after the current stripe is decoded. In this paper,
we propose dynamic dictionary updating procedures to retain
useful dictionary symbols and discard obsolete ones [15]. We
also investigate two encoding tradeoffs in page striping: the
coding time versus bit rate tradeoff and the memory usage
versus bit rate tradeoff. We propose an adaptive dictionary
updating scheme that can resolve both tradeoffs favorably at
the same time.

A JBIG2 coding system for text images consists of several
components: symbol extraction, pattern matching, arith-
metic/Huffman integer/bitmap coding, and so on. To speed up
arithmetic bitmap coding, JBIG2 allows typical prediction (TP)
as specified in JBIG1 [5] and typical prediction for residue
(TPR) as proposed in [14]. In this paper, we focus instead
on reducing the encoding time spent on pattern matching. In
lossless SPM mode, our experiments show that, even using the
simple Hamming distance matching criterion, pattern matching
can take as much as 90% of the total encoding time. In this
paper, we propose three speedup techniques that significantly
reduce the amount of pattern matching time while losing
little in coding efficiency. These speedup techniques are more
efficient than page striping in terms of trading off compression
and coding time. Nevertheless, page striping is still necessary
for applications with limited physical memory.

In lossy compression, we consider one more figure of merit,
the reconstructed image quality. Criteria such as Peak Signal to
Noise Ratio (PSNR) commonly used in measuring gray-scale
image quality are not suitable for bilevel images. For bilevel
text images, it is very important to be able to correctly recog-
nize as many text characters as possible at the receiver. If a
pair of corresponding characters in the original and the recon-
structed images are perceived to be different by a human ob-
server, then a substitution error has occurred. In this paper, we
use the number of substitution errors as a quantitative measure
for the reconstructed image quality, and we propose techniques
for suppressing substitution errors.

This paper is organized as follows. In Section II, we elabo-
rate on page striping and propose to update the current dictio-
nary from dictionaries for previous stripes. We give results on
the savings in time and memory usage and the bit rate penalty
incurred. We also compare the performance of five dictionary
construction schemes when used in page striping. In Section III,
we propose three speedup techniques for pattern matching. In
Section IV we propose ways to suppress substitution errors in
the reconstructed images for lossy PM&S and lossy SPM. We
conclude our paper in Section V.

II. DYNAMIC DICTIONARY CONSTRUCTION FORPAGE STRIPING

In this section, we quickly review four previous dictionary de-
signs, the one-pass, singleton exclusion, class-based and tree-

based dictionaries, and propose a new static dictionary design
called the modified-class design. To reduce the bit rate penalty
incurred by page striping, we propose dynamic dictionary up-
dating techniques for the singleton exclusion dictionary and the
modified-class dictionary. We investigate the encoding trade-
offs between memory and bit rate and between coding time and
bit rate when using different dynamic dictionary construction
schemes. In particular, we propose an adaptive dictionary up-
dating scheme that can resolve both tradeoffs favorably at the
same time.

A. Static Symbol Dictionary Design

In this section, we take lossless compression as an example.
We will address lossy compression in further detail in Sec-
tion IV. The one-pass (OP) dictionary [12] is formed in a
sequential way. The encoder matches each newly extracted
symbol with the current dictionary. If the lowest mismatch
found is below a preset threshold, the new symbol is encoded
with refinement coding using the best match as its reference.
Otherwise, the new symbol is encoded directly using a JBIG1
type of arithmetic coder; this is called direct coding. Either
way, the new symbol is added to the dictionary. The main
disadvantage of the OP dictionary is that it contains many
singletons which are symbols never referenced by any other
symbols [17]. Singletons are detrimental to coding efficiency
because they do not provide any useful reference information
yet dictionary indices are assigned to them anyway, thus
increasing the average length of all indices. By excluding
singletons from the OP dictionary, we obtain the singleton
exclusion (SE) dictionary.

Previously we have proposed the class-based (CLASS) [18]
and tree-based (TREE) [19] symbol dictionary designs for
SPM-based JBIG2. Compared with the simpler OP and SE
dictionaries, the CLASS and TREE dictionaries can improve
compression by up to 8% for lossless and 17% for lossy com-
pression [8]. In this paper, we propose a new dictionary design
called the modified-class (MC) design [15] which combines
the ideas of the CLASS and TREE designs. Design of the MC
dictionary follows two steps. At the first step, as in the CLASS
design, we group all extracted symbols into classes by pointing
them to their closest match. For each class, we choose its
representative as the symbol with the lowest average mismatch
within the class. We put all representatives into the dictionary.
The second step follows the idea of the TREE design. We
connect each pair of symbols with a weighted edge where
the weight is the mismatch score between the two symbols;
if the mismatch score is bigger than the threshold, then there
is no edge connecting the symbol pair. This way we obtain
matching graphs among all dictionary symbols (i.e., class
representatives). We then construct minimum spanning trees
(MSTs) from these matching graphs using Kruskal’s algorithm
[20]. For each MST, we choose its root randomly as any node
with degree bigger than 1 [19], [8]. The MC design improves
over the CLASS design because the reference relationships
among all dictionary symbols as given by the MSTs have the
lowest total mismatch (the CLASS design uses the concept of
super-classes which are suboptimal). The MC design is also
computationally less complex than the TREE design.
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B. Dynamic Dictionary Update

Page striping is an encoding mode defined in the JBIG2
standard [1] that allows the encoder to split the input page into
horizontal stripes of approximately equal sizes and encode one
stripe at a time. Page striping lowers memory requirements
for both the encoder and the decoder. Another benefit of page
striping is that it reduces the encoding time by reducing the
time spent on pattern matching. To decide which symbols
from the input page will go into the dictionary, the encoder
needs to perform pattern matching on all extracted symbols.
Therefore, if the input page contains symbols in total,
and page striping is not used, the time needed for pattern
matching is proportional to . By splitting the image into
two stripes, the pattern matching time can be approximately
cut in half . However, page striping
lowers compression efficiency if the encoder sends completely
separate dictionaries for each stripe. To reduce this coding loss,
rather than coding each stripe completely separately, we reuse
some of the dictionary symbols from previous stripes to code
the current stripe. This is based on the observation that the
fonts and sizes of the text characters in one page are usually
very similar. We propose separate updating processes for the
SE dictionary and the MC dictionary.

Updating an SE dictionary is straightforward. For each new
symbol in the current stripe, the encoder matches it with not
only all the previous symbols in the current stripe, but also all
the symbols from the dictionary used for the previous stripe. The
encoder then uses its closest match as its reference symbol and
adds the new symbol to the dictionary. After the current stripe
is processed, the encoder examines the new dictionary and ex-
cludes all singletons from it. Those previous dictionary symbols
that are not used by any symbol in the current stripe are also ex-
punged. This way, new symbols useful for the current stripe get
included in the new dictionary, and old dictionary symbols that
are obsolete are discarded.

The design of an MC dictionary consists of two steps, the
first of which is to form classes and choose representatives. In
the dictionary updating procedure, we perform this step on the
combined set of all previous dictionary symbols and all new
symbols from the current stripe. If a previous dictionary symbol
has the lowest average in-class mismatch, it will be naturally
selected as the representative, which means the encoder can
directly reuse its bitmap without sending it to the decoder
again. In the case that the symbol with the lowest in-class
mismatch is not an existing dictionary symbol, if there is an
existing dictionary symbol whose average in-class mismatch is
slightly higher than the lowest one but the difference between
them is below a preset threshold, we still choose the existing
dictionary symbol as the representative. This allows us to make
use of many previous dictionary symbols; we only choose a
new symbol as the representative if all the existing ones are
too inaccurate. The second design step is to form MSTs for the
dictionary symbols. In Fig. 1, we show pre-existing dictionary
symbols in gray and new ones from the current stripe in
black. Numbers along the edges indicate the mismatch scores
between the symbols. With these mismatch values [Fig. 1(a)],
Kruskal’s algorithm will produce an MST that includes edges

connecting the four gray nodes. However, the mismatch scores
and reference relationships among the pre-existing symbols are
meaningless because the decoder already has their bitmaps.
Therefore, we can connect all existing symbols with zero-weight
edges [the dash-dotted gray edges in Fig. 1(b)]. We then go on
and apply the usual Kruskal’s algorithm. This guarantees that
each resulting MST has at most one gray node representing
a previous dictionary symbol; some MSTs may have no gray
nodes if they consist of new symbols from the current stripe
only. For an MST containing one existing dictionary symbol,
this symbol is used as the tree root since its bitmap is already
known to the decoder. For an MST containing only symbols
from the current stripe, its root is selected randomly as any
node with degree bigger than 1 as in the static design. After the
new dictionary is decided, those previous dictionary symbols
that are not used in the new dictionary are considered obsolete
and will be excluded.

C. Encoding Tradeoffs in Page Striping

Page striping reduces memory usage and encoding time but
incurs a bit rate penalty. In this paper, we focus on two encoding
tradeoffs in page striping: the tradeoff between encoding time
and bit rate and the tradeoff between memory usage and bit rate.
We compare several dictionary construction schemes for page
striping in terms of their performances in both tradeoffs.

Depending on the characteristics of the text in the input
page, we should use different dictionary construction schemes
for page striping. If the text contained in the first stripe is
a very accurate representation of the text in the entire page,
then we can design the dictionary only once from the first
stripe and use it throughout the entire page. We call this
the static scheme. On the contrary, if the text in the current
stripe is completely different from that in the previous stripe
(e.g., the previous stripe contains regular English text and the
current stripe contains math symbols), then we should design a
completely isolated dictionary for the current stripe using only
text symbols from the current stripe. We call this theisolated
scheme. The more general case is that some text symbols in
the current stripe are similar to those in previous stripes but
there are also new symbols not seen before. In this case, we
should use the proposed dynamic updating procedures to reuse
certain previous dictionary symbols, discard those that are
obsolete, and add new symbols from the current stripe into the
dictionary if necessary. We can update the dictionary for every
new stripe (we call it thedynamic scheme), or we can update
the dictionary for every other stripe (we call it thedynamic-2
scheme). Compared to the static or the isolated scheme, the
dynamic scheme reduces the bit rate penalty incurred by page
striping but also takes longer to encode. This is because the
dynamic scheme needs to perform additional pattern matching
between symbols in the current stripe and symbols in the
previous dictionary, and decide which ones to reuse, to discard,
or to add. Compared to the dynamic scheme, the dynamic-2
scheme reduces the encoding time by updating the dictionary
half as frequently. However, how often the dictionary is updated
should ultimately depend upon the rate at which text symbols
change from stripe to stripe. Since this text change rate is not
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Fig. 1. Forming MSTs when updating an MC dictionary. Gray symbols are
previous dictionary symbols; black ones are newly selected ones from the
current stripe. (a) Counting mismatch scores for all symbols and (b) setting
mismatch scores to zero among the pre-existing symbols.

known beforehand and is often not constant within a page,
we propose an adaptive dictionary updating technique that
automatically decides if the existing dictionary has become
out-of-date (i.e., enough symbols in the current stripe can not
be represented by the existing dictionary symbols) and updates
the dictionaryonly when it is out-of-date. We will call this the
adaptive scheme.

1) Adaptive Dictionary Update:One property that the adap-
tive dictionary updating scheme must have is that the decision
about whether the dictionary has become out-of-date must be
made quickly. A complicated decision will prolong the encoding
time and negatively affect the time versus bit rate tradeoff. We
propose a simple and fast procedure to automatically decide if
the dictionary is out-of-date. The dictionary is updated at most
every two stripes. This means if the dictionary has just been up-
dated for the previous stripe, then the encoder will use it di-
rectly to code the current stripe. But during the coding of the
current stripe, the encoder calculates two values, the average
mismatch and the percentage of unmatched symbols for the cur-
rent stripe. These two values show how well the symbols in the
current stripe can be represented by the existing dictionary sym-
bols. The encoder then compares these two values for the cur-
rent stripe with those for the previous stripe. If either value has
increased significantly, i.e.,eitherthe current average mismatch
is more than 1.5 times as big as the previous average mismatch
or the current unmatched percentage is twice the previous un-
matched percentage, then the encoder decides that the existing
dictionary has become out-of-date. The encoder then switches
on the UPDATEDICT flag and updates the dictionary for the
subsequent stripe. Note that the calculation of the average mis-
match and unmatched percentage is very fast since it can be car-
ried out at the same time as the current stripe is being encoded.

D. Experimental Results

Unless otherwise stated, all experimental results presented in
this paper are obtained from a set of 12 test images from two
sources.

1) Two CCITT images that are mainly textual: f01200 and
f04 200. Their resolution is 200 dpi, size 17282339
pixels.

2) Ten images (IG0H, J00O, N03F, N03H, N03M, N046,
N04D, N04H, N057, and S012) selected from the Uni-
versity of Washington Document Image Database I [21].

TABLE I
TOTAL COMPRESSEDFILE SIZES FORLOSSLESS ANDLOSSY CODING

USING THE FIVE DICTIONARIES

This database contains about 980 scanned document im-
ages. The 10 images we selected are mostly streak-free,
not obviously skewed, from various sources, and contain
mainly text, little line art and no halftones. All ten im-
ages have 300 dpi resolution. Eight of the images have
the same size 25923300 pixels, while N03H has size
2480 3508 and S012 2536 3308.

All experiments are carried out on a Pentium Pro 200 MHz,
running Red Hat Linux 6.0, with 64 MB physical memory. We
measure encoding time (in sec) using the function “clock( )”
and peak memory usage (in MB) using the Unix command
“top.” We give results that are averaged over all test images.
Our code was not specifically optimized for speed or memory
efficiency.

1) Modified-Class Dictionary:Table I summarizes the
lossless and lossy coding efficiencies of all the five dictionaries
(OP, SE, CLASS, TREE, and MC). Detail on how lossy coding
is performed will be presented in Section IV. We show the av-
erage coded file sizes and also the percentages of improvement
over the least efficient OP dictionary. Compared to the OP
dictionary, the compression improvements from the CLASS,
TREE, and MC dictionaries are approximately the same, about
8% for lossless coding and 16–18% for lossy coding. For
lossless compression, the proposed MC design is basically the
same as the CLASS design while slightly worse than the TREE
design. However, for the TREE design, the numbers listed are
the best compression achieved at the optimal dictionary sizes;
the encoder has to exhaustively search for these optimal sizes
[19], [8]. For lossy compression, the MC design achieves the
best compression.

2) Encoding Tradeoffs in Page Striping:In this section,
we show the savings in encoding time and memory usage
when page striping is applied. Fig. 2 plots encoding time, peak
memory usage, and coded file size as functions of the number
of stripes into which a page is split. The dynamic scheme and
the isolated scheme using the SE design and the MC design
are compared. The results shown are for lossless compression;
similar results are obtained for lossy compression.

The savings in encoding time from page striping are shown
in Fig. 2(a). By splitting a page into two stripes, the isolated
scheme reduces encoding time by 45% for both dictionaries
(close to the theoretical savings of 50%); the dynamic scheme
reduces encoding time by 32% for the MC dictionary and 26%
for the SE dictionary. The dynamic scheme provides less time
reduction because, instead of starting from scratch for each
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Fig. 2. Coding time, peak memory usage, and coded file size as functions of the number of stripes used.

stripe, it needs to consider those previous dictionary symbols
and decide how to use them. Splitting the input image into
more stripes brings more savings in encoding time but the
returns diminish. Comparing the four curves with the curve
(dotted curve) in Fig. 2(a), we see that the four curves deviate
from the curve as the number of stripes increases. This is
because the total encoding time consists of two parts, pattern
matching and other encoding activities (e.g., symbol extraction,
arithmetic bitmap and integer coding, etc.). While the pattern
matching time is roughly inversely proportional to the number
of stripes, the time spent on the other activities does not go
down as the number of stripes increases. In the next section, we
will show that, for a fixed input image, the time spent on these
other encoding activities is almost fixed.

Fig. 2(b) shows the peak memory usage as a function of the
number of stripes used. We see that the dynamic and isolated
schemes using both SE and MC designs require basically the
same amount of physical memory. This is because although the
dictionaries of the four curves are of different sizes, the memory
needed to buffer the dictionaries only accounts for a very small
percentage of the total memory usage. Most of the memory is
for buffering a page or page stripe. By splitting a page into two
stripes, we save about 40% of the peak memory consumption.
Using more stripes brings more savings in memory consump-
tion but with diminishing returns. The curves flatten out after
six stripes as each stripe becomes small enough that the memory
needed to buffer it no longer dominates.

While page striping reduces encoding time and memory
usage, this comes at the price of reduced compression efficiency.
As shown in Fig. 2(c), the compressed bit rates increase
steadily as the page is coded using more stripes. Using dynamic
dictionaries minimizes this bit rate penalty. For the MC design,
the isolated scheme with eight stripes has 18% higher bit rate
than with one stripe, but the dynamic scheme reduces this bit
rate penalty to 13%; for the SE design, the isolated scheme
with eight stripes has 18% higher bit rate than with one stripe,
but the dynamic scheme reduces this bit rate penalty to 11%.

Fig. 3 provides a convenient way to evaluate the tradeoff
between coding time and bit rate by showing what bit rate
can be achieved at a given coding time using a certain dic-
tionary scheme. Fig. 3 compares the five dictionary schemes
aforementioned. The number of stripes used varies from one
to eight. Using only one stripe (i.e., whole page) encodes
the slowest but produces the smallest coded file size (the
lower-right corner in Fig. 3); using eight stripes runs the fastest
but produces the biggest coded file size (the upper-left corner

Fig. 3. Coded file size as a function of coding time for page striping using five
dictionary schemes: static, isolated, dynamic, dynamic-2, and adaptive. The MC
design results are shown as example.

Fig. 4. Coded file size as a function of memory usage for page striping using
five dictionary schemes: static, isolated, dynamic, dynamic-2, and adaptive. The
MC design results are shown as example.

in Fig. 3). The dashed lines in Fig. 3 are the lower convex
hull for all the operating points. Points on this lower convex
hull achieve the best compression using the shortest encoding
time. In Fig. 3, this lower convex hull is defined by the static
scheme (square markers). The proposed adaptive scheme (“”
markers) operates very close to the lower boundary of convex
hull, achieving time versus bit rate tradeoff similar to that of
the static scheme. The dynamic scheme (“x” markers) is the
least time efficient dictionary scheme as it operates the farthest
from the lower convex hull.
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TABLE II
CODING MULTIPAGE DOCUMENTSUSING THREE DICTIONARY SCHEMES FOR THESE DESIGN

TABLE III
CODING MULTIPAGE DOCUMENTSUSING THREE DICTIONARY SCHEMES FOR THEMC DESIGN

To compare the performance in the memory versus bit rate
tradeoff by the five dictionary schemes, we plot coded file size
as a function of peak memory consumed in Fig. 4. Similarly,
the input images are coded as one to eight stripes. The dashed
lines show the lower convex hull for all the operating points.
The dynamic scheme (“x” markers) now defines this lower
convex hull, meaning that it achieves the best compression
using the least system memory. The static scheme (square
markers), which achieves the best time versus bit rate tradeoff,
becomes the least efficient in resolving the memory versus bit
rate tradeoff. The proposed adaptive scheme (“” markers)
still operates very close to the lower convex hull. Combined
with the results shown in Fig. 3, we conclude that the adaptive
scheme is a robust scheme in resolving both encoding tradeoffs
well. Hence the adaptive scheme is a suitable choice for most
applications, where system memory and encoding time are
both very important system parameters.

3) Multipage Document Compression:Multipage docu-
ment images are a set of images scanned from the same source,
preferably from consecutive pages. Some issues of compressing
multipage document images are addressed in [22]. In multipage
document compression, the same dictionary updating processes
used in page striping can also be applied to take advantage of
the text correlation across pages.

Tables II and III compare the coding efficiency on three
multipage document image sets using three dictionary schemes
(the isolated, static, and dynamic schemes) combined with the
SE design and the MC design, respectively. Among the three
test sets, two are from the University of Washington Document
Image Database I, one of four pages (N04H, N04I, N04L,
and N04M) and the other of five pages (N01F, N01G, N01H,
N01I, and N01J). They are from the same source, but not from
consecutive pages. Their scanning conditions are unknown.
The third set is an 11-page document we scanned in from [23],
at 300 dpi. The scanned pages are consecutive and the scanning
conditions are consistent for all pages.

Tables II and III show that, compared to the isolated scheme,
the dynamic scheme can improve compression by up to 8% for
the MC design and 10% for the SE design. Another interesting

phenomenon is that the static scheme using the SE design also
achieves 4–5% of improvement over the isolated scheme (see
Table II). When coding a single-page document, the SE dictio-
nary is usually twice as big as the MC dictionary, containing re-
dundant bitmap information; it is therefore less efficient due to
high index coding cost [8]. When coding a multipage document,
however, it is advantageous to use a bigger and more redundant
dictionary throughout all the pages because it gives the symbols
from later pages a broader range of choices. We hardly see any
improvement from the static scheme using the MC design be-
cause the MC design is too specifically designed for only the
first page. Fig. 5 shows the dictionary size growth curves from
page to page. For our 11-page test set, from the fourth page on,
the dictionary size becomes steady, showing that the encoder has
gathered most useful bitmap information contained in this doc-
ument set. The other two test sets do not contain enough pages
to show this trend.

Fig. 6 shows the time versus bit rate tradeoff for the five
dictionary schemes when tested on multipage documents com-
bined with page striping. The results are averaged over the three
multipage test sets. Five values for the number of stripes per
page are used, 1, 2, 4, 8, and 16. At the lower-right corner in
the figure, each page is encoded as a whole (the number of
stripes is one). At the upper-left corner, each page is processed
as 16 stripes. The lower convex hull (given as the dashed lines)
is still mostly defined by the static scheme. The adaptive and
dynamic-2 schemes operate very close to the lower boundary,
with a couple of points falling on it. For the memory versus bit
rate tradeoff, we observe the same relationship between the five
schemes as shown in Fig. 4.

Summary: Page striping reduces encoding time and physical
memory usage with reasonably low bit rate penalty. In page
striping, compared to sending isolated dictionaries for each
stripe, dynamically updating the dictionary can significantly
reduce the bit rate penalty incurred. The proposed adaptive
dictionary updating scheme is robust and can resolve both
the time versus bit rate tradeoff and the memory versus bit
rate tradeoff favorably at the same time. The same dynamic
dictionary updating techniques can be applied to multipage
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Fig. 5. Dictionary size growth from page to page for the three test multipage
document image sets. Solid lines are for the MC design and dotted lines for the
SE design.

Fig. 6. Coded file size as a function of coding time for page striping when used
in multipage document compression. Five dictionary schemes are compared:
static, isolated, dynamic, dynamic-2, and adaptive. The MC design results are
shown as example.

document image compression and improve the compression
ratio by up to 8–10%.

III. SPEEDUPTECHNIQUES FORPATTERN MATCHING

In the previous section, we proposed dictionary construction
schemes for page striping that can reduce memory usage and
encoding time with minimal sacrifice in coding efficiency. In
this section, we propose three speedup techniques for pattern
matching. Compared to page striping, these techniques can
better resolve the tradeoff between coding time and bit rate.

A. Limited Dictionary Symbol Search

To design the MC dictionary, we group all symbols into
classes, choose class representatives to go into the dictionary,
and form MSTs for all the dictionary symbols. Suppose a
symbol belongs to a certain class, whose representative is
symbol , which, after the MST construction procedure, lands
in MST . Therefore we know that the mismatch between
symbol and symbol must be small (though not always the
smallest), and that symbol is similar (to different degrees) to

all the other symbols in tree . In addition, we know that all
other trees are sufficiently dissimilar to treebecause no edge
between them has weight lower than the threshold. Therefore,
to find the best match for symbol in the dictionary, it is
likely that we need to search among only those symbols that
belong to MST . To do this, we maintain atree-ID value for
each symbol on the page, which specifies the MST to which
this symbol’s representative belongs. To find the matching
dictionary symbol for the current symbol, we only search
among those dictionary symbols that have the sametree-ID.
This can significantly reduce the number of dictionary symbols
against which the current symbol is matched. Whether this
limited search algorithm will suffer significant bit rate penalty
depends on how many symbols actually belong to the same
MST as their best dictionary matches. Later in this section, we
show that this limited search algorithm can save encoding time
at almost no coding loss.

B. Early Jump-Out Based on Previous Best Match

When matching one symbol with another, we save the
previous lowest mismatch score; the pattern matcher compares
on-the-fly the current accumulated mismatch score against the
previous lowest one. If the current mismatch is already above
the previous lowest, then we terminate the current matching
process. Computing the Hamming distance between two sym-
bols is fast because it only requires the exclusive-OR (XOR)
operation and incrementing the mismatch score accordingly.
Since comparing the two mismatch scores also takes time, and
we do not want this time to be comparable to the Hamming
distance calculation where we hope to save time, we do the
integer comparison of mismatch scores only once per line.
At the end of each line, the current accumulated mismatch is
checked; if it exceeds the previous lowest, the pattern matching
process terminates.

C. Enhanced Prescreening

Before matching a pair of symbols, it is advantageous to pre-
screen them by certain features. There is no need to apply pat-
tern matching to two symbols that are obviously dissimilar. For
example, symbols that differ greatly in size (e.g., a capital “D”
and a comma “,”) are obviously dissimilar. The encoder in [12]
prescreens using symbol sizes; only symbols with similar sizes
(defined as not more than 2 pixels different in either dimension)
are given to the pattern matcher. Prescreening is intended to re-
duce the number of unnecessary pattern matching calls that will
not return a match. At the same time, prescreening should not
rule out potentially good matches. Otherwise it will incur a high
bit rate penalty. Therefore, the ideal prescreening rules out all
“unmatchable” symbols and passes on all “matchable” symbols
to the more expensive pattern matching subroutine.

Other features can be used in prescreening besides symbol
size. One such example is to use symbol area and/or perimeter
[13], [24]. However, these two features are not particularly
helpful for two reasons: they are correlated with symbol size,
and they are usually sensitive to scanning noise and digiti-
zation parameters such as contrast [13]. A useful feature for
prescreening introduced in [13] is called the quadrant centroid
distance. It is calculated as follows. We divide each symbol into



YE AND COSMAN: FAST AND MEMORY EFFICIENT TEXT IMAGE COMPRESSION WITH JBIG2 951

TABLE IV
USING THE THREE PROPOSEDSPEEDUPTECHNIQUES IN SPM JBIG2. TOTAL ENCODING TIME(IN SEC), TIME SPENT ON PATTERN

MATCHING (IN SEC), AND THE ENCODED FILE SIZE (IN BYTES) ARE SHOWN

TABLE V
USING THE THREE PROPOSEDSPEEDUPTECHNIQUES IN PM&S JBIG2. TOTAL ENCODING TIME (IN SEC), TIME SPENT ON PATTERN

MATCHING (IN SEC), AND THE ENCODED FILE SIZE (IN BYTES) ARE SHOWN

four quadrants and calculate the centroid for each quadrant.
To prescreen two symbols, we calculate the distance between
each pair of corresponding quadrant centroids, sum the four
distances and compare the total to a preset threshold. A small
total distance means that the two symbols have similar mass
distribution in all four quadrants; only such symbol pairs are
passed on to pattern matching to be further examined.

According to our experiments, in the English language, using
the Hamming distance based matching criterion, letter pairs that
are among the most easily confused include “b” and “h,” “c”
and “e,” and “i,” and “l.” In this paper, we propose two topolog-
ical features for prescreening: number of holes and number of
connected components. Prescreening by these two features can
effectively prevent the above symbol pairs from being handed
over to the pattern matcher.

D. Experimental Results

In this section, we show experimental results on the three
speedup techniques proposed, the limited dictionary search
algorithm based on tree-ID (TID), early jump-out (EJO), and
enhanced prescreening (PRESCRN). We consider two figures
of merit, the encoding time saved and the bit rate penalty
incurred.

We use the same 12 test images and the same computer
platform as in Section II-D. Results are averaged over all test
images. Table IV gives the total encoding time, time spent
on pattern matching, and coded file size for each individual
technique and different combinations of them, for a lossless

SPM JBIG2 encoder. Table V shows the corresponding results
for a lossless PM&S JBIG2 encoder. We only show lossless
coding results here because for SPM, lossy coding takes extra
time to preprocess the input image, while lossy PM&S will
encode faster because no residual coding (coding the original
image again based on the lossy version already sent using
refinement coding) [2], [8] is needed. For both cases, the
amount of extra time needed or saved is fixed for a given
input image. Therefore, we only consider lossless coding now;
lossy coding will be considered in further detail in the next
section. The first rows (NONE) in Tables IV and V refer to using
no speedups and prescreening only by size, using a size offset
threshold of 2 pixels (size difference can not be bigger than 2
pixels in either dimension). Using tighter size offset thresholds
(i.e., 1 or 0 pixels) can further reduce the encoding time but
at the price of higher coding loss. In SPM (see Table IV),
pattern matching accounts for up to 90% of the total encoding
time. The rest of the encoding time is a fixed value of around
8.6 s. For the PM&S mode (see Table V), pattern matching
accounts for up to 45% of the total encoding time. The rest
of the encoding time is a bigger fixed value of around 13.3 s.
Using the NONE rows as the basis for comparison, we give
the percentages of time saved and coding loss incurred from
each individual speedup technique and several combinations
of them. The limited dictionary search technique (TID) saves
15% of the pattern matching time, while causing almost no
coding loss. Note that TID is only applicable to the SPM
mode using the MC dictionary design. The early jump-out
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TABLE VI
PRESCREENINGPASS RATES WHEN DIFFERENTFEATURESARE USED

technique (EJO) saves 16% and 12% of the pattern matching
time in SPM and PM&S, respectively. EJO incurs no bit rate
penalty. In SPM, we can combine TID and EJO together to
achieve a pure 31% time gain with no coding loss. Enhanced
prescreening is the most efficient way to save encoding time.
Adding the quadrant centroid distance to the size prescreening

saves almost of the pattern matching time, while
incurring a bit rate penalty of around 1%. Adding the numbers
of holes and connected components saves 40% of
the pattern matching time, which is less efficient than the Q
feature. However, incurs only a 0.5% bit rate penalty.
Combining all these speedup techniques together saves 81%
and 76% of the pattern matching time in SPM and PM&S,
respectively. In terms of total encoding time, these numbers
translate into savings of 74% and 33%, respectively. The bit
rate penalty incurred is relatively small, 1.7% for SPM and
1.3% for PM&S.

Without the TID technique, each symbol searches among all
dictionary symbols for its best match. For our test image set, this
means the average search range is 638 dictionary symbols. With
the TID limited search method, however, the average search
range is reduced to only 34 dictionary symbols, a 95% reduc-
tion. Consequently, the time spent on finding dictionary matches
for all symbols is reduced to 5.30 s with TID from 19.66 s
without TID. Without the EJO technique, the pattern matcher
will examine in full every pair of symbols passed on to it, i.e., it
will go over 100% of the bitmap area before making a decision.
With EJO, however, experiments show that on average only 44%
of the bitmap area will be examined. Furthermore, on average
89% of all the pattern matching calls result in early termination.
Although EJO has to spend extra time comparing integer mis-
match scores, it still reduces the average number of CPU clock
cycles used to match two symbols from 68 to 60. An important
advantage of the TID and EJO techniques is that they save en-
coding time almost “for free,” meaning without bit rate penalty
(see Tables IV and V). To see how enhanced prescreening helps
effectively rule out unlikely matches, we list the percentages of
prescreening passed in Table VI. Using the symbol size (S) fea-
ture alone is not efficient enough; around 20% of the symbol
pairs will still be given to the pattern matching process. Adding
the number of holes and number of connected components

reduces the pass rate to 12%; adding the quadrant cen-
troid distance only 5% of the symbol pairs can pass
prescreening. Note that adding the Q feature also results in a bit
rate penalty twice as big as adding (see Tables IV and
V). By combining all three features together with symbol size

, we can further reduce the prescreening pass
rate.

Fig. 7 compares the impact on the time versus bit rate tradeoff
from the proposed speedup techniques and from page striping.
Results from the dynamic scheme (‘x’ markers) and the static

Fig. 7. Combining page striping and the proposed speedup techniques
together. Dynamic (“x” markers) and static (square markers) schemes are
compared. Numbers in figure represent number of stripes used.

scheme (square markers) are shown because in page striping
these two schemes bound the performance curves (see Fig. 3).
The MC dictionary results are shown as an example. The lower
convex hull (dashed lines) is defined by the static scheme using
the speedup techniques (black square markers). For the dynamic
scheme, a big performance gap between using the speedup tech-
niques (black “x” markers) and not using the speedup tech-
niques (gray “x” markers) is observed. The same performance
gap for the static scheme is far less significant. This is because
the dynamic scheme involves more pattern matching than the
static scheme; the propose speedup techniques all aim at re-
ducing the pattern matching time. Note that with the speedup
techniques, the dynamic scheme now operates very closely to
the lower convex hull. Since the dynamic dictionary achieves
a given tradeoff point using more stripes, it is more memory
efficient.

Finally, in Fig. 8 we compare lossless SPM (black markers)
and PM&S (gray markers) with and without the proposed
speedup techniques being applied (“NONE” and “ALL”
markers). We show results using three size offset thresholds,
2, 1, or 0 pixels. Clearly SPM completely defines the lower
convex hull (dashed lines) in Fig. 8. In [8] we showed that
SPM achieves better lossless compression at the price of longer
encoding time. SPM is more time consuming mostly because it
requires more extensive pattern matching. However, with the
proposed speedup techniques for pattern matching, the SPM
encoding time can be significantly reduced; since these tech-
niques only incur very small bit rate penalties, SPM’s higher
coding efficiency is still mostly retained. If achieving high
coding efficiency is of the utmost importance for an application,
then it should use SPM with a loose prescreening criterion (e.g.,
set size offset threshold to 2 pixels). If the application is willing
to tolerate a small coding loss in order to encode faster, then it
should use SPM with all speedup techniques and use very tight
prescreening thresholds (e.g., set size offset threshold to 0).
Note that EJO and TID should always be used when applicable.
For other applications with intermediate requirements, different
combinations of the speedup techniques and page striping offer
different tradeoffs.
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Fig. 8. Comparison between SPM and PM&S when the proposed speedup
techniques are used.

Summary: The three proposed speedup techniques can re-
duce encoding time by as much as 75% while only suffering a
small coding loss of at most 1.7%. These techniques offer better
tradeoffs between coding time and bit rate than page striping.
By applying these techniques to the SPM mode, we obtain text
image coding systems that encode both efficiently and fast.

IV. RECONSTRUCTEDIMAGE QUALITY CONTROL IN LOSSY

COMPRESSION

All the results given in the previous section are for lossless
coding. In this section, we concentrate on lossy coding by taking
into account one more figure of merit, the number of substitution
errors in the reconstructed images. We propose to effectively
suppress substitution errors in lossy PM&S and SPM by using
the features introduced in Section III-C.

A. Lossy PM&S: Enhanced Prescreening

In PM&S, when a matching dictionary symbol is found,
the encoder substitutes it for the actual current symbol.
Therefore, PM&S is inherently lossy. When lossless coding
is required, after transmitting the lossy image, the encoder
uses a residual coder to refine the lossy image to its original
version [2]. Using the Hamming distance matching criterion
and a mismatch threshold of 20%, lossy PM&S results in many
substitution errors between letter pairs such as “i” and “l,”
“b” and “h,” “u” and “n,” and so on. To reduce substitution
errors, a tighter mismatch threshold (e.g., 10%) can be applied;
however, this increases the encoding time and the coded file
size. Alternatively, a more sophisticated matching criterion
(e.g., the CTM technique proposed in [27]) can be applied,
but such criteria are usually very computationally intensive. A
simple and effective way to suppress substitution errors is to
use the enhanced prescreening as proposed in Section III-C.
For example, prescreening with the feature number of holes
can easily prevent “b” and “h” from being confused; using the
number of connected components easily distinguishes between
“i” and “l;” and quadrant centroid distance can often tell “u”
and “n” apart.

Fig. 9. Examples of similar symbols with different features. The rightmost
figures show the difference bitmaps. Black error clusters cannot be ignored
because the features would change. Gray error clusters can be ignored.

B. Lossy SPM: Feature-Monitored Shape Unifying

To achieve lossy compression with SPM, the encoder pre-
processes the input image to introduce information loss. In [12]
three processing techniques are proposed:speck elimination,
edge smoothing, andshape unifying. Speck elimination wipes
out very tiny symbols (symbols no bigger than 22). Edge
smoothing fixes jagged edges by flipping protruding single
black pixels or indented single white pixels along text edges.
Shape unifying tries to make the current symbol bitmap as
similar as possible to its reference bitmap, without introducing
too much visual change. This is achieved by flipping pixels in
the current bitmap if they are isolated areas of difference with
the reference bitmap. We use the term “isolated” to mean a
1 1, 1 2, or 2 1 block of pixels. The modified bitmap is
then losslessly coded with refinement coding.

The advantage of permitting only isolated errors in shape
unifying is that visual information loss in the reconstructed
image is almost imperceptible. However, such a restriction also
puts a limit on the lossy coding efficiency. To improve the
coding efficiency, shape unifying should allow not just isolated
errors, but some clustered ones as well, as long as the risk of
character substitution is kept low. To limit this risk, we propose
to monitor the shape unifying procedure using two features,
the number of holes and the number of connected components.
For each cluster of differences between the current bitmap
and its match, if eliminating it will not cause the features
to change, we go on with shape unifying and eliminate this
difference cluster; otherwise, we preserve it to prevent a likely
substitution error from occurring. As an example, Fig. 9 shows
the “b” and “h” pair and the “i” and “l” pair and the difference
maps between them. In Fig. 9(a), we can change the “b” bitmap
not only at the isolated single-pixel location, but at all the
gray pixel locations, as they will not cause the internal hole in
“b” to disappear. But, the black 10-pixel cluster of differences
down at the bottom must be preserved. Otherwise a reader
would perceive an “h” instead of a “b.” Similarly, in Fig. 9(b),
we can change the “i” bitmap at all the gray locations but not
at the black ones because changing the black locations will
cause the “i” bitmap to be connected into one whole piece,
resulting in a substitution error. Though not shown in Fig. 9,
feature monitoring can also help prevent substitutions between
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TABLE VII
APPLYING ENHANCED PRESCREENING TOLOSSYPM&S. AVERAGE COMPRESSEDFILE SIZE (BYTES), ENCODING TIME (SEC) AND PERCENTAGE OF

SUBSTITUTION ERRORSARE SHOWN

TABLE VIII
APPLYING SHAPE UNIFYING WITH AND WITHOUT FEATURE MONITORING TO LOSSY SPM. AVERAGE COMPRESSEDFILE SIZE (BYTES),

ENCODING TIME (SEC) AND PERCENTAGE OFSUBSTITUTION ERRORSARE SHOWN

certain letter pairs that have the same features, e.g., “n” and
“u” or “e” and “o.” In comparing the bitmaps of “n” and “u,”
there are basically two areas where a substantial number of
clustered pixels differ: the center top and the center bottom.
Modifying the upper cluster of pixels in the “n” bitmap to match
the “u” bitmap will cause the “n” to split into two separate
connected components. Monitoring based on the number of
connected components will prevent this. Likewise, modifying
the lower cluster of pixels in the “n” bitmap to match the “u”
will cause the lower opening in the “n” to close, generating
one internal hole. Monitoring based on the number of holes
will prevent this. If we were to consider modifying the upper
and lower pixel clusters simultaneously, the “n” bitmap could
become a “u” bitmap and the topological features remain the
same. But we do not do that. By considering each difference
cluster separately, the topological features block the bitmap
alteration, thereby preventing a substitution error. Modifying
the current symbols at more locations improves refinement
coding efficiency by making symbols more similar to their
references. At the same time, ensuring certain feature values
are maintained allows us to suppress many cases of character
substitutions.

C. Experimental Results

We first look at lossy PM&S and show how enhanced pre-
screening effectively suppresses substitution errors in addition
to reducing encoding time. Table VII shows the encoding time,
coded file size, and percentage of substitution errors for lossy
PM&S using different mismatch thresholds and prescreening
features. A tight mismatch threshold of 10% results in very
rare substitution errors (about 1 in every 1000 symbols). With
a looser threshold of 20%, when prescreening just by size, the
system suffers excessive substitution errors of around 3%, and
the reconstructed images look confusing and sometimes objec-
tionable. With enhanced prescreening, the substitution risk is
made 12 times lower at 0.25%. Moreover, encoding is made
28% faster. Although the average coded file size is 33% bigger

(13 434 bytes as opposed to 10 105 bytes), at 13 434 bytes/image
the reconstructed images have satisfying quality; at only 10 105
bytes/image, some important text information from the orig-
inal images is lost, which is expressed in the form of many
substitution errors that we see. Although not shown here, our
experiments also showed that without enhanced prescreening,
the bit rate goes down steadily as the mismatch threshold goes
up. With enhanced prescreening, however, further loosening the
mismatch threshold will not result in further reduction in bit
rate; instead the bit rate hits a floor. This again shows that en-
hanced prescreening can guard against excessive loss of impor-
tant text information in the images. Compared to using the tight
10% mismatch threshold, the substitution risk from enhanced
prescreening is only two times higher, while the encoding is
20% more efficient and 66% faster.

For lossy SPM, we list in Table VIII the coded file size,
encoding time, and percentage of substitution errors for shape
unifying with and without feature monitoring. We use three
error size thresholds, 2%, 4%, and 6% of the symbol size. We
restrict the size of a permissible error cluster because big error
clusters (even if they do not change the features) cause sig-
nificant visual information loss. As a result, the reconstructed
image will contain a large number of distorted text characters.
Such distorted “garbage” characters, if they exist, are also
counted as substitutions and included in the numbers shown in
Table VIII. A bigger symbol can tolerate a bigger error cluster.
Therefore, we set the error size threshold to be proportional to
the symbol size, i.e., difference clusters smaller than a certain
percentage of the symbol size are deemed ignorable. Compared
to the unmonitored version, feature monitored shape unifying
suffers 55–65% fewer substitution errors at all three error size
thresholds, meaning that it can more effectively avoid losing vi-
sually important text information. However, feature monitored
shape unifying is more computationally demanding because
every cluster of differences with size below the threshold has
to be checked to see if ignoring it will result in change of
features. The feature monitored version takes about 40% longer
to encode than its unmonitored counterpart.
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Fig. 10. Portion of the original image N03H and the reconstructed images under different error thresholds.

To compare lossy PM&S using enhanced prescreening with
feature monitored lossy SPM, we compare the two shaded
entries in Tables VII and VIII. At similar bit rates (13 024
and 13 434), monitored lossy SPM suffers six times fewer
substitution errors (0.04% compared to 0.25%) but also takes 15
times longer to encode (156 s compared to 10 s). Furthermore,
compared to using a tight 10% mismatch threshold in PM&S
(last row in Table VII), monitored SPM using a 2% threshold
(shaded entry in Table VIII) is 20% more efficient (13 024
compared to 16 687) and less subject to substitution
errors (0.04% compared to 0.12%) but takes five times longer
to encode. For an application that does not require real-time
communications, lossy SPM is a better choice because it offers
better reconstructed image quality at lower or comparable bit
rates. A real-time application, however, should choose the
PM&S mode with enhanced prescreening because it is much
faster and offers satisfactory quality.

Finally, Fig. 10 shows a portion of the original image N03H
[Fig. 10(a)] and a set of reconstructed images from lossy
PM&S and SPM using different system setups. For lossy
PM&S [Fig. 10(b)–(d)], enhanced prescreening effectively
suppresses the substitutions between “b” and “h” and “c” and
“e,” achieving quality similar to the tighter 10% threshold. For
lossy SPM, at all three error size thresholds, feature monitoring
[Fig. 10(e)–(g)] successfully retains the internal hole in “b”
that is important for correct letter identification.

Summary: When used in lossy PM&S, in addition to
reducing 30% of encoding time, enhanced prescreening can
also effectively suppress 11 out of every 12 substitution errors.
For lossy SPM, the proposed feature monitored shape unifying
can successfully suppress more than half of all substitution
errors. In comparing lossy PM&S with SPM, we found that
SPM offers better reconstructed image quality (significantly
fewer substitution errors) at similar or lower bit rates, but at the
price of longer encoding time.

V. CONCLUSION

In this paper, we propose several ways to reduce the en-
coding time, memory consumption, and substitution errors for

text image coding with JBIG2. We first look at page striping
and propose dictionary updating procedures for the singleton
exclusion and modified class dictionaries. With these dynamic
updating techniques, page striping using two stripes gives 30%
of savings in encoding time and 40% of savings in memory
consumption, while suffering only 1.5% of bit rate penalty.
More savings in time and memory can be obtained by using
more stripes but with diminishing returns. We investigate two
encoding tradeoffs in page striping: the time versus bit rate
tradeoff and the memory versus bit rate tradeoff. We propose
an adaptive dictionary updating scheme that can achieve
robust performance in both tradeoffs when compared with
other nonadaptive dictionary construction schemes. We then
propose three speedup techniques for pattern matching. When
combined together, these techniques can reduce coding time by
up to 75% while incurring at most 1.7% coding loss. Compared
with page striping, the proposed speedup techniques can better
resolve the time versus bit rate tradeoff. However, page striping
is still necessary for memory-limited applications. For lossy
compression, in addition to bit rate, coding time, and memory
usage, we also consider the number of substitution errors as the
measure for the reconstructed image quality. For lossy PM&S,
we use enhanced prescreening to reduce character substitutions
by 12 times and save encoding time by 30% at the same time.
For lossy SPM, we propose feature monitored shape unifying to
suppress to of the total substitution errors. Compared
to lossy PM&S, lossy SPM using feature monitored shape
unifying achieves better reconstructed image quality at similar
or lower bit rate, but at the price of longer encoding time.
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