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Abstract

Some Aspects of Temporal Data Exchange

by

Zehui Cheng

The transformation of data from one schema, called the source schema, to another schema, called

the target schema, is the focus of data exchange. The primary challenge in data exchange is

to develop methods that transfer data from a source schema to a target schema using schema

mappings that specify the relationship between the two schemas so that the resulting data

accurately reflects the source data. Over the past two decades, extensive research has been

conducted on data exchange, starting from the original formalization of the problem for relational

schemas. While temporal databases have been extensively studied for many years, the exploration

of temporal data exchange is a relatively recent development. We investigate the notion of

temporal schema mappings specifying the relationship between two temporal schemas. Temporal

schema mappings contain at least one temporal relation symbol and use Allen’s relations to

describe the relationship between temporal variables. Temporal data in such databases can be

represented either through time intervals (concrete time) or time points (abstract time). Taking

this into account, we design a chase algorithm for temporal data exchange settings with multiple

temporal variables in the context of concrete time. We demonstrate that this algorithm produces

universal solutions, provided that it does not fail. Furthermore, we investigate the relationship

between universal solutions in the context of concrete time and universal solutions in the context

of abstract time. We find that challenges arise even when temporal schema mappings involve a

ix



single temporal variable, but we also identify scenarios where these challenges can be overcome.

Different applications may use data structured in various formats, such as relational data

or RDF. Depending on the applications, the target data may need to adhere to a relational schema,

while others require it to conform to an RDF-expressed domain ontology. Our research also

focuses on the following problem: Given a set of temporal schema mappings, how to exchange

data with temporal information from a relational source schema into a target RDF-expressed

ontology, so that we can enrich both the data and the ontology with temporal information from

the relational sources? To address this challenge, we design a domain-independent algorithm

that materializes target RDF data via a version of data exchange. This algorithm ensures the

enrichment of both the data and the ontology with temporal data obtained from the sources.

The aforementioned work assumes that the temporal schema mappings have already

been derived. Earlier studies on relational data exchange addressed the problem of active learning

of (non-temporal) global-as-view (GAV) schema mappings. In the last part of this dissertation,

we initiate an investigation on the automatic derivation of relational-to-RDF temporal schema

mappings (based on our earlier work on relational-to-RDF temporal data exchange). To achieve

this, we design an active learning algorithm and validate it using the metadata generator iBench,

which was originally developed to generate relational-to-relational schema mappings and their

corresponding data examples. We enhance iBench with additional features, referred to as

temporal iBench, to enable the generation of relational-to-RDF temporal schema mappings and

their data examples. Additionally, we carry out a comprehensive experimental evaluation which

demonstrates the effectiveness of our active learning algorithm.
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Chapter 1

Introduction

In this chapter, we offer an introduction to our research and summarize the main

contributions. Our research consists of three parts: universal solutions in relational-to-relational

data exchange, relational-to-RDF temporal data exchange, and active learning of temporal

schema mappings. The introduction and summary of each part are presented in Section 1.1,

Section 1.2, and Section 1.3, respectively. After that, we provide the structure of this dissertation

in Section 1.4.

1.1 Universal Solutions in Relational-to-relational Data Exchange

Data exchange is concerned with the transformation of data structured under one

schema, called the source schema, into data structured under a different schema, called the

target schema. Since the original formalization of the data exchange problem between relational

schemas in [32], an extensive study of data exchange has been carried out in several different

settings, including XML data exchange [11], data exchange between graph databases [18], and
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relational to Resource Description Framework (RDF) data exchange [22]; an overview of the

main results in this area can be found in the monograph [14]. Temporal databases constitute

a mature area of research that has been studied in depth over several decades; for overviews,

see, e.g., the book [58] or the book chapter [30]. Data exchange and temporal databases have

advanced independently and, rather surprisingly, their paths did not cross until recently, when

Golshanara and Chomicki [36] published the first paper on temporal data exchange, that is, data

exchange between temporal databases.

Data exchange is formalized using schema mappings, i.e., tuples of the form M =

(S,T,Σ), where S is the source schema, T is the target schema, and Σ is a finite set of constraints

in some suitable logical formalism that describe the relationship between source and target. Every

fixed schema mapping M gives rise to the data exchange problem with respect to M = (S,T,Σ):

given a source instance I, find a solution for I, that is, a target instance J so that (I,J) |= Σ.

In general, no solution for I may exist or multiple solutions for I may exist. Fagin et al. [32]

introduced the concept of a universal solution and made a case that universal solutions are the

“best” solutions to materialize, provided solutions exist. In a precise sense (formalized using

homomorphisms), a universal solution is the most general solution, thus it embodies no more and

no less information than what the constraints in Σ specify. By now, universal solutions have been

widely adopted as the preferred semantics in data exchange; furthermore, a concerted research

effort has been dedicated to discovering when universal solutions exist and how to compute them.

The main tool for computing universal solutions is the chase algorithm [32] and its variants (see

[38] for a survey).

In temporal databases, there are two different models of time, namely, concrete time

2



and abstract time; in the first model, time is represented by time intervals, while in the second

by time points [30, 65]. Concrete temporal databases can be converted to abstract temporal

databases using the semantic function1 J.K, which takes as input a concrete temporal database

D and returns as output the abstract temporal database JDK where intervals of time in D are

replaced by all points of time in them. The semantic function is often deployed to transfer results

about concrete temporal databases to results about abstract temporal databases.

As already mentioned, Golshanara and Chomicki [36] were the first to investigate

temporal data exchange, namely relational-to-relational temporal data exchange. Specifically,

they considered temporal schema mappings M = (S,T,Σst ,Σt), where S and T are schemas

consisting of relation symbols each of which has exactly one temporal attribute, Σst is a set of

temporal source-to-target tuple-generating dependencies (temporal s-t tgds) and Σt is a set of

temporal target equality-generating dependencies (temporal target egds) with the restriction that

each such constraint contains exactly one temporal variable. This means that each constraint in

Σst is of the form ∀x∀t(ϕ(x, t)→∃yψ(x,y, t)), where t is the only temporal variable, ϕ(x, t) is a

conjunction of source atoms, and ψ(x,y, t) is a conjunction of target atoms. Also, each constraint

in Σt is of the form ∀x∀t(θ(x, t)→ xk = xl), where t is the only temporal variable, the variables

xk and xl are variables in x, and θ(x, t) is a conjunction of target atoms.

Let M = (S,T,Σst ,Σt) be a temporal schema mapping as above. Golshanara and

Chomicki’s main result [36] is the discovery of a variant of the chase algorithm that has the

following properties: (a) it runs in polynomial time; (b) given a concrete source instance I, it

detects if JIK has a solution with respect to M ; and (c) if JIK has such a solution, then it produces

1In the temporal databases literature, J.K is called the semantic mapping. Here, we chose to call it the semantic
function to avoid confusion with the term schema mapping, which will be used repeatedly throughout this chapter.
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a concrete target instance J such that J is semantically adequate for I, i.e., the abstract target

instance JJK is a universal solution for the abstract source instance JIK. In the sequel, we call

normalizing chase the variant of the chase used in [36]. It is a natural extension of the chase

algorithm to temporal dependencies, but with the twist that first a normalization step is performed

on the given concrete source instance I and then the temporal s-t tgds are applied to the resulting

normalized instance N (I); after this, a second normalization step is performed on the resulting

concrete target instance and then the temporal target egds are applied. Our investigation began

when we noticed that Golshanara and Chomicki [36] do not address the question of whether

or not the normalizing chase always produces a universal solution for a given concrete source

instance, provided the normalizing chase does not fail. As a matter of fact, Golshanara and

Chomicki never introduce the notion of a universal solution for a concrete source instance.

Summary of results

• The first part of our research focuses on universal solutions in the context of concrete time.

We define the notions of a concrete schema mapping with multiple temporal variables in

the constraints, a homomorphism between concrete instances, a concrete solution, and a

concrete universal solution. This framework contains (standard) data exchange between

relational schemas as a special case. We then give a polynomial-time concrete chase

algorithm for concrete schema mappings and concrete source instances, and we show

that the chase algorithm can produce concrete universal solutions for the given concrete

source instance, provided the concrete chase algorithm does not fail on that instance. We

also show, however, that the concrete chase algorithm may fail, yet solutions (and, in fact,

4



universal solutions) for the given concrete source may exist. Therefore, the concrete chase

algorithm is incomplete. In view of this finding, we identify quite tight sufficient conditions

on concrete schema mappings, so that the concrete chase algorithm is complete, i.e., if

the chase algorithm does not fail on the given concrete source instance, then it produces a

universal solution, while if it fails, then no solution for that instance exists. Specifically,

the aforementioned sufficient conditions consist of two parts (a) every concrete s-t tgd is

full (i.e., its consequent contains no existential quantifiers); (b) if a concrete s-t tgd is not

full, then it contains exactly one temporal variable, and this temporal variable occurs in

every atom of the consequent of the concrete s-t tgd; moreover, every target egd contains

at most one temporal variable.

We also consider schema mappings whose constraints contain at most one temporal

variable, and we explore the relationship between universal solutions in the context of

concrete time and universal solutions in the context of abstract time. By doing so, we aim

to gain insight into the semantic adequacy of universal solutions in the context of concrete

time.

In particular, we investigate the question: Which temporal schema mappings admit

semantically adequate concrete universal solutions? We make some progress towards

answering this question by identifying sufficient conditions that guarantee the existence of

semantically adequate concrete universal solutions.

This first part of our research is presented in Chapter 3. We published this work as a

conference paper in the 27th International Symposium on Temporal Representation and
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Reasoning (TIME 2020) [28] and as a journal paper invited in the special issue from TIME

2020 of Journal Information and Computation [29].

1.2 Relational-to-RDF Temporal Data Exchange

In various application domains spanning industry, government, science, and global

health, data collection is often carried out independently by different teams over time. While some

real-life applications format their source and target data in relational databases, other applications

require the target data format to align with standard domain vocabularies. These vocabularies,

known as domain ontologies, are developed by experts and include concepts, relationships, and

domain rules governing their interactions. Our work specifically addresses a common scenario

in which ontologies and ontology-compliant data are expressed using RDF/S capabilities, which

encompass the RDF data model [54] enriched with additional RDFS specifications [55]. In

this scenario, namely relational-to-RDF data exchange scenario, the source data remains in a

relational format.

In applications conforming to this relational-to-RDF data exchange scenario, such as

studies on antimicrobial resistance (AMR) [51], the source data may contain crucial temporal

information. However, the applicable target domain ontologies lack temporal components. (In

AMR this is the case with the Antibiotic Resistance Ontology (ARO).2) At the same time,

solutions for relational-to-RDF data exchange problem as found in studies like [49], do not

directly apply here, as they do not incorporate the temporal semantics of the data in easy-

to-use ways. Consequently, temporal information from sources may be lost during the data

2http://www.obofoundry.org/ontology/aro.html
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exchange process, making it hard or even impossible for domain scientists to efficiently obtain

accurate answers to temporal queries based on the source data and the target ontologies. Gutierrez,

Hurtado, and Vaisman [41] augmented RDF Schema with temporal components. This enables the

formalization and study of data exchange between temporal relational databases and temporally-

augmented RDF. The second part of our research focuses on the data exchange problem of how

to transfer the temporal data from temporal relational databases into RDF-expressed ontologies

enriched with temporal features. This work was completed in collaboration with researchers

Jing Ao and Rada Chirkova from North Carolina State University. The details are presented in

Chapter 4, and was published as a short conference paper in the proceedings of Advances in

Databases and Information Systems - 24th European Conference (ADBIS 2020) [9] and as a

journal paper in the ACM Journal of Data and Information Quality [10].

Summary of results We formally define the relational-to-RDF temporal data exchange prob-

lem for source schemas that may also include relation symbols with no temporal attributes and

target schemas that are RDF-expressed ontoligies. We adopt the concept of temporal annotation

from existing research on RDF graphs and use it to enrich RDF with temporal components

in such a way that we can define the notion of temporal RDF graph schema. We then define

notions of a temporal RDF graph schema, an instance of a temporal RDF graph schema, a

relational-to-RDF full s-t tgd with multiple temporal variables and relations between temporal

variables, a GAV constraint, and a relational-to-RDF schema mapping. We then design a chase

algorithm, which takes a relational-to-RDF temporal schema mapping and a temporal relational

database as inputs. We show that the results generated by the chase algorithm are universal
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solutions for the given source instance w.r.t. the given relational-to-RDF schema mapping.

1.3 Active Learning of Temporal Schema Mappings

The aforementioned data exchange problem, namely relational-to-relational temporal

data exchange and relational-to-RDF temporal data exchange, are facilitated by the wide usage of

schema mappings. Real-world applications can benefit from the utilization of schema mappings.

However, designing and refining schema mappings manually by domain experts can be laborious,

and different experts may produce different schema mappings. Hence, it is crucial to develop an

automatic or semi-automatic tool for generating schema mappings. Several frameworks exist

for generating schema mappings between relational schemas, such as the fitting framework, the

repair framework, the learning framework [62, 64], and the Interactive Mapping Specification

(IMS) framework proposed in [25]. In particular, paper [62] initiated the investigation of GAV

schema-mapping generation in the learning framework, where a GAV schema mapping is defined

as a relation-to-relational schema mapping specified by GAV constraints. Their work primarily

focused on the theoretical aspects and introduced the EXACTGAV algorithm, which aims to

identify a goal schema mapping. Building upon the EXACTGAV algorithm, paper [64] developed

the GAVLEARN algorithm to identify a GAV schema mapping in practical scenarios. However,

none of the aforementioned papers considers temporal attributes and relationships between

temporal attributes when generating schema mappings. In addition, all of the earlier work

concentrates solely on schema mappings specifying relationship between non-temporal relational

databases, and not on temporal data in the temporal relational databases. Moreover, the schema

8



mappings that specify the relationship between a temporal source relational schema and a target

temporal RDF graph schema are under explored. Thus, the third part of our research presented

in Chapter 5 aims to investigate the automatic or semi-automatic generation of relational-to-RDF

temporal schema mappings, and it will be submitted for publication in the near future. The main

contributions in the third part of our work is outlined below:

Summary of Results In the research described in Section 1.1 and Section 1.2, we assume that

relational-to-relational/ relational-to-RDF schema mappings are carefully designed by domain

experts and are provided in the data exchange problem. In the last part of this dissertation, we

study the data exchange problem from temporal relational database to RDF when no relational-to-

RDF temporal schema mappings are provided. Our work aims to derive schema mappings based

on a set of data examples. We first define the notion of a symbolic instance for a relational-to-RDF

full temporal s-t tgd. With the symbolic instances, we are able to represent a relational-to-RDF

full temporal s-t tgd by a pair of symbolic instances, one for the left-hand side of the s-t tgd

and one for the right-hand side of the s-t tgd. After that, we define the notion of a canonical

constraint which is a relational-to-RDF full s-t tgd where the left-hand side is a conjunction of

relational atoms, each of which is transferred from a fact in a given source instance; and the

right-hand side is a conjunction of RDF atoms, each of which is transferred from a triple in a

given target instance. We first identify challenges and then design an algorithm to generate a

canonical constraint for a given source instance and a target instance.

Generating canonical constraints plays a crucial role in the active learning algorithm,

which takes a set of data examples as input and returns a relational-to-RDF GAV schema mapping
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that best describes the data examples. A data example is a source instance and a target instance

which is a universal solution for the source instance with a specific schema mapping. A set of data

examples provide the information about how source data is transferred to align with the target

RDF graph schema in the data exchange process transferring temporal relational databases into

RDF. We take EXACTGAV as our starting point in designing an active learning algorithm. We

repeatedly retrieve a GAV constraint from canonical constraints generated from data examples.

We also enhance the existing metadata generator iBench with a new feature that

enables it to generate benchmark data specifically tailored for temporal data exchange from

temporal relational databases to RDF data. We produce schema mappings and data examples by

the metadata generator, and report an extensive experimental evaluation of our active learning

algorithm.

1.4 Organization of This Dissertation

The remainder of the thesis is structured as follows. In Chapter 2, we provide the

reader with an introduction to the essential background and preliminary concepts, including the

data exchange problem and temporal databases. As previously mentioned, our main contributions

are presented from Chapter 3 to Chapter 5. Lastly, in Chapter 6 we conclude our research, and

we discuss some directions for future research.
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1.5 Related Work

In this section, we provide additional pointers to related work. Specifically, we will

provide a literature review of research related to schema mappings, with a particular focus

on the operations on schema mappings (see Section 1.5.1), as well as a review of studies

concerning chase procedures (see Section 1.5.2). Moreover, we will also present related research

in the domain of data exchange for non-relational data (see Section 1.5.3), including XML

documents and graph databases. We will also provide additional references to temporal databases,

particularly focusing on studies that investigated both abstract and concrete temporal databases

(see Section 1.5.4). As mentioned earlier, the third part of our work explores the relational-

to-RDF temporal schema mapping generation. Previous studies primarily focused on deriving

schema mappings for relational databases, and no existing work investigated how to generate

relational-to-RDF temporal schema mappings using an automatic tool. As stated before, there

are several frameworks for schema mapping generation in previous studies, and we will elaborate

on these frameworks in Section 1.5.5.

1.5.1 Operations on Schema Mappings

Schema mappings play a significant role in the data exchange problem. They are

usually specified using a high-level declarative formalism that describes correspondences between

different schemas at a logical level. In data management systems, schema mappings are also

regarded as metadata. Bernstein [20] pointed out the importance of manipulation on schema

mappings. To this end, Bernstein has introduced a general framework, called model management,
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where high-level algebraic operators were defined for manipulating schemas and mappings

[34, 31]. Two of the most fundamental operators in this framework are the composition and

the inversion of schema mappings. Intuitively, the composition operator combines successive

schema mappings, in which the target of a schema mapping is also the source of another schema

mapping, into a single schema mapping. In contrast, an inverse of a schema mapping, which

specifies a relationship from a source schema into a new target schema, is a new mapping that

describes the reverse relationship from the target schema to the source schema. The composition

operator is widely used in the data exchange problem when target schemas evolve, called schema

evolution, while the inversion operator is mainly used for exchanging data back to the source.

In fact, there have been extensive studies on the composition operator and the inversion

operator after Bernstein’s work [20]. In a subsequent research, Fagin et al. [34] studied the

composition of a finite set of s-t tgds with a finite set of full s-t tgds. They showed that the

composition may not be definable by any set (finite and infinite) of s-t tgds; furthermore, it may

not be definable by any formula of least fixed-point logic. To solve this problem, they introduced

a class of existential second-order formulas with function symbols and equalities called second-

order tgds. Moreover, they proved that second-order tgds are closed under composition and

have desirable properties for data exchange. On top of this work, in another research on the

composition of schema mappings, Nash et al. [50] discussed a broader class of constraints, i.e.,

(first-order) embedded dependencies, full dependencies (i.e., full s-t tgds), and the second-order

constraints that arise from Skolemizing embedded dependencies. For each of the three types of

constraints, Nash et al. designed an algorithm to compute the composition and provided sufficient

conditions on the input schema mappings such that the algorithm does not fail. Furthermore,
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they showed that full dependencies are not closed under composition and that the second-order

dependencies that are not limited to s-t tgds are not closed under restricted composition. Arenas

et al. [12] presented an overview and analysis of the prior research on the semantics of the

composition operator and the inversion operator for schema mappings consisting of s-t tgds.

1.5.2 Chase Procedures

The chase procedure initially emerged as a crucial tool testing logical implication

between sets of embedded dependencies [19, 47]. Subsequently, it underwent adaptations

to accommodate various types of dependencies, including functional, join, and multivalued

dependencies [68]. Moreover, the chase procedure demonstrated its utility in determining if two

database instances (that may contain nulls) represent the same set of possible instances under a

specific set of dependencies [48]. Ullman [66] leveraged the chase for testing query equivalence,

while Johnson and Klug [44] applied the chase for containment under database constraints.

Later on, the chase procedure was applied in data exchange [32, 33], data integration [46], and

ontologies [27]. One of the main issues in this area is to check if the chase can terminate for a

specific set of constraints on all instances. Earlier, we mentioned that Fagin et al. [32] proposed

a chase algorithm for generating universal solutions in the data exchange problem. In addition,

the concept of a weakly acyclic was defined; this concept yields a sufficient condition for the

tractability of the existence of solutions and for efficient computation of a universal solution by

the chase algorithm. For the purpose of summarizing the existing chase procedures, Onet [52]

provided an overview of chase variants and their properties as well as their applications in data

exchange.
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1.5.3 Data Exchange for Non-relational Data Structure

In the last two decades, substantial research has been conducted regarding data ex-

change for relational data. Due to the increased need for exchange data between different

platforms that structure data in various formats, Arenas and Libkin [11] initiated an investigation

on basic theoretical issues of data exchange for XML documents. The paper defined the XML

data exchange problem, where each constraint specifies the relationships between a source docu-

ment type definition (DTD) and a target DTD. Indeed, such constraints refer to the hierarchical

structure of the data. In a subsequent research, Amano et al. [5] studied the schema mappings

between XML documents and considered horizontal navigation and data comparisons. Arenas

et al. [13] provided a summary on the XML data exchange.

In addition, the notion of data exchange was extended into data transferring between

graph databases. Barceló et al. [18] analyzed different possibilities for specifying mappings

in graph databases. They developed an expressive mapping language based on graph query

languages such that their mappings can express complex navigational properties, such as ex-

porting entire paths satisfying some regular conditions. They also investigated solutions to the

data exchange problem for graph databases (called the graph data exchange problem). Chase

algorithms developed for the relational-to-relational data exchange problem were applied in this

context to produce universal representatives of the target graph databases as the solution to the

graph data exchange problem. In that paper, Barceló et al. showed that the chase procedure is

no longer in polynomial time for the data exchange problem for graph databases. Thus, they

identified a restricted class of mappings for which the chase procedure runs in polynomial
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time. However, the data exchange setting described in this paper does not fully capture the

characteristics of practical graph databases. In a subsequent paper, Francis and Libkin [35]

explored the data exchange for graph databases focusing on property graphs, which have been

widely adopted as the standard model by graph databases implementation in practice.

1.5.4 Temporal Databases

Temporal databases are a specialized class of databases used to handle the temporal

data. They are crucial for applications that are sensitive to time, such as financial systems, health

care systems, and version control systems. Kulkarni and Michels [45] added suitable databases

features to the SQL : 2011 standard to support temporal databases, and these features were

applied to major database management systems such as DB2 and Oracle. In previous research,

Toman [65] and Chomicki and Toman [30] in the field of temporal databases have introduced two

perspectives on temporal data: the abstract model of time and the concrete model of time. The

abstract model of time represents temporal data via a point-based data model (i.e., time points),

while the concrete model of time represents temporal data via an interval-based data model (i.e.,

time interval). Chomicki and Toman [30] introduced query languages for the temporal databases

in the abstract model of time and query languages for the temporal databases in the concrete

model of time. They also showed that all first-order queries can be asked using a point-based

first-order query language, which could be translated into an interval-based query language.
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1.5.5 Relational-to-relational Schema Mapping Generation

As mentioned in Section 1.3, there is a body of work concerning the derivation of

schema mappings between relational databases within the fitting, repair, and learning frameworks,

as well as a different framework IMS.

Fitting Framework In the fitting framework, Alexe et al. [1] studied the following problem:

given a finite set of data examples, determine whether or not there exists a relational-to-relational

schema mapping, called a Global-and-Local-as-View(GLAV) schema mapping, that “fits” these

data examples. Here, fitting means that the examples are universal examples, i.e., they are the

“most general” examples for the schema mapping. To solve this problem, Alexe et al. developed

a system for the interactive design of schema mappings. This system ensures that the resulting

schema mapping is considered the “most general” if there exists a schema mapping that fits the

input data examples. Additionally, they proved that this problem is harder than NP-complete.

Repair Framework Gottlob and Senellart [37] introduced the repair framework for schema-

mapping discovery, in which schema mappings are derived from a single data example, and the

derivation of a schema mapping is cast as an optimization problem. Subsequently, ten Cate et al.

[63] studied this framework in depth and designed a polynomial-time log(n)-approximation

algorithm for computing optimal schema mappings from a given set of data examples (where n

is the combined size of the given data examples) for a restricted class of schema mappings.

IMS Framework IMS [25] starts from a set of fully informative data examples and derives

GLAV schema mappings through a sequence of interactions with a non-expert user. However,

the produced schema mappings may not be satisfied by the data examples under this framework.
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Learning Framework In the learning framework, a comprehensive understanding has been

established regarding the complexity of deriving GAV schema mappings. Alexe et al. [2]

and ten Cate et al. [61] investigated the problem of which schema mappings can be uniquely

characterized via a finite set of data examples. Alexe et al. [2] found that there is a class of

GAV schema mappings that are uniquely characterizable by a finite set of universal examples.

Building upon this result, ten Cate et al. [62] demonstrated that GAV mappings are learnable

using universal examples (but not necessarily efficiently learnable) with queries that can return

the universal solutions for a given source instance w.r.t. a schema mapping. Drawing from these

discoveries, ten Cate et al. [62] designed the EXACTGAV algorithm to derive GAV schema

mappings. EXACTGAV is in polynomial time with the assistance of two oracles that have the

knowledge of a goal schema mapping. One of the two oracles requires the actual knowledge of

the specification of the goal schema mapping. Therefore, EXACTGAV is a theoretical algorithm

because of the difficulties in implementing such an oracle. Later, ten Cate et al. [64] proposed

the GAVLEARN algorithm in practice scenario based on EXACTGAV. We provide more details

about EXACTGAV and GAVLEARN in Chapter 5.
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Chapter 2

Preliminaries

In this chapter, we will introduce the background material for this dissertation. In

Section 2.1, we offer a summary of relational-to-relational data exchange problem and a solution

to the problem. In Section 2.2, we will provide some background material from temporal

databases.

2.1 Relational-to-relational Data Exchange

Relational-to-relational data exchange was first formalized and studied in [32]. Since

this is the most well-developed and extensively studied variant of data exchange, we will use the

term standard data exchange to refer to it.

Databases A relational schema is a finite collection R of relation symbols of the form

R(A1, . . . ,Ak), where A1, . . ., Ak are the attributes of R and k is its arity. An R-instance I

is a finite collection of finite relations RI , one for each relation symbol R in R and such that the

arity of RI matches that of R. In the rest of this dissertation, R denotes both relation symbol and
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relation that interprets it. If a tuple f occurs in a relation R, then we write R( f ) to denote this

association, and we call it a fact. By definition, the active domain of an instance I, denoted by

adom(I), is the set of all values occurring in the relations of that instance.

Constraints and Schema Mappings Let S and T be two relational schemas, called the source

schema and the target schema, where S and T have no relation symbols in common. Data

exchange from S to T is formalized using constraints in some logical formalism that describe the

relationship between these two schemas [32]. The most widely used such constraints are source-

to-target tuple-generating dependencies (s-t tgds) and target equality-generating dependencies

(target egds). An s-t tgd, also called a GLAV constraint, is a first-order sentence of the form

∀x(ϕ(x)→∃yψ(x,y)), where ϕ(x) is a conjunction of source atoms, and ψ(x,y) is a conjunction

of target atoms. Such constraints can express a variety of data transformation tasks, including

copying a relation, projecting a relation, augmenting a relation with an extra column, and joining

two or more relations, where, in each case, the result of the transformation is moved to the

target [60]. A Global-as-View(GAV) constraint is a special class of GLAV where the consequent

of the GAV constraint is a single atomic formula. A target egd is a first-order sentence of the

form ∀x(θ(x)→ xk = xl), where θ(x) is a conjunction of target atoms and xk,xl are variables

occurring in x. Target egds include target key constraints as an important special case.

A schema mapping is a tuple M = (S,T,Σst ,Σt), where S and T are disjoint relational

schemas, the set Σst is a finite set of s-t tgds, and Σt is a finite set of target egds.

In the remainder of this chapter, we will use the terms standard s-t tgds, standard

target egds, and standard schema mappings for the preceding concepts.

Values in Source and Target Instances The source instances contain values from a countable
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domain CONST of objects, called constants, while the target instances may contain values from

the union CONST∪NULL, where NULL is a countable set of distinct labeled nulls N1,N2, . . .,

which are typically used to witness the existentially quantified variables in the right-hand sides

of standard s-t tgds. Thus, a labeled null represents an unknown value.

Combined Instances Let S and T be two disjoint schemas and let I and J be two instances

over the S and T, respectively. A combined instance is a tuple ⟨I,J⟩ over the schema S∪T.

Sometimes, we will use the term instances to refer to combined instances.

Solutions, Homomorphisms, and Universal Solutions Let T be a target schema and let J and

J′ be two target databases. As discussed above, the relations in J and J′ may contain constants,

labeled nulls as values.

Let M = (S,T,Σst ,Σt) be a standard schema mapping and I a source instance. A target

instance J is a solution for I w.r.t. M if ⟨I,J⟩ satisfies every standard s-t tgd in Σst , and J satisfies

every standard egd in Σt . The semantics of satisfaction is the usual semantics of first-order logic,

which we spell out below for the sake of completeness.

• ⟨I,J⟩ satisfies a standard s-t tgd ∀x(ϕ(x)→∃yψ(x,y)) means that for every assignment s

from the variables in x to the active domain of I, if s(x) is a tuple a such that I |= ϕ(a),

then there is an assignment s′ from the variables in x and y to the active domain of J that

agrees with s on x and assigns to the variables y a tuple b of constants and/or labeled nulls

from the active domain of J, such that J |= ψ(a,b).

• J satisfies a standard target egd ∀x(θ(x)→ xk = xl) means that for every assignment s

from the variables in x to the active domain of J, if s(x) is a tuple a such that J |= θ(a),
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then ak = al (i.e., ak and al are the same constant or the same labeled null).

A homomorphism from J to J′ is a function h from the active domain of J to the active domain of

J′ such that: (a) if v is a constant, then h(v) = v; (b) if v is a labeled null N j, then h(v) is either a

constant or a labeled null Nk; and c) if a fact R(v1, . . . ,vm) belongs to a relation RJ of the instance

J, then R(h(v1), . . . ,h(vm)) belongs to the relation RJ′ of the instance J′.

A target instance J is a universal solution for I w.r.t. M if J is a solution for I w.r.t.

M and, for every solution J′ for I w.r.t. M , there is a homomorphism from J to J′. Universal

solutions can be produced using the chase algorithm, which we describe next.

Chase Steps Let I be a source instance and let K be the current target instance in a run of the

chase.

• A chase step over an s-t tgd for the instance ⟨I,K⟩: If σ = ∀x(ϕ(x)→∃yψ(x,y)) is an s-t

tgd in Σst and if s is an assignment from every variable in x to adom(I), such that s(x) is

a tuple a from the adom(I) and I |= ϕ(a), but K ̸|= ∃yψ(a,y), then the chase generates a

tuple b of distinct labeled nulls for the variables in y and adds tuples to the relations in

K so that the resulting instance K′ satisfies ψ(a,b). We say that (a) the constraint σ can

be applied to ⟨I,K⟩ with assignment s; (b) the result of applying the constraint σ to ⟨I,K⟩

with the assignment s is ⟨I,K′⟩, and write ⟨I,K⟩ σ,s−→ ⟨I,K′⟩.

• A chase step over a target egd for the instance ⟨I,K⟩: If ∀x(θ(x)→ xk = xl) is a target egd

in Σt and if s is a variable assignment from every variable in x to adom(K), such that s(x)

is a tuple a and K |= θ(a), then the following cases are considered: (1) if both ak and al

are labeled nulls, then one of the two is replaced by the other throughout K; (2) if one of
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ak and al is a constant and the other is a labeled null, then the labeled null is replaced by

the constant throughout K; (3) if ak and al are different constants, then the chase fails. We

denote such chase step as ⟨I,K⟩ σ,s−→⊥ if the chase fails; otherwise, we denote the chase

step as ⟨I,K⟩ σ,s−→ ⟨I,K′⟩.

The Standard Chase Let M = (S,T,Σst ,Σt) be a schema mapping and let I be a source instance.

All s-t tgd chase steps are applied sequentially (this is called the standard s-t tgd chase round)

and produce a target instance; then all target edg chase steps are applied sequentially to that

target instance (this is called the standard target egd chase round), so that if the chase does not

fail, then the resulting target instance is generated.

In what follows, we will use the term the standard chase algorithm to refer to the

standard chase described above. If M is a schema mapping and I is a source instance, then the

standard chase algorithm will start with ⟨I, /0⟩. A successful chase will produce the result ⟨I,J⟩,

where J is the result of the target instance generated by the standard chase algorithm on ⟨I, /0⟩.

In the sequel, we will use the notation chaseM (I) to denote the target instance produced by the

standard chase algorithm on I. The next result was proved in [32].

Theorem 1. Let M = (S,T,Σst ,Σt) be a standard schema mapping. If I is a source instance

over the schema S, then the following statements hold.

• If the standard chase algorithm does not fail on I, then the target instance chaseM (I)

returned by this algorithm is a universal solution for I w.r.t. M .

• If the standard chase algorithm fails on I, then there is no solution for I w.r.t. M .

22



Furthermore, the running time of the standard chase algorithm is bounded by a polynomial in the

size of I.

Example 1. We consider a data exchange scenario concerning research papers submitted for

publication in scholarly conferences. A paper is first registered to a conference, but there may be

registered papers that did not materialize to a submission. After a registered paper is actually

submitted, then the status of the paper is “under submission” until it is assigned to reviewers.

The status of the paper then is “under review”. After the paper is reviewed and a decision is

made to accept it, then the status of the paper is “to be published”.

Let S be a source schema consisting of the following relation symbols:

Reg(title,con f erence,author),uSub(title,con f erence),

uRew(title,con f erence),TbPub(title,con f erence,year),

where the relation Reg lists papers registered to conferences, the relation uSub lists papers under

submission, the relation uRew lists papers under review, and the relation TbPub lists papers to

be published.

Let T be a target schema consisting of relation symbols

Pub(title,con f erence,author,year, page) and InPrcs(title,con f erence,author,editor),

where the relation Pub lists papers published in the conference and the relation InPrcs lists

papers in process.

Let M = (S,T,Σst ,Σt) be a schema mapping where Σst consists of the constraints

∀x1,x2,x3,x4(Reg(x1,x2,x3)∧TbPub(x1,x2,x4)→∃y Pub(x1,x2,x3,x4,y))
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∀x1,x2,x3(uSub(x1,x2)∧Reg(x1,x2,x3)→∃y InPrcs(x1,x2,x3,y))

∀x1,x2,x3(uRew(x1,x2)∧Reg(x1,x2,x3)→∃y InPrcs(x1,x2,x3,y))

and Σt consists of the constraint

∀x1,x2,x3,x4,x5(InPrcs(x1,x2,x3,x4)∧ InPrcs(x1,x2,x3,x5)→ x4 = x5)

Let I be the source instance whose relations are depicted in Table 2.1. Let chaseM (I)

denote the universal solution produced by the standard chase algorithm on I w.r.t. M ; its relations

are depicted in Table 2.2.

Table 2.1: The relations Reg, uSub, uRew, and TbPub in the source instance I.

(a) Reg

title conference author

a1 b1 c1

a2 b1 c2

a3 b1 c1

a4 b2 c3

a5 b2 c4

a6 b2 c4

(b) uSub

title conference

a5 b2

a6 b2

(c) uRew

title conference

a3 b1

(d) TbPub

title conference year

a1 b1 1

a2 b1 2

a4 b2 1
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Table 2.2: The relations Pub and InPrcs of the universal solution chaseM (I).

(a) Pub

title conference author year page

a1 b1 c1 1 N1

a2 b1 c2 2 N2

a4 b2 c3 1 N3

(b) InPrcs

title conference author editor

a3 b1 c1 N4

a5 b2 c4 N5

a6 b2 c4 N6

2.2 Temporal Databases

Abstract Model of Time Let N= {1,2, . . .} be the set of all natural numbers. In the abstract

model of time, natural numbers represent time points. In addition, < is a discrete linear order on

N without endpoints. For example, given two time points, t and t ′, the relation between them

could be t < t ′ or t ′ < t or t = t ′.

Concrete Model of Time Let N= {1,2, . . .} be the set of all natural numbers. In the concrete

model of time, closed-open intervals [s,e) = {t ∈ N : s ≤ t < e}, where s and e are natural

numbers with s < e, represent time intervals. Unbounded time intervals of the form [s,∞) are

also allowed. Let [s,e) and [s′,e′) be two arbitrary time intervals. These two time intervals can

be related via one of Allen’s relations [4], namely, o (for overlaps), d (for during), ≺ (for before),

m (for meets), s (for starts), f (for finishes), and = (for equals), which are defined as follows:

o := {([s,e), [s′,e′)) : s < s′ < e < e′} and d := {([s,e), [s′,e′)) : s′ < s < e < e′},

≺ := {([s,e), [s′,e′)) : s < e < s′ < e′} and m := {([s,e), [s′,e′)) : s < e = s′ < e′},
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s := {([s,e), [s′,e′)) : s′ = s < e < e′} and f := {([s,e), [s′,e′)) : s′ < s < e = e′},

= := {([s,e), [s′,e′)) : s = s′ and e = e′}

For example, the time interval [2010,2013) represents the years 2010, 2011, and 2012, while the

time interval [2013,2014) represents the year 2013. Below are examples of the Allen’s relations

o and m:

[2010,2013) o [2011,2014) and [2010,2013)m [2013,2014)

Temporal Databases A temporal relation symbol is a relation symbol R(A1, . . . ,Ak) in which

one or more of its attributes are designated as temporal attributes, i.e., they can only take temporal

values and either all these values are from the concrete model of time or all these values are from

the abstract model of time. In this dissertation, we assume that every temporal relation symbol

has exactly one temporal attribute, which, without loss of generality, is the last attribute in the list.

A temporal relational schema is a relational schema R containing at least one temporal relation

symbol. For such a schema R, a concrete R-instance is an R-instance in which the values of

the temporal attributes are time intervals. An abstract R-instance is an R-instance in which the

values of the temporal attributes are time points. We will use the term temporal database to refer

to both abstract instances and concrete instances.

If I is an abstract R-instance and if t is a time point, then the snapshot It of I at time t

is the instance consisting of the non-temporal facts of I and the projections of the temporal facts

of I at time t. More formally, It is the instance obtained from I as follows: if R(A1, . . . ,Ak) is

a relation symbol of R with no temporal attribute, then RIt = RI; if R(A1, . . . ,Ak) is a relation

symbol of R in which Ak is the temporal attribute, then RIt = πA1,...,Ak−1(σAk=t(R)), where π is
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the projection operator and σ is the selection operator of relational algebra. Thus, every abstract

R-instance I can be identified with the sequence It0 , It1 , . . . of its snapshots, where t0, t1, . . . are

the time points in the active domain adom(I) of I.
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Chapter 3

Relational-to-relational Temporal Data

Exchange

In this chapter, we formalize relational-to-relational temporal data exchange problem

and explore universal solutions to this problem. In Section 3.1, we provide the definitions for

key concepts related to concrete temporal data exchange and show how the chase algorithm

can be extended to this setting. In Section 3.2, we investigate the semantic adequacy for the

relational-to-relational temporal data exchange problem.

3.1 Concrete Chase Algorithm

3.1.1 Syntactic Notions

Let R be a temporal relational schema. An atomic formula over R is either of the form

R(x1, . . . ,xk) if there is a relation symbol R(A1, . . . ,Ak) in R with no temporal attribute, or of the

28



form R(x1, . . . ,xk−1, t) if there is a relation symbol R(A1, . . . ,Ak) in R with a temporal attribute

Ak. Let S be a temporal source relational schema and let T be a target relational schema that is

disjoint from S. In the rest of this dissertation, we will on occasion call atomic formulas over S

the source atoms and call atomic formulas over T the target atoms. Furthermore, an Allen atomic

formula is an expression of the form t δ t ′, where δ is one of Allen’s relations and t, t ′ are two

temporal variables.

The first step in formalizing data exchange between temporal relational schemas is

to extend the concepts of s-t tgds and target egds to incorporate temporal variables and Allen’s

relations between them. Let S be a temporal source relational schema, and let T be a temporal

relational schema disjoint from S. In the concrete model of time, a concrete s-t tgd is a formula

of the form:

σst = ∀x∀t
(
ϕ
(
x, t

)
∧π

(
t
)
→∃yψ

(
x,y, t

))
, (3.1)

where all temporal variables are those in t, the formula ϕ(x, t) is a conjunction of atomic formulas

over the temporal schema S, π(t) is a Boolean combination of Allen atomic formulas involving

temporal variables in t, and the formula ψ(x,y, t) is a conjunction of target atoms over T.

Furthermore, we assume that the universally quantified variables x and t appear free in ϕ(x, t).

A concrete s-t tgd must contain at least one temporal variable. A concrete s-t tgd is full if it

contains no existential quantifiers ∃y, i.e., it is of the form

σst = ∀x∀t
(
ϕ
(
x, t

)
∧π

(
t
)
→ ψ

(
x, t

))
.

A concrete target egd, is a formula of the form:

σt = ∀x∀t(θ(x, t)∧ρ(t)→ xk = xl),
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where the only temporal variables are those in t, the formula θ(x, t) is a conjunction of target

atoms, the formula ρ(t) is a Boolean combination Allen atomic formulas involving variables

from t, and xk,xl are among the variables in x. A concrete target egd must contain at least one

temporal variable. Note that these concrete target egds also subsume concrete target egds of the

form ∀x∀t(θ(x, t)→ xk = xl).

It should be pointed out that if a concrete s-t tgd σst contains exactly one temporal

variable, then there is no point in having a subformula π(t); also, if a concrete target egd σt

contains exactly one temporal variable, then there is no point in having a subformula formula

ρ(t). The reason is that every such subformula evaluates to true or false, independently of the

value of the temporal variable t.

We now discuss two examples of temporal data exchange.

Example 2. As in Example 1, we consider a data exchange scenario concerning the publication

of papers in conferences, but we now take time into account. At a given point of time, each

submitted paper can be in an “under submission” or in an “under review” or in a “to be published”

status.

Let S be a temporal source schema consisting of the following relation symbols:

Reg(title,con f erence,author),uSub(title,con f erence,Stime),

uRew(title,con f erence,Rtime),TbPub(title,con f erence,year,Ptime),

where the relation Reg lists papers registered in conferences; the relation uSub lists papers and

their time intervals during which those papers are under submission; the relation uRew lists

papers and their time intervals during which they are under review, and the relation TbPub lists
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papers and their time intervals during which they are to be published. Let T be a temporal target

schema consisting of relation symbols:

Pub(title,con f erence,author,year, page,Atime) and InPrcs(title,con f erence,author,editor),

where the relation Pub now contains a new temporal attribute.

A concrete s-t tgd over S and T is

∀x1,x2,x3,x4, t1, t2(uRew(x1,x2, t1)∧TbPub(x1,x2,x3, t2)∧Reg(x1,x2,x4)∧ (t1mt2)

→∃y Pub(x1,x2,x4,x3,y, t2)).

A concrete target egd over T is

∀x1,x2,x3,x4,x5,x6, t(Pub(x1,x2,x3,x4,x5, t)∧Pub(x1,x2,x3,x4,x6, t)→ x5 = x6).

Example 3. Let S be a temporal source schema consisting of the relation symbols

E(Name,Company,Time) and S(Name,Salary,Time),

and let T be a temporal target schema containing a relation symbol

Emp(Name,Company,Salary,Position,Time).

A concrete s-t tgd over S and T is

∀n, l,c, t(E(n,c, t)∧S(n, l, t)→∃p Emp(n,c, l, p, t)).

A concrete target egd over T is

∀n,c, l, p1, p2, t(Emp(n,c, l, p1, t)∧Emp(n,c, l, p2, t)→ p1 = p2).
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Definition 1 (Concrete Schema Mapping). A concrete schema mapping is a tuple M =

(S,T,Σst ,Σt), where S is a temporal source relational schema, T is a temporal target relational

schema disjoint from S, the set Σst is a finite set of standard s-t tgds or concrete s-t tgds, and Σt is

a finite set of standard target egds or concrete target egds.

3.1.2 Semantic Notions

Values in Source and Target Instances As discussed earlier, in data exchange between relational

schemas, the source instances contain values from a countable domain CONST of objects, called

constants, while the target instances may contain values from the union CONST∪NULL, where

NULL is a countable set of distinct labeled nulls N1,N2, . . . that represent unknown values. In

concrete data exchange, the values occurring in source and target instances may also be time

intervals. Furthermore, the use of null values in target instances requires delicate handling

because such null values may need to take into account the temporal context in which they are

introduced. For this reason, concrete target instances may contain values that are constants,

time intervals in the concrete model of time, labeled nulls N1,N2, . . ., and concrete time-stamped

nulls, that is, null values of the form Nt
1,N

t
2, . . ., where t is a finite sequence of time intervals.

Two such concrete time-stamped nulls are equal if and only if they have the same subscript

(label) and the same time-stamp (i.e., the same sequence of time intervals). Intuitively, a concrete

time-stamped null represents unknown values in the context of its time-stamp. For example, a

concrete time-stamped null N[2,5)
j represents three unknown values, one at time-point 2, one at

time-point 3, and one at time-point 4.

Definition 2 (Concrete Solutions). Let M = (S,T,Σst ,Σt) be a concrete schema mapping and
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let I be a concrete source instance.

A concrete target instance J is a concrete solution for I w.r.t. M if ⟨I,J⟩ satisfies every

constraint in Σst and J satisfies every constraint in Σt . If the constraint is a standard s-t tgd or

a standard target egd, then the semantics of satisfaction is the same as the semantics given in

Section 2.1. We now spell out the semantics of satisfaction for concrete s-t tgds and concrete

target egds.

• ⟨I,J⟩ satisfies a concrete s-t tgd ∀x∀t(ϕ(x, t)∧π(t)→∃yψ(x,y, t)) means that for every

assignment s from the variables in x and t to the active domain of I, if s(x) is a tuple a of

constants and s(t) is a tuple i of time intervals such that I |= ϕ(a, i)∧π(i), then there is an

assignment s′ from the variables in x, y, and t to the active domain of J that agrees with s

on x and t, and assigns a tuple b of constants, labeled nulls, and time-stamped nulls to the

variables y, such that every time-stamped null in b has the time-stamp i and J |= ψ(a,b, i).

• J satisfies a concrete target egd ∀x∀t(θ(x, t)∧ ρ(t) → xk = xl) means that for every

assignment s from the variables of in x and t to the active domain of J, if s(x) is a tuple a

and s(t) is a tuple i of time intervals such that J |= θ(a, i)∧ρ(i), then ak = al (i.e., ak and

al are the same constant or the same labeled null N j or the same time-stamped null Ni′
j ,

where i′ is some time-stamp that may be different from i).

Definition 3 (Homomorphisms and Concrete Universal Solutions ). Let T be a temporal

target schema and let J and J′ be two concrete target instances. As discussed earlier, the relations

in J and J′ may contain constants, labeled nulls, and time-stamped nulls as values.

A homomorphism from J to J′ is a function h from the active domain of J to the active
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domain of J′ such that: (a) if v is a constant or a time interval then h(v) = v; (b) if v is a labeled

null N j, then h(v) is either a constant or a labeled null Nk; (c) if v is a time-stamped null Ni
j, then

h(Ni
j) is a constant or a time-stamped null Ni

k with the same time-stamp or a labeled null Nk

(without a time-stamp); (d) if a tuple (v1, . . . ,vm) belongs to a relation RJ of J, then h(v1, . . . ,vm)

belongs to the relation RJ′ of J′.

The intuition behind this definition is that if there is a homomorphism from J to J′,

then J is “more general” than J′. Time-stamped nulls are “more general” than labeled nulls since

the latter represent a single unknown value, while the former may represent multiple unknown

values, depending on the time-stamp used. That explains the different treatment of labeled nulls

and time-stamped nulls in conditions (b) and (c), respectively, in the definition.

A concrete target instance J is a concrete universal solution for I w.r.t. M if J is a

concrete solution for I w.r.t. M and, for every solution J′ for I w.r.t. M , there a homomorphism

from J to J′.

3.1.3 The Concrete Chase Algorithm

In the case of standard data exchange, universal solutions are produced using the

(standard) chase algorithm as stated in Theorem 1. We now describe how the chase algorithm can

be adapted from standard schema mappings to concrete schema mappings M = (S,T,Σst ,Σt).

Note that, in the rest of the paper, we regard a standard target egd of the form ∀x(θ(x)→ xk = xl)

as a special case of the concrete target egd ∀x∀t(θ(x, t)∧ρ(t)→ xk = xl).

Definition 4 (Concrete Chase Steps). Let I be a concrete source instance and let K be the
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current concrete target instance in the run of the chase.

• A concrete chase step over a standard s-t tgd1 for the instance ⟨I,K⟩: If σ = ∀x(ϕ(x)→

∃yψ(x,y)) is a standard s-t tgd in Σst and if s is an assignment from the variables in x to

the active domain adom(I) of I such that s(x) is a tuple a from adom(I) and I |= ϕ(a), but

K ̸|= ∃yψ(a,y), then the chase generates a tuple b of distinct labeled nulls for the variables

in y and adds tuples to the relations in K so that the resulting instance K′ satisfies ψ(a,b).

We say that the constraint σ can be applied to ⟨I,K⟩ with assignment s; we also say that

the result of applying the constraint σ to ⟨I,K⟩ with the assignment s is ⟨I,K′⟩, and write

⟨I,K⟩ σ,s−→ ⟨I,K′⟩.

• A concrete chase step over a concrete s-t tgd for the instance ⟨I,K⟩: If ∀x∀t(ϕ(x, t)∧

π(t)→ ∃yψ(x,y, t)) is a concrete s-t tgd in Σst and if s is an assignment from the vari-

ables in x and t to adom(I) such that s(x) = a, s(t) = i, and I |= ϕ(a, i)∧ π(i), but

K ̸|= ∃yψ(a,y, i), then the chase generates a tuple b of distinct concrete time-stamped

nulls with time-stamp i for the variables in y and adds tuples to the relations in K so that

the resulting instance K′ satisfies ψ(a,b, i). We say that σ can be applied to ⟨I,K⟩ with

the assignment s; we also say that the result of applying the constraint σ to ⟨I,K⟩ with the

assignment s is ⟨I,K′⟩, and write ⟨I,K⟩ σ,s−→ ⟨I,K′⟩.

• A concrete chase step over a concrete target egd for the instance ⟨I,K⟩: If ∀x∀t(θ(x, t)∧

ρ(t)→ xk = xl) is a concrete target egd in Σt and if s is an assignment from the variables

in x and t to adom(K) such that s(x) = a and s(t) = i, and K |= θ(a, i)∧ρ(i), then the

1This step is the same as the corresponding step in the standard chase algorithm, but we include it here for the
convenience of the reader.
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following cases are considered: (1) if both ak and al are labeled nulls or both are concrete

time-stamped nulls with the same time-stamp, then one of the two is replaced by the other

throughout K; (2) if one of ak and al is a constant and the other is a labeled null or a

concrete time-stamped null, then the labeled null or the concrete time-stamped null is

replaced by the constant throughout K; (3) if one of ak and al is a labeled null and the other

is a concrete time-stamped null, then the concrete time-stamped null is replaced by the

labeled null throughout K; (4) if ak and al are concrete time-stamped nulls with different

time-stamps or if ak and al are different constants, then the chase fails. If the chase fails,

then we say the result of applying the constraint σ to ⟨I,K⟩ with the assignment s is⊥, and

write ⟨I,K⟩ σ,s−→⊥; otherwise, we let K′ be the instance obtained from K in cases (a), (b),

or (c), and we say that the result of applying the constraint σ to ⟨I,K⟩ with the assignment

s is ⟨I,K′⟩, and write ⟨I,K⟩ σ,s−→ ⟨I,K′⟩.

For a constraint σ ∈ Σst ∪Σt , if there is a chase step and an assignment such that

⟨I,K⟩ σ,s−→ ⟨I,K′⟩, we say that σ can be applied to ⟨I,K⟩ with the assignment s.

Definition 5 (The Concrete Chase Algorithm). Let M = (S,T,Σst ,Σt) be a temporal schema

mapping and let I be a concrete source instance.

The concrete chase algorithm has two rounds. In the concrete s-t tgd round and starting

with the instance ⟨I, /0⟩, all concrete chase steps involving a standard s-t tgd or a concrete s-t tgd

are applied sequentially and produce a concrete target instance. After this, in the concrete target

egd round, all concrete target egd steps are applied so that at the end either the chase fails or

a concrete target instance is produced such that no further concrete target egd step is possible.
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Thus, the concrete chase algorithm amounts to a sequence ⟨I,K j⟩
σ,s j−−→ ⟨I,K j+1⟩, 0≤ j < m, such

that K0 = /0 and Km =⊥ or there is no constraint σ in Σst ∪Σt that can be applied to Km. We say

that Km is the result of the concrete chase. In case, Km =⊥, we talk about a failing chase, while

if Km ̸=⊥, we talk about a successful case.

In the rest of this dissertation, we will use the notation c-chaseΣst (I) to denote the

concrete target instance produced in the concrete s-t tgd chase round on I; we will also use

the notation c-chaseM (I) to denote the concrete target instance produced by the concrete chase

algorithm on I w.r.t. M .

Lemma 2. Let R be a temporal relational schema and let K,K′ be two instances over R.

Let φ(x, t) = ϕ(x, t)∧ π(t) be a formula, where ϕ(x, t) is a conjunction of atomic formulas

over the schema R, and π(t) is a Boolean combination of Allen atomic formulas. For every

homomorphism h: K→ K′ and every assignment s, if K,s |= φ(x, t), then the composition of the

assignment s with the homomorphism h is an assignment s′ from the variables in x and t to the

active domain adom(K′) of the instance K′, such that K′,s′ |= φ(x, t).

Proof. Since h is a homomorphism, the following statements are true for the composition s′ of s

with h:

• s′(x) = h(s(x)) if the value of s(x) is a concrete time-stamped null or a labeled null from

the instance K;

• s′(x) = h(s(x)) = s(x) if s(x) is a constant from the instance K;

• s′(t) = h(s(t)) = s(t) and s(t) is a time interval from the instance K.
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The formula ϕ(x, t) is a conjunction of atomic formulas over R, while the formula π(t) is

a Boolean combination of Allen atomic formulas; moreover, homomorphisms preserve facts

between instances. Thus, the preceding statements about s′ easily imply that K′,s′ |= φ(x, t).

In the remainder of the paper, we adopt the notation h◦ s to denote the composition of

s with h.

Lemma 3. Let ⟨I,K1⟩
σ,s−→ ⟨I,K2⟩ be a concrete chase step, where K2 ̸=⊥ and σ is a standard s-t

tgd, a concrete s-t tgd, a standard target egd, or a concrete target egd. Let ⟨I,K⟩ be an instance

such that: ⟨I,K⟩ satisfies σ and there exists a homomorphism h1: ⟨I,K1⟩ → ⟨I,K⟩. Then there

exists a homomorphism h2: ⟨I,K2⟩ → ⟨I,K⟩.

Proof. Before we give the proof, it should be noted that both the instance ⟨I,K1⟩ and the instance

⟨I,K⟩ may contain constants, labeled nulls, and/or concrete time-stamped nulls.

• Case 1: Assume that σ = ∀x(ϕ(x)→∃yψ(x,y)), that is, σ is a standard s-t tgd (with no

temporal variables). The proof is similar to that of the Lemma 3.4 in paper [32]. We know

that the result of applying the constraint σ to ⟨I,K1⟩with the assignment s is ⟨I,K2⟩. By def-

inition of the chase step over a standard s-t tgd, we have that ⟨I,K1⟩,s |= ϕ(x). Composing

an assignment and a homomorphism yields an assignment by Lemma 2. Therefore, h1 ◦s is

an assignment with which ⟨I,K⟩ satisfies ϕ(x), i.e., ⟨I,K⟩,h1 ◦ s |= ϕ(x). In addition, since

the combined instance ⟨I,K⟩ satisfies the constraint σ with every assignment, there is an as-

signment s′ from all variables x and y occurring in the formula ϕ(x)∧ψ(x,y) to the active

domain adom(⟨I,K⟩) of ⟨I,K⟩ (the active domain adom(⟨I,K⟩) = adom(I)∪adom(K)),
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such that ⟨I,K⟩,s′ |= ϕ(x)∧ψ(x,y), and the assignment s′ is an extension of the assign-

ment h1 ◦ s, i.e., h1(s(x)) = s′(x). For every variable y in y, we denote by ∆′′ the labeled

null replacing the variable y in the chase step. Define h2 on labeled nulls or concrete

time-stamped nulls in ⟨I,K2⟩ as follows: (a) if ∆ is a labeled null occurring in ⟨I,K1⟩,

then h2(∆) = h1(∆); (b) if ∆′ is a concrete time-stamped null occurring in ⟨I,K1⟩, then

h2(∆
′) = h1(∆

′); (c) and h2(∆
′′) = s′(y) for each variable y in y.

It can be proved that h2 is a homomorphism from ⟨I,K2⟩ to ⟨I,K⟩. For all facts appearing

in both ⟨I,K2⟩ and ⟨I,K1⟩, we have that h2 maps each of them in ⟨I,K2⟩ to a fact of ⟨I,K⟩

because the homomorphism h2, as defined, agrees with the homomorphism h1 on all values

appearing in ⟨I,K1⟩, and thus h1 and h2 maps every such fact into the same fact in ⟨I,K⟩.

For other facts in ⟨I,K2⟩, assume that R(x0,y0) is an arbitrary atom in the formula ψ (note

that x0 ⊆ x and y0 ⊆ y). Then ⟨I,K2⟩ contains a fact R(s(x0),∆∆∆
′′
0), and

R(h2(s(x0)),h2(∆∆∆
′′
0)) = R(h1(s(x0)),s′(y0)) = R(s′(x0),s′(y0)),

where ∆∆∆
′′
0 is a set of labeled nulls produced for y0 in the chase step. Since s′ is an

assignment mapping all atoms in the φ∧ψ into facts in ⟨I,K⟩, the fact R(s′(x0),s′(y0)) is

contained in the combined instance ⟨I,K⟩. Consequently, for every fact ⟨I,K2⟩ there is a

corresponding fact in ⟨I,K⟩ under the homomorphism h2. Therefore, we have that h2 is a

homomorphism. Furthermore, ⟨I,K2⟩ satisfies the first item in the definition of a concrete

solution.

• Case 2: Assume that σ = ∀x, t(ϕ(x, t)∧π(t)→∃y ψ(x,y, t)), where the concrete s-t tgd

contains at least one temporal variable. We know that the result of applying the constraint
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σ to ⟨I,K1⟩ with the assignment s is ⟨I,K2⟩. By the definition of the chase step, we

have that ⟨I,K1⟩,s |= ϕ(x, t)∧ π(t). Similarly, according to Lemma 2, composing the

assignment s and the homomorphism h1 yields an assignment h1 ◦ s from all variables in

{x, t} occurring in the formula ϕ(x, t)∧π(t) to the active domain adom(⟨I,K⟩) of ⟨I,K⟩,

such that ⟨I,K⟩,h1 ◦ s |= ϕ(x, t)∧ π(t). In addition, since ⟨I,K⟩ satisfies σ with every

assignment from all variables in σ to the active domain adom(⟨I,K⟩) of ⟨I,K⟩, there exists

an assignment s′ such that ⟨I,K⟩,s′ |= ϕ(x, t)∧π(t)∧ψ(x,y, t), and the assignment s′ is

an extension of the composed homomorphism h1 ◦ s, i.e., h1(s(x)) = s′(x), h1(s(t)) =

s′(t) = s(t), and s′(y) is a set of constants or labeled nulls or concrete time-stamped nulls

with the time-stamp s′(t) by the first item in the definition of concrete solutions. For each

variable y, the chase step replaces it by a fresh concrete time-stamped null ∆s(t) with the

time-stamp s(t). Hence, if the fact contains a null, then it is a concrete time-stamped null,

and its time-stamp must be the tuple s(t) of time intervals, because, by the definition of the

concrete chase step over a concrete s-t tgd, all the concrete time-stamped nulls produced

in this chase step have the same time-stamp s(t). We adopt the symbol ∆s(t) to represent

a concrete time-stamped null in ⟨I,K2⟩ which replaces y in the chase step. Define h2 on

labeled nulls or concrete time-stamped nulls in ⟨I,K2⟩ as follows:

– h2(∆
s(t)) = h2(∆

s′(t)) = s′(y) for each y in y;

– if ∆′ is a concrete time-stamped null occurring in ⟨I,K1⟩, then h2(∆
′) = h1(∆

′);

– if ∆ is a labeled null occurring in ⟨I,K1⟩, then h2(∆) = h1(∆).

It should be noted that (a) s′(y) is a labeled null or a concrete time-stamped null with
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the time-stamp s′(t) or a constant; (b) and h2 preserves constants and time intervals, i.e.,

h2(a) = a = h1(a) if a is a constant and h2(i) = i = h1(i) if i is a time interval.

We need to prove that h2 is a homomorphism which maps each fact of ⟨I,K2⟩ into a

fact of ⟨I,K⟩. As in Case 1, for those facts in both ⟨I,K2⟩ and ⟨I,K1⟩, this is true.

For those new facts produced by the chase step, we firstly assume an arbitrary atom

R(x0,y0, t0) in ψ(x,y, t) (note that x0 ⊆ x, y0 ⊆ y, and t0 ∈ t). Then ⟨I,K2⟩ contains the

fact R(s(x0),∆∆∆
s(t)
0 ,s(t0)) besides all those facts in ⟨I,K1⟩. Thus, we have

R(h2(s(x0)),h2(∆∆∆
s(t)
0 ),h2(s(t0))) = R(h1(s(x0)),s′(y0),h1(s(t0)))

= R(s′(x0),s′(y0),s′(t0)).

Since s′ is an assignment that

⟨I,K⟩,s′ |= ϕ(x, t)∧ψ(x,y, t),

there exists a fact R(s′(x0),s′(y0),s′(t0)) in ⟨I,K⟩. Therefore, for every fact of ⟨I,K2⟩,

there is a corresponding fact in ⟨I,K⟩, and hence h2 is a homomorphism. Furthermore,

⟨I,K2⟩ satisfies the second item of the definition of concrete solutions.

• Case 3: The constraint σ is a target egd of the form ∀x∀t(θ(x, t)∧ρ(t)→ xk = xl), where

the constraint may contain zero or more temporal variables. We know that the result of

applying the constraint σ to ⟨I,K1⟩ with the assignment s is ⟨I,K2⟩. By the definition of the

chase step, we have that K1,s |= θ(x, t)∧ρ(t) (or ⟨I,K1⟩,s |= θ(x, t)∧ρ(t)). Composing

the assignment s and the homomorphism h1 yields an assignment s′, i.e., h1 ◦ s, such that

⟨I,K⟩,h1 ◦ s |= θ(x, t)∧ρ(t). We define the homomorphism h2 on labeled nulls occurring
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in the instance ⟨I,K2⟩ as follows: if ∆ is a labeled null or a concrete time-stamped null

occurring in both ⟨I,K1⟩ and ⟨I,K2⟩, then h2(∆) = h1(∆). Since this chase step only

collapses nulls in ⟨I,K1⟩, all values occurring in the instance ⟨I,K2⟩ also occur in the

instance ⟨I,K1⟩. Therefore, the homomorphism h2 agrees with the homomorphism h1

on all the values appearing in the instance ⟨I,K2⟩. We need to ensure that h2 is still a

homomorphism from ⟨I,K2⟩ to ⟨I,K⟩. The only way that h2 fails to be a homomorphism

on ⟨I,K2⟩ is if h1 maps s(xk) and s(xl) into two different values (either of them could

be a constant, a labeled null, or a concrete time-stamped null). But this is not the case

because if h1 maps s(xk) and s(xl) to two different constants or labeled nulls or concrete

time-stamped nulls, then this can not be true because the combined instance ⟨I,K⟩ satisfies

σ and ⟨I,K⟩,h1 ◦ s |= θ(x, t)∧ρ(t), thus, h1(s(xk)) = h1(s(xl)).

Theorem 4. Let M = (S,T,Σst ,Σt) be a fixed concrete schema mapping. For every concrete

source instance I, if the concrete chase algorithm does not fail on I, then the concrete target

instance c-chaseM (I) returned by this algorithm is a concrete universal solution for I w.r.t. M .

Furthermore, the running time of the concrete chase algorithm is bounded by a polynomial in the

size of I.

Proof. Let J = c-chaseM (I) be the result of the concrete chase on I w.r.t. M . Assume that J′ is

an arbitrary solution for I w.r.t. M . Thus, J′ satisfies Σst ∪Σt . Moreover, the identity mapping:

from ⟨I, /0⟩ to ⟨I,J′⟩ is a homomorphism. By applying Lemma 3 at each chase step, we obtain a

homomorphism h: from ⟨I,J⟩ to ⟨I,J′⟩. Thus J is a universal solution for I w.r.t. M .
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We now examine the data complexity of the concrete chase algorithm. Since the

concrete schema mapping M is fixed, the number of concrete s-t tgd chase steps is bounded by

a polynomial in the size of the given concrete source instance I (the degree of the polynomial

depends, of course, on the arities of the relations in the source and target schemas and the size of

the concrete s-t tgds in M ). Similarly, the number of concrete target egd steps is bounded by a

polynomial in the size of the target instance c-chaseΣst (I) produced at the end of the concrete s-t

tgd round. Thus, the running time of the concrete chase algorithm on I w.r.t. M is bounded by a

polynomial in the size of I.

Remark 1. Note that, during a run of the concrete chase algorithm, it is possible that different

constraints and/or different assignments may be applicable to the pair ⟨I,K⟩, where K is the

current concrete target instance. Therefore, unless we have some default rule for selecting

which constraint and assignment to apply, we may have different chase sequences that may yield

different target instances as results. It is easy to see, however, that these different target instances

are unique up to homomorphic equivalence, that is, if J and J’ are two such target instances,

then there is a homomorphism from J to J′, and also a homomorphism from J′ to J. Indeed,

according to Theorem 4, both J and J′ are universal solutions for I. Therefore, by definition,

there will be a homomorphism from the universal solution J to the solution J′, and there will be

a homomorphism from the universal solution J′ to the solution J.

The next example illustrates the preceding Theorem 4.

Example 4. Consider the same temporal source schema and the same temporal target schema as
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in Example 2. Specifically, let S be a source schema consisting of the relation symbols:

Reg(title,con f erence,author),uSub(title,con f erence,Stime),

uRew(title,con f erence,Rtime),TbPub(title,con f erence,year,Ptime);

and let T be a target schema consisting of the relation symbols:

Pub(title,con f erence,author,year, page,Atime)

and

InPrcs(title,con f erence,author,editor).

Let M ∗= (S,T,Σ∗st ,Σ∗t ) be the schema mapping in which Σ∗st consists of the constraints

∀x1,x2,x3,x4, t1, t2(uRew(x1,x2, t1)∧TbPub(x1,x2,x3, t2)∧Reg(x1,x2,x4)∧ (t1mt2)

→∃y1 Pub(x1,x2,x4,x3,y1, t2))

∀x1,x2,x3, t1(uSub(x1,x2, t1)∧Reg(x1,x2,x3)→∃y1 InPrcs(x1,x2,x3,y1))

∀x1,x2,x3, t1(uRew(x1,x2, t1)∧Reg(x1,x2,x3)→∃y1 InPrcs(x1,x2,x3,y1)),

and Σ∗t consists of the constraints

∀x1,x2,x3,x4,x5,x6, t1, t2(Pub(x1,x2,x3,x4,x5, t1)∧Pub(x1,x2,x3,x4,x6, t2)∧ (t1=t2)

→ x5 = x6)

∀x1,x2,x3,x4,x5(InPrcs(x1,x2,x3,x4)∧ InPrcs(x1,x2,x3,x5)→ x4 = x5).

Let I∗ be the concrete source instance whose relations are depicted in Table 3.1.

Let J1 denote the universal solution produced by the concrete chase algorithm on I∗

w.r.t. M ∗, where the concrete chase algorithm applies the concrete s-t tgds and the target egds
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Table 3.1: The relations Reg, uSub, uRew, and TbPub in the concrete source instance I∗.

(a) Reg

title conference author

a1 b1 c1

a2 b1 c2

a3 b1 c1

a4 b2 c3

a5 b2 c4

(b) uSub

title conference Stime

a1 b1 [1,3)

a2 b1 [2,4)

a3 b1 [1,3)

a4 b2 [5,6)

a5 b2 [6,7)

(c) uRew

title conference Rtime

a1 b1 [3,5)

a2 b1 [4,5)

a3 b1 [3,4)

a4 b2 [6,8)

(d) TbPub

title conference year Ptime

a1 b1 1 [5,6)

a2 b1 2 [5,7)

a4 b2 1 [8,10)

in the order they are listed; its relations are depicted in Table 3.2. Let J2 denote the universal

solution produced by the concrete chase algorithm on I∗ w.r.t. M ∗, where the concrete chase

algorithm applies the first concrete s-t tgd, the third concrete s-t tgd, and the second concrete s-t

tgd; after that the concrete chase applies the target egds in the order they are listed; its relations

are depicted in Table 3.3. It is easy to verify that the universal solution J1 is homomophically

equivalent to the universal solution J2.

Let M = (S,T,Σst ,Σt) be an arbitrary temporal schema mapping and let I be a concrete

source instance. According to Theorem 4, if the concrete chase algorithm succeeds on I, then
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Table 3.2: The relations Pub and InPrcs of the universal solution J1 by the concrete chase

algorithm.

(a) Pub

title conference author year page Atime

a1 b1 c1 1 N[3,5),[5,6)
1 [5,6)

a2 b1 c2 2 N[4,5),[5,7)
2 [5,7)

a4 b2 c3 1 N[6,8),[8,10)
3 [8,10)

(b) InPrcs

title journal author editor

a1 b1 c1 N1

a2 b1 c2 N2

a3 b1 c1 N3

a4 b2 c3 N4

a5 b2 c4 N5

Table 3.3: The relations Pub and InPrcs of the universal solution J2 produced by the concrete

chase algorithm.

(a) Pub

title conference author year page Atime

a1 b1 c1 1 N[3,5),[5,6)
1 [5,6)

a2 b1 c2 2 N[4,5),[5,7)
2 [5,7)

a4 b2 c3 1 N[6,8),[8,10)
3 [8,10)

(b) InPrcs

title journal author editor

a1 b1 c1 N1

a2 b1 c2 N2

a3 b1 c1 N3

a4 b2 c3 N4

a5 b2 c4 N9

it produces a concrete universal solution for I w.r.t. M . If the concrete chase algorithm fails,

then Theorem 4 provides no information concerning the existence or non-existence of a concrete

universal solution for I w.r.t. M . The next result shows that there are concrete schema mappings
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and concrete source instances such that the concrete chase algorithm fails, yet these instances

have universal solutions.

Theorem 5. There are three concrete schema mappings M1, M2, and M3 with the following

properties.

1. M1 = (S1,T1,Σ
1
st ,Σ

1
t ), where Σ1

st consists of two concrete s-t tgds each of which contains

a single existentially quantified variable and a single temporal variable occurring in every

atom of the consequent; moreover, Σ1
t consists of one concrete target egd that contains two

temporal variables.

2. M2 = (S2,T2,Σ
2
st ,Σ

2
t ), where Σ2

st consists of two concrete s-t tgds, one of which contains

a single existentially quantified variable and a single temporal variable, while the other

contains a single existentially quantified variable and two temporal variables; moreover,

Σ2
t consists of one concrete target egd that contains a single temporal variable.

3. M3 = (S3,T3,Σ
3
st ,Σ

3
t ), where Σ3

st consists of two concrete s-t tgds, one of which contains

two existentially quantified variables and a single temporal variable that does not occur in

the consequent, while the other contains an existentially quantified variable and a single

temporal variable that occur in only one of the two atoms of the consequent; moreover, Σ3
t

consists of one standard target egd (i.e., it has no temporal variables).

4. There are three concrete source instances I1, I2, and I3, such that for each j = 1,2,3, the

instance I j has a universal solution w.r.t. M j, but the concrete chase algorithm fails on I j

w.r.t. M j.
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Proof. The proof has three parts, one for each concrete schema mapping as in the statement of

the theorem.

Part 1: Let M1 = (S1,T1,Σ
1
st ,Σ

1
t ) be the schema mapping where Σ1

st consists of the constraints

σ1
st = ∀n, l, t(E(n, t)∧S(n, l, t)→∃c Emp(n,c, l, t))

σ2
st = ∀n, p, t(P(n, p, t)→∃c EmpPos(n,c, p, t))

and Σ1
t consists of the constraint

σt = ∀n,c1,c2, l, p, t1, t2(Emp(n,c1, l, t1)∧EmpPos(n,c2, p, t2)→ c1 = c2).

Let I1 be the concrete source instance whose relations are depicted in Table 3.4.

Table 3.4: The relations E, S, and P of the concrete source instance I1.

(a) E

Name Time

Ada [2013,2018)

Bob [2012,2015)

(b) S

Name Salary Time

Ada 18000 [2013,2018)

Bob 13000 [2012,2015)

(c) P

Name Position Time

Ada Manager [2015,2017)

Bob Consultant [2012,2015)

Table 3.5: The relations Emp and EmpPos of the concrete target instance c-chase
Σ1

st
(I1).

(a) Emp

Name Company Salary Time

Ada N[2013,2018)
1 18000 [2013,2018)

Bob N[2012,2015)
2 13000 [2012,2015)

(b) EmpPos

Name Company Position Time

Ada N[2015,2017)
3 Manager [2015,2017)

Bob N[2012,2015)
4 Consultant [2012,2015)

Let c-chase
Σ1

st
(I1) be the concrete target instance produced by the concrete chase

algorithm on I1 with Σ1
st . During the concrete target egd chase round with Σ1

t , the concrete chase
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algorithm fails because there is an assignment s, where

s(n) = Ada,s(c1) = N[2013,2018)
1 , s(l) = 18000,s(t1) = [2013,2018),s(c2) = N[2015,2017)

3 ,

s(p) = Manager, s(t2) = [2015,2017),

and

s(Emp(n,c1, l, t1)) = Emp(s(n),s(c1),s(l),s(t1))

= Emp(Ada,N[2013,2018)
1 ,18000, [2013,2018)),

s(EmpPos(n,c2, p, t2)) = Emp(s(n),s(c2),s(p),s(t2))

= EmpPos(Ada,N[2015,2017)
3 ,Manager, [2015,2017)),

such that

⟨I1,c-chase
Σ1

st
(I1)⟩,s |= Emp(n,c1, l, t1)∧EmpPos(n,c2, p, t2),

but s(c1) and s(c2) are two concrete time-stamped nulls with different time-stamps.

Although the concrete chase algorithm fails on I1 w.r.t. M1, we claim that there exists

a universal solution J1 for I1 w.r.t. M1; the relations of J1 are depicted in Table 3.6.

Table 3.6: The relations Emp and EmpPos of the concrete universal solution J1 for I1 w.r.t. M1.

(a) Emp

Name Company Salary Time

Ada N1 18000 [2013,2018)

Bob N[2012,2015)
2 13000 [2012,2015)

(b) EmpPos

Name Company Position Time

Ada N1 Manager [2015,2017)

Bob N[2012,2015)
2 Consultant [2012,2015)
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To verify that J1 is indeed a universal solution for I1 w.r.t. M1, we have to verify that

the following two statements are true: (1) ⟨I1,J1⟩ |= Σ1
st and J1 |= Σ1

t , hence J1 is a solution for I1

w.r.t. M1; (2) if K is a solution for I w.r.t. M , then there is a homomorphism from J1 to K.

The first statement can be easily verified by inspecting the relations of J1. To verify

the second statement, let K be some arbitrary, but fixed, solution for I1 w.r.t. M1. This means

that ⟨I1,K⟩ satisfies the two concrete s-t tgds in Σ1
st , and K satisfies the concrete target egd in Σ1

t .

We have to show that there is a homomorphism h from J1 to K. The active domain adom(J1) of

J1 consists of constants, time intervals, the labeled null N1, and the concrete time-stamped null

N[2012,2015)
2 . Since homomorphisms map constants and time intervals to themselves, it is enough

to define the values h(N1) and h(N[2012,2015)
2 ). Consider the concrete s-t tgd σ1

st in Σ1
st and let s1

be the assignment from the variables n, l, t to the active domain adom(I1) of I1 such that

s1(n) = Ada, s1(l) = 18000, s1(t) = [2013,2018).

Since ⟨I1,K⟩ |= σ1
st and I |= E(s1(n),s1(t))∧S(s1(n),s1(l),s1(t)), there must exist an element

∆1 in the active domain adom(K) of K such that K |= Emp(s1(n),∆1,s1(l),s1(t)), i.e., K |=

Emp(Ada,∆1,18000, [2013,2018)). Next, let s2 be the assignment from the variables n, l, t to

the active domain adom(I1) of I1 such that

s2(n) = Bob, s2(l) = 13000, s2(t) = [2012,2015).

Since ⟨I1,K⟩ |= σ1
st and I |= E(s2(n),s2(t))∧S(s2(n),s2(l),s2(t)), there must exist an element

∆2 in the active domain adom(K) of K such that K |= Emp(s2(n),∆2,s2(l),s2(t)), i.e., K |=

Emp(Bob,∆2,13000, [2012,2015)).

Let h be the function from the active domain adom(J1) of J1 to the active domain
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adom(K) of K such that h(N1) = ∆1; h(N[2012,2015)
2 ) = ∆2; and h is the identity on the constants

and time intervals in adom(J1). We claim that h is a homomorphism from J1 to K. For

this, we have to show that h maps every fact of J1 to some fact of K. Observe that J1 has

four facts, two in the relation EmpJ1 and two in the relation EmpPosJ1 . By the properties

of the elements ∆1 and ∆2, it is obvious that h maps the two facts of the relation EmpJ1 to

two facts of the relation EmpK . It remains to show that h maps the two facts of the relation

EmpPosJ1 to two facts of the relation EmpPosK . Since the two facts of EmpPosJ1 are the tuples

(Ada,N1,Manager, [2015,2017)) and (Bob,N[2012,2015)
2 ,Consultant, [2012,2015)), we have to

show that the tuples (Ada,∆1,Manager, [2015,2017)) and (Bob,∆2,Consultant, [2012,2015))

belong to the relation EmpPosK . Consider the s-t tgd σ2
st in Σ1

st and let s3 be the assignment from

the variables n, p, t to the active domain adom(I1) of I1 such that

s3(n) = Ada, s3(p) = Manager, s3(t) = [2015,2017).

Since ⟨I1,K⟩ |= σ2
st and I |= P(s3(n),s3(p),s3(t)), there must exist an element ∆3 in the active

domain adom(K) of K such that K |= EmpPos(s3(n),∆3,s3(p),s3(t)), i.e.,

K |= EmpPos(Ada,∆3,Manager, [2015,2017))

. Consider now the concrete target egd σt in Σt . Since K |= σt and also

K |= Emp(Ada,∆1,18000, [2013,2018))∧EmpPos(Ada,∆3,Manager, [2015,2017)),

we must have that ∆1 = ∆3. Therefore, the tuple (Ada,∆1,Manager, [2015,2017)) belongs to

the relation EmpPosK . By repeating the same argument with the assignment

s4(n) = Bob, s4(p) =Consultant, s4(t) = [2012,2015),
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we obtain that the tuple (Bob,∆2,Consultant, [2012,2015)) belongs to the relation EmpPosK .

This completes the proof that the function h is a homomorphism from J1 to K, and also completes

the proof of Part I.

Part 2: Let M2 = (S2,T2,Σ
2
st ,Σ

2
t ) be a concrete schema mapping where Σ2

st consists of the

concrete s-t tgds

σ
1
st = ∀x1,x2, t1(R1(x1,x2, t1)→∃y T1(x1,y, t1))

σ
2
st = ∀x1,x2,x3, t1, t2(R2(x1,x2, t1)∧R3(x1,x3, t2)∧ (t2 m t1)→∃y T2(x1,y, t2))

and Σ2
t consists of the concrete target egd

σt = ∀x1,x2,x3, t1(T1(x1,x2, t1)∧T2(x1,x3, t1)→ x2 = x3).

Let I2 be the concrete source instance whose relations are depicted in Table 3.7.

Let c-chase
Σ2

st
(I2) be the concrete target instances produced by the concrete chase

algorithm on I2 with Σ2
st . The relations of c-chase

Σ2
st
(I2) are depicted in Table 3.8.

During the concrete target egd chase round with Σ2
t , the concrete chase algorithm fails

on I2 because there is an assignment s, where

s(x1) = a1,s(x2) = N[1,4)
2 ,s(t1) = [1,4),s(x3) = N[4,6),[1,4)

3 ,

and

s(T1(x1,x2, t1)) = T1(s(x1),s(x2),s(t1)) = T1(a1,N
[1,4)
2 , [1,4)),

s(T2(x1,x3, t1)) = T2(s(x1),s(x3),s(t1)) = T2(a1,N
[4,6),[1,4)
3 , [1,4)),

such that

⟨I2,c-chase
Σ2

st
(I2)⟩,s |= T1(x1,x2, t1)∧T2(x1,x3, t1),
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but s(x2) and s(x3) are two concrete time-stamped nulls with different time-stamps. Although the

concrete chase algorithm fails on I2 w.r.t. M2, we claim that there exists a universal solution for

I2 w.r.t. M2; the relations of J2 are depicted in Table 3.9. To verify that J2 is indeed a universal

solution for I2 w.r.t. M2, we have to verify the following two statements: (1) ⟨I2,J2⟩ |= Σ2
st and

J2 |= Σ2
t , hence J2 is a solution for I2 w.r.t. M2; (2) if K is a solution for I2 w.r.t. M2, then there

is a homomorphism from J2 to K. The first statement can be easily verified by inspecting the

relations of J2. The second statement can be proved using an argument analogous to the one

used in Part 1 to show that J1 is a universal solution for I1 w.r.t. M1. The details are left to the

reader. This completes the proof of Part 2.

Table 3.7: The relations R1, R2, and R3 in the concrete source instance I2.

(a) R1

name position Ptime

a1 d1 [1,3)

a1 d2 [1,4)

(b) R2

name address Stime

a1 b1 [4,6)

(c) R3

name city Ctime

a1 e1 [1,4)

Table 3.8: The relations T1 and T2 in the target instance c-chase
Σ2

st
(I2).

(a) T1

name school Ptime

a1 N[1,3)
1 [1,3)

a1 N[1,4)
2 [1,4)

(b) T2

name school Ctime

a1 N[4,6),[1,4)
3 [1,4)

Part 3: Let M3 = (S3,T3,Σ
3
st ,Σ

3
t ) be a concrete schema mapping where the source schema S3 is
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Table 3.9: The relations T1 and T2 of the concrete universal solution J2 for I2 w.r.t. M2.

(a) T1

name school Ptime

a1 N[1,3)
1 [1,3)

a1 N2 [1,4)

(b) T2

name school Ctime

a1 N2 [1,4)

the schema S2 from Part 2; the set Σ3
st consists of the concrete s-t tgds

σ
1
st = ∀x1,x2, t(R2(x1,x2, t)→∃y1,y2 T2(x1,y1,y2))

σ
2
st = ∀x1,x2,x3, t (R1(x1,x2, t)∧R3(x1,x3, t)→∃y T1(x1,y, t)∧T2(x1,x3,y))

and Σ3
t consists of the concrete target egds

σ
1
t = ∀x1,x2,x3,x4,x5 (T2(x1,x2,x3)∧T2(x1,x4,x5)→ x2 = x4)

σ
2
t = ∀x1,x2,x3,x4,x5 (T2(x1,x2,x3)∧T2(x1,x4,x5)→ x3 = x5).

Let I3 be the concrete source instance I2 (as in the previous part), whose relations are

depicted in Table 3.7.

Let c-chase
Σ3

st
(I3) be the concrete target instances produced by the concrete chase

algorithm on I3 with Σ3
st in M3. The relations of c-chase

Σ3
st
(I3) are depicted in Table 3.10.

During the concrete target egd chase round with Σ3
t , the concrete chase algorithm fails

on I3 because there is an assignment s, where

s(x1) = a1,s(x2) = e1,s(x3) = N[1,4)
1 ,s(x4) = N[4,6)

2 ,s(x5) = N[4,6)
3 ,
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and

s(T2(x1,x2,x3)) = T2(s(x1),s(x2),s(x3)) = T2(a1,e1,N
[1,4)
1 ),

s(T2(x1,x4,x5)) = T2(s(x1),s(x4),s(x5)) = T2(a1,N
[4,6)
2 ,N[4,6)

3 ),

such that

⟨I3,c-chase
Σ3

st
(I3)⟩,s |= T2(x1,x2,x3)∧T2(x1,x4,x5),

but s(x3) and s(x5) are two concrete time-stamped nulls with different time-stamps. Although the

concrete chase algorithm fails on I3 w.r.t. M3, we claim that there exists a universal solution for

I3 w.r.t. M3; the relations of J3 are depicted in Table 3.11. To verify that J3 is indeed a universal

solution for I3 w.r.t. M3, we have to verify the following two statements: (1) ⟨I3,J3⟩ |= Σ3
st and

J3 |= Σ3
t , hence J3 is a solution for I3 w.r.t. M3; (2) if K is a solution for I3 w.r.t. M3, then there

is a homomorphism from J3 to K. The first statement can be easily verified by inspecting the

relations of J3. The second statement can be proved using an argument analogous to the one

used in Part 1 to show that J1 is a universal solution for I1 w.r.t. M1. The details are left to the

reader. This completes the proof of Part 3 and also the proof of the theorem.

Table 3.10: The relations T1 and T2 in the target instance c-chase
Σ3

st
(I3).

(a) T1

name school Ptime

a1 N[1,4)
1 [1,4)

(b) T2

name city school

a1 e1 N[1,4)
1

a1 N[4,6)
2 N[4,6)

3
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Table 3.11: The relations T1 and T2 of the concrete universal solution J3 for I3 w.r.t. M3.

(a) T1

name school Ptime

a1 N1 [1,4)

(b) T2

name city school

a1 e1 N1

Remark 2. Let M = (S,T,Σst ,Σt) be an arbitrary temporal schema mapping and let I be a

concrete source instance. Theorem 4 tells that if the concrete chase algorithm succeeds on I,

then the concrete target instance c-chaseM (I) returned by this algorithm is a concrete universal

solution for I w.r.t. M . However, Theorem 5 shows that the concrete chase algorithm may fail

on I, yet a concrete universal solution for I w.r.t. M may exist. This state of affairs raises the

problem to identify classes of schema mappings for which the concrete chase algorithm is sound

and complete, that is, given a concrete source instance I, if the concrete chase algorithm succeeds,

then a universal solution for I exists, while if the concrete chase algorithm fails, then no solution

for I exists. Clearly, such classes should not contain schema mappings of the kind encountered

in Theorem 5.

Theorem 6. Let M =(S,T,Σst ,Σt) be a concrete schema mapping, such that one of the following

two conditions holds: (a) Every concrete s-t tgd in Σst is full (i.e., its consequent contains no

existential quantifiers); (b) If a concrete s-t tgd in Σst is not full, then it contains exactly one

temporal variable, and this temporal variable occurs in every atom of the consequent of the

concrete s-t tgd; moreover, every target egd in Σt contains at most one temporal variable. If I is a

concrete source instance, then the following statements hold:

1. If the concrete chase algorithm succeeds on I, then the concrete target instance c-chaseM (I)
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returned by this algorithm is a concrete universal solution for I w.r.t. M .

2. If the concrete chase algorithm fails on I, there is no solution for I w.r.t. M .

Moreover, the running time of the concrete chase algorithm is bounded by a polynomial in the

size of I.

Before embarking on the proof of Theorem 6, we state and prove an auxiliary result.

Lemma 7. Let M = (S,T,Σst ,Σt) be a concrete schema mapping such that if a concrete s-t tgd

in Σst is not full, then it contains exactly one temporal variable, and this temporal variable occurs

in every atom of the consequent of the concrete s-t tgd. Let I be a concrete source instance over

S and let K ̸=⊥ be a target instance produced at some step of the concrete chase algorithm for I

w.r.t. M . If a concrete time-stamped null Ni occurs in a fact of K, then the time interval i also

occurs in that fact; moreover, the time-stamp of every concrete time-stamped null occurring in

that fact is i.

Proof. We first consider the concrete s-t tgd round and show, by induction, that every concrete

target instance K j produced in a step of the concrete s-t tgd round has the desired properties (note

that K j ̸=⊥, for every such instance K j). To begin with, this holds trivially true for the initial

instance K0 = /0. Let K j be the current concrete target instance, and let ⟨I,K j⟩
σ,s−→ ⟨I,K j+1⟩ be a

chase step in the concrete s-t tgd round. By induction hypothesis, assume that K j has the desired

properties. We have to show that K j+1 also has the desired properties. Since K j+1 is obtained

from K j by adding one or more facts, it suffices to show that the facts added to K j have the desired

properties. Assume that σ is the concrete s-t tgd ∀x, t(ϕ(x, t)→∃yψ(x,y, t)). By the hypothesis

of the lemma, σ contains exactly one temporal variable t, and this temporal variable t occurs in
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every atom of the consequent ψ(x,y, t). The chase step involving the assignment s introduces one

or more fresh concrete time-stamped nulls all of which have s(t) as their time-stamp, because

the only temporal variable occurring in σ is t. Moreover, since t occurs in every atom in the

consequent ψ(x,y, t), the time interval must occur in every new fact created. Thus, K j+1 has the

desired properties.

We now consider the concrete target egd round. Assume that ⟨I,K j⟩
σ,s−→ ⟨I,K j+1⟩

is a step in the concrete target egd round and that K j and K j+1 are concrete target instances

such that K j has the desired properties and K j+1 ̸=⊥. We have to show that K j+1 also has the

desired properties. Assume that σ is the concrete target egd ∀x∀t(θ(x, t∧ρ(t))→ xk = xl). Since

K j+1 ̸=⊥, we must have that K j+1 is obtained from K j in one of two ways: (1) a null (with or

without a time-stamp) is replaced by a constant or by a null with no time-stamp; (2) a concrete

time-stamped null with some time-stamp i is replaced by another time-stamped null with the

same time-stamp i. In either case and since K j had the desired properties, it follows that K j+1

also has the desired properties. This completes the proof of the lemma.

We are now ready to prove Theorem 6.

Proof. (Proof of Theorem 6) Let M be a concrete schema mapping satisfying the hypothesis of

the theorem and let I be a concrete source instance. If the concrete chase algorithm succeeds

on I, then the concrete target instance chaseM (I) returned by this algorithm is a concrete

universal solution for I w.r.t. M . Indeed, this follows immediately from Theorem 4, since that

theorem is about arbitrary concrete schema mappings. So, assume now that the concrete chase

algorithm fails on I. We have to show that no solution for I w.r.t. M exists. We consider two
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cases about M .

Case 1: Assume that every concrete s-t tgd in Σst is full. It follows that no nulls and no concrete

time-stamped nulls are generated during the chase, hence the target instances constructed during

the chase contain no nulls and no concrete time-stamped nulls.

Let ⟨I,J⟩ σ,s−→⊥ be the last chase step of the failing chase and let σ be the (concrete)

target egd

σt = ∀x∀t(θ(x, t)∧ρ(t)→ xk = xl).

Since the chase fails at this step and since J contains no nulls and no concrete time-stamped

nulls, there must exist an assignment s from the variables in x and t to the active domain adom(J)

of J such that J |= θ(s(x),s(t))∧ρ(s(t)), and the values s(xk), s(xl) are different constants, say,

s(xk) = c1 ̸= c2 = s(xl).

Towards a contradiction, suppose that there exists a solution J′ for I w.r.t. M . Since the

identity is a homomorphism from ⟨I, /0⟩ to ⟨I,J′⟩, Lemma 3 implies that there is a homomorphism

g from ⟨I,J⟩ to ⟨I,J′⟩. Then g◦ s is an assignment from the variables x and t to the active domain

adom(J′) of J′ such that J′ |= θ(g◦s(x),g◦s(t))∧ρ(g◦s(t)). Moreover, since J′ is a solution for

I w.r.t. M , we must have that g◦ s(xk) = g◦ s(xl). However, since g is the identity on constants,

we have that s(xk) = s(xl), and so we have arrived at a contradiction.

Case 2: Assume that for every concrete s-t tgd in Σst if it is not full, then it contains exactly one

temporal variable occurring in every atom of its consequent. Moreover, every target egd in Σt

contains at most one temporal variable.

Let ⟨I,J⟩ σ,s−→⊥ be the last chase step of the failing chase. Since σ is a (concrete) target
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egd in Σt , it must contains at most one temporal variable. Suppose first that the only temporal

variable occurring in σ is t, hence σ is a formula of the form

σt = ∀x∀t(θ(x, t)→ xk = xl).

Since the chase fails at this step, there exists an assignment s from the variables x and t to the

active domain adom(J) of J such that either s(xk) and s(xl) are two distinct constants c1 and c2

or s(xk) and s(xl) are two distinct concrete time-stamped nulls Ni1
1 and Ni2

2 with two different

time-stamps i1 ̸= i2.

We now claim that s(xk) and s(xl) cannot be concrete time-stamped nulls with different

time stamps. By Lemma 7, if a concrete time-stamped null Ni occurs in a fact of J, then the time

interval i must also occur in that fact. Since t is the only temporal variable occurring in σ, it

follows that if s(xk) and s(xl) were concrete time-stamped nulls, then they would have the same

time-stamp s(t). Thus, we are left with the possibility that s(xk) = c1 and s(xl) = c2, where c1

and c2 are distinct constants. Towards a contradiction, suppose that there exists a solution J′ for I

w.r.t. M . As in the previous case and by using Lemma 3, we have that there is a homomorphism

g from ⟨I,J⟩ to ⟨I,J′⟩. Then g◦ s is an assignment from the variables x and t to the active domain

adom(J′) of J′ such that J′ |= θ(g◦ s(x),g◦ s(t)). Moreover, since J′ is a solution for I w.r.t. M ,

we must have that g ◦ s(xk) = g ◦ s(xl). Since g is the identity on constants, we conclude that

s(xk) = s(xl), which is a contradiction.

Next, suppose that σ contains no temporal variables, i.e., σ is a standard target egd of

the form ∀x(θ(x)→ xk = xl). Since the chase fails at this step, there is an assignment s from the

variables x to the active domain adom(J) of J such that J |= θ(s(x)) and either s(xk) and s(xl)
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are two distinct constants or s(xk) and s(xl) are two concrete time-stamped nulls with different

time stamps. Since σ contains no temporal variables, Lemma 7 implies that no fact in θ(s(x))

contains a time-stamped null, hence s(xk) and s(xl) must be different constants. From this and

with the same reasoning as before, it follows that there is no solution for I w.r.t. M .

Finally, as proved in the Theorem 4, the running time of the concrete chase algorithm

is bounded by a polynomial in the size of I. This completes the proof of Theorem 6.

Remark 3. In Theorem 6, we identified two sufficient conditions on schema mappings for which

the concrete chase algorithm is sound and complete. These two sufficient conditions are:

(a) Every concrete s-t tgd in Σst is full (i.e., its consequent contains no existential

quantifiers);

(b) If a concrete s-t tgd in Σst is not full, then it contains exactly one temporal variable,

and this temporal variable occurs in every atom of the consequent of the concrete s-t tgd;

moreover, every target egd in Σt contains at most one temporal variable.

We will show that these two conditions are not necessary for the conclusion of Theorem

6 to hold. For this, we have to show that there exists a concrete schema mapping for which the

conclusion of Theorem 6 holds, yet the schema mapping violates both conditions (a) and (b). Let

M4 = (S,T,Σ4
st ,Σ

4
t ) be the concrete schema mapping, where Σ4

st consists of the three concrete

s-t tgds

σ
1
st = ∀x, t(P(x, t)→ P′(x, t)), σ

2
st = ∀x, t(Q(x, t)→ Q′(x, t)),

σ
3
st = ∀x, t1, t2(P(x, t1)∧Q(x, t2)→∃yR(x,y)),
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and Σt consists of the concrete target egd

σt = ∀x,y, t1, t2(R(x,y)∧P′(x, t1)∧Q′(x, t2)→ x = y).

Clearly, the concrete schema mapping M4 violates both conditions (a) and (b). Yet, we claim that

the concrete chase algorithm is sound and complete w.r.t. M4, hence the conclusion of Theorem

6 holds. In fact, we claim that, given an arbitrary concrete source instance I, the concrete chase

algorithm never fails on I w.r.t. M4. Therefore, by Theorem 4, the result returned by the concrete

chase algorithm on I w.r.t. M4 is a universal solution for I w.r.t. M4.

We now explain why this claim holds. Observe that the concrete s-t tgds σ1
st and σ2

st

simply copy the relations P and Q in the source to, respectively, the relations P′ and Q′ in the

target. Therefore, the concrete chase algorithm populates the first attributes of the relations P′ and

Q′ with constants from the source. In contrast, the concrete chase algorithm populates the second

attribute in the relation R with time-stamped nulls, since R is populated only when the concrete

s-t tgd σ3
st is applied. Therefore, during the run of the chase, every assignment that satisfies the

antecedent of the concrete target egd σt will assign a constant to x and a time-stamped null to y;

consequently, the concrete chase algorithm will replace the time-stamped null by that constant,

and so the chase algorithm will not fail on I w.r.t. M4.
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3.2 Semantic Adequacy for Temporal Data Exchange with a Single

Temporal Variable

3.2.1 Constraints in the Abstract Model of Time

Let S be a temporal source relational schema, and let T be a temporal target relational

schema that is disjoint from S. An s-t tgd in the abstract model of time, called an abstract s-t tgd,

is a formula of the form:

σst = ∀x∀t
(
ϕ
(
x, t

)
→∃yψ

(
x,y, t

))
, (3.2)

where t is the only temporal variable, the formula ϕ(x, t) is a conjunction of atomic formulas

of the form R(x′, t) or of the form R(x′) over the schema S (note that x′ ⊆ x), and the formula

ψ
(
x,y, t

)
is a conjunction of similar target atoms over T. We assume that all variables in x and

the temporal variable t appear free in ϕ(x, t). An abstract target egd in the abstract model of time,

called an abstract target egd, is a formula of the form:

σt = ∀x∀t(θ(x, t)→ xk = xl), (3.3)

where the only temporal variable is t, the formula θ(x, t) is a conjunction of target atoms over T,

and xk,xl are among the variables in x.

Example 5. Let S be a temporal source schema consisting of the relation symbols

E(Name,Company,Time) and S(Name,Salary,Time),

and let T be a temporal target schema consisting of the relation symbol Emp(Name, Company,
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Salary, Position, Time). An example of an abstract s-t tgd over S is

∀n,s,c, t(E(n,c, t)∧S(n,s, t)→∃p Emp(n,c,s, p, t)).

An example of an abstract target egd over T is

∀n,c,s, p1, p2, t(Emp(n,c,s, p1, t)∧Emp(n,c,s, p2, t)→ p1 = p2).

3.2.2 Abstract Data Exchange

Definition 6 (Abstract Schema Mapping). An abstract schema mapping is a tuple M =

(S,T,Σst ,Σt), where S is a temporal source relational schema, T is a temporal target rela-

tional schema that is disjoint from S, Σst is a finite set of standard s-t tgds or abstract s-t tgds,

and Σt is a finite set of standard target egds or abstract target egds.

If M = (S,T,Σst ,Σt) is an abstract temporal schema mapping, then we write M ′ =

(S′,T′,Σ′st ,Σ′t) for the standard (non-temporal) schema mapping obtained from M by removing

the temporal attributes in the relation symbols in S and T, and also by removing the temporal

variables from all constraints in Σst and Σt and replacing the atoms from S and T by the

corresponding atoms from S′ and T′.

Values in Source and Target Instances As discussed earlier, in data exchange between relational

schemas, the source instances contain values from a countable domain CONST of objects, called

constants, while the target instances may contain values from the union CONST∪NULL, where

NULL is a countable set of distinct labeled nulls N1,N2, . . . that represent some unknown value

and are typically used to witness the existentially quantified variables in the right-hand sides of
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s-t tgds. In abstract data exchange, the values occurring in source and target instances may also

be time points. Furthermore, abstract target instances may contain labeled nulls N1,N2, . . ..

Definition 7 (Homomorphisms, Abstract Solutions, and Abstract Universal Solutions).

Let J and J′ be two abstract instances over the same schema. A homomorphism from J

to J′ is a sequence of functions h0,h1, . . . such that (a) each hi is a homomorphism from the

snapshot Jti of J to the snapshot J′ti of J′; (b) for every two homomorphisms hl : Jtl → J′tl and

hk : Jtk → J′tk , if a labeled null N j appears both in the snapshot Jtl of J and the snapshot Jtk of J,

then hl(N j) = hk(N j).

Let M be an abstract schema mapping and let M ′ be the standard schema mapping

obtained from M as discussed above. Assume that I is an abstract source instance. We say

that a target abstract instance J is an abstract solution for I w.r.t. M if each snapshot Jt of J is

a solution for the corresponding snapshot It of I w.r.t. M ′. A target instance J is an abstract

universal solution for I if J is an abstract solution for I w.r.t. M and, for every abstract solution

J′ for J w.r.t. M , there is a homomorphism from J to J′.

Golshanara and Chomicki [36] introduced a snapshot chase algorithm for abstract

schema mappings and abstract source instances. In their setting, every relation symbol in the

source and the target has exactly one temporal attribute, while in the setting described here

every relation in the source and the target has at most one temporal attribute; in particular, some

relations may have no temporal attributes. The snapshot chase can easily be extended to the

latter setting.

The Snapshot Chase Algorithm Let M = (S,T,Σst ,Σt) be an abstract schema mapping and
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let M ′ be the standard schema mapping obtained from M by removing all temporal variables

from the relations and the constraints, as described earlier. Let I be a finite abstract source

instance over the schema S and let ⟨I0, I1, . . . , In⟩ be the sequence of its snapshots. Recall that

each snapshot Ii contains all facts of I in which the time point i occurs; furthermore, every fact of

a non-temporal relation belongs to every snapshot.

The snapshot chase algorithm on I with respect to M applies the standard chase

algorithm on each snapshot Ii of I w.r.t. the standard schema mapping M ′; moreover, for each

snapshot, the algorithm produces fresh labeled nulls that are different from the labeled nulls

produced in other snapshots. If the standard chase algorithm fails on at least one snapshot Ii,

then we say that the snapshot chase algorithm on I w.r.t. M fails. Otherwise, the snapshot chase

algorithm generates the abstract target instance s-chaseM (I) whose snapshot at time point i is

the result of the standard chase on the snapshot Ii w.r.t. M ′, i.e.,

s-chaseM (I) = ⟨chaseM ′(I0),chaseM ′(I1), . . . ,chaseM ′(In)⟩.

The next result extends Proposition 4 in [36] to the setting of abstract schema mappings

considered here.

Proposition 1. Let M = (S,T,Σst ,Σt) be an abstract schema mapping (thus, every constraint

in Σst ∪Σt contains at most one temporal variable). If I is an abstract source instance, then the

following statements hold:

1. If the snapshot chase algorithm does not fail on I, then the abstract target instance

s-chaseM (I) returned by this algorithm is an abstract universal solution for I w.r.t. M .

2. If the abstract chase algorithm fails on I, then there is no abstract solution for I w.r.t. M .

66



Furthermore, the running time of the snapshot chase algorithm is bounded by a polynomial in

the size of the abstract instance I.

3.2.3 Semantic Adequacy of Concrete Universal Solutions

Let M = (S,T,Σst ,Σt) be a schema mapping in which each constraint in Σst ∪Σt

contains at most one temporal variable. Such a schema mapping M is meaningful in both the

concrete model of time and the abstract model of time without changing the constraints in Σst∪Σt .

In the first case, the temporal variable is ranging over time intervals and in the second over time

points. We will often refer to such schema mappings as temporal schema mappings; it will be

clear from the context if we regard them as concrete schema mappings or as abstract schema

mappings. In this section, we will explore the interplay between concrete universal solutions and

abstract universal solutions for such temporal schema mappings.

In what follows, we will also assume that all concrete source instances I are coa-

lesced, that is, if c1, . . . ,cm are constants and i, i′ are time intervals such that (c1, . . . ,cm, i) and

(c1, . . . ,cm, i′) belong to the same relation of I, then i and i′ are disjoint intervals. Clearly, every

concrete source instance can be easily transformed to an “equivalent” coalesced one (see [30] for

details).

Definition 8 (Semantic Function). As mentioned in Chapter 1, the semantic function J.K

converts concrete instances to abstract instances by replacing time intervals with all points of

time in them. We now spell out the precise definition of the semantic function.

• If µ = (c1, . . . ,cm, [s,e)) is a tuple in which each ck is a constant and [s,e) is an interval,
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then JµK = {(c1, . . . ,cm, t) : s≤ t < e}.

• If I = (R1, . . . ,Rn) is a concrete source instance, then JIK is the abstract source instance

JIK = (JR1K, . . . ,JRnK), where JRlK =
⋃

µ∈Rl

JµK, for 1≤ l ≤ n.

Definition 9 (Compatible Tuples). We say that a tuple ν = (a1, . . . ,am, [s,e)) is compatible if

each ak is a constant or a labeled null or a concrete time-stamped null N[s,e)
j , and all time-stamped

nulls in ν have the same time-stamp. If ν is a compatible tuple, then JνK is the set of all tuples

(b1, . . . ,bm, t), such that the following conditions hold:

1. s≤ t < e.

2. If al is a constant or a labeled null, then bl = al .

3. If al is a concrete time-stamped null N[s,e)
j , then bl is a new labeled null.

Let J = (T1, . . . ,Tm) be the concrete target instance produced by the concrete chase

algorithm w.r.t. some temporal schema mapping M on a source instance I. It is easy to verify

that every tuple occurring in one of the relations of J is compatible. Then JJK is the abstract

target instance JJK = (JT1K, . . . ,JTmK), where JTlK =
⋃

ν∈Tl

JνK, for 1≤ l ≤ m.

Definition 10 (Semantic Adequacy). Let M = (S,T,Σst ,Σt) be a temporal schema mapping

with at most one temporal variable per constraint and let I be a concrete source instance. We say

that a concrete target instance J is semantically adequate for I if the abstract target instance JJK

is a universal solution for JIK w.r.t. M . In particular, JJK is homomorphically equivalent to the

abstract universal solution Ja produced by the abstract chase on JJK w.r.t. M .

The concept of semantic adequacy is illustrated in Figure 3.1.
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Figure 3.1: Illustration of the notion of semantic adequacy: if a concrete target instance J is

semantically adequate for I w.r.t. M , then JJK is a concrete universal solution for JIK w.r.t. M ;

hence, JJK is homomorphically equivalent to every abstract universal solution Ja for I w.r.t. M .

3.2.3.1 Lack of Semantically Adequate Concrete Universal Solutions

We begin by focusing more narrowly on schema mappings in the setting of Golshanara

and Chomicki [36], that is, temporal schema mappings M = (S,T,Σst ,Σt) such that each

relational symbol in S and T has one temporal attribute and each constraint in Σst ∪Σt has exactly

one temporal variable. Note that such class of schema mappings does not contain standard

schema mappings as a special case.

Let M be such a temporal schema mapping. Then, since every relation symbol

contains a temporal attribute and since every s-t tgd contains exactly one temporal variable, we

have that the temporal variable occurs in every atom in the antecedent of every s-t tgd; moreover,

every target egd contains one temporal variable. Therefore, such temporal schema mappings

satisfy the hypotheses of Theorem 6 in Section 3.1.3. Consequently, if I is a concrete source
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instance, such that the concrete chase algorithm succeeds on I w.r.t. M , then this algorithm

produces a concrete universal solution for I w.r.t. M ; furthermore, if this algorithm fails, then no

solution for I w.r.t. M exists.

In their study of concrete data exchange, Golshanara and Chomicki [36] considered a

variant of the concrete chase algorithm, which here we will call the concrete n-chase algorithm.

• The main difference between the concrete n-chase algorithm and the concrete chase algo-

rithm we introduced here is that the concrete n-chase algorithm performs a normalization

step before the constraints in Σst are applied and another normalization step before the

constraints in Σt are applied. In particular, the concrete n-chase algorithm does not chase

the given concrete source instance I with Σst , but, instead, chases the normalized instance

N (I) with Σst . We refer the reader to Section 4.2 in [36] for the definition of normalization.

• In terms of similarities between the concrete n-chase algorithm and the concrete chase

algorithm, we first note that, since the constraints have exactly one temporal variable, the

target instances produced by either algorithm contain no labeled nulls, but, of course, they

may contain time-stamped nulls in which the time-stamp is a single interval. Furthermore,

the tuples occurring in the target instances produced by either algorithm are compatible.

In what follows, if M is a temporal schema mapping and I is a concrete source instance,

we will write c-chaseM (I) and n-chaseM (I) to denote the concrete target instance produced by

the concrete chase algorithm and, respectively, the concrete n-chase algorithm on I.

The following lemma about the concrete n-chase algorithm was proved in [36].

Lemma 8. (Lemma 18 in [36]) Let M = (S,T,Σst ,Σt) be a temporal schema mapping, such
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that each relational symbol in S and T has one temporal attribute and each constraint in Σst ∪Σt

has exactly one temporal variable. Let I be a normalized concrete source instance over S w.r.t.

a constraint σ, let K be the current concrete target instance over T in the run of concrete n-

chase algorithm, and let ⟨I,K⟩ σ,s−→ ⟨I,K′⟩ be a chase step, where ⟨I,K′⟩ ̸= ⊥. Assume that

⟨JIK,Ka⟩ is an abstract instance such that ⟨JIK,Ka⟩ satisfies σ and there exists a homomorphism

h1: J⟨I,K⟩K→ ⟨JIK,Ka⟩. Then there exists a homomorphism h2: J⟨I,K′⟩K→ ⟨JIK,Ka⟩.

We are now ready to state the main result in [36].

Theorem 9. (Theorem 19 in [36]) Let M = (S,T,Σst ,Σt) be a temporal schema mapping, such

that each relational symbol in S and T has one temporal attribute and each constraint in Σst ∪Σt

has exactly one temporal variable. If I is a concrete source instance, then the following statements

are true.

• If the concrete n-chase algorithm on I fails, then there is no solution for JIK w.r.t. M .

• If the concrete n-chase algorithm on I does not fail, then the concrete target instance

n-chaseM (I) produced by the algorithm is semantically adequate for I.

We note that the normalization steps in the concrete n-chase algorithm guarantee that

there is a homomorphism from the left-hand side of a constraint in Σst or in Σt to a concrete

instance K, provided there is a homomorphism from the left-hand side of that constraint to the

abstract instance JKK.

As mentioned in Chapter 1, Golshanara and Chomicki [36] did not address the question

of whether or not their concrete n-chase algorithm produces a concrete universal solution. In fact,

the notion of a concrete universal solution is not introduced in [36]. Our next result provides
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a strong negative answer to the question of whether the concrete n-chase algorithm produces

concrete universal solutions.

Theorem 10. There is a temporal schema mapping M ∗ = (S,T,Σ∗st ,Σ∗t ) with one temporal

variable in each constraint in Σ∗st ∪Σ∗t and there is a concrete source instance I∗ such that the

following properties hold:

1. The concrete target instance n-chaseM ∗(I∗) returned by the concrete n-chase algorithm on

I∗ is neither a solution for I∗ w.r.t. M ∗ nor a solution for the normalized instance N (I∗)

w.r.t. M ∗.

2. There is a concrete universal solution for I∗ w.r.t. M ∗, but there is no concrete universal

solution for I∗ w.r.t. M ∗ that is semantically adequate for I∗.

3. There is a concrete universal solution for N (I∗) w.r.t. M ∗, but there is no concrete

universal solution for N (I∗) w.r.t. M ∗ that is semantically adequate for N (I∗).

Proof. Let M ∗ = (S,T,Σ∗st ,Σ∗t ) be the schema mapping where Σ∗st consists of the constraints

∀n,s,c, t(E(n,c, t)∧S(n,s, t)→ Emp(n,c,s, t))

∀n, p, t(P(n, p, t)→∃c EmpPos(n,c, p, t))

and Σ∗t consists of the constraint

∀n,c1,c2,s, p, t(Emp(n,c1,s, t)∧EmpPos(n,c2, p, t)→ c1 = c2).

Let I∗ be the concrete source instance whose relations are depicted in Table 3.12. After

normalizing I∗ w.r.t. Σ∗st (see [36] for the precise definition of normalization), we obtain the

normalized instance N (I∗) whose relations are depicted in Table 3.13.
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Table 3.12: The relations E, S, and P of the concrete source instance I∗.

(a) E

Name Company Time

Ada IBM [2013,2018)

Bob IBM [2012,2015)

(b) S

Name Salary Time

Ada 18000 [2014,2018)

Bob 13000 [2013,2015)

(c) P

Name Position Time

Ada Manager [2015,2017)

Bob Consultant [2012,2015)

Table 3.13: The relations E, S, and P of the normalized instance N (I∗).

(a) E

Name Company Time

Ada IBM [2013,2014)

Ada IBM [2014,2018)

Bob IBM [2012,2013)

Bob IBM [2013,2015)

(b) S

Name Salary Time

Ada 18000 [2014,2018)

Bob 13000 [2013,2015)

(c) P

Name Position Time

Ada Manager [2015,2017)

Bob Consultant [2012,2015)

Let n-chaseM ∗(I∗) be the concrete target instance produced by the concrete n-chase

algorithm on I∗; its relations are depicted in Table 3.14. It is easy to see that n-chaseM ∗(I∗) is

neither a solution for I∗ nor a solution for N (I∗). This proves the first part of the theorem.

Let c-chaseM ∗(I∗) and c-chaseM ∗(N (I∗)) be the concrete target instances produced

by the concrete chase algorithm on I∗ and on N (I∗). The relations of c-chaseM ∗(I∗) are depicted

in Table 3.15, and those of c-chaseM ∗(N (I∗)) in Table 3.16. Note that c-chaseM ∗(I∗) is a

universal solution for I∗, while c-chaseM ∗(N (I∗)) is a universal solution for N (I∗).

Let s-chaseM ∗(JI∗K) be the abstract target instance produced by snapshot chase algo-

rithm , which chases the the snapshots of JI∗K. Table 3.17 depicts the abstract target instance
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Table 3.14: The relations Emp and EmpPos of the concrete target instance n-chaseM ∗(I∗).

(a) Emp

Name Company Salary Time

Ada IBM 18000 [2014,2015)

Ada IBM 18000 [2015,2017)

Ada IBM 18000 [2017,2018)

Bob IBM 13000 [2013,2015)

(b) EmpPos

Name Company Position Time

Ada IBM Manager [2015,2017)

Bob N[2012,2013)
2 Consultant [2012,2013)

Bob IBM Consultant [2013,2015)

Table 3.15: The relations Emp and EmpPos of the concrete target instance c-chaseM ∗(I∗).

(a) Emp

Name Company Salary Time

(b) EmpPos

Name Company Position Time

Ada N[2015,2017)
1 Manager [2015,2017)

Bob N[2012,2015)
2 Consultant [2012,2015)

Table 3.16: The relations Emp and EmpPos of the concrete target instance c-chaseM ∗(N (I∗)).

(a) Emp

Name Company Salary Time

Ada IBM 18000 [2014,2018)

Bob IBM 13000 [2013,2015)

(b) EmpPos

Name Company Position Time

Ada N[2015,2017)
1 Manager [2015,2017)

Bob N[2012,2015)
2 Consultant [2012,2015)

s-chaseM ∗(JI∗K) by listing the facts of each of its snapshots.

By Proposition 1, we have that s-chaseM ∗(JI∗K) is a universal solution for JI∗K w.r.t.

M ∗. It is now easy to verify that Jc-chaseM ∗(I∗)K is not homomorphically equivalent to

s-chaseM ∗(JI∗K). It follows that c-chaseM ∗(I∗) is not semantically adequate for I∗. Further-
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Table 3.17: Snapshots the abstract target instance s-chaseM ∗(JI∗K).

2012 {EmpPos(Bob, N3, Consultant)}

2013 {Emp( Bob, IBM, 13000), EmpPos(Bob, IBM, Consultant )}

2014 {Emp( Ada, IBM, 18000), Emp( Bob, IBM, 13000), EmpPos(Bob, IBM, Consultant )}

2015 {Emp( Ada, IBM, 18000), EmpPos(Ada, IBM, Manager)}

2016 {Emp( Ada, IBM, 18000), EmpPos(Ada, IBM, Manager)}

2017 {Emp( Ada, IBM, 18000)}

more, it is not hard to show that if J and J′ are universal solutions for I∗ w.r.t. M ∗, then JJK

and JJ′K are homomorphically equivalent. Therefore, no concrete universal solution for I∗ is

semantically adequate for I∗. This proves the second part of the theorem. A similar argument

with c-chaseM ∗(N (I∗)) in place of c-chaseM ∗(I∗) proves the third part of the theorem.

3.2.3.2 Existence of Semantically Adequate Concrete Universal Solutions

Theorem 10 tells that in the temporal data exchange setting studied in [36], there are

rather simple temporal schema mappings and temporal source instances for which no concrete

universal solution is semantically adequate for these instances or for their normalized versions.

A close scrutiny of the proof of Theorem 10 reveals that one of the root causes for this state of

affairs appears to be the presence of two temporal atoms in the antecedent of the temporal target

egd in Σ∗t . Our next result identifies a class of temporal schema mappings for which normalized

instances have concrete universal solutions that are also semantically adequate.

We first state a useful lemma.

Lemma 11. Let M = (S,T,Σst ,Σt) be a temporal schema mapping such that the following
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conditions hold: (1) each concrete s-t tgd contains at most one temporal variable; (2) if an s-t

tgd contains no temporal variables, then it is full; (3) if a concrete s-t tgd contains a temporal

variable, then that temporal variable occurs in every atom of its consequent; (4) each concrete

target egd contains at most one temporal atom in its antecedent. Let I be a normalized concrete

source instance over S w.r.t. Σst , let K be the current concrete target instance over T in the run

of the concrete chase algorithm, and let ⟨I,K⟩ σ,s−→ ⟨I,K′⟩ be a chase step, where ⟨I,K′⟩ ≠ ⊥.

Assume that ⟨JIK,Ka⟩ is an abstract instance such that each snapshot of ⟨JIK,Ka⟩ satisfies

σ′ where σ′ is obtained from σ by removing all occurrences of the temporal variable, and

there exists a homomorphism h: J⟨I,K⟩K→ ⟨JIK,Ka⟩. Then there exists a homomorphism h′:

J⟨I,K′⟩K→ ⟨JIK,Ka⟩.

The proof of Lemma 11 is omitted as it is similar to the proof of Lemma 8. Note that

Condition (4) in Lemma 11 implies that if σ is a target egd in Σt , then the current target instance

K is automatically normalized w.r.t. σ.

Theorem 12. Let M = (S,T,Σst ,Σt) be a temporal schema mapping such that the following

conditions hold: (1) each s-t tgd contains at most one temporal variable; (2) if an s-t tgd contains

no temporal variables, then it is full; (3) if an s-t tgd contains a temporal variable, then that

temporal variable occurs in every atom of its consequent; (4) each target egd contains at most one

temporal atom in its antecedent. If I is a concrete source instance, then the following statements

hold:

1. If the concrete chase algorithm does not fail on N (I), then c-chaseM (N (I)) is a semanti-

cally adequate concrete universal solution for N (I) (in particular, Jc-chaseM (N (I))K is
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an abstract universal solution for JIK).

2. If the concrete chase algorithm fails on N (I), then there is no solution for JIK w.r.t. M .

Proof. The proof is in two parts.

Part 1 Assume that the concrete chase algorithm does not fail. The first key observation is that

if a concrete schema mapping satisfies the hypotheses (1)-(4), then it satisfies the hypothesis

(b) of Theorem 6. Therefore, from Theorem 6, we know that c-chaseM (N (I)) is a concrete

universal solution for N (I) w.r.t. M .

Let J be a concrete target instance in the run of the concrete chase algorithm on N (I)

w.r.t. Σst and let G be an abstract target instance in the run of the snapshot chase algorithm on

JIK w.r.t. Σst . Then the concrete chase algorithm applies each target egd in Σt to J and the

snapshot chase algorithm applies each target egd in Σt to G. Let J′ be the current concrete

target instance in the run of the concrete chase algorithm and let G′ be the current abstract target

instance in the run of the snapshot chase algorithm (J′ ̸=⊥ and G′ ̸=⊥). Assume that applying

a concrete chase step over σt = ∀x∀t
(
θ
(
x, t

)
→ xk = xl

)
to J′ results in J′′ (J′′ ̸=⊥); and assume

that applying a chase step over σ′t for each snapshot of G′ results in G′′ (and G′′ ̸= ⊥), where

σ′t = ∀x
(
θ′
(
x
)
→ xk = xl

)
. We claim that if JJ′K and G′ are homomorphically equivalent, that

is, h1 : JJ′K→ G′ and h2 : G′→ JJ′K, then JJ′′K and G′′ are homomorphically equivalent. We

now explain why this claim holds. Since σt contains at most one temporal atom, it is easy to

prove that the concrete chase step over σt either replaces a time-stamped null ∆ by a constant

a throughout J′ or do nothing. Since JJ′K and G′ are homomorphically equivalent, h1 and h2

preserves constants; and h1(a) is a labeled null if a is a labeled null in JJ′K; and h2(a) is a labeled
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null if a is a labeled null in G′. Condition (4) states that there is at most one temporal atom

in the antecedent of each target egd, hence J′ is normalized w.r.t. σt . It follows that if there is

an assignment s from variables x in the θ(x, t) to the active domain of J′ such that s(t) = [s,e),

then there is an assignment s j (s≤ j < e) from variables x in the θ′(x) to the active domain of

the snapshot J′t j
, such that J′t j

,s j |= θ′(x), where the assignment s agrees with the assignment

s j on x; and vice versa. In addition, for the snapshot JJ′Kt j , if there is an assignment s j from

variables x in θ′(x) to the active domain of JJ′Kt j , there is an assignment s′j from variables x in

θ′(x) to the active domain of G′t j
, where s′j(x) = s j(x) if s j(x) is a constant; s′j(x) = h1(s j(x)) and

s′j(x) is a labeled null if s j(x) is a labeled null in JJ′Kt j . Assume that s j(xk) = c and s j(xl) = ∆.

Hence, s′j(xk) = c and s′j(xl) = h1(∆). It follows that c replaced the labeled null ∆ throughout

JJ′Kt j in JJ′′Kt j , and c replaced the labeled null h1(∆) throughout G′t j
in G′′t j

. Furthermore, if

there is an assignment s′j from variables x in θ′(x) to the active domain of G′t j
, then there is an

assignment s j from variables x in θ′(x) to the active domain of JJ′Kt j , where s j(x) = s′j(x) if s′j(x)

is a constant and s j(x) = h2(s′j(x)) if s′j(x) is a labeled null in G′t j
. Assume that s′j(xk) = c and

s′j(xl) = ∆. Hence, s j(xk) = c and s j(xl) = h2(∆). It follows that c replaced the labeled null ∆

throughout G′t j
in G′′t j

, and c replaced the labeled null h2(∆) throughout JJ′Kt j in JJ′′Kt j . Therefore,

there is a homomorphism h3 from JJ′′Kt j to G′′t j
, where h3(a) = h1(a) if a is a labeled null in

JJ′′Kt j . This is true because h1 is a homomorphism. Furthermore, there is a homomorphism h4

from G′′t j
to JJ′′Kt j , where h4(a) = h2(a) if a is a labeled null in G′′t j

. This is true because h2 is

a homomorphism. Therefore, JJ′′K and G′′ are homomorphically equivalent. Hence, the claim

holds.

We need to prove that if the concrete chase algorithm does not fail, then the snapshot
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chase algorithm does not fail, and hence there exists a solution for JIK. With the identity mapping

from J⟨I, /0⟩K to ⟨JIK,G⟩, it is easy to prove that there is a homomorphism from JJK to G by

repeatedly using Lemma 11. In addition, by Proposition 1, G is an abstract universal solution for

JIK w.r.t. Σst . Therefore, JJK is an abstract universal solution for JIK w.r.t. Σst , and hence JJK and

G are homomorphically equivalent. In addition, by repeatedly using the aforementioned claim,

JJ′K is homomorphically equivalent to G′. Towards a contradiction, assume that there is a target

egd σt = ∀x∀t(θ(x, t)→ xk = xl) in Σt , such that the concrete chase algorithm does not fail on

the chase step over σt for J′ and the snapshot chase algorithm fails on a chase step over σt for

G′ (σ′t = ∀x(θ′(x)→ xk = xl)). That is to say, there is an assignment s from θ(x, t) to the active

domain of J′ such that s(t) = [s,e) and s(xk) = s(xl). Condition (4) states that there is at most

one temporal atom in the antecedent of each target egd, hence J′ is normalized w.r.t. σt . It follows

that there is an assignment s j (s≤ j < e) from variables x in the θ′(x) to the active domain of the

snapshot J′t j
, such that J′t j

,s j |= θ′(x), where the assignment s agrees with the assignment s j on x.

In addition, since JJ′K is homomorphically equivalent to G′, there is an assignment s′j from x in

θ′(x) to the active domain of the snapshot G′t j
, such that s′j(xl) = s j(xl) if s j(xl) is a constant and

s′j(xk) = s j(xk) if s j(xk) is a constant. Since the snapshot chase algorithm fails on a snapshot G′t j

w.r.t. σ′t , we have s′j(xl) and s′j(xk) are two different constants, which is a contradiction.

Let ⟨JIK,Ka⟩ be an arbitrary solution for JIK w.r.t. M , which means that ⟨JIK,Ka⟩

satisfies Σst and Ka satisfies Σt . The identity mapping from J⟨I, /0⟩K to ⟨JIK,s-chaseM (I)⟩ is a

homomorphism. By repeatedly utilizing Lemma 11, we have that there is a homomorphism

from J⟨I,c-chaseM (N (I))⟩K to ⟨JIK,s-chaseM (I)⟩. Therefore, Jc-chaseM (N (I))K is an abstract

universal solution. Furthermore, since s-chaseM (JIK) is a universal solution for JIK w.r.t. M , the
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abstract instance Jc-chaseM (N (I))K is homomorphically equivalent to s-chaseM (JIK). Moreover,

c-chaseM (N (I)) is a concrete universal solution for N (I) w.r.t. M . Therefore, c-chaseM (N (I))

is a semantically adequate concrete universal solution N (I).

Part 2 Assume that the concrete chase algorithm fails on N (I) w.r.t M . Let ⟨N (I),J⟩ σ,s−→⊥ be

the last chase step of the failing chase. Suppose that σ is the target egd ∀x∀t(θ(x, t)→ xk = xl).

Since, by the hypothesis about M , each target egd contains at most one temporal atom, we

know that the temporal variable t appears in exactly one atom of θ(x, t). Since the chase fails at

this step, there exists an assignment s from the variables x and t to the active domain adom(J)

of J such that s(xl) ̸= s(xk). As discussed in the proof of Theorem 6, s(xl) and s(xk) are two

distinct constants. Towards a contradiction, suppose that there exists an abstract solution Ja for

JIK w.r.t. M . Lemma 11 implies that there is a homomorphism g from J⟨N (I),J⟩K to ⟨JIK,Ja⟩.

Then we must have that g◦ s(xl) = g◦ s(xk). Since g is the identity on constants, it follows that

s(xl) = s(xk), which is a contradiction. Consequently, there is no solution for JIK w.r.t. M . Next,

suppose that σ is a standard target egd of the form ∀x(θ(x)→ xk = xl). With a similar reasoning

as before, we can also conclude that there is no solution for JIK w.r.t. M .

Remark 4. In Theorem 12, we identified a set of four conditions, (1)-(4), on schema mappings,

such that if a schema mapping satisfies all of those four conditions, then, given a source instance

I, the concrete chase algorithm produces a semantically adequate universal solution for the

normalized instance N (I), provided the algorithm does not fail on N (I). It can be shown that

this set of conditions is not necessary for the conclusion of Theorem 12. Actually, it can be

shown that there exists a concrete schema mapping M ′ with at most one temporal variable in
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each constraint, such that the conclusion of Theorem 12 holds for M ′, yet M ′ violates conditions

(2), (3), and (4). Specifically, let M ′ = (S,T,Σ′st ,Σ′t) be the concrete schema mapping, where Σ′st

consists of the four s-t tgds

σ
1
st = ∀x, t(P(x, t)→ P′(x, t)), σ

2
st = ∀x, t(Q(x, t)→ Q′(x, t)),

σ
3
st = ∀x, t(P(x, t)∧Q(x, t)→∃y R(x,y)), σ

4
st = ∀x,y(E(x,y)→∃y R(x,y)),

and Σ′t consists of the concrete target egd

σt = ∀x,y, t(R(x,y)∧P′(x, t)∧Q′(x, t)→ x = y).

Clearly, the concrete schema mapping M ′ violates conditions (2), (3), and (4). Yet, the conclusion

of Theorem 12 holds for M ′ because it is not hard to verify that the following two statements

hold: (i) given an arbitrary concrete source instance I, the concrete chase algorithm never fails

on N (I) w.r.t. M ′, hence it produces a concrete universal solution; (ii) Jc-chaseM ′(N (I))K is an

abstract universal solution for JIK, hence c-chaseM ′(N (I)) is semantically adequate for N (I).

It should be pointed out that there are a schema mapping M ′′ that satisfies the hypothe-

sis in Theorem 12 and a concrete source instance I′′ such that no semantically adequate concrete

universal solution for I′′ w.r.t. M ′′ exists. This is shown in the next proposition, which is the last

result in this chapter.

Proposition 2. There are a temporal schema mapping M ′′ = (S,T,Σ′′st ,Σ′′t ) and a concrete source

instance I′′ with the following properties:

1. Σ′′st consists of two constraints: the first contains exactly one temporal variable, and that
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temporal variable occurs in every atom of its consequent; the second contains no temporal

variables and it is a full s-t tgd.

2. Σ′′t consists of a single constraint with exactly one temporal atom in its antecedent.

3. There exists a concrete universal solution for I′′ w.r.t. M ′′, but there is no concrete universal

solution for I′′ w.r.t. M ′′ that is semantically adequate for I′′.

Proof. Let M ′′ = (S,T,Σ′′st ,Σ′′t ) be the schema mapping where Σ′′st consists of the constraints

∀n,s,c, t(E(n,c, t)∧S(n,s, t)→∃pEmp(n,c,s, p, t))

∀n, p(P(n, p)→ EmpPos(n, p))

and Σ′′t consists of the constraint

∀n,c,s, p1, p2, t(Emp(n,c,s, p1, t)∧EmpPos(n, p2)→ p1 = p2).

Let I′′ be the concrete source instance whose relations are depicted in Table 3.18. After

applying the semantic function on I′′, we obtain the abstract source instance JI′′K whose relations

are depicted in Table 3.19.

Table 3.18: The relations E, S, and P of the concrete source instance I′′.

(a) E

Name Company Time

Ada IBM [2013,2018)

Bob IBM [2012,2015)

(b) S

Name Salary Time

Ada 18000 [2014,2018)

Bob 13000 [2013,2015)

(c) P

Name Position

Ada Manager

Bob Consultant

Let c-chaseM ′′(I′′) be the concrete target instance produced by the concrete chase

algorithm on I′′. The relations of c-chaseM ′′(I′′) are depicted in Table 3.20. By Theorem 4, we
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Table 3.19: The relations E, S, and P of the abstract source instance JI′′K.

(a) E

Name Company Time

Ada IBM 2013

Ada IBM 2014

Ada IBM 2015

Ada IBM 2016

Ada IBM 2017

Bob IBM 2012

Bob IBM 2013

Bob IBM 2014

(b) S

Name Salary Time

Ada 18000 2014

Ada 18000 2015

Ada 18000 2016

Ada 18000 2017

Bob 13000 2013

Bob 13000 2014

(c) P

Name Position

Ada Manager

Bob Consultant

have that c-chaseM ′′(I′′) is a universal solution for I′′.

Table 3.20: The relations Emp and EmpPos of the concrete target instance c-chaseM ′′(I′′).

(a) Emp

Name Company Salary Position Time

(b) EmpPos

Name Position

Ada Manager

Bob Consultant

Let s-chaseM ′′(JI′′K) be the abstract target instance produced by chasing the snapshots

of JI′′K. Table 3.21 depicts this abstract target instance by listing the facts of each of its snapshots.

As shown in [36], s-chaseM ′′(JI′′K) is a universal solution for JI′′K w.r.t. M ′′. It is

now easy to verify that Jc-chaseM ′′(I′′)K is not homomorphically equivalent to s-chaseM ′′(JI′′K).
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Table 3.21: The snapshots of the abstract target instance s-chaseM ′′(JI′′K).

2013 {Emp( Bob, IBM, 13000, Consultant), EmpPos(Ada, Manager), EmpPos(Bob, Consultant )}

2014
{Emp( Ada, IBM, 18000, Manager), Emp( Bob, IBM, 13000, Consultant),

EmpPos(Ada, Manager), EmpPos(Bob, Consultant )}

2015 {Emp( Ada, IBM, 18000, Manager), EmpPos(Ada, Manager),EmpPos(Bob, Consultant )}

2016 {Emp( Ada, IBM, 18000, Manager), EmpPos(Ada, Manager),EmpPos(Bob, Consultant )}

2017 {Emp( Ada, IBM, 18000, Manager), EmpPos(Ada, Manager),EmpPos(Bob, Consultant )}

From this it follows, that c-chaseM ′′(I′′) is not semantically adequate for I′′. Furthermore, it is

not hard to show that if J and J′ are universal solutions for I′′ w.r.t. M ′′, then JJK and JJ′K are

homomorphically equivalent. It follows that no concrete universal solution for I′′ is semantically

adequate for I′′.
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Chapter 4

Relational-to-RDF Temporal Data Exchange

In the previous chapter, we have discussed the data exchange problem for temporal

relational databases. This part of our work is the fundamental theory for us to explore how to

exchange temporal data from temporal relational databases into RDF with temporal components.

Section 4.1 offers an overview of the related work, while Section 4.2 and Section 4.3 delve into

the specifics of this part of work. Specifically, we take the notion of temporal annotation in RDF

graphs proposed in paper [41] and use it to enrich RDF with temporal components (See Section

4.2) in such a way that we can define the notion of temporal RDF graph schema, and thus we

can define the data exchange problem for transferring data from temporal relational databases

into RDF with temporal components (See Section 4.3). Finally, Section 4.3 presents the chase

algorithm, which is designed to address the relational-to-RDF temporal data exchange problem.
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4.1 Related Work

RDFS [55] is a language used in practice for describing ontologies, see [3] and

the Protege Ontology Library1 for RDFS-based ontology examples. The need for temporal

annotations and reasoning arises in many application domains; toward addressing the need,

Gutiérrez et al. [41] defined temporal RDF and studied properties of inference in temporal

graphs. Tappolet and Bernstein [59] presented another approach, which focuses on querying.

For the RDFS layer, research has been done on inference of temporal properties in temporal

ontologies, see, e.g., [69]. At the same time, the temporal aspect is usually not included in the

practical development of domain ontologies; our proposed approach in this chapter is designed to

bridge this gap. In particular, we preserve the temporal source semantics in the target ontology-

compliant domain data, by enabling Allen’s relations, which are mentioned in Section 2.2, such

as during or before, in queries on the data.

Recently, considerable formal work has been done on temporal ontology-mediated

query access (OMQA), see [17]. OMQA differs in its objectives from data exchange, on which

we focus in this chapter, as the latter considers mainly materialization of exchanged data, while

the former concentrates on certain answers in query processing. In addition, OMQA uses a single

schema, rather than the source and target schemas, which are clearly separated in data exchange.

Boneva et al. [22, 24] have undertaken a preliminary work on data exchange from relations to

RDF, followed up by a proposal of a tool [23] for mapping elements of the source schemas into

the target RDFS ontology. Boneva et al. [23, 22, 24] did not address temporal aspects of data

exchange. To the best of our knowledge, temporal data exchange between relational schemas

1https://protegewiki.stanford.edu/wiki/Protege_Ontology_Library
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and ontologies has not been studied formally.

4.2 RDF with temporal enrichment

4.2.1 RDF vocabularies

Resources indicates Web resources, such as the title, author, modification date, content,

and copyright information of a Web page. In the RDF model, all items, such as web documents

and real-world objects, are modeled as resources using universal resource identifier (URIs).

Assume an infinite set U of RDF URIs, an infinite blank-node set B = {N j : j ∈ N}, and an

infinite set L of RDF literals. An RDF triple is a statement of the form (s, p,o) ∈ (U ∪B)×U×

(U ∪B∪L), where s is called subject, which can be a blank node denoted by a labeled null N j; p

is called predicate; and o is called object. An RDF graph G is a set of RDF triples. The universe

of an RDF graph G, denoted by universe(G), is the set of elements of U ∪B∪L occurring in the

triples of G.

RDF Vocabulary A class is a group of resources. The elements of a class are known as

instances of the class. Each class is an instance of “rdfs:Class”. For example, “rdfs:Literal” is a

class of all literal values that is an instance of the class “rdfs:Class.” In general, there are two

types of classes: built-in classes and domain-specific classes.

A property is a resource describing relationships between subject resources and object

resources. Each property is an instance of the class “rdfs:Property”, which is an instance of

“rdfs:Class”. That is to say, all properties are instances of “rdfs:Class”. Given a property p, for
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any two classes c and c′ such that there are two triples (p, rdfs:domain,c), (p, rdfs:range,c′), the

property p describes the relationship between c and c′. The property “rdfs:domain” in the triple

(p, rdfs:domain,c) restricts the subject resources of property p to the class c, while property

“rdfs:range” in the statement (p, rdfs:range,c′) restricts the object resources of p to the class c′.

Hence, for any two values ci and c′i that are instances of c and c′, respectively, the triple (ci, p,c′i)

implies that the resource ci has a property p, and the property value is c′i. For example, in the triple

(htt ps : //www.w3schools.com/rd f , htt p : //homepage, htt ps : //www.w3schools.com), the

value of the property “http://homepage” is “https://www.w3schools.com”. There are two types

of properties, built-in properties and domain-specific properties. The most important built-in

properties are “rdfs:range” (which we abbreviate as [range]), “rdfs:domain” [dom], “rdfs:type”

[type], “rdfs:subClassOf” [sc], and “rdfs:subPropertyOf” [sp] [42].

Table 4.1 and Table 4.2 show RDF classes and properties in AMR domain, respectively.

Classes can be instances of other classes; the fact that class c is an instance of class

c′ is denoted by the statement (c, type,c′) with the property “rdf:type” (which we abbreviate as

[type]). Classes can also be subclasses of other classes; the fact that class c is a subclass of class

c′′ is denoted by the statement (c,sc,c′′). Likewise, properties can have subproperties; the fact

that property p is a subproperty of property p′ is denoted by the statement (p,sp, p′). Via the

property “rdfs:subPropertyOf,” all the resources related by the subproperty are also related by

the superproperty [26, 39].

The reification vocabulary provides a mechanism for making statements about state-

ments, using class “rdfs:Statement” [Statement] and properties “rdfs:subject” [subj], “rdfs:object”

[obj], and “rdfs:predicate” [pred]. Figure 4.1 shows an RDF graph stating that the triple (state-
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Element Class of rdfs:subClassOf rdf:type

rdfs:Resource all resources rdfs:Resource rdfs:Class

rdfs:Class all classes rdfs:Resource rdfs:Class

rdfs:Literal literal values rdfs:Resource rdfs:Class

rdfs:Datatype datatypes rdfs:Class rdfs:Class

rdf:XMLLiteral XML literal values rdfs:Literal rdfs:Datatype

rdf:Property properties rdfs:Resource rdfs:Class

rdf:Statement statements rdfs:Resource rdfs:Class

rdf:List lists rdfs:Resource rdfs:Class

rdfs:Container containers rdfs:Resource rdfs:Class

rdf:Bag unordered containers rdfs:Container rdfs:Class

rdf:Seq ordered containers rdfs:Container rdfs:Class

rdf:Alt containers of alternatives rdfs:Container rdfs:Class

rdfs:Container

MembershipProperty

rdf: 1 . . . properties

expressing membership
rdf:Property rdfs:Class

Farms all farms NULL rdfs:Class

Animal all animals NULL rdfs:Class

Antibiotic Drug all antibiotic drugs Antimicrobial Drug rdfs:Class

Antimicrobial Drug all antimicrobial Drug NULL rdfs:Class

Table 4.1: Classes in AMR RDF vocabulary.

Figure 4.1: Given a triple s
p−→ o, this is an example of reification being applied to the triple in an

RDF graph.
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Element Relates rdfs:domain rdfs:range

rdfs:domain restricts subjects rdf:Property rdfs:Class

rdfs:range restricts objects rdf:Property rdfs:Class

rdf:type instance of rdfs:Resource rdfs:Class

rdfs:subClassOf subclass of rdfs:Class rdfs:Class

rdfs:subPropertyOf subproperty of rdf:Property rdf:Property

rdfs:label human readable label rdfs:Resource rdfs:Literal

rdfs:comment human readable comment rdfs:Resource rdfs:Literal

rdfs:member container membership rdfs:Resource rdfs:Resource

rdf:first first element rdf:List rdfs:Resource

rdf:rest rest of list rdf:List rdf:List

rdf: 1, rdf: 2, . . . container membership rdfs:Container rdfs:Resource

rdfs:seeAlso further information rdfs:Resource rdfs:Resource

rdfs:isDefinedBy definition rdfs:Resource rdfs:Resource

rdf:value for structured values rdfs:Resource rdfs:Resource

rdf:object object of statement rdf:Statement rdfs:Resource

rdf:predicate predicate of statement rdf:Statement rdfs:Resource

rdf:subject subject of statement rdf:Statement rdfs:Resource

livesIn in which farm do animals live Animal Farms

usedOn which Antibiotic drugs are used on animals Antibiotic Drug Animals

Table 4.2: Properties in AMR RDF vocabulary.

ment) (s, p,o) is reported in the file “AMR report.pdf.” (Here and in other Figures, we represent

RDF graphs by representing each triple (s′, p′,o′) in a given graph as s′
p′−→ o′.)

4.2.2 RDF Temporal Enrichment, Temporal RDF Graph Schemas, and Instances

In this subsection, we review the notion of temporal annotations of RDF graphs defined

in [41], and introduce the complementary concept of temporal markups in RDF graph schemas.
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This allows us to define temporal RDF graph schemas and their instances, and to characterize

the conditions under which they enable temporal annotations of data in a structured way [43],

where time intervals represent temporal values carried by temporal annotations. The domain of

time intervals is defined as a set TI = {[s,e) : s < e and s,e ∈ N}.

In the remainder of this subsection, we will use the following reserved alphabets:

• x, y, . . . for non-temporal variables (set V ) for values in U ∪L and t for temporal variables

(set T ) for values in TI in a formula;

• a,b,c, . . . for values in U ∪L (values in L can be found only in the object positions of

triples);

• X ,Y,Z, . . . for blank nodes in B; and

• i for time intervals in TI .

The above sets V , T , U , L, B, and TI are all the infinite and disjoint from each other and from

CONST.

A temporal class is a group of resources that represent temporal information. We

consider temporal classes TNode, Interval, and timeInterval; here, TNode and Interval are

“temporal-refication” classes, i.e., classes for statements about temporal statements. A temporal

property is a property whose domain or range is a temporal class; we consider temporal properties

temporal, interval, validFor (with values in timeInterval). The temporal RDF vocabulary is the

result of adding these temporal classes and properties to the RDF vocabulary, see Tables 4.3 and

4.4. We call the set W = {sc,sp,type,dom,range,subj,obj,pred} the RDFS vocabulary,

and call the set W ∗ =W ∪ {temporal, interval, validFor } the temporal RDFS vocabulary.
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Element Class of rdfs:subClassOf rdf:type

TNode all temporal nodes rdfs:Resources rdfs:Class

Interval all interval nodes rdfs:Resources rdfs:Class

timeInterval all time intervals rdfs:Resources rdfs:Class

Table 4.3: The temporal classes in the temporal RDF vocabulary. Note that “TNode” and

“Interval” are part of temporal reification.

Element Relates rdfs:domain rdfs:range

temporal provides temporal information rdfs:statement TNode

interval provides interval information TNode Interval

validFor provides valid time of intervals Interval timeIntervals

Table 4.4: The temporal properties in the temporal RDF vocabulary.

We now introduce the notions of temporal triples and of temporal RDF templates,

which allow us to enable structural temporal annotation of triples via reification.

We call the set of triples T RDF
t = {(x, temporal,y), (y, interval,z), (z, validFor, t)}

the temporal RDF template. We say that T RDF
t is instantiated on triple (s, p,o) in a set of triples

G if there exists a substitution µ = {x/k,y/l,z/m, t/i}, with k, l,m ∈U and i ∈ TI , such that the

result T RDF
t |µ of applying µ to T RDF

t is a subset of G, and so is the set of triples Rei f (s, p,o,µ)

= {(µ(x), type,Statement), (µ(x),sub j,s), (µ(x), pred, p), (µ(x),ob j,o)}. In this case, we say

that the triple (s, p,o) ∈ G is temporally annotated with temporal-interval value i, and call the

set of triples T RDF
t |µ ∪ Rei f (s, p,o,µ) a temporal-annotation structure for (s, p,o) and i in G;

the substitution µ here is said to induce the temporal annotation of (s, p,o) with i. (Notice that
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this notion of temporal annotation is simply a way to reify the triple (s, p,o) with a statement

structure due to [41], whose objective is to “attach” the temporal-interval value i to the triple.)

For any triple r in the result of applying any such substitution µ to the temporal RDF template

T RDF
t , we say that r is a temporal (RDF) triple. For each graph G and for each triple (s, p,o)

∈ G that is temporally annotated in G with some temporal-interval value i, with the annotation

induced by a substitution µ, we say that the temporal annotation of (s, p,o) with i is well typed if

G also contains the triples (µ(y), type,T Node), (µ(z), type, Interval), and (i, type, timeInterval).

For an illustration, see the subgraph shaded in green in Figure 4.2.

Example 6. As shown in Figure 4.2, the triples (s, temporal, tn), (tn, interval, ti), (ti, validFor,

[1/1/2019,1/5/2019]) in green are temporal triples because they are the results of applying the

substitution

mu = {x/s,y/tn,z/ti,w/[1/1/2019,1/5/2019]}

to the temporal RDF template T RDF
t . These temporal triples and the triples (s, type,Statement),

(s,sub j,Ampicillin), (s, pred, usedOn), (s, ob j, P1) compose a temporal-annotation structure

for the RDF triple (Ampicillin, usedOn, P1). This structure is also well typed as the triples

(tn, type,T Node), (ti, type, Interval), ([1/1/2019,1/5/2019], type, timeInterval) exist in G.

We call the set of triples

T RDFS
t ={(temporal,domain,Statement),(temporal,range,T Node),

(interval,domain,T Node),(interval,range, Interval),

(validFor,domain, Interval),(validFor,range, timeInterval)}

93



the temporal RDFS markup set. We say that T RDFS
t applies to a property n in a set of triples

H if H includes both T RDFS
t (as a subset) and the triple (Statement, pred,n) (as an element). In

this case, we say that T RDFS
t ∪ {(Statement, pred,n)} is the temporal markup for property n in

H; we also say that property n in H admits temporal annotations. For an illustration, see the

subgraph shaded in blue in Figure 4.2.

A temporal RDF graph is a subset of (U∪B)×U×(U∪B∪L∪TI) that contains at

least one temporal triple. The universe of a temporal RDF graph H, universe(H), is the set

of elements of U∪B∪L∪TI that occur in the triples of H. We say that such a graph H is a

well-formed temporal RDF graph if for each temporal triple rt in H, there exists a triple (s, p,o)

∈ H and a temporal-interval value i such that rt is an element of a temporal-annotation structure

for (s, p,o) and i in H.

A temporal RDF graph schema OT is a tuple (C,P,GT ) in which C is a set of classes,

P is a set of domain-specific properties, and GT is an RDF graph that contains at least one

temporal RDFS markup set T RDFS
t , called temporal component for simplicity, such that for each

triple (s, p,o) ∈ GT the following holds:

• if p is sc, then s ∈ C and o ∈ C;

• if p is sp, then s ∈ P and o ∈ P;

• if p is pred, then s is Statement and o ∈ P;

• otherwise, s ∈ P ∪ {temporal, interval, validFor}; p is one of domain and range; and o

∈ C.
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We say that a temporal RDF graph schema OT = (C,P,GT ) is well formed if for each triple rt ∈

GT such that rt is an element of the temporal RDFS markup set T RDFS
t , rt is an element of the

temporal markup for some property n in GT .

Figure 4.2: Example of a temporal RDF graph schema (above the dashed line) and its RDF

instance (above and below the line); the notation we use originates from [8]. Here, an RDF

triple Ampicillin-[is]-usedOn-P1 is adorned with a temporal annotation shown in green. The

annotation includes an instance of a (reified) statement s that links the triple to a temporal node

tn characterized (via ti) as an interval, with (validFor) value [1/1/2019,1/5/2019). The schema

(RDFS) layer indicates that the temporal-markup metadata for the annotation, in blue, contain

the Statement class connected to the TNode class, which is, in turn, linked to classes Interval and

timeInterval. Thus, both the temporal RDF graph schema and its instance are well formed.

Example 7. Consider a temporal RDF graph schema OT = (C,P,GT ) in the AMR domain.

Here, C = {AntimicrobialDrug, AntibioticDrug, Animal, Farm, Statement, TNode, Interval,

timeInterval}; P = {usedOn, liveIn}; and GT is shown in the top half (above the dashed line) of

Figure 4.2.
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RDF Instances of Temporal RDF Graph Schemas Let OT = (C,P,GT ) be an RDF graph

schema. Consider a temporal RDF graph H such that, for each triple (a, p,b) ∈ H,

• whenever the property p in (a, p,b) is type, then b ∈ C; and

• whenever p in (a, p,b) is not type, then (i) GT includes a triple (p,domain,s) and a triple

(p,range,o), with s,o ∈ C, and (ii) H includes triples (a,type,s) and (b,type,o).

Then we call the RDF graph J = GT ∪H an RDF instance of O. (Note that J includes the graph

GT of O.) We say that an RDF instance J of a well-formed RDF graph schema OT = (C,P,GT )

is well formed if (i) H is a well-formed temporal graph; (ii) each temporal annotation in H is

well typed; and (iii) for each triple (s, p,o) that is temporally annotated in H, GT has the triple

(Statement, pred, p).

Example 8. Fig. 4.2 shows a well-formed instance of the temporal RDF graph schema of

Example 7.

An RDF graph schema can also be atemporal. In this case, the above definition

is modified for OA = (C,P,GA) to disallow in GA (i) elements of the set T RDFS
t , and (ii)

properties temporal, interval, and validFor as subjects of triples. By definition, RDF instances

of atemporal RDF graph schemas do not contain temporal triples; we call them atemporal RDF

instances.

In this thesis, we focus on the temporal RDF graph schema since there has not been an

extensive study of the data exchange problem for temporal information from relational databases

into RDF data. For simplicity, in the remainder of the thesis, we will use O = (C,P,G) to

represent a temporal RDF graph schema, and we will assume that all the temporal RDF graph
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schemas and instances that we are given are well formed. Intuitively, well-formed temporal RDF

graph schemas and instances enable temporal annotations on triples, for those triples whose

predicates have temporal markups at the schema level. We follow here the approach of [41] of

temporal annotations being done structurally; as explained in [43], reification is the only option

for structural annotations.

4.3 Relational-to-RDF Temporal Schema Mappings

In this subsection, we formalize and study the relational-to-RDF temporal data-

exchange problem. We focus on transferring relational data, with values in CONST ∪ TI , into an

RDF graph, with values in U ∪B∪L∪TI . In the data transfer, we use URI constructors, which

generate URIs from constants in relational sources or from RDF triples. We assume that we

are given two constructor functions: the class constructor Furi: CONST× ·· ·×CONST→U

and the reification constructor Fruri: (U ∪B)×U× (U ∪B∪L∪TI)→U ∪B. We impose three

requirements on the function Fruri: (i) The value of Fruri is a blank node iff at least one of its

arguments is a blank node; (ii) Fruri is injective.

4.3.1 Relational-to-RDF Temporal Schema Mappings

We now introduce the notion of term used in this chapter: (a) all variables are terms;

(b) all properties and all classes are terms; (c) all constant symbols are terms, where a constant

symbol is a URI in U , a literal in L; (d) whenever Tx is a set of terms and Ty, Tz, Tw are

three distinct terms, then the URI constructors Furi(Tx) and Fruri(Ty,Tz,Tw) are also terms. Let
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O = (C,P,G) be a temporal RDF graph schema.

Let p, p′,c,c′, t be terms, where t is a temporal variable, c,c′ ∈ C and p, p′ ∈ P. Let Ty

be a term that is not a class or a property, and let Tx be a term in the form of Furi(·) or Fruri(·) (see

(d) in the above paragraph). An atomic formula over O is an expression of one of the following

forms:

1. (Tx, p′,Ty)

2. (Tx, p′′,Ty) for p′′ ∈ {temporal,interval} when Tx and Ty are in the form of Fruri(·).

3. (Tx, p′′,Ty) for p′′ ∈ {subj} when Tx in the form of Fruri(·) and Ty is of the case (d).

4. (t,type,timeInterval)

5. (Ty,type,c) when Ty is not a temporal variable and c is not timeInterval

6. (Tx,pred, p) when Tx is in the form of Fruri(·)

7. (Tx,validFor, t) when Tx is in the form of Fruri(·).

In each atomic formula (Tu,Tv,Tw) over O, we say that the term Tu is in the position of

subject, the term Tv is in the position of predicate, and the term Tw is in the position of object.

Let S and O be a temporal source relational schema and a target temporal RDF graph

schema, respectively.

Co-occuring atomic formulas : Let (T1, p,T2) be an atomic formula over O with p ∈ P which

admits temporal annotations in O. We call the following atomic formulas the co-occurring

atomic formulas for (T1, p,T2), where t is a temporal variable:

98



• (Fruri(T1, p,T2),subj,T1)

• (Fruri(T1, p,T2),pred, p)

• (Fruri(T1, p,T2),obj,T2)

• (Fruri(T1, p,T2),temporal,Fruri(Fruri(T1, p,T2), temporal, t))

• (Fruri(Fruri(T1, p,T2),temporal, t),interval,

Fruri(Fruri(Fruri(T1, p,T2),temporal, t),interval, t))

• (Fruri(Fruri(Fruri(T1, p,T2),temporal, t),interval, t), validFor, t)

• (Fruri(T1, p,T2),type,Statement)

• (Fruri(Fruri(T1, p,T2),temporal, t),type,TNode)

• (Fruri(Fruri(Fruri(T1, p,T2),temporal, t), interval, t),type,Interval)

• (t,type,timeInterval)

We use the notation T FL
t , called co-occurring set for (T1, p,T2), to denote the set that

contains all the co-occurring atomic formulas of a given atomic formula (T1, p,T2) where p

admits temporal annotations.

Definition 11. Relational-to-RDF full temporal s-t tgds In the context of the data exchange

from the temporal relational database to data in RDF with temporal components, a relational-to-

RDF temporal full s-t tgd is an expression of the form ∀x, t(ϕ(x, t)∧π(t)→ ψ(x,y, t)). Here,

t are the only temporal variables; the formula ϕ(x, t) is a conjunction of atomic formulas with
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temporal variables over the schema S; the formula π(t) is a Boolean combination of Allen atomic

formulas of the form t1 ρ t2 involving temporal variables in t, with ρ ∈ {o,d,≺,m,s, f,=}; and

ψ(x,y, t) is a conjunction of atomic formulas over O.

Equation 4.6 in Example 9 illustrates an example of a relational-to-RDF temporal full

s-t tgd.

In relational-to-relational temporal data exchange context, a concrete full s-t tgd is a

concrete s-t tgd that contains no existential quantifier, and a concrete GAV constraint is a concrete

full s-t tgd whose right-hand side is an atomic formula. Hence, concrete GAV constraint is a

special case of concrete full s-t tgd. In the remaining part of this dissertation, we will use the

term relational-to-relational temporal full s-t tgds to refer to concrete full s-t tgds, and we will

use relational-to-relational temporal GAV constraints to refer to concrete GAV constraints. In

addition, the term relational-to-relational temporal GAV schema mappings refers to the concrete

schema mappings that each of its constraint is a relational-to-relational temporal GAV constraint.

Similarily, in the following definition, we will introduce the notion of relational-to-

RDF temporal GAV constraints, which is also a special case of the relational-to-RDF temporal

full s-t tgds.

Definition 12. Relational-to-RDF GAV temporal constraint In the context of the data exchange

from the temporal relational database to data in RDF with temporal components, a relational-

to-RDF temporal GAV constraint, which specifies how and what source data should appear in

the target, is a first-order logic (FO) sentence of the form ∀x, t(ϕ(x, t)∧π(t)→ ψ(x,y, t)). Here,

t are the only temporal variables; the formula ϕ(x, t) is a conjunction of atomic formulas with

100



temporal variables over the schema S; the formula π(t) is a Boolean combination of Allen atomic

formulas of the form t1 ρ t2 involving temporal variables in t, with ρ ∈ {o,d,≺,m,s, f,=}; and

ψ(x,y, t) is an atomic formula (T1, p,T2) over O where p∈ P does not admit temporal annotation

in O; or ψ(x,y, t) is a conjunction of atomic formulas consisting of an atomic formula (T1, p,T2)

over O with p ∈ P and all atomic formulas in the co-occurring set T FL
t of (T1, p,T2) if p admit

temporal annotation in O.

Note that each atomic formula over an RDF graph schema is analogous to an atomic

formula over a temporal relational schema. However, unlike the relational databases where the

conjunctions of any atomic formulas as the right-hand side of a relational-to-relational temporal

s-t tgd is meaningful, the right-hand side of each relational-to-RDF temporal GAV constraint has

extra restrictions to be meaningful. It requires that if there is an atomic formula (T1, p,T2)

appearing in the right-hand side and the temporal RDFS markup set applies to p in O, then

all other co-occurring atomic formulas of (T1, p,T2) also appear in the right-hand side of the

constraint.

Definition 13. Relational-to-RDF temporal schema mappings A relational-to-RDF temporal

schema mapping is a tuple G = (S,O,Σ), where S is a temporal source relational schema, each

O is a target temporal RDF graph schema, and Σ is a finite set of relational-to-RDF temporal

GAV constraint.

In this work, we focus on the relational-to-RDF temporal data exchange problem that

doesn’t contain any existential quantifiers. This is because if the existential quantifiers introduced

to the data exchange problem, the problem will be more complicated.
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Example 9. Let S be a source schema with a temporal relation symbol

DrugUsage( f arm,animal,drug, time)

and let O be a temporal RDF graph schema as below:

• C = {Farms,Animals,AntibioticDrug,AntimicrobialDrug,

Statement};

• P = {livesIn,usedOn};

• Upper layer of Figure 4.2 is the G.

The following constraints are five relational-to-RDF temporal full s-t tgds from S to

OT is

∀x1,x2,x3, t
(
DrugUsage(x1,x2,x3, t)→

∧(Furi(x3),usedOn,Furi(x2))

∧(Fruri(Furi(x2),usedOn,Furi(x3)),subj,Furi(x3))

∧(Fruri(Furi(x2),usedOn,Furi(x3)),pred,usedOn)

∧(Fruri(Furi(x2),usedOn,Furi(x3)),obj,Furi(x2))

∧(Fruri(Furi(x2),usedOn,Furi(x3)),temporal,

Fruri
(
Fruri(Furi(x2),usedOn,Furi(x3)),temporal, t

)
)

∧(Fruri
(
Fruri(Furi(x2),usedOn,Furi(x3)),temporal, t),

interval,Fruri(Fruri(Fruri(Furi(x2),usedOn,Furi(x3)),

temporal, t
)
,interval, t))

∧(Fruri
(
Fruri(Fruri(Furi(x2),usedOn,

Furi(x3)),temporal, t),interval, t
)
,validFor, t)

)
.

(4.1)
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∀x1,x2,x3, t
(
DrugUsage(x1,x2,x3, t)→ (Furi(x2),type,Animals) (4.2)

∀x1,x2,x3, t
(
DrugUsage(x1,x2,x3, t)→ ((Furi(x1),type,Farms) (4.3)

∀x1,x2,x3, t
(
DrugUsage(x1,x2,x3, t)→ (Furi(x2), livesIn,Furi(x1)) (4.4)

∀x1,x2,x3, t
(
DrugUsage(x1,x2,x3, t)→ (Furi(x3),type,AntibioticDrug) (4.5)

Note that with URI constructor Furi and Fruri constants from relational databases is

assigned to a URI identifier.

For readability, we use d1, d2, and d3 to represent terms using URI constructor Fruri in

the s-t tgd:

d1 =Fruri(Furi(x2),usedOn,Furi(x3)),

d2 =Fruri(Fruri(Furi(x2),usedOn,Furi(x3)),temporal, t)

=Fruri(d1,temporal, t),

d3 =Fruri
(
Fruri(Fruri(Furi(x2),usedOn,Furi(x3)),temporal, t),interval, t)

=Fruri(d2,interval, t
)
.

The s-t tgd in Equation 4.1 can be simply rewritten as follows:

∀x1,x2,x3, t
(
DrugUsage(x1,x2,x3, t)→

((Furi(x1),type,Farms)∧ (Furi(x2),type,Animals)

∧ (Furi(x2), livesIn,Furi(x1))∧ (Furi(x3),type,AntibioticDrug)

∧ (Furi(x3),usedOn,Furi(x2))∧ (d1,subj,Furi(x3))

∧ (d1,pred,usedOn)∧ (d1,obj,Furi(x2))∧ (d1,temporal,d2)

∧ (d2,interval,d3)∧ (d3,validFor, t)
)
.

(4.6)
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4.3.2 Values in Source Instances and Target RDF Instances

In temporal data exchange from relational schemas to temporal RDF graph schema,

the source instances contain values from a countable domain CONST of objects, called constants,

as well as time intervals from the domain TI .

As mentioned before, for our relational-to-RDF temporal data exchange problem we

do not take existential quantifiers into account. Hence, values in the target RDF instances are

URIs or RDF literals. Note that in reality, RDF literals have a special format, i.e., “ < string >

”∧∧ < datatype >. For simplicity, in this thesis, we assume that L equals to CONST. That is to

say, if a constant is transferred from a source instance into a target instance RDF to be an RDF

literal, we directly use the constant as a literal instead of converting this constant into a value

with the special format. As a result, in the data exchange, each constant in the temporal source

relational instances would be transferred into URIs with the help of constructors or it would be

directly populated into target RDF instances as RDF literals or time intervals. Consequently, a

triple in the target RDF instance may contain values from the set U ×U ×{U ∪L∪TI}. The

universe of an target RDF instance J, universe(J), is the set of elements of {U ∪L∪TI} that

occur in the triples of J.

Definition 14. Satisfaction We now spell out the semantics of the satisfaction for relational-to-

RDF temporal full s-t tgds. Let S be a temporal relational source schema and let O be a temporal

RDF graph schema. Let I be a source instance over S. An RDF instance J is an RDF instance

over O. Let σ = ∀x, t(ϕ(x, t)∧π(t)→ ψ(x, t)) be a relational-to-RDF temporal full s-t tgd. For

every assignment s from variables x and t to the active domain adom(I) of I 2, if s(x) is a tuple a
2Active domain of an instance I, denoted by adom(I), is the set of all values occurring in the relations of that
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of constants and s(x) is a tuple i of time intervals, such that I |= ϕ(a, i)∧π(i), then there is an

assignment s′ from terms that are in the positions of subject or object in ψ(x, t) to the universe

universe(J) of J, and s′ agrees with s on x and t, such that the RDF instance J satisfies ψ(x, t)

with the assignment s′, denoted as J,s′ |= ψ(x, t). The statement J,s′ |= ψ(x, t) indicates that

(1) if x is a variable occurring in ψ(x, t) as a subject or an object of an atomic formula, and if

s(x) = a, then s′(x) is a;

(2) if t is a temporal variable occurring in ψ(x, t) as a subject or an object of an atomic formula,

and if s(t) = i, then s′(t) is the time interval i;

(3) if c is in P∪W∗, s′(c) = c = s(c);

(4) if Furi(x′) is a term occurring in ψ(x, t), then s′(Furi(x′)) = Furi(s(x′)), where x′ ⊆ x;

(5) if Fruri(T1, p,T2) is a term occurring in ψ(x, t), then

s′(Fruri(T1, p,T2))=Fruri(s′(T1), p,s′(T2)), where p∈P; and T1, T2 are two term, and all variables

in each term are from x or t;

(6) if (T1, p,T2) is an atomic formula in ψ(x, t), then s′((T1, p,T2)) = (s′(T1), p,s′(T2)), and

(s′(T1), p,s′(T2)) is a triple occurring in J, where the property p ∈ P; and T1, T2 are terms and all

variables in each term are from x or t. We also say that (I,J),s′ |= σ.

Definition 15. Logical implication Let G be a relational-to-RDF temporal schema mapping and

let σ be a relational-to-RDF temporal full s-t tgd. We say that G logically implies σ if every

(I,J) that satisfies each constraint of G also satisfies σ, where I is a source instance over the

source schema in G , and J is a target instance over the target schema.

Definition 16. Logical Equivalence Let G and G ′ be two relational-to-RDF temporal schema

instance.
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mappings. We say that G is logically equivalent to G ′ if G ′ logically implies every constraint C

in G , and if G logically implies every constraint C′ in G ′.

Definition 17. Homomorphisms between two RDF instances A homomorphism from an RDF

instance J to an RDF instance J′ is a mapping h from the active domain 3 of J to the active

domain of J′, such that the mapping preserves the value of URIs, RDF literals, and time intervals.

In the other word, the following rules hold: a) h(u) = u if u ∈U , h(l) = l if u ∈ L, and h(i) = i if

i ∈V ; b) for each blank node b ∈ B, we have h(b) ∈U ∪L∪B; c) if a triple (s, p,o) belongs to

the RDF instance J, then (h(s),h(p),h(o)) belongs to the RDF instance J′.

Definition 18. Solutions and Universal Solutions Let G = (S,O,Σ) be a relational-to-RDF

temporal schema mapping and let I be a source instance over S.

An RDF instance J is a solution of I w.r.t. G if ⟨I,J⟩ satisfies every relational-to-RDF

temporal GAV constraint in Σ.

An RDF instance J is a universal solution for I w.r.t. G if J is a solution for I w.r.t. G ,

and for every solution J′ for I w.r.t. G , there is a homomorphism from J to J′.

4.3.3 Chase for Relational-to-RDF Temporal Schema Mappings

Let G = (S,O,Σ) be a temporal relational-to-RDF schema mapping. Assume a source

instance I over S and target instance J over O. We call the tuple ⟨I,J⟩ over the schema S∪O a

combined instance. Sometimes, we will use the term instances to refer to combined instances.

We design a chase algorithm to generate a solution for I w.r.t. G . In the process of chasing the

3The active domain of a database is the set of all values occurring in the relations of that database.
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instance, K = (I,J) w.r.t. G (with J set initially to the graph G in O), for every constant in I

mapped into an instance of a domain-specific class of O, the URI constructor Furi generates the

corresponding URI value in J.

Definition 19 (Chase step). For a given G = (S,O,Σ), let I be a source instance, and let

K = (I,Jcurr) be a combined instance, where Jcurr is the current target RDF instance.

Let σ: ∀x, t (ϕ(x, t)∧ π(t)→ ψ(x, t)) be a relational-to-RDF temporal GAV con-

straint in ΣT , in which |x| = n, |y| = l, and |t| = m, with n, l,m ≥ 0.4 Let h be a relational

formula homomorphism for σ and I, such that h(x) is a vector c = [c1, . . . ,cn] of values in

CONST and h(t) is a vector i = [i1, . . . , im] of values in TI . Suppose that I |= ϕ(c, i)∧π(i), but

K ̸|= ψ(c, i). Adding to Jcurr the set of triples ψ(c, i) gives rise to a new combined instance K′;

by construction, K′ |= ϕ(c, i)∧π(t)∧ψ(c, i). We say that K′ is obtained from K via a chase step

with σ and h′, and write K
σ,h−−→ K′.

Definition 20 (The relational-to-RDF chase algorithm). Let G = (S,O,Σ), with O = (C,P,G),

be a relational-to-RDF temporal schema mapping, and I be a source instance. Let (I,G) be the

combined instance K0.

• We define a chase sequence for I w.r.t G as a sequence K0,K1,K2, . . . in which, for all j >

0, K j−1
σ,h j−−→ K j for some σ ∈ Σ and some homomorphism h j.

• A chase of I w.r.t G is a finite chase sequence K0,K1,K2, . . . ,Kn, such that Kn |= σ for each

σ in ΣT . In this case, we say that Kn = (I,Jn) is the result of the chase, and return Jn as a

target RDF instance for I w.r.t G .
4In those cases where m = 0, we take the conjunct π(t) in the left-hand side of σ to be true.
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Lemma 13. Let G = (S,O,Σ), with O = (C,P,G), be a relational-to-RDF temporal schema

mapping, and I a source instance. Let K0 = (I,G). In a chase sequence K0,K1, . . . for I w.r.t. G ,

consider the chase step K j−1
σ,h j−−→ K j for an arbitrary j > 0. Let K be an instance such that: (1)

K |= σ, and (2) there exists a homomorphism h: K j−1→ K. Then there exists a homomorphism

h′: K j→ K.

Proof. The GAV temporal constraint σ is of the form ∀x, t (ϕ(x, t)∧ π(t)→ ψ(x, t)). By

definition of the chase step, there exists a relational formula homomorphism h′j : ϕ(x, t)∧π(t)→

K j−1. Since composing homomorphisms yields homomorphisms, h′j ◦h : ϕ(x, t)∧π(t)→ K is

a homomorphism. In addition, since K |= σ, there exists a homomorphism h′′ : ϕ(x, t)∧π(t)∧

ψ(x, t)→ K, such that h′′ is h′j ◦h, i.e., h(h′j(x)) = h′′(x) and h(h′j(t)) = h′′(t).

Consider now the homomorphism h j : ϕ(x, t)∧π(t)∧ψ(x, t)→ K j. By definition of

the chase step, we have that h j(x) = h′j(x) and h j(t) = h′j(t).

We define the homomorphism h′ as follows: h′ is the same as h when applied to each

element of the vectors h′j(x) and h′j(t). Consider the vector Vh j of triples obtained by applying

the homomorphism h j to the conjunction ψ(x, t), as well as the vector Vh′′ of triples obtained

by applying the homomorphism h′′ to the same conjunction ordered in the same way. Consider

an arbitrary value u ∈ U ∪L∪TI that occurs in K j but not in K j−1. Then u must occur in the

vector Vh j , say in positions p1, . . . , pr. From K |= σ and by the properties of the functions Furi

and Fruri, we obtain that u also occurs in the vector Vh′′ in (at least) the same positions p1, . . . , pr.

By definition of the chase step, the triples in the set h j(ψ(x, t)) are the only triples that occur

in the instance K j but not in the instance K j−1. Thus, h′ maps Vh j onto Vh′′ , and maps (same as

h) the rest of K j into K. We conclude that h′ is a homomorphism from the instance K j to the
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instance K.

Theorem 14. Let G = (S,O,Σ), with O = (C,P,G), be a relational-to-RDF temporal schema

mapping, and let I be a source instance. Then the target RDF instance J returned by the chase

algorithm is a universal solution for I w.r.t. G .

Proof. Let K
′

be an arbitrary solution for I w.r.t. G ; thus K
′

satisfies Σ. Observe that the identity

mapping from (I,G) to K
′
is a homomorphism, and K = (I,J) satisfies Σ. By repeatedly applying

Lemma 13 at each chase step starting with K0 = (I,G), we obtain a homomorphism h from K to

K
′
. We conclude that J in K is a universal solution I w.r.t. G .

We call the target instance produced by the chase algorithm on I w.r.t. G the canonical

universal solution.

Definition 21. Data Examples, Universal Data Examples Let G = {S,O,Σ} be a relational-to-

RDF temporal schema mapping.

• A data example is a pair (I,J), where I is a source instance over S, and J is a target instance

over O.

• Let (I,J) be a data example. We say that (I,J) is a universal data example if J is a

canonical universal solution for I w.r.t. G .

• Let E be a set of data examples. If every data example in E is a universal data example for

a relational-to-RDF temporal schema mapping G , then we say that G fits E.
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Chapter 5

Active Learning of Temporal Schema Mappings

The learning framework casts schema-mapping identification as a computational

learning problem aiming to identify a goal schema mapping by asking queries to various oracles

that have access to the goal schema mapping. In paper [62], this problem of learning a GAV

mapping is studied on the theoretical aspects, and the problem is solved by the algorithm

EXACTGAV in Angluin’s exact learning model [7]. In this model, schema mappings are

regarded as concepts; the goal schema mapping is identified by asking labeling queries and

equivalence queries. When presented with a source instance I, a labeling query returns the

canonical universal solution J w.r.t. the goal schema mapping, while the equivalence query

returns whether the hypothetical schema mapping is logically equivalent to the goal schema

mapping or not. A labeling oracle and an equivalence oracle are utilized for answering labeling

queries and equivalence queries. Building upon the theoretical result of the EXACTGAV

algorithm, paper [64] developed the GAVLEARN algorithm to identify a relational-to-relational

GAV schema mapping in practical scenarios with the help of conformance testing, which is a

110



substitute of the equivalence oracle [6, 7].

The work presented in this chapter aims to identify a goal relational-to-RDF temporal

schema mapping G through a learning framework that learns a relational-to-RDF temporal

schema mapping G ′ that is logically equivalent to the goal schema mapping G . To solve this

problem, we consider the algorithm EXACTGAV and the algorithm GAVLEARN as our starting

point and design a polynomial-time algorithm in Angluin’s exact learning model [7].

In this context, according to Angluin’s result [6], the labeling oracle could be imple-

mented by a black box that has the knowledge of the behavior of the relational-to-RDF temporal

schema mapping G ′. However, it is not easy to implement the equivalence oracle. For this

reason, substitutes of the equivalence query have been investigated for years. Conformance

testing as a substitute has been extensively used (please see the literature [67], for more details).

In this approach, a finite set of membership tests will be used as the equivalence oracle.

Suppose a black box implementing the labeling oracle and performing data exchange

according to some relational-to-RDF temporal schema mapping G ′, and the specification of the

black box is unknown. We plan to design an algorithm that uses the black box and takes a finite

set of data examples as input, constituting the conformance test during the algorithm execution.

In the sequel, we will use the relational-to-RDF temporal schema mapping G ′ to refer to the

black box. Consequently, our GAV learning problem could be identified as follows: Let E be a

set of universal examples for G ′, design an algorithm that takes G ′ and E as input and returns a

relational-to-RDF temporal schema mapping that is logically equivalent to G ′.

In this chapter, Section 5.1 provides some key definitions related to the problem of how

to identify a goal relational-to-RDF temporal schema mapping through a learning framework.
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In Section 5.2, we present how to produce a canonical constraint from a pair of a source instance

and a target instance. In Section 5.3, we present our active learning algorithm. Then in Section

5.4, we describe a metadata generator we developed for generating benchmarks for relational-to-

RDF temporal data exchange problem. Finally, in Section 5.5, we will present an experimental

evaluation on our active learning algorithm and analyze the experimental results.

5.1 Symbolic Instances

This section will discuss how to represent a constraint in the form of a pair of a source

instance and a target instance, called a symbolic pair. To achieve this, we will introduce the

concept of symbolic instances. By doing so, a constraint can be regarded as a data example,

allowing the chase algorithm to be applied to symbolic pairs with a set of constraints.

Definition 22 (Symbolic Instances for relational-to-RDF temporal full s-t tgds). Let C :

ϕ(x, t)∧π(t)→ ψ(x, t) be a relational-to-RDF temporal full s-t tgd.

The symbolic source instance Iϕ∧ Iπ of C consists of two parts with the variables x

and t as non-temporal elements and temporal elements, respectively, where the first part consists

of the conjuncts of ϕ(x, t) as facts, (we will refer to this part as the ϕ-part of Iϕ∧ Iπ), and the

second part consists of the conjuncts of π(t) as facts (we will refer to this part as the π-part of

Iϕ∧ Iπ), where for each conjunct t ρ t ′ in π(t), we produce a fact Rρ(t, t ′).

The symbolic target instance Jψ of C consists of a set of tuples with the variables x

and t as non-temporal elements and temporal elements, respectively, and the conjuncts of ψ(x, t)

as triples.
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Example 10. Assume that

C : R1(x1, t1)∧R2(x2, t2)∧ (t1mt2)→ (Furi(x1),type,Farms).

The source symbolic instance Iϕ∧ Iπ and the target symbolic instance Jψ of C are as follows:

1. the ϕ-part of Iϕ∧ Iπ contains two facts R1(x1, t1), R2(x2, t2)

2. the π-part of Iϕ∧ Iπ contains a fact Rm(t1, t2),

3. Jψ contains a tuple (Furi(x1),type,Farms).

In the sequel, a relational-to-RDF temporal full s-t tgd C will often be identified as the pair

(Iϕ∧ Iπ,Jψ), called the symbolic pair of C, where Iϕ∧ Iπ is the symbolic source instance of C;

and Jψ is the symbolic target instance of C.

Definition 23 (Homomorphisms between two symbolic source (target) instances). Let C and

C′ be two relational-to-RDF temporal full s-t tgds. Let I and I′ as symbolic representations of

the left-hand sides of C and C′, respectively, where I represents the source instance of C, and I′

represents the source instance of C′.

A homomorphism from I to I′ is a function from elements in I to elements in I′, such

that a) if v is a non-temporal element, then h(v) is a non-temporal element; b) if t is a temporal

element, then h(t) is a temporal element; c) if R(v1, . . . ,vn, t) is a fact in ϕ-part of I, then there

exists a fact R(h(v1), . . . ,h(vn),h(t)) in ϕ-part of I′; d) if Rρ(t, t ′) is a fact in π-part of I, then

there exists a fact Rρ(h(t),h(t ′)) in π-part of I′.

Example 11.

I = {R1(x1,x2, t1),R2(x2,x3, t2),Rm(t1, t2)}
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I′ = {R1(y1,y2, t1),R2(y2,y3, t2),R3(y3, t3),Rm(t1, t2)}

We have the homomorphism h : I→ I′, where

h(x1) = y1, h(x2) = y2, h(x3) = y3, h(t1) = t1, h(t2) = t2.

I and I′ are homomorphically equivalent if there is a homomorphism from I to I′ and

there is a homomorphism from I′ to I. Note that homomoprhical equivalence for source symbolic

instances are transitive.

In a symbolic target instance of a relational-to-RDF temporal full s-t tgd, symbolic

terms have the following syntax:

• Every element E is a symbolic term;

• Every URI p is a symbolic term;

• If T is a set of symbolic terms, then Furi(T) is a symbolic term.

• If T1,T2,T3 are symbolic terms, then Fruri(T1,T2,T3) is a symbolic term.

Let J and J′ be two symbolic target instances of C and C′, respectively.

A homomorphism h from J to J′ is a function from elements in J to elements in J′,

such that

1. if v is a non-temporal element, then h(v) is a non-temporal element;

2. if t is a temporal element, then h(t) is a temporal element;

3. if p is a URI, then h(p) = p;
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4. if T is a set of symbolic term, then h(Furi(T)) = Furi(h(T));

5. if T1, T2, and T3 are symbolic terms, then h(Fruri(T1,T2,T3)) = Fruri(h(T1),h(T2),h(T3));

6. if f = (s, p,o) is a tuple in J, where s, p, and o are symbolic terms, then J′ contains a tuple

f ′ = (h(s),h(p),h(o)).

Example 12. Assume that J contains exactly one tuple f and J′ contains two tuples f ′ and f ′′,

and

f = (Furi(x1),usedOn,Furi(x2)),

f ′ = (Furi(y1),usedOn,Furi(x1)),

f ′′ = (Furi(x1),liveIn,Furi(x2)).

We have the homomorphism h : J→ J′, where

h(x1) = y1, h(usedOn) = usedOn, h(x2) = x1.

Via the definition of homomorphism between symbolic instances, we can define the

homomorphism between two relational-to-RDF temporal full s-t tgds.

Definition 24 (Homomorphisms between two relational-to-RDF temporal full s-t tgds). Let

C and C′ be two relational-to-RDF temporal full s-t tgds. Assume that (I,J) is the symbolic pair

of C and that (I′,J′) is the symbolic pair of C′.

A homomorphism h from C to C′ is a function from symbolic pair in C to symbolic

pair in C′, such that h is a homomorphism from I to I′ and h is a homomorphism from J to J′.
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Assignments from a symbolic source (target) instance to a source (target) instance Let

S be a temporal relational schema and let O be a temporal RDF graph schema. Assume a

relational-to-RDF temporal full s-t tgd C. Let I be a symbolic source instance of C and let I′ be a

source instance over S. Let J be a symbolic target instance of C and let J′ be a target instance

over O.

• An assignment from I to I′ is a function from elements in I to the active domain of I′, such

that a) if v is a non-temporal element, then h(v) is a constant; b) if t is a temporal element,

then h(t) is a time interval; c) if there is a fact R(v1, . . . ,vn, t) in ϕ-part of I, then there

exists a fact R(h(v1), . . . ,h(vn),h(t)) in I′; d) if there is a fact Rm(t1, t2) in the π-part of I,

then h(t1)m h(t2).

Example 13.

I = {R1(x1,x2, t1),R2(x2,x3, t2),Rm(t1, t2)} and I′ = {R1(a,b, i),R2(b,c, i′)}

We have the assignment h : I→ I′, where

h(x1) = a, h(x2) = b, h(t1) = i, h(x3) = c, h(t2) = i′.

• An assignment from J to J′ is a function from symbolic terms in J to values occurring

in J′, such that a) if v is a non-temporal element, then h(v) is an RDF literal; b) if t is a

temporal element, then h(t) is a time interval; c) if p is a URI indicating an RDF property,

then h(p) = p; if s is a URI indicating an RDF class, then h(s) = s; and if o is a literal,

then h(o) = o; d) if T is a symbolic term in the form of Furi(x), then,

d.i) h(T ) is an arbitrary URI if h(x) is unknown;
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d.ii) otherwise, its URI value h(Furi(x)) = Furi(h(x));

e) if Fruri(T1,T2,T3) is a symbolic term as a subject or an object, where T1, T2, and T3 are

symbolic terms appearing in J as a subject or an object, then h(Fruri(T1,T2,T3)) is the

URI value of Fruri(h(T1),h(T2),h(T3)); f) if Fruri(T1,T2,T3) is a symbolic term as a subject

or an object, where T1, T2, and T3 are symbolic terms, but at least one of them does not

appear in J as a subject or an object, then h(Fruri(T1,T2,T3)) is an arbitrary URI; g) if

f = (s, p,o) is a tuple in J, where s, p, and o are symbolic terms, then there exists a triple

f ′ = (h(s),h(p),h(o)) in J′.

Example 14. Consider a symbolic target instance J containing a tuple f , and a target

instance J′ containing three triples f ′, f ′′, and f ′′′:

f = (Fruri(Furi(x1),usedOn,Furi(x2)),subj,Furi(x2)),

f ′ = (a,subj,b), f ′′ = (a,pred,usedOn), f ′′′ = (a,obj,c).

We have the assignment h : J→ J′, where

h(Fruri(Furi(x1),usedOn,Furi(x2)) = a, h(subj) = subj, h(Furi(x2)) = b.

Example 15. Consider a symbolic target instance J containing two tuples f and f ′, and a

target instance J′ containing two triples f ′′ and f ′′′.

f = (Fruri(Furi(x1),usedOn,Furi(x2)),subj,Furi(x2)),

f ′ = (Furi(x1),usedOn,Furi(x2)),

f ′′ = (a,subj,b), f ′′′ = (b,usedOn,c),
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where a = Fruri(b,usedOn,c).

We have the assignment h : J→ J′, where

h(Furi(x1)) = b, h(usedOn) = usedOn, h(Furi(x2)) = c,

h(Fruri(Furi(x1),usedOn,Furi(x2)) = a, h(subj) = subj.

An assignment h from C = (I,J) to a data example (I′,J′) is a function from the elements

in (I,J) to the elements in (I′,J′), such that h is an assignment from I to I′ and h is an

assignment from J to J′.

Example 16.

I = {R1(x1,x2, t1),R2(x2,x3, t2),Rm(t1, t2)},

J = {(Fruri(Furi(x1),usedOn,Furi(x2)),subj,Furi(x2)}

and

I′ = {R1(a,b, [1,3)),R2(b,c, [3,4))},

J′ = {(ua,subj,ub), (ua,pred,usedOn), (ua,obj,uc)}.

We assume that

ub = Furi(b),

ua = Furi(Furi(a),usedOn,Furi(b)) = Fruri(Furi(a),usedOn,ub).

We have the assignment h : (I,J)→ (I′,J′), where

h(x1) = a, h(x2) = b, h(t1) = [1,3), h(x3) = c, h(t2) = [3,4),h(Furi(x2)) = ub,
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h(Fruri(Furi(x1),usedOn,Furi(x2)))

=Fruri(Furi(h(x1)),usedOn,Furi(h(x2)))

=Fruri(Furi(a),usedOn,Furi(b))

=ua.

(5.1)

5.2 Canonical Relational-to-RDF Temporal Full S-t tgd

In the above section, we demonstrated that constraints can be represented by symbolic

pairs, in such a way that they are regarded as a pair of a source instance and a target instance.

Conversely, this section will discuss how to convert a source instance and a target instance into a

canonical constraints, which will help us derive a constraint in the active learning algorithm (see

Section 5.3).

Let I be a temporal source instance I over S and let J be a target RDF instance over O.

5.2.1 Canonical Conjunctions

Definition 25 (Canonical Conjunction of atomic formulas for a temporal relational instance).

A canonical conjunctive query Iϕ for I is a Boolean conjunctive query with a renaming of the

temporal elements of I as temporal variables t1, t2, . . . and with a renaming of the non-temporal

elements of I as non-temporal variables x1,x2, . . ., and the facts of I as conjuncts, where a fact of

I is an expression Ri(a1, . . . ,am, i) such that (a1, . . . ,am, i) ∈ Ri conjunctive query.

Definition 26 (Canonical Conjunctions of Allen’s atomic formulas for a temporal relational

instance). Let Iϕ be a canonical conjunction of atomic formula for I. We say that Iπ is a canonical
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conjunction of Allen’s atomic formulas for I w.r.t. Iϕ if for any pair of time intervals i and i′ in I,

there is an Allen’s atomic formula in the form of Rρ(t, t ′), where the two intervals i and i′ are in

the Allen’s relation iρi′, and i is renamed as t and i′ is renamed as t ′ in Iϕ.

We call Iϕ∧ Iπ the canonical conjunctions for the instance I.

Example 17. Assume an instance I over some temporal relational schema S and the facts of I

are shown as follows:

f1 = R1(a,b, [1,3))

f2 = R1(a,c, [1,5))

f1 = R2(c,d, [3,5))

We have that

Iϕ = R1(x1,x2, t1)∧R1(x1,x3, t2)∧R2(x3,x4, t3)

and

Iϕ = t1 s t2∧ t1 m t3∧ t3 f t2.

5.2.2 Canonical Constraints

Given a pair (I,J) of a source instance over S and a target instance over O, we will

transform it into a relational-to-RDF temporal full s-t tgd σ = (Iϕ∧ Iπ,Jψ) with the canonical

conjunction of I as the left-hand side and a conjunction of atomic formulas over O as the

right-hand side, where each atomic formula is transformed from each triple in J and one atomic

formula for each triple in J, in such a way that there is an assignment s from the active domain
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of I to elements in Iϕ∧ Iπ, and thus (I,J),s |= (Iϕ∧ Iπ,Jψ). In order to generate such a constraint

from (I,J), we analyze the challenges and design Algorithm 1 to generate such a constraint from

(I,J) with the help of Algorithm 2 - Algorithm 6.

Challenges: We can easily convert the temporal relational source instance I into canonical

conjunctions for I by assigning each constant a fresh variable and by assigning each time interval

a fresh temporal variable. This process generates an assignment table that contains assignments

for all variables and terms. However, when generating the conjunction of RDF atomic formulas

for triples from J, we classify the type of values from J into three groups, and we generate terms

for those values accordingly: a) for a value that is a property or a class, called keyword for

simplicity, defined in Section 4.2, we construct a term (the keyword itself is a term); b) for a value

that is directly transferred from I, the variable that is assigned to the value in the assignment

table becomes the term of the value; c) for a value that is generated by functions Furi or Fruri

with parameters from values in I, keywords, and other URI values generated by functions Furi

and Fruri, we face certain challenges that need to be addressed in order to map those values into

terms.

Challenge 1: Identify generating functions for terms in the right-hand side of a canonical

relational-to-RDF temporal full s-t tgd

Note that the function Fruri is used to generate instances of the RDF classes,

{Statement,TNode, and Interval}.

According to the definition of temporal RDF schemas and instances, we know that i) the subjects

of the triples whose predicates are temporal, obj, pred, or subj are instances of the class
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Statement; ii) objects of the triples whose predicates are temporal and subjects of the triples

whose predicates are interval are instances of the class TNode; iii) objects of the triples whose

predicates are interval and subjects of the triples whose predicates are validFor are instances

of the class Interval. Therefore, given a value that is generated by the two functions Furi and

Fruri, we are able to identify if the value is generated by the function Fruri or not by identifying if

the above cases apply to the value. If none of the cases can be applied, then the value is generated

by Furi. For example, assume a triple (a,interval,b). As case ii) applies to the value a and

case iii) applies to the value b, both a and b are produced by the function Fruri.

Challenge 2: After identifying the function to be used for a value a, parameters of the function

should be calculated reversely with the help of the function and the value a. There are several

types of parameters of the function Fruri. Some parameters may come from I directly, but some

parameters are generated by another function Fruri or Furi. The latter case makes the term of the

value complicated, and this term contains functions that may contain nested functions.

i) If it is Furi, parameters are directly generated through reversing function F−1
uri (a).

ii) If it is Fruri, the case becomes complicated for the parameters of the function because some

parameters of the function are directly from I, some parameters are generated by Furi, some

other parameters are generated from Fruri. For the last two cases, the term generated for the

value a should be a function containing another nested function as its parameters. In general,

those parameters also appear in other triples as subjects or objects. Therefore, it will be easier

if first identify the terms of those parameters of the function Fruri. To this end, for the value a,

which will be a term in the form of Fruri(·), we first generate atomic formulas for other triples

with the parameters as the subjects or the objects. Hence, for the triples that contain values that
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will be converted into terms with nested functions, we will handle them later; for the triples

whose values could be used as parameters of the functions Fruri and Furi, we handle them earlier.

As a result, it matters in which order we will transfer triples into RDF atomic formulas. After

careful observation, we assign each property appearing in O a priority. Specifically, a) properties

in P have the first priority; b) properties in Snd = {sub j,ob j, pred} have the second priority;

c) properties in T hrd = {temporal, interval,validFor} have the third priority; d) properties in

Lst = {sc,dom,ran,sp, type} have the least priorities, where predicates in the sets Snd, T hrd,

and Lst are listed in descending order of priority. Hence, we are able to classify triples in

J into four sets FstTriples, SndTriples, TrdTriples, and LstTriples, where FstTriples only

contains the triples whose predicates are in P; the sets SndTriples, TrdTriples, and LstTriples

only contain triples whose predicates are in Snd, T hrd, and Lst, respectively. Sort the triples

in SndTriples, TrdTriples, and LstTriples, respectively, according to the priorities of the

properties in each set.

We first calculate the RDF atomic formulas for triples whose predicate is in P (see

Algorithm 3), then for the triples in the order of SndTriples (see Algorithm 4), TrdTriples (see

Algorithm 5), and LstTriples (see Algorithm 6). Moreover, Algorithm 4 - Algorithm 6 carefully

provide the details of how to identify generating functions for terms in the right-hand side of a

canonical relational-to-RDF temporal full s-t tgd and how to convert triples in a target instance

into terms in the right-hand side of a canonical relational-to-RDF temporal full s-t tgd.

For example, let f = DrugUsage(a,b,c, [1,2)) be a fact in I. Let (curi,usedOn,buri)

and (druri,subj,curi) be two triples in J. The fact f is transferred into a relational atom

DrugUsage(x1,x2,x3, t) and the assignment table is a : x1,b : x2,c : x3, [1,2) : t.
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First, we transfer the triple (curi,usedOn,buri) into an atomic formula since, as men-

tioned above, we must calculate the RDF atomic formula for the triple (curi,usedOn,buri) before

doing that for (druri,subj,curi). We choose the function Furi for curi and buri since there is no

assignment for curi and buri in the assignment table and Fruri cannot be selected based on the

predicate of the triple. Then we calculate the parameters by reversing the function Furi, such that

we have F−1
uri (curi) = c. Hence, curi is transferred into the term Furi(x3) since c is assigned to the

variable x3 in the assignment table. As a result, (curi,usedOn,buri) is converted into the atomic

formula (Furi(x3),usedOn,Furi(x2)). Next, we can proceed to handle the triple (druri,subj,curi).

For the value druri, the function Fruri will be applied because the predicate is subj. Then we

calculate the parameter values of the function Fruri by reversing the function F−1
ruri(druri) which

consists of three parameters values {curi, usedOn, buri}. Since terms translated from curi and buri

are Fruri( Furi(x3), usedOn, Furi(x2)) and Furi(x3), the atomic formula is (Fruri( Furi(x3), usedOn,

Furi(x2)), subj, Furi(x3)).
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Algorithm 1 Convert a data example to a canonical relational-to-RDF temporal full s-t tgd
Require: (I,J) - a universal data example for G .

Ensure: a relational-to-RDF temporal full s-t tgd σ that is satisfied by (I,J);

a mapping map from a triple in J to an RDF atomic formula

1: Calculate Iϕ and Iπ by using Algorithm 2

2: Initialize a mapping map from a triple in J to an RDF atomic formula to be empty

3: Initialize a vector Jψ to be empty

4: J′ψ,map′← result generated by Algorithm 3.

5: Jψ← Jψ∪ J′ψ

6: map← map∪ map′

7: J′′ψ,map′′← result generated by Algorithm 4.

8: Jψ← Jψ∪ J′′ψ

9: map← map∪ map′′

10: J′′′ψ ,map′′′← result generated by Algorithm 5.

11: Jψ← Jψ∪ J′′′ψ

12: map← map∪ map′′′

13: J′′′′ψ ,map′′′′← result generated by Algorithm 6.

14: Jψ← Jψ∪ J′′′′ψ

15: map← map∪ map′′′′

16: return (Iϕ∧ Iπ,Jψ) and map

We call the constraint C = (Iϕ∧ Iπ,Jψ) generated by Algorithm 1 the canonical con-

straint for (I,J), where we first use Algorithm 2 to convert the source instance I into a canonical

conjunction; and then, we use Algorithm 3 - Algorithm 6 to convert the target instance J into a

conjunction of RDF atomic formulas. Note that the canonical relational-to-RDF temporal full s-t
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tgd has the following properties:

1. Iϕ∧ Iπ is a canonical conjunction for the instance I;

2. Jψ is a conjunction of atomic formulas over O.

3. each variable in Jψ comes from Iϕ∧ Iπ, and each atomic formula in Jψ corresponds to a

triple in J;

4. for each triple (s, p,o) with a time interval i such that J contains its temporal annotation,

if the triple is transformed to the atomic formula (T1, p,T2) in Jψ, then Jψ contains the

co-occurring set of (T1, p,T2), each of which corresponds to a triple in the temporal

annotation.

If C is a relational-to-RDF temporal GAV constraint, then we say that C is a canonical relational-

to-RDF temporal GAV constraint.

Algorithm 2 Convert a source instance to a canonical conjunction
Require: (I,J) - a universal data example for G .

Ensure: a canonical conjunction Iϕ∧ Iπ of I

1: Iϕ← the canonical conjunction of atomic formulas for I

2: Iπ← the canonical conjunction of Allen’s atomic formulas for I w.r.t. Iϕ

3: return Iϕ∧ Iπ
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Algorithm 3 Transfer a data example to a canonical relational-to-RDF temporal full s-t tgd for

triples of the first priority.
Require: Iϕ∧ Iπ - a canonical conjunction of a relational instance I;

FstTriples - subset of J, where it contains all triples whose predicates in P.

Ensure: a relational-to-RDF temporal full s-t tgd σ that is satisfied by (I,J);

1: while for each triple f = (s, p,o) in FstTriples do

2: create a conjunct (T1, p,T2)

3: T1← Furi(Fm(F−1
uri (s)))

4: if o is an RDF URIs then

5: T2← Furi(Fm(F−1
uri (o)))

6: else

7: T2← Fm(o)

8: end if

9: map[(s, p,o)] = (T1, p,T2)

10: Add (T1, p,T2) into Jψ

11: end while

12: return map and Jψ
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Algorithm 4 Convert a data example to a canonical relational-to-RDF temporal full s-t tgd- for

triples of the second priority.
Require: Iϕ∧ Iπ - a canonical conjunction of a relational instance I

SndTriples - subset of J, where it contains all triples whose predicates in Snd, and the triples

are sorted according to the order of their predicates appearing in Snd.

Ensure: a relational-to-RDF temporal full s-t tgd σ that is satisfied by (I,J);

1: while for each triple f = (s, p,o) in SndTriples do

2: create a conjunct (T1, p,T2)

3: if p is pred then

4: s′← find the object of the tuple that has s as subject and has sub j as predicate

5: Ts← Furi(Fm(F−1
uri (s

′)))

6: o′← find the object of the tuple that has s as subject and has ob j as predicate

7: if o′ is an RDF Literal, then To is Fm(o′); and if o′ is an RDF URI, then To is Furi(Fm(F−1
uri (o

′)))

8: T1← Fruri(Ts,o,To)

9: T2← o

10: else if p is sub j then

11: p′← find the object of the tuple that has s as subject and has pred as predicate.

12: o′← find the object of the tuple that has s as subject and has ob j as predicate

13: if o′ is an RDF Literal, then To is Fm(o′); and if o′ is an RDF URI, then To is Furi(Fm(F−1
uri (o

′)))

14: T2← FuriFm(F−1
uri (o))

15: T1← Fruri(T2, p′,To)

16: else

17: p′← find the object of the tuple that has s as subject and has pred as predicate.
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Algorithm 4 Convert a data example to a canonical relational-to-RDF temporal full s-t tgd- for

triples of the second priority (continued).
18: s′← find the object of the tuple that has s as subject and has sub j as predicate

19: Ts← Furi(Fm(F−1
uri (s

′)))

20: if o is an RDF Literal T2 is Fm(o); and if o is an RDF URI, then T2 is Furi(Fm(F−1
uri (o)))

21: T1← Fruri(Ts, p′,T2)

22: end if

23: end while

24: map[(s, p,o)] = (T1, p,T2)

25: Add (T1, p,T2) into Jψ

26: return map and Jψ
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Algorithm 5 Convert a data example to a canonical relational-to-RDF temporal full s-t tgd-for

the triples of the third priority.
Require: Iϕ∧ Iπ - a canonical conjunction of a relational instance I;

T hrdTriples - a subset of J, where it contains all triples whose predicates in T hrd, and the

triples are sorted according to the order of their predicates appearing in T hrd;

SndTriples - a subset of J, where it contains all triples whose predicates in Snd, and the triples

are sorted according to the order of their predicates appearing in Snd;

map - a map from triples in SndTriples to RDF atomic formulas

Ensure: a relational-to-RDF temporal full s-t tgd σ that is satisfied by (I,J);

1: while for each triple f = (s, p,o) in T hrdTriples do

2: create a conjunct (T1, p,T2)

3: if p is temporal then

4: (s′, p′,o′)← find a triple from SndTriples that has s as subject and has sub j as predicate

5: o′′← find the object of the triple from T hrdTriples that has o as subject and has interval as

predicate

6: i← find the object of the triple from T hrdTriples that has o′′ as subject and has validFor as

predicate

7: T1← subject of map[(s′, p′,o′)]

8: T2← Fruri(T1, temporal,Fm(i))

9: end if
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Algorithm 5 Convert a data example to a canonical relational-to-RDF temporal full s-t tgd-for

the triples of the third priority (continued).
10: if p is interval then

11: (s′, p′,o′)← find a triple that has s as object and has temporal as predicate

12: i← find the object of the triple that has o′ as subject, has validFor as predicate

13: T1← the object of map[(s′, p′,o′)]

14: T2← Fruri(T1, interval,Fm(i))

15: end if

16: if p is validFor then

17: (s′, p′,o′)← find a triple that has s as object and has interval as predicate

18: T1← the object of map[(s′, p′,o′)]

19: T2← i

20: end if

21: map[(s, p,o)] = (T1, p,T2)

22: Add (T1, p,T2) into Jψ

23: end while

24: return map and Jψ

131



Algorithm 6 Convert a data example to a canonical relational-to-RDF temporal full s-t tgd-least

priority triples.
Require: Iϕ∧ Iπ - a canonical conjunction of a relational instance I;

LstTriples - a subset of J, where it contains all triples whose predicates in Lst, and the triples

are sorted according to the order of their predicates appearing in Lst.

Ensure: a relational-to-RDF temporal full s-t tgd σ that is satisfied by (I,J);

1: while for each triple f = (s, p,o) in LstTriples do

2: create a conjunct (T1, p,T2)

3: if p is type then

4: create a conjunct (T1, p,T2)

5: T2← o

6: if o is timeInterval then T1← Fm(s)

7: else if datatype of s is a string literal then T1← Fm(s)

8: else if o is Statement then

9: (s′, p′,o′)← find a triple that has s as subject and has sub j as predicate

10: T1← subject of map[(s′, p′,o′)]

11: else if o is Interval then // not instance of

12: (s′, p′,o′)← find a triple that has s as subject and has interval as predicate

13: T1← subject of map[(s′, p′,o′)]

132



Algorithm 6 Convert a data example to a canonical relational-to-RDF temporal full s-t tgd-least

priority triples (continued).
14: else if o is T Node then

15: (s′, p′,o′)← find a triple that has s as subject and has validFor as predicate

16: T1← subject of map[(s′, p′,o′)]

17: else

18: T1← Furi(Fm(F−1
uri (s))

19: end if

20: else

21: T1← s

22: T2← o

23: end if

24: map[(s, p,o)] = (T1, p,T2)

25: Add (T1, p,T2) into Jψ

26: end while

27: return map and Jψ

5.3 Active Learning Algorithm

Let G = (S,O,Σ) be a goal schema mapping and let E be a set of universal data

examples of G . This section introduces an active learning algorithm (see Algorithm 7) based on

a given relational-to-RDF temporal schema mapping G as a black box and E.
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5.3.1 The Learning Algorithm

In this section, we will state and prove several results needed for the Algorithm 7.

Lemma 15. Assume a relational-to-RDF temporal schema mapping G = (S,O,Σ). Let I be a

source instance over S and let J be a target RDF instance over O, which contains a set f of triples.

If f contains exactly one triple (s, p,o) where p is a non-temporal property that does not admit

temporal annotation, or if f consists of a triple (s, p,o) with p admitting temporal annotations and

a temporal annotation of (s, p,o) and a time interval, then we have that the canonical constraint

(Iϕ∧ Iπ, fψ) of (I, f) is a relational-to-RDF temporal GAV constraint.

Proof. According to the definition of relational-to-RDF temporal GAV constraint, there are two

cases for the right-hand side of a constraint. The first case is that the right-hand side is an atomic

formula over O where the predicate of the atomic formula does not admit temporal annotations.

Therefore, if f contains exactly one triple and if its predicate does not admit temporal annotations,

then the predicate of the atomic formula does not admit temporal annotation since canonical

constraints preserve the predicate of the original triple according to the properties that canonical

constraints hold. In addition, fψ contains exactly one atomic formula transformed from the only

triple from f. Hence, (Iϕ∧ Iπ, fψ) is a relational-to-RDF temporal GAV constraint.

The second case is that the right-hand side is a conjunction of atomic formulas which

consists of an atomic formula (T1, p,T2) with p ∈ P and all atomic formulas in the co-occurring

set of (T1, p,T2) if p admits temporal annotation in O. Now, we assume that f consist of a triple

(s, p,o) with p admits temporal annotations and a temporal annotation of the triple and a time

interval as mentioned in the lemma. Then according to the property that canonical constraints
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hold, fψ consists of the atomic formula (T1, p,T2) transformed from (s, p,o) and its co-occuring

set. Thus the canonical constraint of (I, f) is a GAV constraint according to the property of

canonical constraint.

Lemma 16. Assume a relational-to-RDF temporal schema mapping G = (S,O,Σ). Let I be a

source instance over S and let J be a target RDF instance over O, which contains a set f of triples,

where f contains exactly one triple (s, p,o) where p is a non-temporal property that does not

admit temporal annotation; or f consists of a triple (s, p,o) with p is a non-temporal property

admitting temporal annotations and a temporal annotation of (s, p,o) and a time interval. For all

canonical constraints C = (Iϕ∧ Iπ, fψ) of (I, f), where Iϕ∧ Iπ is the canonical conjunctions for I,

the following statements are equivalent:

(1) G logically implies C;

(2) there is a homomorphism from C′ to C for some C′ in Σ;

(3) a canonical universal solution for I w.r.t. Σ contains f.

Proof. The proof is similar to that of the Lemma 3.1 in paper [62]. We will prove our lemma in

a round-robin fashion: (1) implies (3), which implies (2), which, in turn, implies (1).

Note that C is canonical relational-to-RDF temporal GAV constraint according to

Lemma 16.

• The implication from (1) to (3): Let can-solG (I) be a canonical universal solution for I w.r.t.

G . It follows that (I,can-solG (I)) satisfies all constraints in G . By the statement of (1),
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we know that (I,can-solG (I)) satisfies C, which means the triples f exist in can-solG (I).

This completes the proof of the implication from (1) to (3).

• The implication from (3) to (2): If f, as stated in (3), occurs in a canonical universal solution

for I w.r.t. G ( denoted by can-solG (I)), then according to the definition of relational-to-

RDF chase algorithm, there exists a GAV constraint C′ = (I′ϕ∧ I′π, f′ψ) (I′ϕ∧ I′π and f′ψ are the

source symbolic instance of C′ and the target symbolic instance of C′, respectively) in G ,

such that there exists an assignment from C′ to I. It follows that there is a homomorphism

h from I′ϕ∧ I′π to Iϕ∧ Iπ. In addition, C is a GAV constraint, and that means f either contains

exactly one triple or it consists of a triple and one temporal annotation for this triple.

Therefore, all triples in f must be generated by the same GAV constraint C′ in Σ according

to the definition of GAV constraint and the chase algorithm. It implies that each triple

in f is generated with one of atomic formulas in f′ψ. This is because f′ψ consists of one

atomic formula (T1, p,T2) if p does not admit temporal annotation, otherwise it consists of

(T1, p,T2) and it co-occurring set, which corresponds to f consisting of exactly one triple if

the predicate of it does not admit temporal annotation, or it consists of a triple and one

temporal annotation for this triple, and thus the size of f′ψ equals to that of fψ. Hence, h is

the homomorphism from f′ψ to fψ. Thus, by the definition of homomorphism between two

constraints, there exists a homomorphism from C′ = (I′ϕ∧ I′π, fψ) to C = (Iϕ∧ Iπ, fψ). This

completes the proof of the implication from (3) to (2).

• The implication from (2) to (1): Let (I′′,J′′) be any pair consisting of a source instance

and a target instance, satisfying all constraints in G . We will show that (I′′,J′′) satisfies
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C, i.e., if Iϕ ∧ Iπ is satisfied by I′′, then fψ is satisfied by J′′. Assume that there is an

assignment g from the symbolic source instance Iϕ∧ Iπ of C to the source instance I′′. Let

C′ = (I′ϕ∧ I′π, f′ψ) and let h be a homomorphism from the constraint C to the constraint C′

(h : Iϕ∧ Iπ→ I′ϕ∧ I′π and h : fψ→ f′ψ). It follows that there is a composition assignment

h◦g from Iϕ∧ Iπ to I′′. Since (I′′,J′′) satisfies I′ϕ∧ I′π (it is easy to prove that composing

a homomorphism and an assignment is an assignment), and thus, (I′′,J′′) satisfies C, we

have that the assignment h◦g : fψ→ J′′. Therefore, we have that g is the assignment from

fψ to J′′, which follows from the fact that h is the homomophism from fψ to f′ψ. This

completes the proof of the implication from (2) to (1).

The notion of critically sound Let G be a relational-to-RDF temporal schema map-

ping. A relational-to-RDF temporal GAV constraint is sound with respect to G if G logically

implies C = (Iϕ ∧ Iπ, fψ), that is, for every data example (I,J) that satisfies G , we have that

(I,J) also satisfies C. Given a conjunct R(x, t) in Iϕ, we call every conjunct in Iπ that contains

the temporal variable t the related conjuncts of R(x, t). A relational-to-RDF temporal GAV

constraint is critically sound with respect to G if i) C is sound with respect to G ; and ii) for every

relational-to-RDF temporal GAV constraint C′ obtained either by removing one of the conjuncts

of Iϕ and its related conjuncts in Iπ or by removing one of the conjuncts of Iπ, we have that G

does not logically imply C′.

Definition 27 (Direct Product). Let S be a temporal relational schema and let I and I′ are

two instances over S. Assume that Iϕ ∧ Iπ and I′ϕ ∧ I′π are canonical conjunctions of I and I′
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respectively. The direct-product Iϕ ∧ Iπ × I′ϕ ∧ I′π of Iϕ ∧ Iπ and I′ϕ ∧ I′π is the a conjunction of

atomic formulas with a pair < x,x′ > as each variable. Iϕ∧ Iπ × I′ϕ∧ I′π consists of two parts,

Iϕ × I′ϕ and Iπ × I′π, where the part Iϕ × I′ϕ contains all atoms R(< x1,x′1 >,. . . ,< xk,x′k >)

(with k = arity(R)) such that R(x1, . . . ,xk) is in Iϕ and R(x′1, . . . ,x
′
k) is in I′ϕ; and the part Iϕ × I′ϕ

contains all atoms Rρ(< t1, t ′1 >,< t2, t ′2 >) such that a) both < t1, t ′1 > and < t2, t ′2 > are in Iϕ ×

I′ϕ; b) Rρ(t1, t2) is in Iπ and Rρ(t ′1, t
′
2) is in I′π.

Let O be an temporal RDF graph schema and let J and J′ are two RDF instances over O. Assume

that Jψ and J′ψ are canonical conjunctions of J and J′ respectively. The direct-product Jψ× J′ψ of

Jψ and J′ψ is the a conjunction of RDF atomic formulas with a pair < T,T ′ > as each term. Id

contains all RDF atoms (< T1,T ′1 >, p,< T2,T ′2 >) such that (T1, p,T2) is in Jψ and (T ′1, p,T ′2) is

in J′ψ.

Direct-product of two relational-to-RDF temporal full s-t tgds Let Iϕ∧ Iπ→ Jψ and I′ϕ∧ I′π→

J′ψ are two relational-to-RDF temporal GAV constraints. The direct-product of the two relational-

to-RDF temporal GAV constraints σ is Iϕ∧ Iπ× I′ϕ∧ I′π→ Jψ× J′ψ.

Let (T1, p,T2) be an RDF atomic formula, where T1 is an RDF term and T2 is an RDF

term, and T1 or T2 is either a term with some variables in functions or just a variable. In the

following, we will use T1(x1, . . . ,xn, t) to indicate that the variables that involved in term T1

are x1, . . . ,xn, t, and use T2(x′1, . . . ,x
′
m, t) to indicate that variables involved in the term T2 are

x′1, . . . ,x
′
m, t. By the definition of relational-to-RDF temporal GAV constraint, we observed that

T1 and T2 contain the same temporal variable if both of them contain a temporal variable.

Lemma 17. Let C, C1, and C2 be relational-to-RDF temporal GAV constraints with homomor-
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phisms h1 : C→C1 and h2 : C→C2. Then C1×C2 is well defined, and it is a GAV constraint;

moreover, C→C1×C2; C1×C2→C1 and C1×C2→C2.

Proof. To prove the lemma, we will consider two cases: 1) the right-hand side of C con-

tains exactly one atomic formula; 2) the right-hand side of C consists of an atomic formula

(T1(x1, . . . ,xn, t), p,T2(x′1, . . . ,x
′
m, t)) with p admits temporal annotations and all atomic formulas

in its co-occurring set, where (T (x1, . . . ,xn, t) indicates a term containing one or more variables

in {T (x1, . . . ,xn, t}.

For the first case, let (T1(x1, . . . ,xn, t), p,T2(x′1, . . . ,x
′
m, t)) be the right-hand side of

C. It follows that a) p does not admit temporal annotations; b) the right-hand side of C1 is

(h1(T1), p,h1(T2)); c) and the right-hand side of C2 is (h2(T1), p,h2(T2)). Thus, the right-hand

side of C1×C2 is

(
T1(< h1(x1),h2(x1)>,. . . ,< h1(xn),h2(xn)>,< h1(t),h2(t)>), p,

T2(< h1(x′1),h2(x′1)>,. . . ,< h1(x′m),h2(x′m)>,< h1(t),h2(t)>)
)
.

It is easy to identify that C1×C2 is a GAV constraint since both C1 and C2 are GAV constraints.

It also suffices to show that each pair of variables < h1(xi),h1(xi) > (< h2(x′i),h2(x′i)) > or

< h1(t),h2(t)>) occurs in the left-hand side of C1×C2. This is indeed the case: since C is well

defined, xi, x′i, or t occurs in some source atom, and applying the homomorphisms h1 and h2 to

this atom yields an atom that belongs to C1×C2.

For the second case, let the conjunction of (T1(x1, . . . ,xn, t), p,T2(x′1, . . . ,x
′
m, t)) and

atomic formulas in its co-occuring set T FRMLA
t be the right-hand side of C. It follows that a)

p admits temporal annotations; b) the right-hand side of C1 consists of the atomic formula
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(h1(T1), p,h1(T2)) and the set h1(T FRMLA
t ) of atomic formulas generated by applying h1 to every

atomic formulas in T FRMLA
t ; c) and the right-hand side of C2 consists of the atomic formula

(h2(T1), p,h2(T2)) and the set h2(T FRMLA
t ) of atomic formulas generated by applying h2 to every

atomic formulas in T FRMLA
t . Thus, the right-hand side of C1×C2 is (T1(< h1(x1),h2(x1) >

,. . . ,< h1(xn),h2(xn) >,< h1(t),h2(t) >), p,T2(< h1(x′1),h2(x′1) >,. . . ,< h1(x′m),h2(x′m) >,<

h1(t),h2(t)>)) and the set of atomic formulas generated by applying h1 and h2 to each variable

x, such that the variable x becomes < h1(x),h2(x)>. It is easy to identify that C1×C2 is a GAV

constraint since both C1 and C2 are GAV constraint. It also suffices to show that each pair of

variables < h1(xi),h1(xi)> (< h2(x′i),h2(x′i))> or < h1(t),h2(t)>) occurs in the left-hand side

of C1×C2. This is indeed the case: since C is well defined, xi, x′i, or t occurs in some source

atom, and applying the homomorphisms h1 and h2 to this atom yields an atom that belongs to

C1×C2.
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Algorithm 7 The relational-to-RDF temporal schema mapping learning algorithm

Require: G- goal mapping (as a labeling oracle); E - a set of universal examples for G .

Ensure: a schema mapping H that fit E.

1: H ← /0

2: while True do

3: if each (I,J) ∈ E is canonical universal for H then

4: return H

5: end if

6: Choose an (I,J) ∈ E such that J ̸= can-solH (I)

7: f ← choose a fact f ∈ J/can-solH (I)

8: Calculate canonical relational-to-RDF temporal full s-t tgd (Iϕ ∧ Iπ,Jψ) for (I,J) by

Algorithm 1

9: if J contains f and its temporal annotation, collect all the triples which are part of the

temporal annotation of f .

10: f← f∪ temporal annotation of f

11: Obtain (Iϕ∧ Iπ, fψ) for (I, f) from (Iϕ∧ Iπ,Jψ)

12: if G logically implies (Iϕ∧ Iπ, fψ)×C for some C ∈H then

13: Choose C ∈H such that G logically implies (Iϕ∧ Iπ, fψ)×C

14: H ← (H /{C})∪{CritG ((Iϕ∧ Iπ, fψ)×C)}

15: else

16: H ←H ∪{CritG (Iϕ∧ Iπ, fψ)}

17: end if

18: end while
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Challenge: Calculation of critically sound constraints Given a constraint as shown in line 13

of Algorithm 7, we need to generate a constraint that is critically sound w.r.t. G . In GAVLEARN,

we only need to remove each relational atom, and check if G logically implies the new constraint.

Different from GAVLEARN, here, the constraint also contains conjunctions of Allen’s relations;

therefore, identifying critical Allen’s relations adds complexity to the algorithm because the size

of the conjunction of Allen’s relation usually is the polynomial of the size of the conjunction of

relational atoms.

Given a constraint (Iϕ∧ Iπ, fφ), we first remove each Allen’s relation until we find all

critical Allen’s relations. Then, we try to remove each relational atom and its corresponding

Allen’s relations that involve variables coming from the removed relational atom.

5.3.2 Soundness and Correctness of the Active Learning Algorithm

Lemma 18. Let G be a relational-to-RDF temporal schema mapping and let E be a finite set of

universal data examples w.r.t. G . Recall that the labeling oracle LABELG takes as input a source

instance I and returns the target instance can-solG (I) . If C = (Iϕ∧ Iπ, fψ) is a relational-to-RDF

temporal GAV constraint that is logically implied by G , then, with access to LABELG and the

set E of data examples, we can construct in polynomial time a relational-to-RDF temporal GAV

constraint CritG (C) = (I′ϕ∧ I′π, fψ), where I′ϕ∧ I′π is the canonical conjunction for an instance I′

and I′ ⊆ I such that CritG (C) is critically sound w.r.t. G .

Proof. To compute CritG (C), we start with Iϕ∪ Iπ, which is the symbolic instance of Iϕ∧ Iπ, and

then try to repeatedly remove each fact in Iπ, as long as can-solG (Iϕ∪ I′π) contains f, where I′π is

the sub-instance obtained from Iπ; and f is the symbolic instance of fψ. We stop when a minimal
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sub-instance Iϕ ∪ I′π of Iϕ ∪ Iπ is reached. Note that there are |Iπ| many atoms to be removed,

hence at most |Iπ| many iterations are needed.

We then check fact in Iϕ ∪ I′π by trying to repeatedly remove each fact in Iϕ and its

related facts in I′π as long as can-solG (I′ϕ∪ I′′π ) contains the facts f, where I′ϕ is the sub-instance

obtained from Iϕ; I′′π is the sub-instance obtained from I′π; and f is the symbolic instance of fψ.

By construction, the constraint (I′ϕ∧ I′′π , fψ) is critically sound with respect to G . Note that there

are at most |Iϕ∪ I′π| many facts to be removed, hence at most |Iϕ∪ I′π| many iterations are needed,

where in each iteration we check, by the labeling oracle LABELG , if current can-solG (I′ϕ∧ I′′π )

contains f. Therefore, there are at most |Iϕ|+2×|Iπ| iterations in total since |I′π| ≤ |Iπ|.

Lemma 19. Let G be a relational-to-RDF temporal schema mapping and let C = (Iϕ∧ Iπ,Jψ)

be a relational-to-RDF temporal GAV constraint. If G logically implies a relational-to-RDF

temporal GAV constraint C′ = (Iϕ,Jψ), then G logically implies the constraint C.

Proof. Let can-solG (I) be a canonical universal solution for I w.r.t. G . It follows that (I,can-

solG (I)) satisfies all constraints in G . In addition, since the relational-to-RDF temporal schema

mapping G logically implies C′, it follows that (I,can-solG (I)) satisfies C = (Iϕ∧ Iπ,Jψ). It is

esay to prove that (I,can-solG (I)) also satisfies C = (Iϕ,Jψ), where Iϕ∧ Iπ = Iϕ∧ Iπ.

Lemma 20. Let G be a relational-to-RDF temporal schema mapping and let C = (Iϕ,Jψ) be

a critically sound relational-to-RDF temporal GAV constraint w.r.t. G . If C′ = (I′ϕ,Jψ) is a

relational-to-RDF temporal GAV constraint, where Iϕ ⊆ I′ϕ, then G logically implies C′.

Proof. We show, by induction, that for every superset I′ϕ of Iϕ (Iϕ ⊆ I′ϕ), G logically implies

(I′ϕ,Jψ). To begin with, we assume an atom R(x, t) (R is a relation symbol in the source schema
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of G) and assume that I′ϕ = Iϕ∧R(x, t). Let can-solG (I) be a canonical universal solution for

I w.r.t. G . Since C is critically sound w.r.t. G , we have G logically implies C. It is easy to

prove that (I, can-solG (I)) satisfies (I′ϕ,Jψ). Let I′ϕ be a superset of Iϕ. By induction hypothesis,

assume that G logically implies (I′ϕ,Jψ), and thus, (I, can-solG (I)) satisfies (I′ϕ,Jψ). Let I′′ϕ is

a conjunction of I′ϕ and an atom. We have to show that (I′′ϕ,Jψ) has the desired properties. It is

easy to prove that (I, can-solG (I)) also satisfies (I′′ϕ,Jψ).

Claim 1. For every i≥ 0 such that Hi is defined, Hi consists of relational-to-RDF temporal GAV

constraints that are sound w.r.t. G . In particular, in the line 6 of Algorithm 7, it must be the case

that can-solHi
(I) ̸⊆ J.

Proof. By induction on i. This claim is trivially true for i = 0, since H = /0. Now, for the case

of i+1, let (I,J) ∈ E be the data example chosen in line 3. Note that J = can-solG (I). By the

induction hypothesis, Hi is logically implied by G , and hence, can-solHi
(I)⊆ can-solG (I) = J.

Let f ∈ J/can-solHi
(I) as chosen in line 7. It follows from Lemma 16 that G logically implies

the constraint (Iϕ∧ Iπ, fψ). In other words, (Iϕ∧ Iπ, fψ) is sound w.r.t. G . It follows by Lemma

18 and Lemma 17 that the constraint added to Hi+1 in line 14 or 16 is also sound w.r.t. G . We

conclude that G logically implies Hi+1.

Claim 2. Let i ≥ 0 such that Hi is defined. For every C ∈ Hi there is a C∗ ∈ G such that

C∗→C. Furthermore, for each C∗ ∈ G , the set Hi(C∗) = {C ∈Hi|C∗→C} is either empty or is

a singleton set.

Proof. The first part of the claim follows from the Claim 1 and Lemma 16. The proof for the

second part of this claim proceeds by induction on i. The base case, for i = 0, is trivially true.
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For i > 0, consider any C∗ ∈ G . Let C′i be the constraint added to H in the i-th iteration of

the algorithm either line 13, 14 or 15, 16. If C∗ ̸→C′i , the result immediately follows from the

induction hypothesis. Therefore, in what follows, we will assume that C∗→C′i . We distinguish

two cases: (i) Hi−1(C∗) = /0. In this case, C′i is the only constraint in Hi into which C∗ maps;

hence the result holds trivially. (ii)Hi−1(C∗) ̸= /0. By the induction hypothesis, there is a unique

C j ∈ Hi−1 such that C∗→C j. Note that, in this case, we have that C∗→C j× (Iϕ∧ Iπ, fψ) (by

the property of direct product), and hence the if-condition in line 12 of the algorithm is satisfied.

Moreover, we can show that C j is, in fact, the constraint C chosen by the algorithm in line

13. This follows immediately from the induction hypothesis, because C∗ homomorphically

maps both to C j and to C′i , which, in turn, by Lemma 18 and the property of direct product,

homomorphically maps to C, since C′i =CirtG (C× Iϕ∧ Iπ, fψ). Since C is explicitly removed

from H in line 14, it follows that Hi(C∗) is again a singleton set. This concludes the proof for

this claim.

Claim 3. The size of the schema mapping H produced by Algorithm 3 is at most the size of G .

Proof. By Claim 2 we have that, for each constraint Ci in H there is a constraint C∗i in G such

that C∗i →Ci, and, moreover, for i ̸= j, we have that C∗i ̸=C∗j . In other words, the constraint of

H stands in a one-to-one correspondence with a subset of the constraint of G . Furthermore, it is

easy to see that each homomorphism in question must be surjective, otherwise the constraint Ci

would not be critically sound w.r.t. G . Therefore, each constraint Ci is of size at most the size of

C∗i . The claim immediately follows.

Claim 4. For every i > 0 such that Hi is defined, we have si > si−1, and si ≤ n, where n =
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ΣC∈G nvar(C).

Proof. Let T be a constraint in G and let si = ΣT∈G sT , where sT
i = 0 indicates that there is no

constraint T in G such that T →Ci+1; and sT
i is the number of variables occurring in the unique

element of Hi(T ) (the corresponding constraint C in Hi to T , such that T →Ci), otherwise (this

is well defined by Claim 2). Let nvar(C) be the number of variables occurring in C. We first

show that si+1 > si. Let Ci+1 be the constraint added to Hi+1 in the i+1-th iteration. Since Ci+1

is critically sound with respect to G , there is a T in G such that T →Ci+1. By Claim 2, Ci+1 is

the unique element of Hi+1(T ). It follows that sT
i+1 is the domain size of Ci+1. First, consider

the case where Hi(T ) is empty. In this case, Ci+1 cannot be of the form CirtG ((Iϕ∧ Iπ, fψ))×C

with C ∈ Hi, because this would imply that Ci+1 → C and hence C ∈ Hi(T ). In other words,

Ci+1 must be of the form CirtG ((Iϕ∧ Iπ, fψ)), and must have been added to Hi+1 in line 16 of the

algorithm. It immediately follows that si+1 > si.

Next, consider the case where Hi(T ) is non-empty, and let Ci be its unique element.

It follows from Claim 2 that Ci must be the constraint removed from Hi by the algorithm in

the i+1-th iteration and hence Ci+1 =CritG (Ci× (Iϕ∧ Iπ, fψ)) for some I and f . In particular,

we have that Ci+1 → Ci by the property of direct product since Ci+1 ← Ci× (Iϕ ∧ Iπ, fψ) and

Ci+1→ (Iϕ∧ Iπ, fψ). In fact, the homomorphism h from the left-hand side of Ci+1 to the left-hand

side of Ci must be surjective; in other words, Ci must be the h-image of Ci+1, for otherwise, we

could obtain a non-surjective homomorphism from the left-hand side of T to the left-hand side of

Ci (namely the composition of h with the homomorphism T →Ci+1), contradicting, via Lemma

16, the fact that Ci is critically sound w.r.t. G . We also know that Ci+1 is not isomorphic to Ci,

because Ci+1→ (Iϕ∧ Iπ, fψ) whereas Ci ̸→ (Iϕ∧ Iπ, fψ). It follows that the domain size of Ci+1 is
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larger than that of Ci (otherwise h would be an isomorphism) and this claim is proved.

Next, we show that each si is at most n. Assume, for the sake of a contradiction, that

si > n, for some well defined si. Then there is a constraint C ∈Hi and C∗ ∈G with Hi(Ci) = {C}

such that nvar(C)> nvar(C∗). This means that there is a non-surjective homomorphism from

C∗ to C, resulting in a contradiction to the fact that C is critically sound w.r.t. G .

Theorem 21. Algorithm 7 is an optimal Occam algorithm for learning relational-to-RDF tem-

poral schema mapping. Specifically, given a labeling oracle for a relational-to-RDF temporal

schema mapping G , as well as a set of universal examples for G , Algorithm 7 returns a relational-

to-RDF temporal schema mapping H such that E is, universal for H and the size of H and the

size of H is at most the size of G .

Proof. Let Hi denote the value of the variable H after the i-th iteration of the while loop of

Algorithm 7, where Hi = /0, and Hi is undefined if i is larger than the total number of iterations

of while loop by Claim 1- Claim 4.

Theorem 22. For every set E of universal examples w.r.t. G , Algorithm 7 returns a relational-to-

RDF temporal schema mapping that is logically implied by G .

Proof: The result follows directly from the Claim 1.

Theorem 23. Algorithm 7 asks at most

size(G)2 ·maxsize(E2)

many labeling queries, where size(G) is the size of the goal schema mapping, and maxsize(E) is

the maximum number of facts in an input data example.
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Proof. We will show a slightly stronger bound: Algorithm 7 asks at most

nG · (|G |)+ kG · k2
E

many labeling queries, where nG = ΣC∈G nvar(C), |G | is the number of constraints of G , kG is

the maximum number of atoms in the left-hand side of a constraint of G , and kE = max(I,J)∈E |I|

is the maximum number of source facts of a data example in E.

By Claim 4, the number of iterations of the algorithm is bounded by nG . In each

iteration, the labeling oracle is called in line 12 (for testing logical implication) at most |G | times,

and in line 14 and 16 (for computing the critically sound subconstraint) at most kG × (kE)
2,

since the number of atoms in ϕ-part of the left-hand side of the product of (Iϕ∧ Iπ, fψ)×C is

bounded by kG × kE and the number of π-part of the left-hand side of the product is bounded

by kG × (kE)
2. Note that the fact that the left-hand side of the constraint C ∈H cannot contain

more atoms than the left-hand side of a constraint in G (see the proof of Claim 2).

5.4 Benchmark

5.4.1 Temporal D2RQ

D2RQ[21] is an open source software that implements W3C’s direct mapping [53],

which defines a simple transformation of content from a relational database to RDF.

We developed Temporal D2RQ by adding some features to D2RQ such that it can

transform temporal information in a temporal relational database into RDF data with temporal

components.
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Let T (A1, . . . ,An) be a relation symbol, where An is a temporal attribute; let k be an

integer between 1 and n−1 inclusively s.t. (A1, . . . ,Ak) is the primary key of T . Let T also be

an interpretation of the relation symbol T (A1, . . . ,An). Assume a fact T (a1, . . . ,ak, . . . ,an−1, i) in

a relation T .

Temporal D2RQ firstly generates a class Tcls for the relation T by assigning a URI for

the class Tcls. Then, for each attribute A in {A1, . . . ,An}, Temporal D2RQ generate a property Ap

for it by assigning a URI for the attribute A.

To transfer the data from relational databases into RDF, we use the two functions, Furi

and Fruri (see Section 4.3), to generate URIs that are used to identify each fact in a relation,

values of attributes, and values of the classes Statement, TNode, and Interval. The function

Furi generates a URI for each fact in T , while Fruri is used to generate instances of the classes

Statement, TNode, and Interval.

• Furi(x1, . . . ,xk): Generate an URI for the fact T (a1, . . . , ak, . . . ,an−1, i) in T , where the

attribute set {A1, . . . , Ak,At} is the primary key of the relation T , and At is the temporal

attribute.

• Fruri(S,P,a): Given an URI S, an URI P (Ap or properties temporal, interval, validFor),

and a value a appearing in a fact of the relation T , generate an URI as a value of the class

Statement, TNode, or Interval.

Note that we take values of the primary key from T as the input for Furi, while Fruri not only

takes values from T but also takes values generated by Furi and Fruri.
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Temporal D2RQ will generate the following triples for the fact

T (a1, . . . ,ak, . . . ,an−1, i) :

• Non-temporal information in T (a1, . . . ,ak, . . . ,an−1, i): (Furi(a1, . . . ,ak),Ai
p,a j) for any j

between 1 and n−1 inclusively,

• Temporal information in T (a1, . . . ,ak, . . . ,an−1, i): We add a temporal component for each

value of a non-temporal attribute Ai that are not part of the primary key (i.e., Ak+1, . . . ,An).

– (Fruri(Furi(x1, . . . ,xk),Ai
p,xi)),

subj,Furi(x1, . . . ,xk)),

– (Fruri(Furi(x1, . . . ,xk),Ai
p,xi)),obj,xi),

– (Fruri(Furi(x1, . . . ,xk),Ai
p,xi)),pred,Ai

p),

– (Fruri(Furi(x1, . . . ,xk),Ai
p,xi)),temporal,

Fruri(Fruri(Furi(x1, . . . ,xk),Ai
p,xi),temporal, t)),

– (Fruri(Fruri(Furi(x1, . . . ,xk),Ai
p,xi),temporal, t),

interval,Fruri(Fruri(Fruri(Furi(x1, . . . ,xk),

Ai
p,xi),temporal, t),interval, t)),

– (Fruri(Fruri(Fruri(Furi(x1, . . . ,xk),Ai
p,xi),

temporal, t),interval, t)),validFor, t),

– (Fruri(Furi(x1, . . . ,xk),Ai
p,xi)),type,Statement),

– (Fruri(Fruri(Furi(x1, . . . ,xk),Ai
p,xi),

temporal, t),type,TNode),
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– (Fruri(Fruri(Fruri(Furi(x1, . . . ,xk),Ai
p,xi),

temporal, t),interval, t)),type,Interval),

– (t,type,timeInterval),

– (Furi(x1, . . . ,xk),type,Tcls)

where k+1≤ i≤ n−1.

5.4.2 Temporal iBench

iBench[15] is the first metadata generator that can generate schema mappings for

the context of relational-to-relational data exchange and their source instances. It can be

used to evaluate data-exchange-related tasks. iBench generates schema mappings of different

characteristics by using primitives and parameters of primitives. In particular, there are four

primitives that are relevant for GAV constraints.

• Copy primitive (copying): R(a,b,c,d)→ T (a,b,c,d)

• Delete primitive (projection): R(a,b,c,d)→ T (a,b)

• Merging primitive (join multiple source relational atoms to create one target relational

atom): R1(a,b,c,d)∧R2( f ,g,h,c)∧R3(i, j,k,d)→ T (a,b, f ,g,h, i, j,k,c,d)

• SelfJoin primitive (self join a source relational atoms to create one target relational atom):

R(a,b,c,d)→ T1(a,c,d) and R(a,b,c,d)∧R(b,e, f ,h)→ T2(a,b)

1. JoinSize is one of the critical parameters for the above primitives, which is the number of

relational atoms per Merging primitive.
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2. SourceShare (TargetShare) is another critical parameter that specifies the percentage of

constraints that share source (target) relations. For instance, R(a,b,c,d)→ T (a,b,c,d)

and the constraint R(a,b,c,d)→ T (a,b) share the same source relation. In addition,

R1(a,b,c,d)→ T (a,b,c,d) and R2(a,b,c,d,e)→ T (a,b,c,d) share the same target rela-

tion. These two parameters ensure that a (source/target) relation may involve multiple

constraints.

3. If JoinKind is the type of joins (start or chain) for Merging primitive and MergingDel

primitive.

In general, iBench generates a constraint for each parameterized primitive except SelfJoin

primitive, which generates two constraints as shown above.

5.4.2.1 Generation of Relational-to-Relational Temporal Schema Mappings

We developed Temporal iBench by adding some features to iBench to generate

relational-to-RDF temporal schema mappings and their universal data examples with the help of

Temporal D2RQ. Temporal iBench can generate relational-to-RDF temporal schema mappings.

To do that, it first generates the relational-to-relational temporal GAV schema mappings. Then

it directly converts those schema mappings into relational-to-RDF temporal schema mappings

according to some conversion rules which will be presented later in this section. In the design

of how to generate relational-to-RDF temporal schema mappings, we redefine the above four

primitives and introduce a new primitive MergingDel. Those five newly defined primitives are

listed in Figure 5.1.
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Figure 5.1: Exemplary temporal primitives

Given a primitive listed in Figure 5.1, the generation of a relational-to-relational

temporal GAV constraint of the primitive is controlled via those parameters in iBench and

two extra parameters (isTemporal, isPrimary), which we added for the generation of temporal

variables.

• isTemporal is used to determine if the GAV constraint contains temporal variables. Specif-

ically, isTemporal determines the appearance of temporal variables in the relational atoms

that occurs in the left-hand side of the GAV constraint, such that it controls the generation

of its constraints in the following ways: (a) If isTemporal is set to 0, then no temporal

variables exist in the aforementioned relational atoms in the left-hand side of the GAV

constraint; (b) if isTemporal is set to 1, then there must be at least one temporal variable in

those relational atoms; (c) if isTemporal is set to−1, then the existence of a temporal vari-

able in each of those relational atoms is randomly determined. In fact, in Copy primitive,

Delete primitive, or SelfJoin primitive, since each of them involves exactly one relation

symbol in the left-hand side of its constraint, the value of isTemporal indicates whether

the relation symbol contains a temporal variable or not. However, in the Merging primitive
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and MergingDel primitive, the situation of the occurrence of temporal variables is more

complicated. This is because each constraint of Merging primitive or MergingDel primitive

involves multiple source relations in its left-hand side, and each source relation symbol

appears only once. Therefore, if isTemporal is 1, a further determination of temporal

variables for each relational atom is required. Specifically, when generating a constraint

for Merging primitive or MergingDel primitive:

(a) if isTemporal is 0, then we generate GAV constraints in the same way as iBench.

(b) if isTemporal is 1, then we add a temporal attribute to each source relation symbol

involved in the constraint so that there is a fresh temporal variable in each source

relational atom. Hence, the number of temporal variables equals the number of

source relational atoms in the left-hand side of a constraint.

(c) if isTemporal is −1, then for each source relation symbol involved in the left-hand

side of the constraint, we randomly determine if it contains a temporal attribute.

Hence, the number of temporal variables in the left-hand side of a constraint is

randomly determined.

The relational atom in the right-hand side of a constraint contains one of the temporal

variables from the left-hand side (for simplicity, we choose the first temporal variable from

the left-hand side).

• isPrimary is used to determine the following questions per SelfJoin primitive, where there

are two constraints, deleting constraint (the first one in Figure 5.1) and self-join constraint

(the second one in Figure 5.1), to be created per SelfJoin primitive: 1) if the temporal
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variable will occur in the right-hand side of the first constraint, 2) if there is multiple

temporal variables in the second constraint, and 3) which temporal variable in the left-hand

side of a constraint will occur in the right-hand side of the second constraint. Recall

Section 3.2, when we investigate the semantic adequacy, we observed that whether or

not a constraint contains multiple temporal variables matters and that whether or not a

constraint contains a temporal variable in its right-hand side matters. Therefore, without

lose generality, isPrimary ensures that Temporal iBench can cover all important types of

constraints.

(a) If isPrimary is 1 (the left example in Figure 5.1), i) the right-hand side of the deleting

constraint contains the temporal variable from the left; ii) the left-hand side of the

self-join constraints contains exactly one temporal variable; iii) the right-hand side

of the self-join constraints contains the temporal variable that is from the left.

(b) If isPrimary is 0 (the right example in Figure 5.1), i) the right-hand side of the

deleting constraint doesn’t contain any temporal variable; ii) the left-hand side of the

self-join constraints contains two temporal variables; iii) the right-hand side of the

self-join constraints contains the temporal variable that is from the first relational

atom in the left-hand side.

Note that in each generated schema, temporal variables will never be part of a primary

key of a relation.

If a constraint contains multiple temporal variables in its left-hand side, then we

randomly generate a conjunction of Allen’s atoms. Assume there are m temporal variables in
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a constraint. We begin by randomly generating an integer that is less than or equal to m2 as

the number of Allen’s atoms. Then we create each Allen’s atom by randomly selecting two

temporal variables from all temporal variables in the left-hand side and by randomly picking up

one Allen’s relation for the two temporal variables. In general, it is possible that the randomly

generated conjunctions of Allen’s atoms are unsatisfiable, which makes the generated constraint

meaningless. Therefore, we verify if the generated conjunction of Allen’s atoms is satisfiable,

and if not, Temporal iBench keeps generating a new conjunction until a satisfiable one is found.

The verifier first transfers each conjunction of Allen’s atoms into an Integer Linear Programming

(IP) problem and then we can use a powerful tool, such as Gurobi [40], to check the satisfiability.

Given a conjunction of Allen’s atoms, we can convert it into an IP problem as follows:

Check the feasibility of a set of inequalities of the form

Maximize x1 + x2 + · · ·+ xn

xi− x j ≤−1

li ≥ xi

i ̸= j,

where i, j = 1, . . . ,n , and xi,x j, li ∈ N. Specifically, given an Allen’s atom of the form t1ρt2,

for each temporal variable t we generate two temporal variables ts and te for time points; ts

indicates the starting point of t, and te indicates the ending point of the temporal variable t, which

represents an unknown time interval. Given t1ρt2, it results in four variables t1
s , t1

e , t2
s , t2

e for time

points. Then based on the definition of Allen’s relations in Section 2.2, each linear relation in

the definition of the Allen’s relation ρ is translated, with the four variables, into an inequality
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of the first type in the above inequalities. Assume a linear relation t ′′ < t ′. It is converted into

the inequality t ′′− t ′ ≤ −1. If the linear relation is t ′′ = t ′, we replace t ′′ by t ′ throughout all

inequalities. In addition, for each variable t ′ in inequalities, we add a constraint 0≤ t ′ since time

points should start from 0. Finally, we limit our variables to integers. As a result, a conjunction

of Allen’s atoms is translated into an IP problem. For example, t1 meets t2 : ts
1 < t1

e = t2
s < t2

e is

translated into the following inequalities:

t1
s − t1

e ≤−1,

t1
e − t2

e ≤−1,

0≥ t1
s ,

0≥ t1
e ,

0≥ t2
e ,

where t1
s , t

1
e , t

2
e ∈ N.

The above IP problem have four characteristics: a) each inequality of the first type

contains two variables; b) the coefficients of xi and x j are of opposite sign (called monotone

system); c) every variable is bounded; d) coefficients are in {1,−1}.

In the IP problem, there is an important concept called totally unimodular. A matrix

A is totally unimodular if every square submatrix of A has determinant −1, 0, or +1 [57]. The

importance of the concept stems from Lemma 24.

Lemma 24. Let A be an integer matrix such that the following conditions hold: (1) each entry is

in {0,1,−1}; (2) each row contains at most two non-zero entries; (3) if a row contains exactly

two non-zero entries, then they are in the opposite signs.
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Then for the determinant of the matrix A, denoted by detA, we have |det A| ≤ 1, and

the matrix A is totally unimodular.

Please refer to Chapter 19 in the book [57] for the proof of Lemma 24;

According to Lemma 24, the coefficient matrix of the IP problem described above

is totally unimodular. This is a very important property for an IP problem since each linear

program with integral input data and a totally unimodular coefficient matrix has an integral

solution. Linear programming problems are known to be solvable in polynomial time, so the IP

problem mentioned above could be solved in polynomial time.

SourceShare/TargetShare: In Temporal iBench, we implemented the functionality that allows

the Copy primitive, Delete primitive, Merging primitive, and MergingDelete primitive to either

reuse source relations from all generated source relations or reuse target relations from all the

generated target relations. However, for the SelfJoin primitive, we only allow it to reuse source

relations (target relations) that are source relations (target relations) generated by the SelfJoin

primitive, Copy primitive, and Delete primitive.

Keys and Foreign Keys: Note that in iBench and Temporal iBench, the generation of schema

mappings is based on the keys and foreign keys of each relations (for details please refer to paper

[15] or our source code in github 1). Temporal iBench defines a primary key for each source

relation symbol and for each target relation symbol. It also defines foreign keys for some of

those source relation symbols that are involved in Merging primitive, MergingDel primitive, and

SelfJoin primitive.

1https://github.com/Evelynchengusa/SchemaMappingGeneration.git
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5.4.2.2 Generation of Relational-to-RDF Temporal Schema Mappings

Given a temporal source relational schema S, a temporal target relational schema

T, and a set Σ of GAV constraints between S and T, Temporal iBench first generates source

instances over S based on the keys and foreign keys, and then generate universal solutions for

the generated instances w.r.t. Σ. To generate source instance over a temporal source schema,

Temporal iBench adds an extra data type Date to ToXgene (a data generator used by iBench),

such that it can generate time intervals. Furthermore, Temporal iBench also implemented the

function (which was not implemented in iBench) that helps with generating an instance of a

relation that is involved in a self-join constraint such that 1) the instance satisfies keys and foreign

keys of the relation; 2) there exists at least one assignment from the left-hand side of the self-join

constraint to the instance of the relation. In addition, given a relational-to-relational temporal

schema mapping M and a source instance I, a canonical universal solution J can be generated

by Temporal iBench using the concrete chase algorithm described in Section 3.1. Hence, the pair

(I,J) is a universal data example for M . Taking T and J as inputs, we generate a temporal target

RDF graph instance J′ by applying Temporal D2RQ.

Transfer a relational-to-relational temporal GAV schema mapping M into a relational-

to-RDF GAV schema mapping M ′. By considering each target relational atom as a relational

fact, we are able to process the conversion from a target relational atom into a set of RDF

atoms in the same way as Temporal D2RQ. Therefore, each constraint in M is converted

into a set of constraints in M ′. For example, the relational-to-relational temporal GAV con-

straint R(a,b, t1)→ T (a,b, t1) is transferred into the relational-to-RDF GAV constraints listed
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in Figure 5.2.

Figure 5.2: Relational-to-RDF GAV constraints converted from R(a,b, t1)→ T (a,b, t1).

5.5 Experiments

In this section, we will present an experimental evaluation of our active learning

algorithm. Initially, we describe our data preparation process, utilizing Temporal iBench to create

both goal relational-to-RDF temporal schema mappings and canonical universal data examples.

Subsequently, we will present our evaluation methodology, which draws inspiration from the

experimental methodology employed in paper [64]. Lastly, we present an in-depth analysis of the

experimental results obtained from conducting experiments on the data generated by Temporal

iBench using our active learning algorithm.

5.5.1 Data Preparation and Experimental Methodology

Schema-mapping Generation We use Temporal iBench to create three types of relational-to-

RDF temporal schema mappings: simple, moderate, and complex. This is implemented via

160



generating relational-to-relational temporal GAV schema mappings, where each s-t tgd is a

relational-to-relational temporal GAV constraint. Specifically, as mentioned above, we first

generate five simple relational-to-relational temporal GAV schema mappings, five moderate

relational-to-relational temporal GAV schema mappings, and five complex relational-to-relational

temporal GAV schema mappings.

1. A simple relational-to-relational temporal GAV schema mapping consists of one Copy

constraint, one Delete constraint, one Merging constraint, one MergingDel constraint, and

one SelfJoin constraint.

2. A moderate relational-to-relational temporal GAV schema mapping consists of two copy

constraints, two Delete constraints, two Merging constraints, two MergingDel constraints,

and two SelfJoin constraints.

3. A complex relational-to-relational temporal GAV schema mapping consists of three copy

constraints, three Delete constraints, three Merging constraints, three MergingDel con-

straints, and three SelfJoin constraints.

Then Temporal iBench transforms each relational-to-relational temporal GAV constraint into a set

of relational-to-RDF temporal GAV constraints. For example, 1 relational-to-relational temporal

GAV constraints could be converted into 57 relational-to-RDF temporal GAV constraints.

We set the JoinKind with its default value (star join). We set different values for

JoinSize, numO f JoinAttributes (denoted by #JoinAttrs), and PrimaryKeySize (denoted by

#PKSize) for each of two types of mappings. Statistics of schema mappings of those three

types are shown in Table 5.1, where Avg. source relations indicates the average number of source
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relations in generated schema mappings of type X ; Avg. arity indicates the average number of

attributes in each source relation; Avg. #constraint indicates the average number of constraints

in generated schema mappings of type X ; Avg. source temporal relations indicates the average

number source temporal relations in generated schema mapping of type X .

Table 5.1: Statistics for different mapping types.

JoinSize #JoinAttrs #PKSize
Avg.

source relations

Avg.

arity

Avg.

#constraints

Avg.

source temporal relations

Simple 3 2 2 9 7.2 58.4 4.2

Moderate 6 2 2 26 9.2 123.2 12.6

Complex 9 1 1 69.4 606.2 200 38

Data Example Generation Temporal iBench randomly generates source instances for a schema

mapping G according to an integer value Numo f Elem specifying the number of facts generated

in each relation.

For each raw source instance I with NumO f Elem = m generated by Temporal iBench,

there are m assignments from the left-hand side of each constraint to the source instance I. Here

in our experiment, we set NumO f Elem to 5. To avoid uniformity, as in GAVLearn paper [64],

we introduce a parameter α, the value of which is from 0 to 1. We will generate a sub-instance I′

from the raw source instance I. Given a source instance I and α, each fact in I has α chance to

be in I′.

Once Temporal iBench creates a source instance I′ for a schema mapping relational-

to-RDF schema mapping G , we could use Temporal iBench to generate a canonical universal
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data example (I′,J′). This way, a set E of canonical universal data examples for G are obtained.

ExNum is a parameter that we use to adjust the number of data examples in our experiments.

Evaluation Methodology We evaluate the performance of our proposed learning algorithm on

the three different types of schema mappings. For each type, we create five schema mappings

and measure the learning algorithm’s average precision, recall, F-score, and running time of the

learning algorithm. Given a source instance I, the precision of H on I w.r.t. a goal mapping G is

the fraction of triples in can− solH (I) that are contained in can− solG (I), while the recall of H

is the fraction of triples of can− solG (I) that are included in can− solH (I). The F-score of H

on a data set is computed using the formula 2∗Recall∗Precision
Recall+Precision

that combines average precision and

average recall on the data set.

Let α = {0.1,0.3,0.5} and let ExNum = {10,30,50,70,90}. Given a type X and a

schema mapping of type X , for each pair of (α,ExNum), we do the following: a) generate a set

of data examples as described above (e.g., with α = 0.5 and ExNum = 10);

b) split data examples into a training set E(50%) and a test set V (50%); c) run our proposed

learning algorithm on E to obtain a schema mapping H . d) evaluate H on V and collect the

precision, recall, and F-score information. We call c) and d) an active learning task with the

parameter setting (α,ExNum).

Comprehensiveness and Representativeness The comprehensiveness and the representative-

ness are two measures for helping with analysis on the experiments results: the comprehen-

siveness of a training set E w.r.t. a goal schema mapping G , denoted by CompG (E), indicates

whether the training set E can be used to learn different constraints in G ; The representativeness

of a training set E w.r.t. a test set V and a goal schema mapping G , denoted by RepG ,V (E),
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indicates how well a training set can cover the constraints triggered in a testing set (we say a

constraint σ is triggered if there is a data example (I,J) ∈ E such that there is a homomorphism

from the left-hand side of σ to I).

Let G = {S,O,Σ} be a goal relational-to-RDF temporal schema mapping. Let E and

V be a training set and a test set created for G , respectively. The comprehensiveness and the

representativeness are defined as follows:

CompG (E) =
|ΣE |
|Σ|

and RepG ,V (E) =
|ΣE ∩ΣV |
|ΣV |

,

where ΣX denotes the subset of Σ that is triggered in the set X . Generally, a high RepG ,V (E)

indicates that the training set E provides sufficient information such that the learning algorithm

can learn a high-quality schema mapping. For more details, please see [64].

We observe that if the CompG (E) is 1, then RepG ,V (E) is 1.

Implementation The metadata generator Temporal iBench and the learning algorithm are

implemented in JAVA. We used PostgreSQL 2.5 with default settings. All experiments were run

on a Linux machine with an Intel 2.60 CPU (GHz) and 63GB RAM. The source code in this

chapter can be found online 2.

5.5.2 Experimental Result Analysis

The experiment results are provided in Table 5.2, 5.3, and 5.4 (in Table 5.4, we only

set α to be 0.1). Each row of those two tables corresponds to a particular active learning task

with a specific parameter setting (α,ExNum). In the remainder of this section, we will use

(α,ExNum) to refer to the corresponding active learning task. Recall that we have five schema
2https://github.com/Evelynchengusa/SchemaMappingGeneration

164



mappings of each type X . We collect the comprehensiveness and representativeness for each of

them and report the average values (denoted by Comp and Rep) and standard deviation values

for comprehensiveness and representativeness, respectively. We run an active learning task

(α,ExNum) for each schema mapping, and average the recall value and time it costs for each

run. Furthermore, the Fs score is calculated by the formula 2∗Recall∗Precision
Recall+Precision

, where Precision

is 1. This is because according to Theorem 22, we know that (I,can− solG (I)) satisfies H .

Hence, can− solH (I) is a subset of can− solG (I). From the definition of precision, we know

that precision is always 1. For more details, please see [64]. We also record the precision in our

experiment, and it turns out that all active learning tasks have a precision of 1. Hence, precision

is not reported in Table 5.2, 5.3, and 5.4.
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Table 5.2: Results of active learning tasks on schema mappings of simple type.

α ExNum |E| Comp Rep Recall Fs Time

0.1

10 5 0.662±11.7% 1.000±0% 1.000±0% 1.000 0.526s

30 15 0.833±19.0% 0.833±0% 0.994±1.0% 0.997 0.753s

50 25 0.833±19.0% 1.000±0% 0.995±0.9% 0.998 0.783s

70 35 0.952±19.7% 1.000±0% 0.994±0.7% 0.997 0.881s

90 45 0.833±19.0% 1.000±0% 0.998±0.4% 0.999 0.869s

0.3

10 5 0.833±26.0% 1.000±0% 0.951±4.8% 0.975 5.537s

30 15 0.967±9.6% 1.000±0% 1.000±0% 1.000 9.261s

50 25 0.967±9.6% 1.000±0% 1.000±0% 1.000 9.201s

70 35 1.000±9.5% 1.000±0% 1.000±0% 1.000 9.311s

90 45 1.000±9.6% 1.000±0% 1.000±0% 1.000 9.444s

0.5

10 5 0.933±15.2% 0.967±0% 0.955±8.9% 0.977 39.540s

30 15 0.967±9.6% 1.000±0% 1.000±0% 1.000 42.144s

50 25 0.967±9.6% 1.000±0% 1.000±0% 1.000 42.464s

70 35 0.357±9.6% 1.000±0% 1.000±0% 1.000 42.630s

90 45 0.967±9.6% 1.000±0% 1.000±0% 1.000 43.212s

166



Table 5.3: Results of active learning tasks on schema mappings of moderate type.

α ExNum |E| Comp Rep Recall Fs Time

0.1

10 5 0.264±8.5% 0.990±1.8% 0.941±7.4% 0.970 14.434s

30 15 0.268±8.5% 0.993±0.9% 0.972±2.3% 0.986 15.093s

50 25 0.270±8.4% 1.000±0% 0.982±0.7% 0.991 15.627s

70 35 0.270±8.4% 1.000±0% 0.994±0.5% 0.997 16.034s

90 45 0.270±8.4% 1.000±0% 0.994±1.2% 0.997 16.656s

0.3

10 5 0.350±16.5% 0.906±18.7% 0.980±4.0% 0.990 154.742s

30 15 0.386±14.8% 0.951±9.8% 0.998±0.3% 0.999 178.678s

50 25 0.386±14.8% 0.835±20.3% 0.996±0.5% 0.998 174.069s

70 35 0.395±17.4% 1.000±0.0% 1.000±0.0% 1.000 374.913s

90 45 0.476±17.3% 0.807±23.6% 0.994±0.8% 0.997 523.266s

0.5

10 5 0.556±23.9% 0.859±17.1% 0.949±5.4% 0.974 1870.702s

30 15 0.645±24.7% 0.862±18.1% 0.985±1.6% 0.992 3118.607s

50 25 0.673±24.5% 0.909±17.8% 0.994±0.7% 0.997 3525.101s

70 35 0.609±10.1% 0.999±0.2% 0.996±0.5% 0.998 3742.805s

90 45 0.711±18.1% 1.000±0.0% 0.999±0.0% 0.999 4049.661s

Correctness of Active Learning Algorithm In general, Rep values are more correlated to

Recall than Comp values. The high Comp value indicates that the training set E covers a

variety of constraints in a goal schema mapping, such that the active learning task can produce

relational-to-RDF temporal schema mappings that are closer to the goal schema mapping. The

Rep value of 1 indicates that the information about all the constraints covered by a testing set V
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Table 5.4: Results of active learning tasks on schema mappings of complex type.

α ExNum |E| Comp Rep Recall Fs Time

0.1

10 5 0.227±5.7% 0.994±0.8% 0.804±16.2% 0.892 1863.437s

30 15 0.229±5.7% 0.995±0.7% 0.981±2.4% 0.990 1943.565s

50 25 0.230±5.6% 1.000±0% 0.982±2.9% 0.991 2112.356s

70 35 0.230±5.6% 1.000±0% 0.989±1.1% 0.994 2262.333s

90 45 0.230±5.6% 1.000±0% 0.990±0.8% 0.995 2446.097s

is provided by the corresponding training set E. Hence, a good learning algorithm is expected to

generate higher Recall values when Rep values increase. In particular, if Rep = 1.0, then Recall

is expected to be 1.0.

As shown in Table 5.3, when α values are fixed, the higher the Rep values are, the

higher the Recall values are. This is consistent with what we stated earlier. For instance, in Table

5.3, Recall value for (0.1,10) is 0.941; the Recall value for (0.1,30) is 0.972; and the Recall

value for (0.1,50) is 0.982. On the other hand, we also observe that when Rep is less than 1, the

Recall value is less than 1. This observation is consistent with our earlier statements.

However, different from what we expected, from Table 5.2 and Table 5.3, and 5.4,

we observe that when the Rep is 1, the maximum value of Recall can be 1. In Table 5.2, the

active learning tasks of (0.1,50), (0.1,70), (0.1,90), and (0.3,10) have Recall values less than

1, whereas their Rep values are 1. And we call exceptions these cases that are inconsistent with

what we expect. For other settings, Recall = 1 when Rep = 1. We call normal cases these

cases that are consistent with what we expect. In addition, Table 5.3 also has exceptions such as

(0.1,50), (0.1,70), (0.1,90), (0.5,90).
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Two possible reasons cause such exceptions. The first one relates to the characteristics

of each data example in the training set, which is the main reason that causes the exceptions in

our experiments. We will illustrate this by using the following two examples. Note that in our

temporal iBench, each relational-to-RDF temporal schema mapping is converted from a relational-

to-relational temporal GAV schema mapping, and each relational-to-relational temporal GAV

constraint corresponds to a set of relational-to-RDF temporal full s-t tgds. Hence, for simplicity,

we will use relational-to-relational temporal GAV schema mappings as our examples:

Let M1 be a relational-to-RDF temporal schema mapping consisting of a copy con-

straint:

R(x,y, t)→ T (x,y, t).

Consider a training example (I1,J1) where I1 = {R(a,a, [2010,2012))}. When we run the

active learning algorithm, it will return a schema mapping M ′
1 consisting of the constraint σ =

R(x,x, t)→ T (x,x, t). Assume a testing data example (I′1,J
′
1), where I′1 = {R(c,d, [2011,2013))}

and J′1 = {T (c,d, [2011,2013))}. When applying the chase algorithm, it will return an empty

universal solution. Therefore, the recall is not 1 in this case, even though the representativeness

is 1.

Let M2 be a relational-to-RDF temporal schema mapping consisting of a self-join

constraint: R(x,y,z, t1)∧R(y,u,v, t2)→ T (x,y, t1). Consider a training example (I2,J2) where

I2 = {R(a,a,c, [2010,2012))}. When we run the active learning algorithm, it will return a

schema mapping M ′
2 consisting of a constraint R(x,x,y, t1)→ T (x,x, t1). Assume a testing

data example (I′2,J
′
2), where I′2 = {R(a,b,c, [2011,2013)), R(b,c,d, [2012,2013))} and J′2 =

{T (a,b, [2011,2013))}. For this example, the recall value of the active learning task is less than
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1 even though the representativeness is 1. We leave the details to the reader.

Given a set E of data examples, we say that a schema mapping M fits the set E if for

each data example (I,J) the target instance J is a universal solution for I w.r.t. M . Our active

learning algorithm aims to generate the most general fitting schema mapping (for the definition

of the concept, please see [1]). Therefore, when the schema mapping produced by the active

learning algorithm is not the most general fitting schema mapping of a training set, the recall

value is less than 1 even though the representativeness is 1. Furthermore, we observe that in both

tables, there are more exceptions when α = 0.1 than when α = 0.3 and α = 0.5. In the examples

described above, it is evident that the values of the first and the second attributes of the relation R

are the same. We call such fact the fact with special characteristics. When α is small, a relation

in the training set is more likely to only contain facts with special characteristics. Hence, the

schema mapping learned by the active learning algorithm will be strongly impacted by the facts

with the special characteristics since the constraints can only be learned through those facts with

the special characteristics.

The second one is caused by the design of the active learning algorithm, which only

generates one critically sound constraint for each candidate constraint. At the same time, there

could be multiple critically sound constraints. We refer the reader to Section 4.1 in [64] for

details.

Efficiency of Active Learning Algorithm The running time of each active learning task is

recorded in Table 5.2 and Table 5.3. The efficiency of the active learning algorithm is highly

related to the size of the training set. The tables show that the running time increases with

both the α value and the number of data examples increasing. In Table 5.2, the running time
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ranges from 0.526s to 43.212s. In Table 5.3, the running time ranges from 14.434s to 4049.661s

(which is 1.12 hour). Furthermore, from Table 5.4, we observe that the time it takes to run the

active learning algorithm becomes very high for learning schema mappings of type complex

that contains 200 relational-to-RDF temporal GAV constraints. It takes around 30 minutes even

when |E|= 5. ten Cate et al. [64] conducted experiments on the active learning algorithm for

the relational-to-RDF temporal schema mappings, and the running time of the active learning

algorithm ranges from 0.3s to 15m5s. Such a difference in the running time is caused by the

number of constraints we have in each schema mapping and Allen’s relations that we considered

in our learning process. In that paper, there are at most 30 constraints in each relational-to-

relational temporal GAV schema mapping. Table 5.2 recorded experiments on five schema

mappings of the type simple, where on average, there are 58.4 relational-to-RDF temporal

GAV constraints in each schema mapping. Table 5.3 recorded experiments on five schema

mappings of the type moderate, where on average, there are 123.2 relational-to-RDF temporal

GAV constraints in each schema mapping. More information is reported in Table 5.1. Most

importantly, the computation of critically sound constraints is the bottleneck for the active

learning algorithm. In our active learning algorithm for relational-to-RDF temporal schema

mapping, we first add all possible Allen’s relations in each candidate constraint, which causes

the size of the candidate constraint to increase by polynomial. Assume that there are m temporal

atoms in the left-hand side of the candidate constraint. Now we will add m2 number of possible

Allen’s relations to the left-hand side. Thus the size of the left-hand side of the candidate

constraint becomes O(n2). Hence, the time for calculating a critically sound constraint increases

significantly.
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Summary Our experiment results show that Recall values are higher when Rep values increase.

The value of Recall could reach 0.999, and the value of Fs could also reach 0.999. It indicates

that our active learning algorithm is a good learning algorithm for the relational-to-RDF temporal

schema mapping. Moreover, we observe that the running time depends on the size of the training

set and the size of the goal schema mappings. Specifically, the running time of the learning

algorithm is higher with larger source instances controlled by the parameter α, higher numbers

of data examples, and increased complexity of the goal schema mappings. It is worth mentioning

that the computation of critically sound constraints with large training set and large goal schema

mapping might lead to bottlenecks. However, in practice, the number of data examples and the

number of constraints in goal schema mappings are typically within reasonable limits. Therefore,

the running time of our active learning algorithm remains reasonable.
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Chapter 6

Concluding Remarks

In the first part of our work, we contributed to the development of relational-to-

relational temporal data exchange, an area that had remained largely unexplored. Our main

emphasis has been on the properties of universal solutions in the concrete model of time. We

first formalized the concept of a concrete universal solution and presented a version of the

chase algorithm, called the concrete chase algorithm that produces concrete universal solutions,

provided the algorithm does not fail. After that, we identified certain sufficient conditions that

guarantee that if the concrete chase algorithm fails, then no concrete solutions exist. We then

focused on the pursuit of semantically adequate concrete universal solutions. We showed that

such solutions may not exist even for temporal schema mappings with a single temporal variable.

Furthermore, we identified sufficient conditions that guarantee the existence of semantically

adequate concrete universal solutions for normalized concrete source instances.

Drawing from our investigation into temporal data exchange between relational

databases, we embarked on a study concerning the problem of data exchange for temporal
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data from relational databases into RDF-expressed ontologies. Within this context, we defined

the notion of a full schema mapping and a GAV schema mapping, which takes a temporal RDF

graph schema as its target schema. Subsequently, we designed a chase algorithm to produce a

universal solution for a given temporal relational database w.r.t. a given schema mapping.

The last part of our work mainly contributes to the derivation of relational-to-RDF

temporal schema mappings by an active learning algorithm based on a labeling oracle and a set

of universal data examples. Most existing related work focuses on deriving schema mappings for

the relational-to-relational data exchange problem, which do not consider temporal information.

We developed an active learning algorithm by applying conformance testing, which takes a

labeling oracle and a set of universal data examples of a goal schema mapping as inputs and

returns a relational-to-RDF temporal schema mapping which is logically equivalent to the goal

schema mapping. To verify the effectiveness and efficiency of our active learning algorithm, we

developed Temporal iBench as a tool to generate relational-to-RDF temporal schema mappings

and universal data examples of the schema mappings. Finally, we carried out an experimental

evaluation and demonstrated the effectiveness and efficiency of our active learning algorithm.

We conclude by describing three directions for further research in the area of relational-

to-relational temporal data exchange: semantic adequacy for temporal schema mappings with

multiple temporal variables, temporal data exchange with target tuple-generating dependencies,

and temporal data exchange with existentially quantified temporal variables.

Semantic Adequacy for Temporal Schema Mappings with Multiple Temporal Variables

In the relational-to-relational temporal data exchange problem, we studied the existence of
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semantically adequate concrete universal solutions for schema mappings with at most one

temporal variable in each constraint (see Section 3.2.3). The next step would be to investigate the

existence of semantically adequate concrete universal solutions for temporal schema mappings

with multiple temporal variables.

Recall that in Section 3.2.3, every concrete schema mapping M = (S,T,Σst ,Σt) gives

rise to a schema mapping that is meaningful in the abstract model of time, called an abstract

schema mapping M a = (S,T,Σa
st ,Σ

a
t ), where Σa

st and Σa
t are converted from Σst and Σt , re-

spectively. Let I be a concrete source instance. We have that a concrete target instance J is

semantically adequate for I if the abstract target instance JJK is a universal solution for JIK w.r.t.

M a. We showed that if a schema mapping contains at most one temporal variable per constraint,

then it is meaningful in both the concrete model of time and the abstract model of time without

changing the constraints in the schema mapping, i.e., Σst = Σa
st , Σt = Σa

t , and hence M = M a.

However, in the presence of multiple temporal variables, such a schema mapping

is only meaningful in the abstract model of time with changing the constraints in the schema

mapping. Therefore, we are facing three challenges:

Challenge 1: Concrete s-t tgds and concrete target egds must be converted to “essentially

equivalent” abstract s-t tgds and to abstract target egds, respectively, because the concrete ones

involve Allen’s relations while the abstract ones involve suitable formulas of first-order logic

over time points compared with the < relation. The conversion requires thorough exploration

and careful design. If σ is a concrete s-t tgd or a concrete target egd, then we write a(σ) for the

s-t tgd or the target egd in the abstract model of time resulting from σ via a conversion. As a

result, the set Σa
st = {a(σ) : σ ∈ Σst} and the set Σa

t = {a(σ) : σ ∈ Σt}.
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Challenge 2: Suitable definitions are required for the languages of an abstract s-t tgd and an

abstract target egd, such that the abstract s-t tgds and the abstract target egds produced by a

well-designed conversion are in the defined languages. As stated previously, the < relation

should be taken into account in the languages.

Challenge 3: Another challenge arises when we try to apply abstract schema mappings into the

snapshot chase algorithm. In Section 3.2.2, a database in the abstract model of time is regarded

as a set of snapshots; yet, temporal relationships between different snapshots are not defined, i.e.,

atoms such as t−1 ≤ t1 ≤ t+1 can not be applied to snapshots. One solution is to design an abstract

chase algorithm such that if the abstract chase algorithm does not fail, it generates a universal

solution for a given abstract source instance w.r.t. an abstract schema mapping; otherwise, no

solution exists.

Temporal Data Exchange with Target Tuple-generating Dependencies Explore temporal

data exchange for schema mappings that contain target tuple-generating dependencies. Several

challenges arise in this case, including the translation of the constraints from the concrete model

of time to the abstract model of time, the management of time-stamped nulls, and the design of a

suitable chase algorithm.

A temporal target tuple-generating dependency, called temporal target tgd, is a first-

order sentence of the form: ∀x(ϕ(x, t)∧ρ′(t)→∃yψ(x,y, t)), where ϕ(x, t) and ψ(x,y, t)) are

two conjunctions of target atoms, and ρ′(t) is a Boolean combination Allen atomic formulas

involving variables from t.

A relational-to-relational temporal schema mapping is a tuple M = (S,T,Σst ,Σt),
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where Σst is a finite set of temporal s-t tgds, and Σt is a finite set of temporal target tgds or

temporal target egds.

When dealing with such temporal schema mappings, we will encounter similar chal-

lenges that were mentioned in the first research direction. Additionally, another challenge

arises in designing a suitable concrete chase algorithm. The original paper [32] on relational-to-

relational data exchange allowed standard target tgds and, furthermore, identified a structural

condition, called weakly acyclicity, on the standard schema mappings, which is a sufficient

condition that yields efficient algorithms for determining whether, given a source instance I,

a universal solution for I exists. Target tgds have not been studied in temporal data exchange

so far as the handling of time-stamped nulls for such constraints becomes more complicated

since additional time-stamped nulls may have to be generated (and perhaps equated with other

time-stamped nulls later on).

Temporal Data Exchange with Existentially Quantified Temporal Variables Explore the

temporal data exchange problem for schema mappings in which the constraints have existentially

quantified temporal variables. Several challenges of different nature arise in this case, some of

which are similar to the challenges in answering queries over temporal data with the help of

ontologies (see [17] for a comprehensive survey of that area).

Example 18. Let M = (S,T,Σ) be a relational-to-relational temporal schema mapping, where

the source schema S has a relation Hur with attributes h-name, loc, time for hurricane hitting

a location with a farm and a relation Farm with attributes f -name and loc; the target schema

T have a relation Flood for the flood and a relation Damage with attributes f arms, h-name,
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damage, and time; the set Σ contains two temporal s-t tgds and a temporal target egd:

∀n,c, f , t(Hur(n,c, t)∧Farm( f ,c)→∃d (Damage( f ,n,d, t))),

∀n,c, t(Hur(n,c, t)→∃t ′((t precedes t ′)∧Flood(c, t ′))).

∀n, f ,d,d′, t(Damage( f ,n,d, t)∧Damage( f ,n,d′, t)→ d = d′).

The first s-t tgd asserts that if there is a hurricane n hitting a farm f in location c during the time

interval t, then there exists damage of cost d at the farm f caused by the hurricane n. The second

s-t tgd asserts that if there is a hurricane n hitting a location c during the time interval t, then

there exists a time interval t ′ after t, such that there is a flood happening in c during t ′. The third

constraint is a target egd that asserts that if there is a damage of cost d at the farm f caused by

hurricane n during time t and a damage cost d′ of the farm f caused by hurricane n, then the cost

d must equal the cost d′.

Observe that the first s-t tgd of M contains an existentially quantified general variable

d (ranging over cost values). In contrast, the second s-t tgd contains an existentially quantified

temporal variable t. In the target instance, the variable d will be populated by a null annotated

by a time-stamped null, while the variable t will be populated by an anonymous time. By

using the proof techniques in the paper [16, 56], we have been able to show that there is a

source instance I for which no universal solution for I w.r.t. M exists. This finding indicates

new possible challenges may arise when considering existentially quantified temporal variables.

Moreover, the target egd listed above may force two time-stamped nulls to be equated. Equating

two time-stamped nulls with different time stamps is a delicate matter that requires a special

determination which of the two nulls should be replaced by the other when populating the target
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instance. Golshanara and Chomicki [36] avoided this issue by restricting the class of schema

mappings considered, at the expense of having a rather limited framework for temporal data

exchange.
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