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Wearable chemical sensors for 
biomarker discovery in the omics era
Juliane R. Sempionatto1, José A. Lasalde-Ramírez    1, Kuldeep Mahato2, Joseph Wang2  & Wei Gao    1 

Abstract

Biomarkers are crucial biological indicators in medical diagnostics and 
therapy. However, the process of biomarker discovery and validation 
is hindered by a lack of standardized protocols for analytical studies, 
storage and sample collection. Wearable chemical sensors provide a 
real-time, non-invasive alternative to typical laboratory blood analysis, 
and are an effective tool for exploring novel biomarkers in alternative 
body fluids, such as sweat, saliva, tears and interstitial fluid. These 
devices may enable remote at-home personalized health monitoring 
and substantially reduce the healthcare costs. This Review introduces 
criteria, strategies and technologies involved in biomarker discovery 
using wearable chemical sensors. Electrochemical and optical detection 
techniques are discussed, along with the materials and system-level 
considerations for wearable chemical sensors. Lastly, this Review 
describes how the large sets of temporal data collected by wearable 
sensors, coupled with modern data analysis approaches, would open 
the door for discovering new biomarkers towards precision medicine.
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design and fluid sampling are introduced. This is followed by a discus-
sion of electrochemical and optical transduction techniques used by 
existing wearable chemical sensors as well as emerging methods for 
the continuous monitoring of a broad range of molecular signatures. 
Finally, a summary of the rich molecular data obtained continuously 
under normal and abnormal conditions with powerful computational 
tools for identifying new biomarkers is provided. The goal of this Review 
is to bring attention to the unique abilities of rapidly emerging wearable 
chemical sensors, in conjunction with modern data analysis tools, to 
expand our understanding of biomarkers from the bench to the body.

Wearable sensors in biomarker discovery
Despite the significance of the biomarkers in clinical assessment,  
it is challenging to discover new, specific, single-molecule biomarkers. 
Deep prior knowledge and understanding is required of a disease’s bio-
logical pathways and the pharmacology of new medications. However, 
most diseases are complex with intricate progressions depending on 
the patient’s underlying conditions, lifestyle and nutrition. Glucose, 
for example, can be used as a diagnostic and monitoring biomarker for 
diabetes, but can be also related to stress and other pathological condi-
tions12. Moreover, electrolyte imbalance can be linked to dehydration, 
hyperkalaemia, kidney disorders and other pathologies13. The vast 
number of metabolites and small molecules linked to different medi-
cal conditions demonstrate the important role that these compounds 
play across processes of the human body14,15. Thus, the specificity of key 
biomarkers is a challenge, as it is likely that several known and unknown 
conditions might be related to any new compound. However, trial and 
error testing of the concentration of every biomarker for every disease 
is expensive and time-consuming.

Wearable chemical sensors offer an attractive approach to address 
these challenges by simultaneously monitoring a broad spectrum of 
molecular signatures towards multi-omics analysis7. The unique ability 
to perform continuous monitoring and identify temporal patterns can 
be a great asset in the discovery of biomarkers that vary rapidly within 
a short period of time. Examples of such important applications could 
include the use of wearable biosensors to monitor cardiac, epilepsy 
or other acute diseases, towards understanding the physiological 
changes in the body prior to such events. Currently, there are still no 
devices or tests able to predict life-threatening events such as heart 
attack, epilepsy episodes or heat stroke. Moreover, numerous health 
conditions, such as Alzheimer disease or long COVID-19, do not yet have 
standard alarming biomarkers. Continuous and real-time monitoring 
of multiple biomolecules during an individual’s daily activities could 
provide invaluable information about the chemical signature of the 
abnormal health conditions. Such an ability offers the fast screening of 
molecular signatures, and upon coupling to data-mining tools leads to a 
more effective biomarker discovery process which cannot be achieved 
with any other analytical tool.

To be suitable for wearable-based biomarker discovery, the mol-
ecule or molecular fragment candidates should be present in alternative 
biofluids such as sweat, saliva and ISF. Considering that they commonly 
originate from either blood or secretion glands, the biomarker candi-
dates should be stable, preferably charged species, have small molecu-
lar weight for easy partition from blood and have potential links with 
their blood counterpart or targeted health condition8. These commonly 
include various metabolites, electrolytes, nutrients, hormones and 
therapeutic drugs7,8,16–25 (Table 1). The stability of these molecules could 
be impacted (directly or indirectly) by various parameters including  
the testing temperature and the pH and reactive oxygen species levels 

Introduction
Biomarkers are important biophysical and biochemical parameters, 
detected as an indicator of certain biological, physiological and path-
ogenic processes or as pharmacological responses to therapeutic 
interventions1,2 (Box 1). The levels of certain biomarkers will fall above 
or below the norm in individuals who are sick. Advances in medicine 
related to the ability of precise diagnosis, treatment and prevention of 
diseases are directly related to the biomarkers. Therefore, the discovery 
of new biomarkers is very important to predict the onset and course of  
a disease and to develop effective therapeutic drugs. When identifying a  
potential biomarker, the lack of standardized protocols for sample col-
lection, storage and analytical procedures makes it difficult to assess 
and verify the performance of the biomarker candidate in a specific 
health condition. The research for biomarker discovery usually requires 
participants to attend frequent hospital visits and tolerate invasive 
procedures (for example, blood draw or tissue biopsy), which increases 
the drop-out rate and hinders the study of biomarkers for diagnostics 
and prognostics of asymptomatic diseases1 (Fig. 1a). Because of this, 
when compared with episodic and invasive laboratory blood or tissue 
analyses, wearable chemical sensing is becoming an emerging technol-
ogy for the screening of potential biomarkers in alternative body fluids, 
such as sweat, saliva, tears and interstitial fluid (ISF), as it can capture 
rich molecular information non-invasively and in real time3–6 (Fig. 1a). 
Discovering new non-invasively accessible biomarkers could be realized 
through continuous monitoring of the analytes using suitably designed 
wearable sensors coupled with data processing (Fig. 1b).

The emerging Internet of things, a network of connected objects 
(for example, sensors) that could exchange data over the Internet, 
promises to revolutionize traditional medical practices in centralized 
clinical settings. The Internet of things also presents a tremendous 
opportunity for developing wearable sensor technologies through inte-
grating and miniaturizing analytical tools into a body-worn platform 
which may enable remote, wireless personalized health monitoring 
(Fig. 1c). Commercially available health monitors (for example, smart-
watches) are already capable of autonomously monitoring several 
physiological parameters, such as heart rate, respiration rate, oxygen 
saturation, blood pressure and skin temperature. Wearable chemical 
sensors, such as continuous glucose monitors, convert the levels of vari-
ous analytes in body fluids into measurable electrical, optical or piezo-
electric signals. Recent advances in wearable biosensors have enabled 
continuous measurement of chemical biomarkers, including dynamic 
levels of electrolytes, metabolites, nutrients, drugs, hormones and 
proteins in blood surrogate biofluids4,6–10. This unique ability provides 
wearable chemical sensors with great value in the era of multi-omics  
(for example, genomics, proteomics, metabolomics, pharmacogenomics),  
enabling myriad molecular signatures to be monitored simultaneously 
and in real time, offering great advantages over conducting multiple 
single analyte assays11. Such wearable chemical sensors, in combina-
tion with information gathered from wearable physical sensors (that 
monitor biophysical parameters such as temperature, heart rate and 
motion), modern data processing and prediction algorithms, allow 
investigation into the roles of the distinct molecular signatures underly-
ing disease prognosis. In this regard, wearable sensors could serve as 
a powerful tool for discovering novel biomarkers through identifying 
intricate correlations between analytes and disease status.

This Review provides an overview of wearable chemical sensor 
research and sheds insight into future directions of wearable sensor-
based biomarker discovery. Firstly, the classification and chemical 
properties of potential biomarker candidates required for sensor 
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in the body fluids in situ. These parameters could vary with the activities 
and pathophysiological conditions. This can cause a shift in the chemical 
properties of the biomarker such as ionization states or surface charges, 
which may eventually impact the performance of wearable sensors.  
It should also be noted that most of the analytes in non-invasively acces-
sible biofluids are not clinically approved biomarkers, although many 
of their counterparts in the blood are currently considered biomarkers. 
For example, sweat or saliva glucose are not used in a clinical context, 
whereas blood glucose is the well-recognized biomarker for diabetes.

Of all the criteria in biomarker discovery, the most critical is to 
confirm that the target molecule is present in the biofluid. Most ana-
lytes detected in alternative biofluids are small molecules as they can 

partition easily through tissue cells, whereas large macromolecules 
such as proteins may not be readily partitioned to these biofluids22,26. 
Once the presence of the molecule in the fluid is confirmed, the mol-
ecule needs sufficient stability to be detected. Although detecting 
radicals and unstable complexes is possible, it is not very accurate 
because of the short half-life of the analyte. Moreover, the molecule 
may react chemically with other compounds (for example, oxygen) 
in the body fluids, resulting in misleading lower concentrations5,8,10.

Assuming that a target is stable in the biofluid, its levels need to 
be correlated with its blood concentrations. For sweat, saliva and tears 
sensors, the molecule can either be partitioned from blood, where the 
correlation can usually be achieved successfully, or be excreted by their 

Box 1

Classification of biomarkers
According to the definition by the US Food and Drug Administration 
(FDA)174, there are seven categories of biomarkers: susceptibility, 
prognostic, diagnostic, prediction, monitoring, response and safety. 
Understanding these definitions allows the implementation of standard 

protocols by matching a biomarker with its appropriate purpose and 
condition, increasing the efficiency in the development of precise 
diagnostic and therapeutic approaches. This, in turn, facilitates the 
introduction of new strategies and tools for novel biomarker discovery.

!

!

!

Classification of biomarkers

C T

C T

Disease protection

Positive

Recurrence

Disease progression

Sick Health

Negative

Checkup

LDL.................

Glucose.........

Cardiac risk!

Susceptibility biomarkers signal 
the potential of an individual to 
develop a disease without 
presenting any symptoms. These 
biomarkers are detected before 
the development of the disease, 
for example an increased 
concentration of low-density 
lipoprotein (LDL) cholesterol in 
blood may signal risk of 
cardiovascular diseases175.

Prognostic biomarkers indicate 
the probability of disease 
recurrence or progression. In 
this case, the patient has already 
been diagnosed. Testing this 
class of biomarkers usually 
involves frequent medical 
appointments and expensive 
laboratory examinations to 
avoid the development of more 
aggressive stages of the disease. 

Monitoring biomarkers aid 
studying the status of disease or 
signs of side effects, especially 
during treatment, and  
investigating therapeutic drug 
effects or toxicity. For instance, 
glucose and creatinine are 
monitoring biomarkers, tested 
during the annual medical 
examination for risks of 
diabetes171,172 and kidney 
malfunction173,178, respectively.  

Predictive biomarkers are used 
to speculate whether an 
individual is more likely to 
develop a reaction (positive or 
negative) upon exposure to a 
disease, treatment, or 
environmental agent. For 
example, the presence of some 
specific antigen might be used 
to predict an allergic 
reaction176,177.

Diagnostic biomarkers are used 
to identify and diagnose 
conditions. Accuracy is very 
important, especially when 
considering medical intervention. 
For example, to diagnose 
diabetes, the patient must stay in 
the hospital facilities during the 
whole day to perform blood tests 
in fasting and postprandial states. 

Response biomarkers are used 
to confirm whether a biological 
response was generated, either 
following treatment or upon 
exposure to harmful substances, 
with the main goal of guiding the 
dosage for optimal 
pharmacological effect. 
Examples of response biomarkers 
include the monitoring of 
antibodies after vaccination179 
and the monitoring of glucose 
after insulin injection.

Safety biomarkers can identify possible toxic therapeutic responses or harmful 
environmental exposures. Bilirubin, for example, is a safety biomarker for medications that can 
potentially affect the liver, and creatinine is a safety biomarker for drugs that can potentially 
affect the kidney180,181.
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respective glands8,26 where the overall correlation with blood will be 
affected by the mixed molecules secreted from the glands. Even if a 
molecule’s secretion to these biofluids is primarily based on diffusion, 
there is still a time lag to be considered. For example, although blood 
glucose peaks within 10–15 min upon food ingestion, a wearable sen-
sor can only detect the peak in an alternative biofluid after 15–20 min. 
Dilution effects are another major factor that needs to be considered 
as biofluid secretion rates could influence the final secreted molecular 
concentrations. Potentially, internal calibration methodologies27 can 
be introduced to obtain a normalized and accurate response.

To facilitate biomarker discovery, a wearable chemical sensor 
can be developed to analyse the selected molecular signature con-
tinuously in real time (Fig. 1c). To prove the effectiveness of a new 
chemical sensor, the biofluid is analysed simultaneously in situ and 
via external validation using benchtop laboratory analyses, to ensure 
similar trends are observed. The sensor operation range must cover the 
physiologically relevant concentrations, which usually requires a very 
low detection limit and high sensitivity along with a wide linear range. 
For wearable use, the desired sensor must be fully biocompatible and 
selective to the target molecule in the complex biofluid matrix without 
additional sample processing steps. This high selectivity is realized by 
using immobilized recognition receptors such as enzymes, aptamers 
or molecularly imprinted polymers (MIPs) that selectively bind to the 
target molecules. By following these criteria, and with the introduction 
of novel detection methodologies, it would be expected that a wearable 
sensor may be able to perform multi-omic analysis using non-invasive 
biofluids. Wearable sensors that can detect DNA and RNA molecules, 
fragments, hormones, proteins and whole small organisms, including 

viruses, will be of utmost importance for public health monitoring and 
surveillance.

Efficient biomarker discovery requires robust molecular collec-
tion in participants. The main challenges of wearable biosensors for 
collecting reliable data include the noise signal imposed by human 
motion, influences of the pH, temperature, conductivity and refreshing 
of the body fluids on sensing responses. Suitable filtering and calibra-
tion mechanisms are required, alongside selection of the platform/
system for fluid extraction and sampling (Fig. 1c). To enable biomarker 
validation, longitudinal and cross-sectional studies need to be per-
formed to collect large sets of data; modern data-mining techniques 
(such as machine learning) can facilitate biomarker identification and 
generate predictive algorithms for disease monitoring, diagnosis, 
treatment and prevention.

Wearable chemical sensing strategies
Wearable sensors have attracted tremendous attention over the past 
decade6,28–31 as they are able to perform real-time detection in situ 
directly on the body in a reagent-free and continuous manner. Protocols 
requiring additional washing or chemical addition steps are generally 
not suitable for on-body operation of wearable chemical sensors. Cur-
rently, wearable sensors are primarily electrochemical sensors21,32,33  
or optical sensors34–37 based on signal transduction mechanisms.

Electrochemical biosensing strategies
Electrochemical sensors convert target analyte information into a 
measurable electrical signal in real time with high sensitivity. For this, 
bioreceptor (such as enzyme, antibody, DNA and aptamer) molecules 

Biofluids
• Sweat
• Saliva
• Tear
• Interstitial fluid

Analytes
• Electrolytes
• Metabolites
• Hormones
• Proteins

Wearable data collection
• Contact lenses
• Mouthguard
• Skin patches
• Colorimetric
• Electrochemical

Biorecognition
• Proteins
• Nucleic acids
• Artificial receptors

Biomarker 
candidate 

Healthy Biomarkers

Saliva

Sweat

ISF

Tear

a Classic invasive procedures and emerging wearable chemical sensors  b Biomarker discovery workflow

c Procedures for development of wearable chemical sensors for biomarker discovery

Tissue/blood biopsy

Wearable chemical
biosensor design

Continuous
multiplex monitoring  

Data processing

Discriminant analysis

Population trial

Fig. 1 | Wearable chemical sensor-enabled biomarker discovery. a, Biomarker 
discovery in precision medicine via classic tissue or blood biopsy procedures 
and via emerging wearable chemical sensors. b, General workflow for wearable 

chemical sensor-enabled biomarker discovery. c, Workflow procedures for  
the development of wearable chemical sensors towards biomarker discovery.  
ISF, interstitial fluid.
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are usually immobilized on the surface of the conductive electrode 
material to selectively interact with the target molecules. Amperometry, 
potentiometry and voltammetry are the most common electrochemical 
detection techniques32,33.

In the amperometric sensors, an applied potential facilitates the 
redox reaction of the electroactive molecule, and electron transfer 
between the molecule and the electrode is measured as the current 
signal. Enzymes are typically used in wearable amperometric sensors 
as the biocatalytic reaction can confer great selectivity and reversibility 
to the sensor system towards continuous analysis of target molecules 
(for example, glucose and lactate) in biofluids38,39. In Fig. 2a, the ampero-
metric enzymatic detection mechanism is exemplified for the glucose 
sensor whose sensing electrode is modified with an enzyme (that is, 
glucose oxidase (GOx))-loaded biorecognition layer. Glucose molecules 
from the biofluid are oxidized to gluconic acid, catalysed by GOx. The 
detection of glucose is achieved by amperometric techniques. This is 
done by applying a fixed potential to detect the enzymatically gener-
ated hydrogen peroxide (H2O2) by-product (first-generation glucose 

biosensor) (Fig. 2a), to monitor the reaction of a mediator with low 
redox potential (second-generation glucose biosensor), or to moni-
tor the direct electron transfer from the enzymatic reaction without 
any intermediate stage (third-generation glucose biosensor)38,39. The 
measured response in current is proportional to the concentration 
of the target substrate. Given the ability of performing continuous 
measurements with a fast response, amperometric enzymatic sensors 
have been successfully applied in commercial continuous glucose  
monitors40,41.

In contrast to amperometric sensors, there is no applied potential 
or current flow involved in potentiometric sensors. Instead, these sen-
sors rely on the potential difference between a reference electrode and 
a working electrode. Solid-state ion-selective electrodes are typically 
employed in wearable biosensors to monitor the levels of electro-
lytes or ions (for example, Na+, K+ and Ca2+) in biofluids42 (Fig. 2b). The 
working electrode, or ion-selective electrode, is usually modified 
with an ion-selective recognition membrane composed of ionophore 
molecules that form cavities in the polymer film, allowing only ions 

Table 1 | Molecular signatures found in blood, interstitial fluid (ISF), saliva and sweat

Target Reported range Molecular 
weight (Da)

Health association 
examples

Refs.

Blood (μM) ISF (μM) Sweat (μM) Saliva (μM)

Metabolites Glucose 3.9 × 103–5.5 × 103 0.8 × 103–6 × 103 6–300 30–140 180 Diabetes, metabolic 
syndrome

3–10,12,15,22,24, 

34,38–41,49,50,86, 

102–105,109,111,116, 

124,140,144,171,172

Lactate 0.5 × 103–10 × 103 2.5 × 103–6.6 × 103 3.7 × 103–50 × 103 <3.5 × 103 90 Lactic acidosis 3–10,15,28,29, 

33,116,124,131, 

134,140

Uric acid 100–400 4–100 100–250 168 Gout, cardiovascular 
diseases

43,123

Creatinine 65–140 9–18 7–17 113 Kidney diseases 22,60,162,173

Electrolytes Na+ 135 × 103–145 × 103 10 × 103–100 × 103 27 × 103–217 × 103 23 Hydration, heart 
failure, liver disease

3–10,18–20,33,42

Cl– 96 × 103–106 × 103 10 × 103–100 × 103 7 × 103–18 × 103 35 Cystic fibrosis 3–10,18–20,33, 

42,106,107

Hormones Cortisol 0.7 × 10–4–690 × 10–3 Similar to blood 
plasma

1 × 10–4–20 × 10–3 1 × 10–4–20 × 10–3 362 Stress, anxiety, 
Cushing syndrome

16–18,27

Testosterone 52 × 10–5–24 × 10–4 
(females)
97 × 10–4–382 × 10–4 
(males)

Lack of report 19 × 10–6–35 × 10–6 
(females)
263 × 10–6–
544 × 10–6 
(males)

288 Heart muscle 
damage, fertility 
issues, irregular 
menstrual periods

7,8

Nutrients Tyrosine 200–400 Similar to blood 
plasma

66–300 0.07–205 181 Metabolic disorders, 
gout

7,43

Tryptophan 55–80 20–91 Not reported 204 Anxiety, nerve 
damage

7,22

Vitamin C 2.8–98 <36 45–62 176 Connective tissue 
defects, joint pain

6,7,9,10,44

Proteins Cytokines Picomolar to 
nanomolar

15-42% of blood 
plasma

1.97 × 10–5 (IL-1α) 
(mean)

2.8 × 10–7–
2.2 × 10–6

>5,000–
10,000

Immunodeficiency 
disorders, cytokine 
storm

8,21,158

C-reactive 
protein

7 × 10–3–29 × 10–3 Lack of report 4.2 × 10–6 
– 2.5 × 10–4

3.3 × 10–6 
– 1.8 × 10–4

120,000 Coronary heart 
disease, obstructive 
pulmonary disease

121

Drugs Levodopa 0.5–15 Similar to blood 
plasma

Similar to plasma 197 Parkinson’s disease 23

Acetaminophen 66–132 <50 151 Fever, pain
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with specific charge and size to interact. This selective recognition 
process creates an electrochemical phase boundary potential that is 
translated by the transducer into the voltage signal42. The potential 
signal measured between the ion-selective electrode and a solid-state 
reference electrode (for example, Ag/AgCl) has a log-linear relationship 
with the target ion concentration according to the Nernst equation3.

Another versatile electrochemical detection approach is voltam-
metric detection where the applied potential varies with controlled 
steps and speed, whereas the alternations in the resultant current signal 
are monitored. There are various approaches to sweep the potential 
including cyclic voltammetry, differential pulse voltammetry and 
square wave voltammetry. Voltammetric detection is often applied to 

monitor electroactive molecules (for example, uric acid and vitamin C) 
by detecting their direct oxidation/reduction reaction around a specific 
redox potential on the electrode surface under an applied potential 
waveform43,44 (Fig. 2c). Compared with amperometry or cyclic voltam-
metry, differential pulse voltammetry and square wave voltammetry are 
able to minimize the background charging current and achieve highly 
sensitive electrochemical measurements. Similarly, stripping voltam-
metry, involving an analyte preconcentration step followed by a voltam-
metric scan, is able to detect ultra-low levels of heavy metals in body 
fluids45–47. In the absence of specific bioreceptors (such as enzymes), 
the selectivity of voltammetric electroactive molecule detection  
is limited as different molecules may have a similar redox potential.
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In addition to these electrochemical signal transduction tech-
niques, numerous other approaches involving the measurement of 
resistive, capacitive and impedance changes of the sensing electrode 
upon selective analyte biorecognition event could also be used for 
wearable electrochemical biosensing48. It should also be noted that 
several key challenges for wearable electrochemical sensors have yet 
to be fully addressed, including electrode biofouling, electrical noise, 
electronic backbone integration and power supply.

Optical biosensing strategies
Optical sensor systems rely on chemical or biological reactions capable 
of modifying optical detection elements, including changes in light 
absorbance (for example, colour) or emission (for example, fluorescence  
or luminescence)34–36.

In wearable colorimetric sensors, chromophore molecules are usu-
ally used as colour indicators. External stimuli can change the electron 
state of the chromophore molecule, resulting in the absorption of pho-
tons with different wavelengths (visualized as colour changes). Common 
examples of such stimuli for wearable colorimetric biosensors include 
gain or loss of electrons (electrochromism) or ions (ionochromism),  
or changes in pH (halochromism). A common colorimetric mecha-
nism coupled with enzymatic reaction as the target biorecognition 
event is illustrated in Fig. 2d. The colour change of the chromophore 
3,3′,5,5′-tetramethylbenzidine (TMB) is promoted by the reaction 
of the chromophore molecule with H2O2; the measured colour  
intensity directly correlates to the concentration of target analyte.

In wearable fluorescence sensors, fluorophores are commonly 
used for signal transduction. Under specific light excitation, the fluo-
rophore molecules can absorb the light energy and re-emit at a longer 
wavelength. An ionochromism process that alters the fluorescent light 
signal intensity is demonstrated in Fig. 2e. The main difference between 
a colorimetric and a fluorescence sensor is the light source necessary to 
observe the phenomenon. Qualitative analysis of colorimetric sensors 
can be performed by the naked eye or directly using a phone camera, 
whereas additional optical accessories are often needed to accurately 
acquire fluorescence or luminescence outputs. As a result, fluorescence 
sensors are usually more sensitive than colorimetric sensors.

The main advantages of these optical biosensors are the simple 
fabrication process and system integration on the skin as no additional 
electronic components are needed on the body. However, high sen-
sitivity, high long-term stability and high-frequency data collection 

are difficult to achieve with a miniaturized external wearable system  
(for example, cell phone or hand-held optical reader)49–51.

Emerging wearable sensing strategies
Despite the great promise for the existing wearable sensing strategies, 
enzymatic reactions, ionophore–ion interactions and direct molecular 
oxidation/reduction can only be used to directly monitor a limited 
number of targets4,5,8. The majority of body fluid analytes, such as circu-
lating metabolites, nutrients, hormones and proteins, play important 
roles in clinical risk assessment and diagnosis (Table 1) but cannot be 
monitored using these wearable sensing approaches. For example, the 
concentrations of melatonin, prolactin and reproductive and growth 
hormones could be used for the prediction of seizures52, and troponin I  
and brain natriuretic peptides are closely related to the severity of  
heart failure53. Selective detection of analytes in biofluids usually 
requires bioaffinity receptors, such as antibodies, DNAs/RNAs, aptam-
ers and MIPs. However, existing bioaffinity sensors are often one-time 
use, and require multiple incubations and washing processes for regen-
erating their receptor, making it challenging to apply such sensors 
towards continuous biosensing in situ48,54.

In this direction, a very promising approach for affinity sensors, 
towards detection of several classes of molecules, is the so-called 
‘switch biosensor’55. Switch sensors mimic natural bioprocesses 
using artificial or modified biomolecules to undergo conformational 
changes upon binding the target molecules. Commonly used biomo-
lecular switches include proteins56, oligonucleotides57,58 and synthetic 
receptors (MIPs)59–61 (Fig. 3a). The structural changes are based on a 
specific interaction such as hydrogen bonding, van der Waals force 
and hydrophilicity between the target and bioreporter, conferring 
selectivity and reversibility to the system. To achieve in situ reagent-
free molecular detection, biomolecules can be coupled with either 
optical tags (for example, fluorophores or quantum dots) or electro-
chemical tags (for example, redox or enzyme molecules) for signal  
transduction62 (Fig. 3b).

Aptamers are molecules exhibiting target-induced conforma-
tional changes, and are highly attractive structures when analys-
ing the presence of analytes by distance modulation between the 
electrode and the signalling redox indicator (for example, methyl-
ene blue)63–70 (Fig. 3b). A major advantage of aptamers is the ability 
to engineer their desired nucleic-base sequences specifically for 
the target analytes through an aptamer designing process called 

Fig. 2 | The primary biorecognition and signal transduction strategies in 
wearable chemical sensors. a–c, Recognition and signal transduction for 
wearable electrochemical biosensors. a, Amperometric enzymatic electrodes: 
for glucose sensing, the working electrode is modified with glucose oxidase 
(GOx) and the glucose molecule is oxidized to gluconic acid. Glucose is detected 
by applying a fixed potential to measure the hydrogen peroxide (H2O2) by-
product or to monitor the reaction of a mediator with low redox potential. The 
generated current signal increases with the increase of glucose concentration. 
b, Potentiometric ion-selective sensors: the working electrode is modified with an 
ion-selective membrane containing the ionophore (for example, valinomycin for 
potassium ion sensing) molecules with cavities allowing only ions with specific 
charge and size to interact. The measured potential has a log-linear relationship 
with the target ion concentration. c, Voltammetric sensors: an electroactive 
molecule (for example, uric acid) can directly lose or donate electrons on the 
electrode surface when a redox potential is applied to the sensing electrode. 
The measured oxidation or reduction peak current height is directly proportional 

to the concentration of the target analyte. d,e, Recognition and transduction 
for wearable optical biosensors. d, Colorimetric sensors: the colour indicator 
molecule is immobilized on a substrate and upon contact with the analyte it 
changes colour. For hydrogen sensing based on horseradish peroxidase (HRP), 
the colour change is promoted by changes in the redox state of the chromophore 
molecule 3,3′,5,5′-tetramethylbenzidine (TMB) during the enzymatic degradation 
of H2O2; the measured light absorbance or colour intensity directly correlates 
with the concentration of target analyte. e, Fluorescence sensors: fluorometric 
sensing relies on a high-energy light source (for example, ultraviolet light or blue 
light) to excite the fluorophore molecule so it emits light with a longer wavelength 
through radiative electron transitions. For example, lucigenin can be used as a 
fluorescent indicator for chloride ion sensing; the chloride ion (Cl–) reacts with 
lucigenin by replacing NO3

−, resulting in the quench of lucigenin fluorescence 
intensity through a collisional mechanism. The change of fluorescence intensity 
is directly proportional to the change in analyte concentration. red, reduced 
analyte; ox, oxidized analyte; [C], analyte concentration.
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systematic evolution of ligands by exponential enrichment71. Electro-
chemical aptamer-based sensors have been exemplified in the  
continuous detection of multiple chemotherapeutic drugs, including  
doxorubicin, kanamycin and tobramycin in human whole blood and 
in live rats72. Binding of the target small molecules with the aptamer 
receptor triggered reversible conformational changes, resulting in 
an increased redox current correlating with the target concentration 
(Fig. 3b). Similarly, fluorometric switches are also commonly used 
in aptamer or protein biosensors in which the aptamer conforma-
tion modulates the quenching of the probe’s fluorescence signal73,74;  

the measured decrease in fluorescence intensity is proportional to the 
increased concentration.

In addition to aptamers, electrochemical DNA switches coupled 
with antibodies have recently been demonstrated for reagentless 
monitoring of proteins (for example, troponin I) in multiple bio-
fluids (that is, saliva, sweat, tears and blood) based on the motion 
of an inverted molecular pendulum75. For the detection, a positive 
potential is applied to electrostatically attract the redox reporter-
tagged DNA molecule to the surface, to decrease the probe–electrode 
distance; the binding of the target molecule increases the weight on 
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recognition based on bioaffinity receptors and molecular switches for wearable 
biosensing. Protein receptors include antibodies for target recognition through 
direct binding (panel 1) or displacement of a signalling probe (panel 2) and 
enzyme switches that change molecular configuration upon target binding 
(panel 3). Nucleic acid receptors include single-stranded DNA (ssDNA) used for 
target recognition through direct DNA hybridization (panel 1) or displacement 
of another DNA strand with a signal probe (panel 2), aptamer switch with shape 
change upon binding of the target molecule (panel 3) or a DNA-based molecular 
pendulum (coupled with a redox probe and a protein receptor) that changes the 
probe–electrode distance upon target binding (panel 4). Synthetic receptors 
such as molecularly imprinted polymers (MIPs) can perform target recognition 
through direct target binding (panel 1) or displacement of molecules with a signal 
probe (panel 2). b, Optical and electrochemical signalling tags used in bioaffinity 
sensors for in situ signal transduction. Optical tags such as fluorophores, 
quantum dots and nanoparticles can be used to transduce the target recognition 

to measurable optical signals. The resulting optical signal could offer qualitative 
analysis (yes/no response), semi-quantitative sensors based on colour 
change and quantitative analysis via absorbance or luminescence intensities. 
Electrochemical tags such as redox probe molecules, enzymes and nanoparticles 
are used to transduce the target recognition to measurable electrical signals; 
for example, the recognition of targets with aptamers decreases the distance of 
the tagged redox probe from the electrode, leading to increased redox signal; 
binding of target molecules with MIP sensors reduces the exposure of the 
redox probe to the biofluid, leading to a decreased redox signal. c, In situ sensor 
regeneration strategies based on intermolecular force modulations. Biosensors 
can be regenerated chemically, by introducing a competitor molecule that has 
a stronger binding affinity to the receptor than the target molecule; with heat 
and light, as external energy to cleave the bond between the receptor and target 
molecule; by electrical fields, which remove the target molecule by electrostatic 
repulsion; or by solvent effects, varying solution properties (for example, pH and 
ionic strength). λ, wavelength; E, potential; I, current; [C], analyte concentration.
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the pendulum body, leading to a signal change that is proportional  
to the analyte concentration. In another example, wearable sensing of 
nucleic acids, such as SARS-CoV-2 guide RNA, was achieved in a breath 
sample via freeze-dried reactions in the face mask including lysis, 
reverse transcription–recombinase polymerase amplification and 
CRISPR–Cas12a-specific high-sensitivity enzymatic reporter unlocking 
(SHERLOCK) sensing76. The presence of pieces of SARS-CoV-2-derived 
amplified RNAs — amplicons — leads to the cleavage of quenched single-
stranded DNA (ssDNA) fluorophore probes which can be detected via a  
colorimetric lateral flow assay strip.

Although these emerging bioaffinity sensing technologies hold 
great promise in the detection of a broad spectrum of analytes in bioflu-
ids, there are many challenges related to stability and reversibility that 
need further attention. In particular, continuous detection is strongly 
dependent on the ability to regenerate the active sensor surface and 
realize reversible target bonding in situ without extra washing steps 
or chemical addition. Such sensor regeneration could be achieved by 
modulating the intermolecular forces between the bioreceptor and 
the target molecule (for example, hydrogen bond, van der Waals force 
and electrostatic interaction) through various stimuli such as heat, 
light, electrical field, ultrasound field, competitive binding and ionic 
strength or pH77–79 (Fig. 3c).

Materials and wearable system design
Flexible materials and miniaturized devices play an important role 
in developing wearable chemical sensors for enhanced, reliable and 
in situ molecular data collection. There are considerations both in 
materials and at the system level to effectively develop wearable  
sensors in biomarker discovery.

Material considerations
Electrode materials, the electrode surface and surface coatings, and skin 
conformability are key considerations for optimizing the sensitivity,  
stability and longevity of wearable sensors.

Electrode materials. Common wearable electrochemical transducers 
rely on conducting carbon materials or gold surfaces owing to their 
high electrochemical stability, electrical conductivity80,81 and ability 
to anchor biorecognition elements efficiently using materials such as 
self-assembled monolayers82. Owing to their excellent electrochemi-
cal and optical properties, functional nanomaterials (for example, 
carbon nanotubes, graphene, MXenes, metal–organic framework) are 
also potential candidates for developing highly sensitive transducer 
surfaces83 (Fig. 4a). Moreover, carbon-based nanomaterials show great 
promise for wearable sensing electrodes as they can be mass produced 
at a low cost and have a wide operational potential window.

Electrode surfaces. To further enhance the sensitivity of wear-
able chemical sensing, porous surfaces can be incorporated into the  
transducer — for example, nanoporous graphene84,85, graphitic nano-
carbon structures86 or nanoporous gold87 — as they can increase the 
electron transfer area or bioreceptor loading capability resulting in 
an enhanced signal (Fig. 4b).

Surface coatings. Prolonged on-body monitoring of different biofluids 
is often hindered by gradual surface passivation in protein-rich bioflu-
ids. Anti-biofouling protective hydrogels or polymeric coatings, such 
as chitosan88, polyvinyl chlorides89, Nafion90 or serum albumin91, are 
widely used for extending the operational stability towards continuous 

reliable molecular profiling (Fig. 4c). The use of these surface-coating 
materials can tailor the surface charge, surface hydrophilicity or poros-
ity to resist the adhesion of fouling/interferent molecules onto the 
electrode. For example, Nafion is a negatively charged polymer used 
as an anti-fouling coating against negatively charged proteins whereas 
some hydrogels consist of porous networks that allow only analytes 
with smaller sizes to reach the electrode surface.

Skin conformability. Conformal contact between wearable chemical 
sensors and the human body is realized by matching the mechanical 
properties of the device with those of the human tissues, through use of 
skin-friendly, soft and stretchable elastomers such as polyimide, poly-
dimethylsiloxane (PDMS) or poly(styrene–butadiene–styrene) (SBS)92 
(Fig. 4d). In addition, carbon nanomaterials, metal–carbon nanocom-
posites or metallic nanomaterials are commonly employed for develop-
ing stress-enduring carbon inks along with silver-based interconnect 
circuitry. Compared with highly elastic substrate materials, the con-
ducting materials usually have low stretchability. A trade-off between 
the conductivity and stretchability is achieved by adopting an optimal 
ratio of conductive and elastomeric materials and design-based tech-
niques (for example, mesh-like or serpentine-like structures), resulting  
in an attractive sensor performance along with comfort81,92 (Fig. 4d).

It should be noted that, in addition to the above factors, biocom-
patibility of the transducer and substrate materials is always crucial for 
wearable chemical sensors; biocompatible polymers, carbon materials  
and noble metals are preferred for meeting this requirement93–96.

System-level considerations
To ensure high performance for on-body analyte monitoring, the inte-
grated wearable system must be carefully designed to allow efficient 
fluid sampling, reliable in situ sensing, wireless data collection and 
communication, and can be powered sustainably.

Fluid extraction and sampling. During blood circulation, the tran-
scapillary filtration of the blood forms ISF, which has similar compo-
sition and levels of biomarkers to blood97,98. For efficient ISF profiling 
of disease-related biomarkers, microneedle-based electrochemical 
sensing systems have received considerable attention owing to their 
painless, minimally invasive, transdermal access97,99–101 (Fig. 5a). ISF 
can also be accessed non-invasively using reverse iontophoresis, a 
technique that facilitates the transport of charged molecules by apply-
ing an electric current. This approach allows the extraction of the ions 
and neutral molecules from the ISF to the skin surface102–105 (Fig. 5b). 
Potential challenges here are interpersonal variations due to differ-
ences in the skin properties. Direct iontophoresis can also initiate 
localized sweating without the need for heat or vigorous exercise, 
particularly in connection with transdermal delivery of muscarinic 
agonists (for example, pilocarpine, acetylcholine, carbachol) to induce 
localized sweating106–111. The sweat-stimulating electrodes (cathode and 
anode) are thus interfaced with the skin by a separating thin layer of 
the drug-loaded hydrogel (Fig. 5c). In addition, the microfluidics-based 
sample handling modules can be used for in situ intermittent storage 
and controlled handling of the secreted sweat without dilution, mixing 
or cross-contamination110,112–115 (Fig. 5c).

Wearable sensor platforms. Various skin-worn wearable sensors 
have been developed over the past decade for detecting and assessing 
the sweat-based biomarkers non-invasively, including epidermal tat-
toos98, patches116, flexible smart bands3,117 or smart textiles86 (Fig. 5d). 
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Microfluidic wearable sensors can be developed to achieve fully autono-
mous sweat extraction, sampling and multiplexed sensing61. Such micro-
fluidic wearables could minimize sweat evaporation to enable rapid 
sweat analysis. Tears and saliva are other important biofluids that contain 
a plethora of biomarkers of clinical importance118–121. Wearable biosen-
sors based on contact lenses49, dental chips122 and mouthguard-based123 
devices have thus been recently developed but need more evaluation in 
participants. Wearable microneedle arrays show considerable promise 
for realizing continuous monitoring of multiple biomarkers beyond glu-
cose in ISF124. Owing to the close analyte correlation between blood and 
ISF, minimally invasive wearable ISF monitors are expected to provide 
the most accurate metabolic profiling compared with other wearables.

Wireless and continuous data collection. Wearable devices con-
tinuously collect biomarker profiles from different biofluids of the 
wearer, accompanied by real-time wireless signal transmission to 

mobile devices (Fig. 5e). Pre-calibrated wearable sensor arrays may 
accurately profile the level of multiple chemical biomarkers from 
different biofluids to create specific signature patterns. Similarly, in 
colorimetric-based optical devices, the signal can be directly seen in the  
chromogenic bands and these colour changes can be quantified for  
the patches using a pre-calibrated app-based data processor for finding the  
biomarker levels88 (Fig. 5e). Combining rich biomarker temporal pro-
files based on wearable electrochemical and optical sensing, and relat-
ing these profiles to abnormal body conditions, would serve to pinpoint 
the symptom-specific physicochemical fluctuation of the individual 
towards creating biomarker signatures.

Power. Complex wearable biosensing systems require suitable power 
sources to reach their full ability. Existing systems are commonly  
powered by batteries or through near-field communication but suffer 
from limited long-term continuous usability. Self-powered wearables, 
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harvesting energy from body fluids, human motion or sunlight, are 
attractive candidates for next-generation wearable biosensors for 
biomarker discovery125–130.

Data-driven biomarker discovery
The emergent multiplexed wearable chemical sensors have broad-
ened the spectrum of biomarkers available to diagnose, monitor and 
treat diseases. The continuous monitoring of multiple analytes via wear-
able biosensors has resulted in the collection of large sets of molecular 
data able to facilitate the assessment of a patient’s health status131,132. 
Alongside developing novel approaches to enhance the sensors’ sensi-
tivity, selectivity and stability and creating smart bioelectronics for in 
situ measurements, systematic analysis of the chemical data provides 
insightful information and broader data sets of biomarkers related to 
a specific health condition43. In this regard, implementing modern 
data analysis tools such as machine learning algorithms to interpret 
and predict patterns in vast amounts of measurements can aid in the 
identification of robust and accurate biomarkers133.

Multiplexed multimodal wearable sensing
Physiological monitoring of a single chemical analyte has been 
proven ineffective for disease diagnostics as, in most cases, they are 
affected by a combination of other chemical and physical markers134. 
Although there are several models proposed for realizing multi-omics 
analysis135–137, they usually rely on molecular data from different tech-
niques collected at different times, which increases the errors and 

challenges the implementation of a precise health condition prediction/
correlation. Advances in the miniaturization of wearable bioelectronic 
devices, through modern fabrication protocols, have allowed the inte-
gration of several sensors in a confined space. This has allowed the 
development of microsensor arrays able to perform detection of dif-
ferent analytes from the same biofluid sample86,134,138–140 (Fig. 6a). Multi-
plexed wearable sensors can monitor multiple analytes simultaneously 
and in real time, giving them a unique potential in chemical biomarker 
discovery. Moreover, other physical biomarkers (that is, vital signs) 
contain rich information which can be included in the diagnosis and 
prognosis of numerous diseases (Fig. 6a).

Recently, continuous wearable monitoring of cardiac and 
respiratory-related signals such as coughing, body temperature and 
patterns of activity (movements) was successfully demonstrated for 
detecting early symptoms and evolution of COVID-19 (ref.141). Moreo-
ver, a multiplex physical sensor was demonstrated for neonatal and 
paediatric critical care applications where physiological sensors (for 
example, blood pressure, heart rate and oxygenation) were integrated 
with movement, orientation and vocal sensors for tracking the tonality 
and temporal characteristics of crying142.

Within this context, multimodal wearable sensors that simultane-
ously monitor chemical and physical health features could offer more 
powerful and comprehensive information of an individual’s health state 
(Fig. 6a,b) than single-modal wearables, increasing diagnostic accu-
racy89. Integrated wearable chemical and physical sensors have been 
demonstrated for the simultaneous monitoring of chemical analytes 
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and blood pressure: a wearable skin patch capable of monitoring sweat 
caffeine, alcohol, lactate and ISF glucose was used to deconvolute the 
additive effects on blood pressure and heart rate throughout daily 
activities116. This ability is crucial to improve the reliability during 
daily tracking and avoid erratic interpretation of biomarker behaviour. 
Such combinations are significantly important when applied to the 
early detection of sepsis, characterized by a surge in lactate levels and 
a drop in blood pressure143, and for the daily supervision of biomarkers 
in patients with diabetes who are obese and hypertensive.

Owing to the unique complexities of biofluid secretion and the 
uncontrolled operational conditions of wearable sensors, it is also 
important to create multiplexed and multimodal sensors that can  
re-calibrate their analyte readings in real time based on other chemical  
and physical marker concentrations (Fig. 6c). Although informative of 
various diseases, fluctuations in skin temperature have been demon-
strated to cause substantial overestimation of sweat metabolites. To 
resolve this, a fully integrated wearable metabolite, electrolyte and 
skin temperature sensing array was created to accurately measure 
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sweat glucose and lactate levels by calibrating sensor values based 
on skin temperature3,144. In parallel, multiplexed sensors have also 
used measure ments of sweat pH and NH4

+ as calibration to normalize 
enzyme activity and improve the detection accuracy of sweat urea 
and glucose concentrations, reducing miscalculation of the actual 
analyte levels125.

Moving forward, skin-interfaced wearables should continue to 
expand their detection repertoire of target analytes and integrate 
continuous chemical sensing with biophysical markers (that is, blood 
pressure, heart rate). There are great opportunities for new categories 
of multimodal wearables; for example, more research is expected 
in combining brain activity monitoring (electroencephalogram) 
sensors with chemical sensors, which can open invaluable possibili-
ties, including early detection of epileptic seizures, stress, fatigue 
and depression145. These smart multiplexed, multimodal chemical 
sensors will become more reliable and create personalized data for 
more accurate prediction of an individual’s physiological response 
to specific health conditions. At the same time, compilation of these 
extended data will yield new complex information about known dis-
eases and medications, which will consequently lead to the discov-
ery of new effective biomarkers that can augment the selectivity and 
robustness of disease detection and prevention (Fig. 6d). By using 
various data analysis tools, the association between the molecular 
signatures and health conditions can be decoded and the resulted 
pattern regression could enable disease prediction, forecasting  
and diagnosis (Fig. 6e).

Machine learning-driven biomarker discovery
Technological innovations in the wearable multimodal and multiplexed 
sensors have allowed significant leaps in the continuous acquisition 
of high-resolution multi-omics data related to patient health from the 
same biofluid at the same time. These complex data are composed of 
multivariable, non-linear physiological patterns that cannot be readily 
identified by conventional processing methods. In the medical field, 
machine learning has already been proven an effective tool for inter-
preting large volumes of intricate data sets. For example, for insulin 
dosage recommendations for adults with type 1 diabetes, continuous 
glucose monitor sensors could predict the insulin bolus and perform 
self-calibration and correction. A similar approach was presented for  
other feedback sensors such as the levodopa closed loop system  
for Parkinson disease146, feedback systems for cancer diagnosis and  
systems for the detection of cardiovascular diseases, pulmonary diseases  
and conditions related to patterns of movement, gait and posture147–154. 
As many possible variations, such as ionic strength, temperature, pH, 
humidity or body locations, could affect the readings of wearable bio-
sensors during real-life on-body usage, machine learning can be applied 
for multiplexed data processing towards more accurate prediction of 
target analyte levels.

In generalized terms, the umbrella of machine learning algorithms 
can be divided into three classes: supervised, unsupervised and rein-
forced learning algorithms (Fig. 6f). Within each algorithm class, specific 
models (regression and classification models from supervised learn-
ing algorithms, clustering models from unsupervised learning algo-
rithms and decision-making models from reinforced learning models)  
can be implemented based on the behaviour of the data set and the 
information or conclusion to be recovered from the study. Each specific 
machine learning model has a distinctive approach of interpreting and 
associating features from a data set and the adequate selection of them 
has been comprehensively reviewed in the literature1,133. A number of 

these machine learning models, such as the support vector machine 
(SVM), k-nearest neighbours, neural networks, k-means clustering 
and the Markov decision process, can be applied for supervised and 
unsupervised data mining and decision-making based on big data 
collected by wearable biosensors (Fig. 6f).

Enhanced target sensitivity and selectivity through advances in 
chemical sensing have enabled new understanding of the correla-
tions between chemical biomarkers and specific diseases155,156. Out 
of the three general categorizations of machine learning algorithms, 
supervised learning models have been used to establish input–output 
correlations based on molecular analytes and vital signs. Focusing on 
classification models, an SVM algorithm can be applied to establish 
relationships between volatile organic compound footprints from 
breath and blood glucose levels157. Using published diabetic breath 
analyses as training data, the SVM algorithm categorized artificial 
breath samples to corresponding blood glucose levels with 97.1% 
accuracy. With increased focus on generating more durable wearable 
chemical sensors, implementing such SVM models will uncover new 
real-time correlations between validated biomarkers and the analyte 
monitored through non-invasively accessible bodily fluids. Further-
more, through cytokine and chemokine profiling using a single plasma 
sample, other machine learning classification and regression models 
(for example, naïve Bayes and decision tree algorithms) helped predict 
the sepsis host-immune response with high accuracy up to 96.64%158. 
Using machine learning, wearable chemical sensing systems could 
continuously monitor various target candidates, and an individual’s 
chemical profile of ISF, sweat or saliva will serve as feedback informa-
tion on the patient’s metabolic or even immune response. Addition-
ally, multiplexed analysis of biomarkers in different body fluids will 
also yield connections to clinically relevant disorders. Recent studies 
demonstrated this by sampling armpit sweat and salivary cortisol 
levels during exercise; integrating a k-nearest neighbours algorithm 
facilitated estimation of the score on the Kessler 10 Psychological 
Distress Scale (a globally recognized questionnaire for determination 
of psychological distress with the scores range from 10 to 50) with an 
error rate of 3.6 (ref.18).

Looking at regression models, long short-term memory (a neural 
network algorithm capable of learning sequenced dependencies) 
was used to predict future blood glucose levels based on continuous 
monitoring data159. Biophysical markers recorded from wearable sen-
sors (heart rate, blood pressure), physical characteristics (weight, 
age, gender) and blood glucose data measured from a glucometer 
over 6 h were combined to predict blood glucose concentration with 
a 15-min horizon (predicting the concentration 15 min ahead of the 
actual measurement) and an average error of 15.43 mg dl–1 (ref.160). 
Using this regression model and establishing associations between 
blood glucose and the partitioned alternatives measured with wearable 
sensors, personalized ISF, sweat and saliva glucose–insulin dynamics 
could become a standardized method for managing individuals with 
diabetes. In another application, by analysing neuropsychiatric signa-
tures in blood coupled with mental health questionnaires as training 
information, researchers developed a decision tree algorithm to reduce 
the misdiagnosis of bipolar disorder from major depressive disorder161. 
Supplementing these studies with chemical signatures provided by the 
wearable sensors could enhance the accuracy and efficiency of those 
diagnostic pathways. However, this will predominantly be achieved by 
generating machine learning models that can produce associations 
between multiple biomarker candidates in different body fluids. This 
was recently demonstrated by applying linear regression and neural 
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network algorithms for learning from clinical data obtained from 
serum levels of creatinine in patients with renal disease, which helped 
correlate the serum creatinine concentrations with tear creatinine 
levels monitored by a wearable chemical sensor 162.

As wearable chemical sensors become more robust, machine 
learning algorithms are more able to classify chemical and biophysical 
data corresponding to unique health patterns and provide accurate 
predictions of medical outcomes based on molecular signatures for 
different health conditions163. Machine learning can be applied not only 
for the prediction of event but also to recognize when one has already 
happened; such a system can be applied in the detection of convulsion 
for patients with epilepsy, where galvanic skin response data, heart 
rate, temperature and movement sensors can detect when an event 
is happening and send an alert to the caregiver164. Besides supervised 
regression and classification models, unsupervised machine learning 
algorithms can be implemented to identify key unrecognized charac-
teristics165 from unlabelled molecular sensing data. This can be further 
used for dimensionality-reduction representations of the sensor infor-
mation166 and detection of anomalies within clusters of data (through 
models such as k-means clustering) (Fig. 6f). After comprehensive 
processing of the wearable biosensing data, reinforced learning algo-
rithms can be integrated for assisted medical recommendations and 
timely interventions167 (Fig. 6f).

Overall, the addition of multiplexed, multimodal real-time chemi-
cal sensors to the big data industry will open the gate to new correla-
tions between existing biomarkers and new chemical signatures that 
can be monitored continuously through easily accessible bodily fluids. 
Combining these big data analytics, streaming from wearable sensing 
devices that monitor chemical and biophysical markers, machine learn-
ing techniques should have a profound impact upon the discovery of 
biomarkers and upon the healthcare field in general168. A platform that 
could integrate chemical and biophysical data from different wearables 
is imperative to test and validate newly discovered biomarkers and 
their relationship with relevant diseases169. Ultimately, integrating new 
chemical data from alternative body fluids provided by wearable chemi-
cal sensors will considerably facilitate the diagnostic and prevention  
of numerous diseases.

Conclusions
In the era of omics and digital medicine, wearable chemical sensing 
technology is emerging as a powerful tool to aid the biomarker dis-
covery process. Biomarker discovery can be facilitated by employing 
wearable multiplexed sensing systems that can perform continuous 
monitoring of potential molecular signatures. The data collected by 
these wearables can be correlated with the studied physiological and 
biological conditions using suitable data analytic tools. Compared with 
traditional laboratory tests based on blood draws and tissue biopsy, 
which are invasive, costly, require physical clinic visits and provide 
only discrete analyte information, the wearable sensor approach 
could substantially increase the efficiency and lower the costs of the  
process. Wearable chemical sensors may open a new era of medical 
tools by offering means of remote, continuous and non-invasive real-
time monitoring of potential multi-omics biomarkers during people’s 
daily activities.

Despite great promise, the scope of molecular analytes able to be 
continuously screened on the body is currently limited to a small num-
ber of metabolites and electrolytes. There is an urgent need to develop 
next-generation wearable chemical sensors that can monitor a broader 
spectrum of biomarker candidates. In this regard, new bioaffinity 

sensors based on molecular switches coupled with suitable signal tags 
and in situ regeneration strategies are highly desired. Another critical 
limitation is that the catalogue of accessible and detectable analytes 
is limited to small molecules that can easily partition from blood or 
be secreted by exocrine/endocrine glands. Moreover, the time lag 
related to the molecular secretion into alternative body fluids from 
blood vessels needs to be carefully considered. Compared with gene 
sequencing or metabolomics analysis that can quantify thousands of 
molecules at a time, the number of biosensors that can be integrated 
into a single miniaturized wearable system is limited as each sensor 
requires the dimensions to reach desired selectivity, stability and 
sensitivity. Furthermore, the successful realization of wearable sensors 
with suitable sensitivity, selectivity and stability requires the careful 
selection of electrode materials, bioreceptor immobilization strategies 
and seamless wearable system integration that allows efficient fluid 
extraction and reliable, robust in situ data collection. Moreover, more 
studies are needed to verify the accuracy, precision and repeatability 
of the wearable sensors in participants. Such validation studies should 
be realized using existing gold standard tests to consolidate wearable 
biosensors in the omics era towards the widespread acceptance and 
credibility of these new non-invasive monitoring platforms170.

Overall, wearable sensor-based biomarker discovery is a highly 
interdisciplinary field. Chemists, biologists, engineers and physicians 
need to work closely together to develop high-performance integrated 
multiplexed wearable chemical sensor systems with the power to 
predict and prevent the inevitable. We envisage that such evolution 
of wearable sensing technologies would lead to continuous real-time 
analyses of metabolomics, proteomics, genomics and other omics. The 
tremendous volume of data collected continuously from large-scale 
human studies, coupled with efficient data-fusion and data-mining 
methods, would enable early disease prediction, diagnosis and timely 
interventions.
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