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RESEARCH Open Access

Exposure to arsenic at different life-stages
and DNA methylation meta-analysis in
buccal cells and leukocytes
Anne K. Bozack1* , Philippe Boileau2, Linqing Wei2, Alan E. Hubbard2, Fenna C. M. Sillé3, Catterina Ferreccio4,
Johanna Acevedo5,6, Lifang Hou7, Vesna Ilievski8, Craig M. Steinmaus1, Martyn T. Smith1, Ana Navas-Acien8,
Mary V. Gamble8 and Andres Cardenas1

Abstract

Background: Arsenic (As) exposure through drinking water is a global public health concern. Epigenetic
dysregulation including changes in DNA methylation (DNAm), may be involved in arsenic toxicity. Epigenome-wide
association studies (EWAS) of arsenic exposure have been restricted to single populations and comparison across
EWAS has been limited by methodological differences. Leveraging data from epidemiological studies conducted in
Chile and Bangladesh, we use a harmonized data processing and analysis pipeline and meta-analysis to combine
results from four EWAS.

Methods: DNAm was measured among adults in Chile with and without prenatal and early-life As exposure in
PBMCs and buccal cells (N = 40, 850K array) and among men in Bangladesh with high and low As exposure in
PBMCs (N = 32, 850K array; N = 48, 450K array). Linear models were used to identify differentially methylated
positions (DMPs) and differentially variable positions (DVPs) adjusting for age, smoking, cell type, and sex in the
Chile cohort. Probes common across EWAS were meta-analyzed using METAL, and differentially methylated and
variable regions (DMRs and DVRs, respectively) were identified using comb-p. KEGG pathway analysis was used to
understand biological functions of DMPs and DVPs.

Results: In a meta-analysis restricted to PBMCs, we identified one DMP and 23 DVPs associated with arsenic
exposure; including buccal cells, we identified 3 DMPs and 19 DVPs (FDR < 0.05). Using meta-analyzed results, we
identified 11 DMRs and 11 DVRs in PBMC samples, and 16 DMRs and 19 DVRs in PBMC and buccal cell samples.
One region annotated to LRRC27 was identified as a DMR and DVR. Arsenic-associated KEGG pathways included
lysosome, autophagy, and mTOR signaling, AMPK signaling, and one carbon pool by folate.

Conclusions: Using a two-step process of (1) harmonized data processing and analysis and (2) meta-analysis, we
leverage four DNAm datasets from two continents of individuals exposed to high levels of As prenatally and during
adulthood to identify DMPs and DVPs associated with arsenic exposure. Our approach suggests that standardizing
analytical pipelines can aid in identifying biological meaningful signals.
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Background
Chronic exposure to arsenic through drinking water af-
fects an estimated 140 million people worldwide [1]. Ar-
senic is a known human toxicant and carcinogen [2]
associated with a range of adverse health outcomes in-
cluding skin lesions, impaired intellectual function, car-
diovascular disease, diabetes, inflammation, and cancers
including bladder, lung, kidney, liver, and skin [2–4]. As-
sociations between arsenic exposure and latent disease
risk may be mediated by epigenetic mechanisms includ-
ing dysregulation of DNA methylation (DNAm) [5, 6].
DNAm may also serve as a biomarker of past arsenic ex-
posure and future disease risk.
In epidemiological studies, arsenic exposure has been

associated with changes in global levels of DNAm [7].
Arsenic-induced changes in the DNA methylome have
also been studied in epigenome-wide association studies
(EWAS), which had previously been reviewed and sum-
marized [8, 9]. EWAS most commonly measure DNAm
on the individual-locus level using the Illumina Human-
Methylation BeadChip (450K) or Illumina Infinium
MethylationEPIC BeadChip (850K) which interrogate >
450,000 and > 850,000 methylation sites, respectively.
Previous EWAS have commonly studied prenatal arsenic
exposure and DNAm measured in cord blood and pla-
centa samples among birth cohorts in the United States
(US) (N = 136; 343) [10, 11], Bangladesh (N = 44; 45; 113;
127) [12–15], Mexico (N = 38) [16], and Taiwan (N = 64)
[17]. Studies of exposure later in the life course have
measured DNAm in blood samples, including adults
with low (N = 46) [18] or low-to-moderate exposure in
the US (N = 2325) [9], moderate-to-high exposure in
Bangladesh (N = 400; 396) [19, 20], and women in
Argentina (N = 96) [21].
Although EWAS have consistently identified CpGs as-

sociated with arsenic exposure after adjusting for mul-
tiple comparisons, a common epigenetic signature of
arsenic exposure has not emerged across different stud-
ies or regions. Methodological differences could have
contributed to inconsistent results and have limited
comparison across EWAS. These include differences be-
tween populations (like age and ancestry), timing and
level of exposure, methods for quantifying exposure and
DNAm, and data processing and analysis (including
normalization and adjusting for cell type distribution).
Furthermore, previous EWAS have often been limited by
small sample sizes, resulting in low statistical power after
adjusting for multiple comparisons.
In the current study, we aim to address limitations of

comparing results across EWAS and provide a model for
leveraging EWAS with small sample sizes to detect
epigenome-wide associations with environmental expo-
sures. We use a two-step process of applying (1) a har-
monized data processing and analysis pipeline and (2)

combining results in a meta-analysis using four DNAm
data datasets. Specifically, we leverage data from a co-
hort study in Chile with participants with and without
high levels of prenatal and early-life arsenic exposure se-
lected for DNAm measurement in peripheral blood
mononuclear cells (PBMCs) and buccal cells using the
850K microarray (N = 40), and data from a randomized
controlled trial in Bangladesh with adults classified as
high or low exposure selected for DNAm measure using
the 450K microarray (N = 48) and 850K microarray (N =
32). EWAS in individual studies were performed to iden-
tify differentially methylated positions (DMPs) and dif-
ferentially variable positions (DVPs), and meta-analyses
were performed for DMPs and DVPs. Differentially
methylated regions (DMRs) and differentially variable re-
gions (DVRs) were identified from meta-analysis results.
We hypothesized that by standardizing preprocessing
data pipelines and statistical methods we could increase
our power to detect commons arsenic related DNAm
signatures.

Methods
Study design
Chile study
For this study we selected participants residing in Anto-
fagasta who were born in Region II of Chile (i.e., the cit-
ies/towns of Calama, Antofagasta, Chuquicamata, Maria
Elena, Pedro de Valdivia, and Tocopilla), during a period
of relatively high arsenic exposure between 1958 and
1972 [22]. The city level of arsenic exposure in Calama
and Antofagasta at that time has been estimated to be
around 287 and 860 μg/L, respectively [23]. After this
period, arsenic concentrations were abruptly reduced
after the installation of arsenic removal plants, initially
to about 110 μg/L and continuing with improvements
over the years, such that the water arsenic concentra-
tions in Antofagasta other towns and cities in Region II
was less than 100 μg/L by the late 1980s and have since
been less than 10 μg/L [24, 25]. Exposed participants
were born in Region II between 1958 and 1972 and were
between the ages of 41–55 years old at the time of inclu-
sion in the DNAm study. All exposed participants expe-
rienced prenatal exposure; a large proportion also
experienced early-life exposure from birth to ~ 14 years
of age. Unexposed participants were people born else-
where but moved to Antofagasta when they were older,
after the high exposure period.
Participants were recruited using convenience sam-

pling following Institutional Review Board (IRB)-ap-
proved informed consent protocols among people who
work at or visit the Antofagasta Hospital or the Univer-
sity of Antofagasta. Study protocols were approved by
the University of California (UC), Berkeley and the
Pontificia Universidad Católica de Chile IRBs.
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This study comprises 40 participants: 20 exposed, and
20 unexposed. A sample of buccal and PBMCs were col-
lected from each participant in 2013. Four additional
samples of each tissue type were collected at random
from the participants for a total of 44 samples of each
tissue. Repeated donors were used as technical dupli-
cates and were removed prior to data processing.

Arsenic exposure Participants were classified as ex-
posed if they were exposed to high levels of arsenic pre-
natally and in early life. Participants were primarily
exposed to high levels of arsenic prenatally, although
participants born at the beginning of the recruitment
window were also exposed in early life. The remaining
participants were designated as unexposed, given that
their level of arsenic exposure was likely much lower.
Volunteers were excluded for the following: antibiotic
use in the 3 months prior to the study, use of enemas or
laxatives more than once per month, or use of steroids
or immunosuppressants.

Sample collection and processing Blood samples were
collected by certified nurses in Heparin-containing tubes
at the participants' homes or other convenient location
for the participants in Antofagasta, Chile. Ten ml of
whole blood per tube was separated into plasma, buffy
coat, and red blood cell fractions. Buffy coats from two
collection tubes from the same participant (~ 0.5 mL
each) were diluted up to 8 ml with phosphate buffered
saline (PBS), and layered atop 4 ml Ficoll. After centrifu-
gation at 380 x g for 40 min, the mononuclear layer and
~ 1ml of the Ficoll was transferred to a new tube, di-
luted up to 12 ml with sterile PBS, and centrifuged for
10 min. After the wash, the supernatant was removed,
and the pellet containing PBMCs was resuspended in 2
ml of PBS. PBMCs were cryopreserved with a solution
of 10% dimethyl sulfoxide (DMSO) and 40% fetal bovine
serum in cryotubes and placed in Coolcell cryogenic
storage containers (Corning, Tewksbury, MA) at − 80 °C.
After 24 h, the cryopreserved PBMCs were transferred
into liquid nitrogen vapor phase until transport on dry
ice to UC Berkeley. For DNA extraction, PBMCs were
thawed (< 30 s) in a 37 °C water bath, diluted in 20mL
sterile PBS and centrifuged for 10 min. The supernatant
was removed, and DNA was extracted from PBMC using
the Allprep DNA/RNA/miRNA universal kit (Qiagen,
Germantown, MD).
Buccal cells were collected by the participants by

brushing a nylon flocked solid shaft swab (Copan Diag-
nostics, Murrieta, CA) against the inside of the cheek
(rotating and brushing 5 times). The swab was then
placed into a collection tube containing 2 ml RNALater
(Thermo Scientific, Waltham, MA) and the tip was cut
off with sterile scissors. Samples were stored at − 80 °C

until transport on dry ice to UC Berkeley. DNA was ex-
tracted from the buccal cell sampled using the Allprep
DNA/RNA/miRNA universal kit (Qiagen, Germantown,
MD). PBMC and buccal cell DNA was visualized on 1%
agarose gels for quality and quantified with a NanoDrop
1000 (Thermo Scientific, Waltham, MA) and Quant-iT
PicoGreen dsDNA assay kit (Life Technologies, Grand
Island, NY).

DNAm measurement The 850K microarray (Infinium
Human Methylation EPIC BeadChip microarray, Illu-
mina, San Diego, CA) was used to measure DNAm in
the Chile study. 850K analyses were conducted at the
California Institute for Quantitative Biosciences (QB3) at
UC Berkeley.

Bangladesh study
The Folic Acid and Creatine Trial (FACT) is a random-
ized controlled trial conducted between 2010 and 2012
to evaluate the effects of folic acid and creatine supple-
mentation on blood arsenic concentrations and arsenic
methylation capacity among arsenic-exposed adults in
Araihazar, Bangladesh [26]. Briefly, participants were
randomly selected from the Health Effects of Arsenic
Longitudinal Study (HEALS) cohort [27] and were eli-
gible for FACT if they were drinking from a household
well with arsenic concentrations ≥ 50 μg/L for at least
one year prior. Exclusion criteria were pregnancy, taking
nutritional supplements, or having proteinuria, renal dis-
ease, diabetes, gastrointestinal problems, or other health
issues. A total of 622 participants were recruited and
randomly assigned to one of five treatment groups:
400 μg FA/day, 800 μg FA/day, 3 g creatine/day, 3 g
creatine and 400 μg FA/day, and placebo.
The study was approved by the IRB at Columbia Uni-

versity Medical Center and the Bangladesh Medical Re-
search Council, and participants provided informed
consent.
A subset of 48 male participants was selected for

DNAm analysis of blood collected at baseline using the
450K microarray in 2011. DNAm was also measured in
baseline samples for an additional 32 male participants
from the creatine and creatine+400FA treatment groups
using the 850K microarray in 2018. Participants were se-
lected based on the availability of a sufficient DNA sam-
ple and to represent a wide range of arsenic exposures.
Due to differences in technology of the 450K and 850K
platforms and timing that the two analyses were run, we
chose to analyze the Bangladesh 450K and 850 K
samples as independent data.

Arsenic exposure Arsenic exposure was assessed using
baseline water samples collected at the time of
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recruitment into the HEALS cohort between 2000–2002
and 2007–2008. Baseline water arsenic concentrations
were measured using unfiltered samples collected from
the tube well used by each participant. Water was col-
lected in 20-mL polyethylene scintillation vials, acidified
to 1% with high-purity Optima HCl (Fisher Scientific,
Pittsburg, PA), and diluted 1:10. Arsenic concentrations
were measured with high-resolution inductively coupled
plasma mass spectrometry (ICP-MS) including a germa-
nium spike for correcting for fluctuations in sensitivity.

Sample collection and processing Blood samples were
collected in EDTA-containing tubes at the field clinic in
Araihazar, Bangladesh. Eight ml was separated into
plasma and red blood cell fractions, the red blood cell
fraction was diluted to 15 ml with PBS, and 7.5 ml was
layered atop 4 ml Ficoll. After centrifugation at 400 x g
for 30 min, the mononuclear layer and half of the Ficoll
was transferred to a new tube and centrifuged for 10
min with an equal volume of PBS. Cells were washed
with PBS, the supernatant was removed, and the pellet
was resuspended in 3.5 ml 5 PRIME ArchivePure DNA
Cell Lysis solution (Gaithersburg, MD) with proteinase
K. Samples were stored at − 80 °C until transport on dry
ice to Columbia University. DNA was extracted from
PBMCs with the 5 PRIME ArchivePure DNA Blood Kit
(Gaithersburg, MD) and visualized on gels for quality
with the Quant-iT PicoGreen dsDNA assay kit (Life
Technologies, Grand Island, NY). DNA was quantified
using the Quant-iT PicoGreen dsDNA assay kit (Life
Technologies, Grand Island, NY).

DNAm measurement The 450K microarray (Infinium
HumanMethylation450 BeadChip microarray, Illumina,
San Diego, CA) or 850K microarray (Infinium Human
Methylation EPIC BeadChip microarray, Illumina, San
Diego, CA) was used to measure DNAm for the
Bangladesh study. In the Bangladesh study, 450K ana-
lyses were conducted at Roswell Park Cancer Institute,
and 850K analyses were conducted at the Center for
Population Epigenetics at Northwestern University.

Data processing
Raw idat files were imported to R using the minfi pack-
age [28]. Standard quality control plots were generated
(i.e., density and bean plots of raw Beta-values and plots
of control probe intensities) and inspected to identify
low-quality samples. Outlying samples were also identi-
fied by plotting the log2 of the methylated and unmethy-
lated median intensity values. One outlying sample was
removed from the Chile study’s set of buccal tissue sam-
ples. All PBMC samples from the Chile and Bangladesh
studies passed the quality control checks. In the Chile
study, technical duplicates in buccal and PBMC samples

were removed such that a total of 39 buccal samples and
40 PBMC samples were retained for analysis. In the
Bangladesh study, 48 450K and 32 850K samples were
used in analyses.
Detection p-values for each probe were calculated

using the QCinfo function implemented by the ENmix
package [29]. Probes were filtered using the champ.filter
function implemented by the ChAMP package: probes
with detection p-values > 0.01, non-cg, probes that align
to multiple locations [30], and probes located on the X
and Y chromosomes were removed [31, 32]. Functional
normalization (FunNorm) was performed to mitigate
technical variation [33]. The impact of known technical
variables (e.g., batch, column, row) was assessed using
principal component analysis (PCA) and visualizing the
first five PCs. In the Bangladesh 450K study, the combat
function in the sva package [34] was used to correct for
clustering by batch. Prior to data analysis, an additional
probe filter was applied to remove cross-reactive probes
[35] and probes located with 10 base pairs of SNPs with
minor allele frequencies ≥ 0.05 using the rmSNPandCH
function in DMRcate [36].
For PBMC samples, the proportions of CD8+ T cells,

CD4+ T cells, natural killer (NK) cells, B cells, mono-
cytes, and neutrophils were estimated using the House-
man regression calibration method [37] with the
estimateCellCounts function in minfi and the Illumina-
HumanMethylation450k reference set. For buccal cell
samples, six latent factors estimated via ReFACTor were
used to control samples’ cell-type compositions in down-
stream analyses [38].
Data processing and analyses were conducted using R

4.0.2 [39] and packages were downloaded from Biocon-
ductor [40]. R code for the data processing pipeline and
quality control plots are available on the study’s GitHub
repository [41].

Data analysis
Descriptive statistics were calculated for each study
(mean and SD for continuous variables, and frequency
and proportion for categorical variables). Arsenic expos-
ure was defined as a dichotomous variable. In the Chile
study, participants were assigned to the exposure group
if they were exposed to high levels of arsenic prenatally
and in early life and compared to unexposed partici-
pants. For comparability and to improve chronic arsenic
exposure misclassification, participants in the
Bangladesh study were classified as having low or high
arsenic exposure based on drinking water arsenic
concentrations. The cutpoint of ≤ 100 μg/L or > 100 μg/L
(i.e., the median value) was used for the 450K study. A
large proportion of participants in the 850K study had
water arsenic concentrations near this value (N = 9 with
water arsenic concentrations between 100 and 104 μg/L)
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and therefore a cut point of ≤ 104 μg/L or > 104 μg/L
was used. Associations between arsenic exposure and
Houseman cell type proportions of PBMC samples were
assessed using linear models adjusted for age, smoking
status (ever smoker), and, in the Chile study, sex.

EWAS
EWAS for DMPs and DVPs associated with arsenic ex-
posure were performed separately for PBMC and buccal
samples within the Chile study, and for the 450K and
850K platforms within the Bangladesh study. M-values
were calculated as the logit transformation of Beta-
values to meet model assumptions. DMPs were identi-
fied using the R package limma, which implements lin-
ear models with a robust empirical Bayes smoothing of
standard errors [42]. DVPs were identified using the var-
Fit function in the missMethyl package [43, 44] to fit lin-
ear models on the absolute residuals for each probe.
Models were adjusted for (1) age, smoking status, and
sex (in the Chile study), and (2) age, smoking status, sex,
and estimated cell type proportions (determined using
the Houseman regression calibration method for PBMC
samples [37] and ReFACTor for buccal cell samples
[38]). We adjusted for multiple comparisons using the
Benjamini and Hocherg false discovery rate (FDR) cor-
rection [45] and the Bonferroni correction, and adjusted
p-values were calculated using the p.adjust function.

Meta-analyses
EWAS results were meta-analyzed using METAL [46].
METAL calculates pooled effect sizes for each probe by
weighting the effects of individual EWAS by the inverse
of the standard errors and calculates overall Z-scores
and p-values. We conducted meta-analyses for DMPs
and DVPs using (1) PBMC samples only (i.e., Chile study
PBMC EWAS, Bangladesh study 450K EWAS, and
Bangladesh study 850K EWAS; referred to as PBMC
meta-analysis) and (2) all PBMC samples and the Chile
buccal cell EWAS (referred to as PBMC + buccal cell
meta-analysis). Analyses were restricted to probes com-
mon across the four studies (377,351 CpG probes). Sen-
sitivity analyses were conducted by performing meta-
analyses on EWAS results not adjusted for estimated cell
type proportions. The genomic inflation factor (λ) and
Q-Q plots were used to evaluate systematic biases in
meta-analysis results. Heterogeneity was assessed by cal-
culating I2 and Cochran’s Q-test [47, 48].
Given that METAL assumes the individual EWASs to

be independent, we verified that the Chile study PBMC
and buccal cell samples could indeed be treated as such.
As expected, we observed the major source of variation
among the Chile samples to be tissue type, detecting no
evidence of a strong within-participant effect when per-
forming PCA on the M-Values of the 5000 most variable

CpG sites (Supplemental Fig. S1). Further, we computed
the similarity between each participants’ processed
PBMC and buccal cell samples’ M-values using the
Spearman correlation, excluding the individual whose
buccal cell sample did not pass quality control checks.
We then computed the similarity scores of all possible
combinations of independent PBMC and buccal cell
samples, generating the null distribution of scores under
the assumption of independent sample origin. The ob-
served within-participant similarities were not found to
be significant after correcting for multiple testing (FDR <
0.05). Only one participant’s samples were more similar
than expected under the null at the nominal level of sig-
nificance (p < 0.05) (Supplemental Fig. S2).
We analyzed meta-analyses’ results for DMRs with re-

spect to DMPs and DVPs using comb-p [49]. The fol-
lowing criteria were used to define a region: the leading
probe had a p-value of 0.001 or smaller, and the region
contained no less than three probes. Regions had a mini-
mum length of 1000 base pairs (bp), and, if another
probe within the region satisfied the significance cutoff,
were extended by 1000 bp starting from said probe.
Pathway analyses were conducted to better understand

the biological functions of DMPs and DVPs identified in
meta-analyses. Pathway analysis with the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database
was conducting using the gometh function [50] imple-
mented by the missMethyl R package [43]. Gometh is
adapted for studies using the 450K or 850K microarrays
to account for the a priori probability of a gene to in-
clude a DMP or DVP based on representation on the
array. DMPs and DVPs with FDR < 0.10 in METAL re-
sults were used as input for gometh.

Comparison to previous EWAS
To assess the consistency of our results with those of
previous studies, we searched the Comparative Toxi-
cogenomics Database [51] for interactions between ar-
senic and the genes containing DMPs and DVPs. We
also compared our identified DMPs and DVPs with
nominally significant DMPs reported by Bozack et al.
[9] and DMPs significant after adjustment for mul-
tiple comparisons reported by EWAS of arsenic
exposure [10–21, 52, 53].

Results
Participant characteristics for the four studies are pre-
sented in Table 1. In the Chile PBMC and buccal cell
studies, 50 and 49% of participants were exposed to ar-
senic prenatally or in early life, respectively. In the
Bangladesh 450K study and 850K studies, 23 (48%) and
11 (34%) of participants were exposed to high arsenic,
respectively (≥ 100 μg/L water arsenic and ≥ 104 μg/L
water arsenic). The median (range) of water arsenic for
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low and high exposure groups in the 450K study were
57.0 μg/L (50.0–100.0 μg/L) and 249.7 (160.0–500.0 μg/
L), respectively; the median (range) for low and high ex-
posure groups in the 850K study were 94.0 μg/L (50.0–
104.0 μg/L) and 250.0 μg/L (112.0–500.0 μg/L), respect-
ively. Prenatal exposure to arsenic in Bangladesh was un-
known. The mean (SD) age for the Chile studies was
48.7 (4.7) years, whereas the mean (SD) ages for the
Bangladesh 450K and 850K studies were slightly lower
39.7 (8.1), and 41.1 (6.3) years. Approximately half par-
ticipants in the Chile studies were male; all participants
in the Bangladesh studies were male.
Associations between arsenic exposure and Houseman

cell type proportion estimates in PBMC samples are
shown in Table 2. Arsenic exposure was positively asso-
ciated with the proportion of CD8+ T cells (B = 0.05;
p = 0.018) and negatively associated with the proportion
of monocytes (B = − 0.05, p = 0.003) in the Bangladesh
450K study; however, we did not observe significant as-
sociations between arsenic exposure and cell type pro-
portions in either of the other studies.
The number of DMPs identified in the individual

EWAS are shown in Table 3; nominally significant
DMPs in analyses adjusted for age, smoking status, cell
type proportions, and sex (in the Chile studies) (p < 0.05)
are available on the study’s GitHub repository [41]. With

the exception of the Bangladesh 450K study, we identi-
fied a greater number of nominally significant DMPs
after adjustment for cell type. Across EWAS, no DMPs
remained significant after adjusting for multiple
comparisons.
A summary of DVPs identified in the individual EWAS

is also provided in Table 3, and nominally significant cell
type-adjusted analyses are included in the study’s
GitHub repository [41]. In models adjusted for age,
smoking status, cell type proportions, and sex (in the
Chile studies), after correcting for multiple comparisons,
we identified 5 DVPs in the Chile PBMC study, 7 DVPs
in the Chile buccal cell study, 3 DVPs in the Bangladesh
450K study, and 51 DVPs in the Bangladesh 850K study
(FDR < 0.05).
A summary of meta-analysis results for differential

methylation and the genomic inflation factor values (λ)
is provided in Table 4. Significant probes are shown in
Table 5; measures of heterogeneity are included in Sup-
plemental Table S1 and effects sizes and p-values of each
DMP in individual EWAS are included in Add-
itional File 1. We first conducted a meta-analysis of the
three PBMC EWAS (i.e., the Chile PBMC study,
Bangladesh 450K study, and Bangladesh 850K study).
Using fully adjusted models including age, smoking sta-
tus, cell type proportions, and sex (in the Chile studies),

Table 1 Participant characteristics

Chile study, PBMCs
(N = 40) a

Chile study, buccal cells
(N = 39) a

Bangladesh study, 450 K
(N = 48) b

Bangladesh study, 850 K
(N = 32) b

n % n % n % n %

Age, years, mean (SD) 48.7 (4.7) 48.7 (4.7) 39.7 (8.1) 41.7 (6.3)

Male 21 52.5 20 51.3 48 100.0% 32 100.0%

Ever smoker 16 40.0 16 41.0 21 43.8% 20 62.5%

Prenatal/early-life arsenic exposure 20 50.0 19 48.7 – – – –

High arsenic exposure c – – – – 23 47.9% 11 34.4%
a DNAm analysis of PBMC and buccal cell samples performed among the same study participants. b DNAm analyses in Bangladesh studies conducted in PBMCs. c

Cutoff of ≥ 100 μg/L water arsenic used to classify arsenic exposure for 450K analyses (low exposure median, range, and IQR: 57.0 μg/L; 50.0–100.0 μg/L; 51.5,
72.9 μg/L; high exposure median, range, and IQR: 249.7 μg/L; 160.0–500.0 μg/L; 173.5, 253.5 μg/L) and 104 μg/L water arsenic used to classify arsenic exposure for
850K analyses (low exposure median, range, and IQR: 94.0 μg/L; 50.0–104.0 μg/L; 67.0, 100.0 μg/L; high exposure median, range, and IQR: 250.0 μg/L; 112.0–
500.0 μg/L; 143.0, 363.5 μg/L)

Table 2 Associations between arsenic exposure and cell type proportion estimates

Chile study, PBMCs
(N = 40)

Bangladesh study, 450 K
(N = 48)

Bangladesh study, 850 K
(N = 32)

Ba p Ba p Ba p

CD8+ T cells −0.03 0.18 0.05 0.018 0.02 0.28

CD4+ T cells −0.02 0.54 0.00 0.93 0.01 0.66

NK 0.01 0.89 0.01 0.75 −0.06 0.14

B cells 0.03 0.11 0.02 0.16 0.02 0.42

Monocytes 0.01 0.58 −0.05 0.003 − 0.01 0.73

Granulocytes 0.00 0.89 −0.03 0.12 0.01 0.45
a Linear models predicting Housman estimated cell type proportions and adjusted by age, smoking status (ever smoker) and sex (in Chile study)
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λ = 1.07, suggesting that our meta-analysis was not im-
pacted by genomic inflation (Table 4 and Supplemental
Fig. S3). We identified one DMP (cg13490635, annotated
to RBPMS; FDR = 0.024) (Fig. 1A and B). The probe was
positively associated with arsenic exposure across all
EWAS but only achieved significance individually in the
Bangladesh 450K study (p < 0.001) (Table 5 and Add-
itional File 1), and showed evidence of moderate hetero-
geneity (I2 = 43.6; pheterogeneity = 0.17) (Supplemental
Table S1).
We meta-analyzed results including the PBMC EWAS

and the Chile buccal cell EWAS. Using fully adjusted
models, λ = 1.06 (Table 4). We identified three DMPs:
cg09275980 annotated to SNORD116–29; cg20784693,
annotated to HDAC4, and cg18263451, annotated to
C1orf63 (FDR < 0.05) (Table 5 and Fig. 1C and D).
Methylation of cg09275980 had a positive effect estimate
and methylation of cg20784693 had a negative effect es-
timate across all four EWAS (Additional File 1). Methy-
lation of cg18263451 was negatively associated with
arsenic exposure in the Bangladesh studies and the Chile
buccal cell study; the direction of association was

positive in the Chile PBMC study but did not achieve
statistical significance (p > 0.05). The probes cg09275980
and cg18263451 displayed heterogeneity across EWAS
(I2 = 68.4; pheterogeneity = 0.023 and I2 = 77.3; pheterogeneity =
0.004, respectively) whereas there was no evidence of
heterogeneity for cg20784693 (I2 = 0.0; pheterogeneity =
0.47) (Supplemental Table S1).
In regional analysis of the PBMC meta-analysis, 11

DMRs were identified (Table 6 and Fig. 1B), and in ana-
lysis of the PBMC + buccal cell meta-analysis, 16 DMRs
were identified (Table 6 and Fig. 1D). Eight DMRs over-
lapped between the PBMC and PBMC + buccal cell ana-
lyses. In addition, both analyses identified two DMRs
within < 7 kilobase pairs located on chromosome 7 and
annotated to HOXA13 and HOXA11-AS.
In the fully adjusted PBMC meta-analysis, 8 probes

were differentially methylated at FDR < 0.10 and in-
cluded in a KEGG pathway analysis. Three KEGG path-
ways were identified as including an overrepresentation
of genes containing differential methylation: fatty acid
elongation (p = 0.012), fatty acid metabolism (p = 0.030),
and lysosome (p = 0.047) (Supplemental Table S2). Basal

Table 3 Summary of results of individual EWAS. Number of differentially methylated probes (DMPs) and differentially variable probes
(DVPs) identified in individual EWAS at p < 0.05 and FDR < 0.05, where applicable

Adjusted for sex, age, and smoking status Adjusted for cell type proportions, age, and smoking status

All probes Common probes a All probes Common probes a

DMPs p < 0.05 p < 0.05 p < 0.05 p < 0.05

Chile, PBMCs 24,853 13,558 46,946 23,116

Chile, buccal cells 21,745 11,896 42,563 21,336

Bangladesh, 450 K 51,839 47,876 19,913 18,301

Bangladesh, 850 K 10,422 5919 14,935 7954

DVPs p < 0.05 FDR < 0.05 p < 0.05 FDR < 0.05 p < 0.05 FDR < 0.05 p < 0.05 FDR < 0.05

Chile, PBMCs 34,906 4 19,094 3 43,813 5 23,487 3

Chile buccal, cells 36,131 5 20,659 2 35,928 7 20,735 4

Bangladesh, 450 K 22,741 5 20,925 4 18,318 3 16,904 2

Bangladesh, 850 K 33,921 47 17,646 17 53,875 51 26,155 24

DMP differentially methylated position, DVP differentially variable position. a Limiting probes to 377,351 included in all four EWAS

Table 4 Summary of results of meta-analyses. Number of differentially methylated probes (DMPs) and differentially variable probes
(DVPs) and values of the genomic inflation factor (λ) in the PBMC meta-analysis (i.e., including the Chile PBMC study, Bangladesh
450 K study, and Bangladesh 850 K study) and PBMC + buccal cell meta-analysis (i.e., including the Chile buccal cell study)

Adjusted for sex, age, and smoking status Adjusted for cell type proportions, age, and smoking status

p < 0.05 FDR < 0.05 λ p < 0.05 FDR < 0.05 λ

DMPs

PBMCs 19,632 0 0.98 23,361 1 1.07

PBMCs + buccal cells 21,321 0 1.04 22,612 3 1.06

DVPs

PBMCs 26,431 25 1.13 28,578 23 1.17

PBMCs + buccal cells 24,912 20 1.11 28,399 19 1.18

DMP differentially methylated position, DVP differentially variable position
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Table 5 Differentially methylated positions (DMPs) and differentially variable positions (DVPs) in meta-analyses. DMPs and DVPs
(FDR < 0.05) in the PBMC meta-analysis (i.e., including the Chile PBMC study, Bangladesh 450 K study, and Bangladesh 850 K study)
and PBMC + buccal cell meta-analysis (i.e., including the Chile buccal cell study) adjusted for age, smoking status, cell type
proportions, and sex (in the Chile studies). CpGs identified in multiple meta-analyses are bolded

CpG Effect Direction a p FDR Chr Position Gene Feature category

DMPs

PBMCs

cg13490635 0.31 + + + 6.30e-08 0.024 8 30,242,021 RBPMS;RBPMS 5’UTR;1stExon

PBMCs + buccal cells

cg09275980 0.31 + + + + 2.52e-07 0.042 15 25,350,925 SNORD116–29 TSS1500

cg20784693 −0.64 ---- 3.08e-07 0.042 2 239,984,030 HDAC4 Body

cg18263451 −0.12 - - + − 3.31e-07 0.042 1 25,573,180 C1orf63 Body

DVPs

PBMCs

cg23281729 0.97 - + + 2.86E-11 1.08E-05 18 78,005,477 PARD6G TSS200

cg27425262 0.82 + + + 2.26E-08 0.004 2 113,953,981 PSD4;LOC440839 Body;Body

cg11361658 0.17 + + + 6.94E-08 0.009 5 128,452,311

cg03205258 0.69 + + + 9.72E-08 0.009 22 19,929,274 TXNRD2;COMT; COMT 1stExon;1stExon; 5’UTR

cg09692492 −0.35 --- 1.36E-07 0.010 22 23,744,717 ZDHHC8P Body

cg11032634 0.77 + + + 3.06E-07 0.019 22 19,929,254 TXNRD2;COMT 1stExon;TSS200

cg16511076 0.13 + + + 4.07E-07 0.022 4 48,887,480 OCIAD2 3’UTR

cg22387890 0.55 + + + 5.44E-07 0.023 7 6,145,595 USP42 5’UTR

cg22749736 0.13 + + + 5.53E-07 0.023 11 1,306,759 TOLLIP Body

cg04080724 0.14 + + + 6.06E-07 0.023 4 140,202,327 C4orf49 TSS1500

cg05169951 0.23 + + + 6.99E-07 0.024 16 3,017,955 KREMEN2;PAQR4 Body;TSS1500

cg00668103 0.14 + + + 8.08E-07 0.025 7 100,084,730 C7orf51 Body

cg08207566 0.12 + + + 1.04E-06 0.030 4 174,086,461

cg01101647 0.13 + + + 1.13E-06 0.030 4 66,535,732 EPHA5 TSS200

cg07611790 0.11 + + + 1.25E-06 0.031 19 49,240,823 RASIP1 Body

cg11691429 0.21 + + + 1.39E-06 0.031 2 947,634 SNTG2 Body

cg21185289 0.38 + + + 1.45E-06 0.031 2 74,743,437 TLX2 3’UTR

cg08285768 0.11 + + + 1.48E-06 0.031 15 86,038,622 AKAP13 Body

cg13972353 0.15 + + + 1.57E-06 0.031 9 139,354,348 SEC16A Body

cg06740986 0.11 + + + 2.08E-06 0.039 1 184,838,417 FAM129A Body

cg21857098 0.12 + + + 2.46E-06 0.043 15 25,638,137 UBE3A Body

cg03479942 0.13 + + + 2.50E-06 0.043 16 69,341,763 SNTB2 3’UTR

cg07984508 0.11 + + + 2.73E-06 0.045 15 77,426,719 SGK269 Body

PBMCs + buccal cells

cg23281729 0.99 −+++ 2.00E-14 7.51E-09 18 78,005,477 PARD6G TSS200

cg27425262 0.90 + + + + 4.52E-13 8.53E-08 2 113,953,981 PSD4;LOC440839 Body;Body

cg03205258 0.64 + + + + 7.95E-09 0.001 22 19,929,274 TXNRD2;COMT; COMT 1stExon;1stExon; 5’UTR

cg11032634 0.70 + + + + 5.69E-08 0.006 22 19,929,254 TXNRD2;COMT 1stExon;TSS200

cg04080724 0.14 + + + + 1.14E-07 0.009 4 140,202,327 C4orf49 TSS1500

cg26384602 −0.12 ---- 1.87E-07 0.010 19 41,798,386 HNRNPUL1 Body

cg11361658 0.16 + + + + 1.90E-07 0.010 5 128,452,311

cg09692492 −0.30 ---- 2.32E-07 0.011 22 23,744,717 ZDHHC8P Body

cg22749736 0.12 + + + + 4.20E-07 0.018 11 1,306,759 TOLLIP Body
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cell carcinoma and melanogenesis were among the top
significant KEGG pathways but did not achieve statis-
tical significance (p = 0.053 and p = 0.073, respectively).
The pathway analysis for PBMCs + buccal cells included
25 probes (FDR < 0.10) and identified 5 pathways: one

carbon pool by folate (p = 0.019), proximal tubule bicar-
bonate reclamation (p = 0.023), mTOR signaling pathway
(p = 0.029), fatty acid elongation (p = 0.035), and autoph-
agy (p = 0.042). No KEGG pathways achieved statistical
significance after an FDR correction. Figure 2 provides

Table 5 Differentially methylated positions (DMPs) and differentially variable positions (DVPs) in meta-analyses. DMPs and DVPs
(FDR < 0.05) in the PBMC meta-analysis (i.e., including the Chile PBMC study, Bangladesh 450 K study, and Bangladesh 850 K study)
and PBMC + buccal cell meta-analysis (i.e., including the Chile buccal cell study) adjusted for age, smoking status, cell type
proportions, and sex (in the Chile studies). CpGs identified in multiple meta-analyses are bolded (Continued)

CpG Effect Direction a p FDR Chr Position Gene Feature category

cg21921619 −0.15 -+-- 5.48E-07 0.021 10 116,852,791 ATRNL1 TSS1500

cg07935287 −0.13 ---- 7.91E-07 0.026 18 54,318,347 WDR7 TSS1500

cg05169951 0.22 + + + + 8.19E-07 0.026 16 3,017,955 KREMEN2;PAQR4 Body;TSS1500

cg21185289 0.37 + + + + 1.01E-06 0.030 2 74,743,437 TLX2 3’UTR

cg22387890 0.48 + + + + 1.12E-06 0.030 7 6,145,595 USP42 5’UTR

cg13171197 0.12 + − + + 1.46E-06 0.037 7 90,916,020

cg24754507 −0.10 ---- 1.55E-06 0.037 6 28,481,862 GPX6 Body

cg00355447 0.14 + + + + 1.80E-06 0.039 6 30,292,220 HCG18 Body

cg16511076 0.12 + + + − 1.87E-06 0.039 4 48,887,480 OCIAD2 3’UTR

cg04873963 −0.10 ---- 2.46E-06 0.049 16 2,518,322

DMP differentially methylated position, DVP differentially variable position. a Direction of association between arsenic exposure and DNAm in each EWAS. For
PBMCs, associations are listed in the following order: Bangladesh 850 K, Bangladesh 450 K, Chile PBMCs. For PBMCs + buccal cells, associations are listed in the
following order Bangladesh 850 K, Bangladesh 450 K, Chile PBMCs, Chile buccal cells

Fig. 1 Volcano and Manhattan plots of differentially methylated positions (DMPs) and differentially methylated regions (DMRs). A and B. Volcano
plot and Manhattan plot of meta-analysis of PBMC EWAS (i.e., the Chile PBMC study, Bangladesh 450K study, and Bangladesh 850K study)
adjusted for age, smoking status, cell type proportions, and sex (in the Chile studies). C and D. Volcano plot and Manhattan plot of meta-analysis
of PBMC + buccal cell EWAS (i.e., the Chile PBMC study, Chile buccal cell study, Bangladesh 450K study, and Bangladesh 850K study) adjusted for
age, smoking status, cell type proportions, and sex (in the Chile studies). In all plots, DMPs at FDR < 0.05 are shown as black points; the Bonferroni
and FDR levels of significance are indicated by a solid and dashed red line, respectively; and DMRs are indicated by blue lines
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Table 6 Differentially methylated regions (DMRs) and differentially variable regions (DVRs) in meta-analyses. DMRs and DVRs in the
PBMC meta-analysis (i.e., including the Chile PBMC study, Bangladesh 450 K study, and Bangladesh 850 K study) and PBMC + buccal
cell meta-analysis (i.e., including the Chile buccal cell study) adjusted for age, smoking status, cell type proportions, and sex (in the
Chile studies). Genes identified in multiple meta-analyses are bolded

Chromosome Start End N probes Sidak p Gene

DMRs

PBMCs

10 134,150,451 134,150,760 7 1.47E-09 LRRC27

7 27,231,819 27,232,150 3 1.20E-07 HOXA13

10 91,295,045 91,295,650 11 1.35E-07 SLC16A12

7 27,225,733 27,226,148 7 8.99E-07 HOXA11-AS

8 23,563,925 23,564,294 8 1.26E-05 NKX2–6

1 203,320,190 203,320,541 6 1.35E-05 FMOD

11 15,095,017 15,095,178 6 5.68E-05 CALCB

16 88,747,591 88,747,919 4 7.15E-05 SNAI3-AS1;SNAI3

15 83,953,690 83,953,883 10 3.77E-05 BNC1

13 51,640,142 51,640,442 5 1.15E-04 GUCY1B2

19 49,220,102 49,220,235 4 5.36E-04 MAMSTR

PBMCs + buccal cells

10 134,150,451 134,150,760 7 3.42E-10 LRRC27

7 27,225,543 27,226,148 8 4.17E-09 HOXA11-AS

7 27,231,819 27,232,150 3 1.04E-08 HOXA13

1 203,320,190 203,320,541 6 3.72E-08 FMOD

11 15,095,017 15,095,178 6 9.60E-07 CALCB

16 88,747,591 88,747,919 4 3.93E-07 SNAI3-AS1;SNAI3

8 23,563,925 23,564,294 8 2.69E-05 NKX2–6

2 207,139,131 207,139,445 6 0.001 ZDBF2

1 247,537,159 247,537,369 3 1.75E-05 LOC107985115

8 145,638,881 145,639,181 3 3.34E-05 SLC39A4

16 85,518,901 85,519,061 3 0.073 GSE1

17 17,603,837 17,604,184 3 5.40E-05 RAI1

6 28,584,003 28,584,155 10 0.001 ZBED9

19 49,220,102 49,220,235 4 5.36E-04 MAMSTR

7 120,968,877 120,969,174 8 1.20E-04 WNT16

19 44,488,121 44,488,269 5 9.10E-04 ZNF155

DVRs

PBMCs

22 19,929,066 19,929,557 9 4.27E-13 TXNRD2;COMT;TXNRD2

16 1,844,927 1,845,113 6 3.56E-11 IGFALS

22 39,784,481 39,784,982 5 7.84E-09 SYNGR1

3 8,809,306 8,809,715 4 6.66E-08 OXTR

2 947,515 947,634 3 6.36E-07 SNTG2

2 48,844,728 48,844,984 6 5.84E-06 STON1-GTF2A1L;GTF2A1L

3 48,700,269 48,700,498 8 2.02E-05 CELSR3

12 9,217,529 9,217,859 7 4.45E-05 LINC00612;A2M-AS1

16 53,407,423 53,407,808 5 7.37E-05 LOC102723373

10 134,150,451 134,150,760 7 6.52E-05 LRRC27
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the p-values and differentially methylated genes that
overlap with each KEGG pathway identified.
Meta-analysis results of differential variability are sum-

marized in Table 4. Significant probes are included in
Table 5. Effects sizes and p-values of individual EWAS
are included in Additional File 1 and measures of het-
erogeneity are listed in Supplemental Table S1. In our
meta-analysis of PBMCs the genomic inflation factor did
not show major departure from the expected distribu-
tion (λ = 1.17) (Table 4 and Supplemental Fig. S4). Al-
though this genomic inflation factor was greater than
that of our meta-analysis for DMPs, it has previously
been shown that λ varies with the number of true associ-
ations [54]. We identified 23 DVPs (FDR < 0.05), of
which 22 had a positive pulled effect size (Table 5 and
Fig. 3A and B) and 21 had a positive effect estimate
across all three EWAS (Additional File 1). Approxi-
mately half of FDR-significant DVPs showed evidence
for heterogeneity (among 11 probes, I2 ≥ 58.2 and phetero-
geneity < 0.10) (Supplemental Table S1).
Our DVP PBMC + buccal cell meta-analysis had a λ =

1.18 and resulted in 19 DVPs (FDR < 0.05) (Table 4).
Thirteen DVPs had a positive pooled effect size (Table 5

and Fig. 3A and B). Among significant DVPs, 15 CpGs
had a consistent direction of association across all four
EWAS (Additional File 1). Seven of the 19 DVPs showed
evidence for heterogeneity (I2 ≥ 54.4 and pheterogeneity <
0.10) (Supplemental Table S1).
We did not observe overlap between DMPs and DVPs

Twelve DVPs were identified in both the PBMC meta-
analysis and PBMC + buccal cell meta-analysis.
We identified 11 and 29 DVRs from PBMC meta-

analysis results and PBMC + buccal cell meta-analysis
results, respectively (Table 6 and Fig. 3B and D). Nine
DVRs were common for both PBMC and PBMC + buc-
cal cell analyses.
A total of 85 DVPs with FDR < 0.10 in our fully ad-

justed PBMC meta-analysis were included in KEGG
pathway analyses. We identified five KEGG pathways
containing an overrepresentation of differentially vari-
able genes: N-glycan biosynthesis (p = 0.014), leishman-
iasis (p = 0.036), endocytosis (p = 0.042), IL-17 signaling
pathway (p = 0.042), and toll-like receptor signaling
pathway (p = 0.050) (Fig. 2 and Supplemental Table S2).
Among results from the PBMC + buccal cell meta-
analysis, 106 probes (FDR < 0.10) were included in a

Table 6 Differentially methylated regions (DMRs) and differentially variable regions (DVRs) in meta-analyses. DMRs and DVRs in the
PBMC meta-analysis (i.e., including the Chile PBMC study, Bangladesh 450 K study, and Bangladesh 850 K study) and PBMC + buccal
cell meta-analysis (i.e., including the Chile buccal cell study) adjusted for age, smoking status, cell type proportions, and sex (in the
Chile studies). Genes identified in multiple meta-analyses are bolded (Continued)

Chromosome Start End N probes Sidak p Gene

6 90,597,340 90,597,591 4 1.20E-04 GJA10

PBMCs + buccal cells

22 19,929,066 19,929,557 9 5.12E-13 TXNRD2;COMT;TXNRD2

6 30,038,882 30,039,600 25 1.49E-09 RNF39

6 32,064,656 32,065,043 16 4.68E-06 TNXB

3 8,809,306 8,809,715 4 1.90E-07 OXTR

5 178,986,291 178,986,728 6 1.16E-05 RUFY1

6 31,651,070 31,651,291 5 0.079 LY6G5C

22 39,784,769 39,784,982 3 1.57E-05 SYNGR1

2 48,844,728 48,844,984 6 1.45E-05 STON1-GTF2A1L;GTF2A1L

6 32,551,749 32,552,042 3 1.72E-05 HLA-DRB1

12 9,217,529 9,217,859 7 4.29E-05 LINC00612;A2M-AS1

2 947,515 947,634 3 7.33E-05 SNTG2

18 59,221,320 59,221,601 3 3.20E-05 CDH20

16 1,844,927 1,845,113 6 6.80E-05 IGFALS

6 168,106,055 168,106,326 4 5.79E-05 LINC02487

16 53,407,423 53,407,753 4 5.41E-04 LOC102723373

7 157,667,762 157,668,051 4 8.85E-05 PTPRN2

10 134,150,451 134,150,760 7 8.96E-05 LRRC27

19 37,825,307 37,825,446 6 4.27E-04 ZNF875

19 36,246,816 36,246,906 3 8.87E-04 HSPB6

DMP differentially methylated position, DVP differentially variable position
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pathways analysis, yielding four KEGG pathways: fruc-
tose and mannose metabolism (p = 0.014), arachidonic
acid metabolism (p = 0.017), endocytosis (p = 0.017), and
cell adhesion molecules (p = 0.049). AMPK signaling
pathway was also among the top KEGG pathways but
did not achieve statistical significance (p = 0.051). No
pathways were significant after an FDR correction.
Based on review of published EWAS, none of our

DMPs or DVPs had previously been associated with ar-
senic exposure. We also compared genes containing dif-
ferential methylation to previous EWAS. The DMP
cg20784693 (HDAC4) and the DVPs cg00355447
(HCG18), cg23281729 (PARD6G), cg07611790 (RASIP1),
cg13490635 (RBPMS), cg11691429 (SNTG2), and
cg22749736 (TOLLIP) are located in genes previously
identified as including differentially methylated CpGs
with total maternal urinary arsenic in cord blood in a
birth cohort in Mexico (FDR < 0.05) [16] (summarized in
Supplemental Table S3). HNRNPUL1, annotated to the
DVP cg26384602, was also found to be differentially
methylated with maternal urinary arsenic in cord blood
in a Taiwanese birth cohort [17]. We also compared our
DMPs and DVPs to all nominally significant DMPs pre-
viously associated with urinary arsenic levels among

adults in the US (p < 0.05) [9]. Notably, HDAC4 included
38 DMPs, SNTG2 included 9 DMPs, and TOLLIP in-
cluded 8 DMPs identified by Bozack et al. in the Strong
Heart Study, a cohort of American Indian adults from
the Great Plains and the Southwest [9] (p < 0.05).
SLC39A4, WNT16, and GSE1, located in DMRs in our

meta-analyses; and CELSR3, RUFY1, and TNXB, located
in DVRs, were found to include a differentially methyl-
ated CpGs in Rojas et al. In addition, NKX2–6 and
SNAI3, annotated to DMRs in our meta-analyses; and
ZNF875, annotated to a DVR, have previously been
identified as differentially methylated among adults with
arsenicosis in Mexico [55]. Expression of the immune
response gene HLA-DRB1, located in a DVR in our
study, has been associated with arsenic exposure in a
case-control study of adults in the US [56].

Discussion
This study utilizes four DNAm datasets to analyze
epigenome-wide associations with arsenic exposure
using a two-step approach of (1) a harmonized data pro-
cessing and analysis pipeline and (2) meta-analysis to
combine individual EWAS results. We leverage data
from two distinct populations with high chronic arsenic

Fig. 2 Summary of results of KEGG pathway analyses. Left panel: KEGG pathways (p < 0.05) associated with differentially methylated positions
(DMPs) and differentially variable positions (DVPs) identified in the PBMC meta-analysis (i.e., including the Chile PBMC study, Bangladesh 450 K
study, and Bangladesh 850 K study) and PBMC + buccal cell meta-analysis (i.e., including the Chile buccal cell study) adjusted for age, smoking
status, cell type proportions, and sex (in the Chile studies). P-values are shown on the x-axis. Right panel: Genes including DMPs or DVPs that are
members of each KEGG pathway

Bozack et al. Environmental Health           (2021) 20:79 Page 12 of 18



exposure: adults in Chile exposed to arsenic prenatally
and early in life and adults in Bangladesh with concur-
rent high arsenic exposure. Although DNAm was mea-
sured in different tissue types (i.e., PBMCs and buccal
cells in the Chile study) and using different platforms
(i.e., the 850 K and 450 K microarrays), we identified po-
sitions and regions with significant differential methyla-
tion and variability (FDR < 0.05).
We conducted meta-analyses of differential methyla-

tion and differential variability limiting to PBMC EWAS
and including both PBMC and buccal cell EWAS, identi-
fying 1 and 3 DMPs, and 23 and 19 DVPs, respectively
(FDR < 0.05). Although no DMPs overlapped between
meta-analyses with and without buccal cells, 12 DVPs
were common for both analyses. In addition, we identi-
fied 11 and 16 DMRs, and 11 and 19 DVRs limiting ana-
lyses to PBMCs and including buccal cells, respectively.
Eight DMRs overlapped between analyses and 9 DVRs
overlapped between analyses with and without including
buccal cells.
We identified a greater number of statistically signifi-

cant DVPs than DMPs. To our knowledge, this is the
first study to investigate associations between chronic
arsenic exposure and differential DNAm variability;

however, results suggest the importance of differential
variability as a biological mechanism or biomarker of ar-
senic exposure. Genomic regions with increased variabil-
ity in methylation have been associated with functional
control of gene expression (e.g., transcription start sites)
[57, 58] and Gene Ontology pathways related to devel-
opment [59]. Variably methylated regions may be par-
ticularly responsive to environmental conditions. For
example, stochastic and environmentally induced
DNAm variability could contribute to epigenetic drift
not necessarily associated with mean changes in DNA
methylation. The hypothesis that increased DNAm vari-
ability might precede neoplasia has been supported for
different tissues [60, 61]. Environmental exposures have
been shown to increase variability of DNAm. For ex-
ample, a study of genetically-identical fibroblasts cul-
tured under normal and low-nutrient conditions
identified 135 regions containing differential variability
and enrichment for imprinted genes [58].
Although we did not observe overlap between our re-

sults and previous EWAS on the level of individual loci,
there was substantial overlap between annotated genes.
Two of our DMPs and five DVPs were annotated to dif-
ferentially methylated genes associated with maternal

Fig. 3 Volcano and Manhattan plots of differentially variable positions (DVPs) and differentially variable regions (DVRs). A and B. Volcano plot and
Manhattan plot of meta-analysis of PBMC EWAS (i.e., the Chile PBMC study, Bangladesh 450K study, and Bangladesh 850K study) adjusted for age,
smoking status, cell type proportions, and sex (in the Chile studies). C and D. Volcano plot and Manhattan plot of meta-analysis of PBMC and
buccal cell EWAS (i.e., the Chile PBMC study, Chile buccal cell study, Bangladesh 450K study, and Bangladesh 850K study) adjusted for age,
smoking status, cell type proportions, and sex (in the Chile studies). In all plots, DVPs at FDR < 0.05 are shown as black points; the Bonferroni and
FDR levels of significance are indicated by a solid and dashed red line, respectively; and DVRs are indicated by blue lines
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urinary arsenic in an EWAS of cord blood in Mexico
(FDR < 0.05) [16], and two DMPs and 22 DVPs were an-
notated to genes associated with urinary arsenic in an
EWAS of adults exposed to arsenic in the US (p < 0.05).
We also observed overlap between genes located in our
DMRs and DVRs and genes including differential
methylation associated with prenatal and adult expos-
ure [16, 55].
Lack of a consistent epigenetic signature of arsenic ex-

posure across EWAS suggests that arsenic broadly im-
pacts DNAm across the genome or that detected signals
are influenced by population characteristics. However,
arsenic may also be impacting epigenetic dysregulation
on the level of common genes or regions, rather than
specific loci. This might be supported by the observed
increase in DNA methylation variability rather than
mean changes to individual sites.
In pathway analyses, we identified several KEGG path-

ways with biological relevance to arsenic exposure.
KEGG pathways associated with DMPs in our PBMC
and PBMC + buccal cell meta-analyses included lyso-
some, autophagy, and mTOR signaling. The AMPK sig-
naling pathway was among the top 5 associated with
DVPs in PBMC and PBMC + buccal cell meta-analyses,
although it did not achieve statistical significance (p =
0.051). Autophagy is regulated by mTORC1 and AMPK;
mTORC1 represses autophagy whereas AMPK promotes
autophagy [62]. Reactive oxygen species may affect au-
tophagy by inhibiting mTORC1 [63]. Autophagy is a po-
tential mechanism through which arsenic exposure
induces adverse health outcomes including type 2 dia-
betes mellitus (T2DM); hepatic autophagy impacts cellu-
lar metabolism and affects glucagon and insulin levels
[64]. In a mouse model with a high fat diet, arsenic ex-
posure increased oxidative stress and hepatic autophagy,
a potential mediating pathway between arsenic exposure
and T2DM [63]. In addition, arsenic exposure may be
related to lysosome activity as seen in treatment of acute
promyelocytic leukemia (APL). An in vitro study demon-
strated that arsenite destabilizes lysosomes, releasing
proteases which act on the promyelocytic leukemia and
retinoic acid receptor α (PML/RARα), a fusion protein
expressed by APL cells [65].
The KEGG pathway one carbon pool by folate was

also associated with DMPs in our PBMC and PBMC +
buccal cell meta-analyses. One-carbon metabolism
(OCM) is the biochemical pathway that synthesizes S-
adenosylmethionine (SAM). SAM serves as the methyl
donor in arsenic metabolism [66], a process that reduces
arsenic toxicity and facilitates urinary excretion of ar-
senic. Although arsenic methylation capacity is influ-
enced by one-carbon metabolism [67], it is not known
the extent to which arsenic exposure may affect regula-
tion of OCM. It should be noted, however, that results

of KEGG pathway analyses are based on statistical asso-
ciations and should be interpreted with caution. Further
research is necessary to understand the relationships be-
tween arsenic exposure, changes in DNAm, and dysreg-
ulation of biological pathways.
This study has several limitations. We leveraged data

from studies of two populations that differed in genetic
background, exposure levels and measurement, and tim-
ing of exposure, and it is not known how these factors
may impact associations between arsenic and epigenetic
dysregulation. For example, changes in DNAm due to
exposure limited to prenatal and early-life periods may
not persist into adulthood. In addition, the Chile and
Bangladesh studies may have exposure misclassification.
In the Chile study, participants were classified as ex-
posed or not exposed based on place of birth although
good historical records of arsenic water concentration
are available in the study area, and in the Bangladesh
study, participants were classified based on well water
arsenic concentration. However, we expect exposure
misclassification to be nondifferential. Our choice of a
water arsenic concentration cutoff to classify high and
low exposure in the Bangladesh studies may have influ-
enced results. Dichotomizing continuous variables is
rarely warranted; however, we chose to use this dichot-
omous exposure variable defined by values at or near
the median for each study (1) due to lack of continuous
exposure data in the Chile studies, (2) to minimize ex-
posure misclassification that could be introduced by a
single-timepoint continuous variable representing
chronic exposure throughout participants’ lifetimes, and
(3) to ensure sufficient contrast between high- and low-
exposure groups while maximizing group size. It should
also be noted that although including multiple tissue
types could increase heterogeneity across EWAS, a
smaller proportion of FDR-significant DVPs identified in
our PBMC + buccal cell meta-analysis had evidence of
heterogeneity (seven of 19 DVPs had I2 ≥ 54.4 and phetero-
geneity < 0.10) than in our meta-analysis restricted to
PBMCs (11 of 23 DVPs had I2 ≥ 58.2 and pheterogeneity <
0.10). The observed heterogeneity may also be due in
part to the number of studies included in our meta-
analyses, as I2 may be biased in meta-analyses with few
studies [68].
The Chile studies may also have been influenced by

sex-specific effects. Our ability to test for sex-specific ef-
fects was limited by small samples sizes and DNAm was
measured among males only in the Bangladesh studies.
Although sex-specific associations between arsenic
exposure and other measures of epigenetic regulation
including global levels of 5-hydroxymethylcytosine [69],
5-methylcytosine [70], and post-translational histone
modifications [7] have been reported, few EWAS of ar-
senic exposure have reported sex-stratified analyses. In
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an EWAS of cord blood DNAm in Bangladesh (N =
127), 3 CpGs were associated with arsenic exposure in
early gestation among male infants only (FDR < 0.05),
and there was a stronger trend toward a negative associ-
ation between exposure and DNAm among males (74%
of the top 500 CpGs among males vs. 41% among fe-
males) [12]. A greater number of DMPs was also identi-
fied among males in an EWAS of prenatal arsenic
exposure on DNAm measured at age 9 in Bangladesh
(N = 113): 9, 57, and 15 CpGs were associated with ex-
posure among children overall, males, and females, re-
spectively (FDR < 0.05), with no overlap between CpGs
identified in sex-stratified analyses [14]. However, in an
EWAS of arsenic exposure in the Strong Heart Study
(N = 2,325), substantial sex-specific effects in stratified
analyses were not observed with all FDR-significant
CpGs achieving nominal significance in sex-stratified
analyses (p < 0.05) [9]. Further, in our study, there is in-
sufficient evidence to conclude that prenatal exposure is
associated with sex in the Chile study’s datasets (Pear-
son’s chi-squared test p = 1, 0.88 in the PBMC and the
buccal studies, respectively). However, considering previ-
ously observed sex-specific associations, future meta-
analyses including larger samples sizes should investigate
potential sex-specific effects through stratified analyses.
This study was strengthened by using a common data

processing and analysis pipeline. Differences in data pro-
cessing methods including statistical methods applied to
minimize bias (e.g., normalization, correction for cell
type distribution) may limit the ability to compare find-
ings across previous EWAS. In addition, small study
sizes and inadequate statistical power have been frequent
limitations of previous EWAS of arsenic exposure [8].
Although the four individual EWAS used in this study
had small sample sizes, combining results in a meta-
analysis allowed us to increase statistical power and de-
tect significant associations with exposure. As the first
meta-analysis of DNAm and arsenic exposure, this study
may serve a model for conducting a larger meta-analysis
leveraging EWAS with larger samples sizes and inclusive
of more diverse populations and exposure levels, or as a
foundation for a validation study conducted in a larger
cohort.

Conclusions
This study provides a model for leveraging EWAS with
small sample sizes to detect epigenome-wide associa-
tions with environmental exposures. To our knowledge,
this is the first meta-analysis of associations between
chronic arsenic exposure and DNAm and may provide a
framework for conducting larger meta-analyses. Drawing
upon four EWAS conducted in distinct populations
(adults with high prenatal and early-life exposure in
Chile and adults with high concurrent exposure in

Bangladesh) and tissue types (PBMCs and buccal cells),
we identified differential mean and variable methylation
at individual loci and regions. We also identified KEGG
pathways that may be related to mechanisms of arsenic
toxicity. Future meta-analyses including studies con-
ducted in different populations may provide more infor-
mation regarding associations between chronic arsenic
exposure and epigenetic dysregulation. In addition, re-
search is needed to fully understand the downstream ef-
fects of differences in DNAm levels and variability on
gene expression and health outcomes.
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