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Chapter 20

Fungal Phylogenomics

Robert Riley and Laszlo Nagy

Abstract

Phylogenomics aims to infer the evolutionary relationships of organisms, and their genomes, genes, and 
proteins, from genomic data. Understanding the evolution of these components can provide clues about 
their biological functions. Here we describe minimal protocols for inferring families of genes (and the 
proteins they encode), and using them in phylogenomic analyses to infer species trees.

Key words Phylogenomics, Genomics, Fungi, Phylogeny inference, Phylogenetic tree, MCL cluster-
ing, Protein families, Orthologs

1 Introduction

A key insight emerging from early genomics studies [1, 2] was that 
proteins occur in families: groups of proteins with a common evo-
lutionary origin, inferred by their similar sequence, structure, and 
biological function. Protein families are groups of homologous 
proteins, that comprise both orthologs (sets of sequences sepa-
rated from each other by speciations) and paralogs (resulting from 
duplications after speciation). Orthologs generally retain the func-
tion of the ancestral gene, whereas paralogs can evolve new func-
tions (through neofunctionalization), or the two descendent 
paralogs might partition the ancestral function between each other 
(subfunctionalization), an important consideration for choosing 
gene families for phylogenomics.

Despite floods of genome sequence data the bioinformatic 
detection of protein families, given a set of predicted genes, and 
proteins they encode, remains a significant challenge [3–6]. 
Identifying groups of orthologous proteins is important because 
they usually have similar functions, and similarity to proteins of 
known function is often a basis for assigning functional annota-
tions to the proteins predicted from newly sequenced genomes. 
Moreover, for protein families of known general function, observ-
ing the copy number variations (expansions and contractions) can 
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provide insights into the biology of organisms, as reported for the 
distribution of plant cell wall degrading enzyme genes (e.g., class 
II lignin peroxidases) in white rot versus brown rot fungi [7].

Markov clustering methods, e.g., OrthoMCL [5], are useful 
for assigning proteins into families given a matrix of all-vs-all pair-
wise sequence similarity in a set of proteins. Importantly for phy-
logenomic analyses, these protein sets can be from multiple 
organisms. OrthoMCL is an example of readily available software 
that applies the Markov Cluster algorithm [8], a clustering method 
for graphs, to the problem of assigning proteins to families. Other 
MCL-based methods, such as TRIBE-MCL [3], will produce 
comparable results for the analyses we describe here.

Phylogenetic tree inference [9–11] is generally based on mul-
tiple sequence alignments as input. A typical approach is to concat-
enate the sequences of a few conserved genes, resulting in a 
“super-sequence” from each organism. Genome sequencing, and 
the comprehensive sets of proteins they provide, enables us to use 
hundreds to thousands of orthologous genes and the combined 
historical evidence they make up for phylogenetic tree inference, 
thus taking full advantage of genome-wide data. Thus, the differ-
ences in the genealogies, evolutionary rates, potential biases and 
phylogenetic signal between individual gene families—if randomly 
distributed—are expected to average out and lead to robust sup-
port at multiple phylogenetic depths.

Genome-scale data provide a wealth of data for inferring 
phylogeny. These include ultraconserved genetic elements [12], 
conserved noncoding sequence regions, and whole transcrip-
tome, genome, or proteome-based methods when complete 
genome sequences are available. Here, we will focus on the lat-
ter. We present a strategy for inferring a phylogenetic tree of a 
collection of organisms for which we have sequenced genomes 
and predicted protein-coding gene sets. The strategy is based on 
identifying single copy gene families (those families where each 
organism contributes one and only one gene) among MCL-
inferred clusters, inferring multiple sequence alignments for the 
protein sequences, and performing phylogenetic analyses to 
infer species trees.

2 Materials

We provide an example data based on the dataset from [7]. 
Download the “filtered” protein sets for the organisms and the 
downloads section of the given URLs in Table 1.

Download and install the software in Table 2 according to each 
program’s documentation and your system’s requirements.

2.1 Data Download

2.2 Software 
Download and Install

Robert Riley and Laszlo Nagy
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3 Methods

Run OrthoMCL on your protein set as in http://orthomcl.org/
common/downloads/software/v2.0/UserGuide.txt.

Using OrthoMCL v2.0.9, we performed all-vs.-all BLAST 
with an E-value threshold of 10−5 and percent identity threshold of 
50% on 383,910 protein sequences predicted from 31 fungal 
genomes used in [7] (note that several of the genome annotations 
were updated since 2012, so our numbers might not exactly match 
that study). The BLAST results were processed using OrthoMCL’s 
scripts and clustering was performed with an inflation parameter of 
2.0 (consult current version of software’s documentation for 
details).

Running OrthoMCL on the above dataset resulted in some 
32,372 nonsingleton clusters. OrthoMCL also identified some 
2,149,920 pairs of orthologous genes (best-hit pairs of proteins 
that are across two species), 695,564 pairs of proteins whose best 
hit is within a species, and 634,134 co-orthologs (pairs of proteins 
across two species where the proteins are connected through both 
orthology and inparalogy).

Next, we identify the set of conserved single-copy clusters, in which 
each organism contributes only one protein (see Note 1). Such clus-
ters could be extracted from the OrthoMCL results (e.g., called 
groups.txt file) using a Python script like the one in Text Box 1.

3.1 Assign Proteins 
to Families Using 
OrthoMCL

3.2 Identify a Single- 
Copy Gene Set

Table 2 
Required software

Program Version URL

OrthoMCL 2.0.9 http://orthomcl.org

Python 2.7.4 https://www.python.org

MAFFT 7.221 http://mafft.cbrc.jp/alignment/software/

Gblocks 0.91b http://molevol.cmima.csic.es/castresana/Gblocks.html

ClustalW 2.1 http://www.clustal.org/clustal2/

RAxML 7.6.3 https://github.com/stamatak/standard-RAxML

FastTree 2.1.9 http://www.microbesonline.org/fasttree/#Install

ETE toolkit 3.0.0b36 http://etetoolkit.org

Fungal Phylogenomics
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Text Box 1: Python Script to Extract Single-Copy Clusters from an OrthoMCL Run

 

鄛
Such a script could be run using the UNIX command line:
python orthomcl_single_copy.py groups.txt > sin-
gle_copy.txt
Using this script, we extracted 510 single-copy clusters from 

the OrthoMCL results file groups.txt.

Robert Riley and Laszlo Nagy
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To produce a FASTA-format input file for multiple sequence 
alignment, we concatenate each organism’s protein sequences 
from the single-copy clusters, using a Python script as in Text 
Box 2. See also Note 2. on concatenation after multiple sequence 
alignment.

Text Box 2: Python Script to Produce a FASTA File with Concatenated Sequences from the Single-Copy OrthoMCL Clusters

 

3.3 Concatenate 
Protein Sequences 
from the Single-Copy 
Clusters

Fungal Phylogenomics
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We would run this script as, for example:
python concatenate_seq.py allprot.fasta single_
copy.txt concat.fasta

Use MAFFT [13], to align the concatenated sequences (see 
Note 2). We generally run MAFFT with automatically determined 
run options as follows:

mafft --auto concat.fasta > concat.mafft 
The –auto option determines an optimal tradeoff between 

speed and accuracy—for larger datasets it will choose one of 
the speed-oriented built-in algorithms of the software. On our 
data set, MAFFT v7.182 was able to align the 31 concatenated 
sequences, totaling about 2.7 Mb of data, in a few hours on a 
fairly typical Linux machine (compute time will vary depend-
ing on hardware and other considerations). Note that accuracy 
can be prioritized using other options of MAFFT (e.g., 
L-INS-I, G-INS-I, see also notes below) unless run times 
become prohibitive.

If we manually inspect the resulting MAFFT alignment, we see 
that it contains a significant number of regions of low alignment 
quality. This can be caused by multiple factors, including protein 
sequence divergence [14], insertions and deletions, potential 
gene fragments and inaccuracies in the alignment. Gapped and 
highly variable alignment regions may introduce noise into the 
analyses, which can result in low signal-to-noise ratios during 
phylogenetic inference. Therefore it is desirable to extract only 
the well-aligned portions of the alignment. Gblocks [15] is the 
most widely used method for this, although more recent tools, 
such as Trim-al [16] and Aliscore [17] also exist. Gblocks searches 
for contiguous stretches of well-aligned regions of a minimum 
length flanked by regions containing gaps or low overall align-
ment score. To extract the well-aligned regions from the MAFFT 
alignment, run Gblocks as follows:

Gblocks concat.mafft -t=p -e=-gb1 -b4=5
The Gblocks output indicates that the original alignment con-

sisted of 517,466 positions, whereas in the reduced Gblocks align-
ment, consisting of some 4736 conserved blocks, there are now 
121,960 positions (23%).

Use ClustalW to compute a tree using the neighbor-joining algo-
rithm [18]:

FOXVWDOZ���WUHH��LQ¿OH FRQFDW�PDIIW�JE�
This tree should take seconds to compute on a typical Linux 

machine. The tree file produced is concat.ph.

3.4 Multiple-Align 
Sequences 
with MAFFT

3.5 Extracting 
Well-Aligned Regions

3.6 Compute 
Neighbor Joining Tree 
with ClustalW

Robert Riley and Laszlo Nagy
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To prepare to run RAxML, use ClustalW to convert the Gblocks 
output to Phylip format:

FOXVWDOZ���FRQYHUW��LQ¿OH FRQFDW�PDIIW�JE��� 
output=phylip \
�RXW¿OH FRQFDW�PDIIW�JE��SK\
This step is necessary because, depending on version, RAxML 

may require that the alignment is input in Phylip format, not the 
FASTA format output by Gblocks.

Run the multithreading-enabled version of RAxML (a multicore 
computer with 16 cores is assumed for this example—specified 
with the parameter “–T”) as follows:
Variant 1. Maximum likelihood (ML) search without bootstrap:

raxmlHPC-PTHREADS-SSE3 -T 16 -s concat.mafft-gb1.
phy -n \
concat.mafft-gb1.phy.RAxML -o bat -p 12345 -m 
PROTGAMMAWAG

Variant 2. ML tree search with 100 rapid bootstrap replicates:
raxmlHPC-PTHREADS-SSE3 -T 16 -s concat.mafft-gb1.
phy -n \
concat.mafft-gb1.phy.RAxML -o bat -f a -x 12345 -p 
12345 \
-# 100 -m PROTGAMMAWAG

Variant 3. ML tree search with more thorough bootstrap analysis:
raxmlHPC-PTHREADS-SSE3 -T 16 -s concat.mafft-gb1.
phy -n \
concat.mafft-gb1.phy.500bootstrap.RAxML -b 12345 -p 
12345 \
-# 500 -m PROTGAMMAWAG
If bootstrapping and ML tree inference are separated in time, 

bootstrap frequencies will need to be mapped on the ML tree (or 
any other tree of interest), which can be done using the SumTrees 
script of the Dendropy package [19]:

sumtrees.py --decimals=0 --percentages \
��RXWSXW�WUHH�¿OHSDWK 0/BWUHHBDQQRWDWHG���ERRW-
strap.tre \
--target=concat.mafft-gb1.phy.RAxML \
concat.mafft-gb1.phy.500bootstrap.RAxML
Partitioned models can provide much better fit to the data (see 

below) and thus their use is recommended for careful tree searches. 
A partition table for RAxML has the definition and model for each 
gene on a separate line:

WAG, Cluster5679 = 1 - 194
WAG, Cluster4143 = 195 - 732
WAG, Cluster5655 = 733 - 887
...

3.7 Convert Gblocks 
Output 
to Phylip Format

3.8 Compute 
Maximum Likelihood 
Species Phylogeny 
Using RAxML

Fungal Phylogenomics
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We can perform partitioned tree search and bootstrap analysis 
as follows:

raxmlHPC-PTHREADS-SSE3 -T 16 -s concat.mafft-gb1.
phy -n \
concat.mafft-gb1.phy.RAxML -o bat -p 12345 -q par-
tition.table \
-m PROTGAMMAWAG
raxmlHPC-PTHREADS-SSE3 -T 16 -s concat.mafft-gb1.
phy -n \
concat.mafft-gb1.phy.500bootstrap.RAxML -b 12345 -p 
12345 \
-# 500 -q partition.table -m PROTGAMMAWAG

Alternatively, we can use FastTree (which, as its name suggests, 
generally runs faster) to compute an approximately maximum like-
lihood tree as follows:

FastTreeMP -wag < concat.mafft- gb1.phy > concat.
mafft-gb1.phy.wag.ft

How do the trees generated with RAxML, FastTree, and ClustalW 
compare with the published tree from [7]? We compare the trees 
using the ETE Toolkit [20] as follows:

ete3 compare -t RAxML_bestTree.concat.mafft-gb1.
phy.RAxML \
FRQFDW�PDIIW�JE��SK\�ZDJ�IW�FRQFDW�SK��U�ÀRXG-
as_2012.ph \
--unrooted
The –r option sets the published tree as a reference tree to 

compare the others to. We see in Table 3 that the trees gener-
ated with the more computationally expensive methods (maxi-
mum likelihood RAxML and approximately maximum likelihood 
FastTree), are somewhat more similar to the published tree than 
the NJ tree, as indicated by a shorter Robinson–Foulds distance 
[21] and greater percentage of shared edges. Although in this 
case the difference between the NJ tree and the ML trees are 
small, the this difference can be significant for larger and/or 
more challenging datasets, e.g., trees with short internal 
branches, long branches (long branch attraction) or in the pres-
ence of rate variation across genes or branches of the tree 
(see  Note 3). Notice that while the tree topologies from the NJ 
and ML analyses are mostly identical, there are some differences 
(see Note 4).

3.9 Compute Species 
Tree Using FastTree

3.10 Compare 
the Trees Obtained 
with Different Methods

Robert Riley and Laszlo Nagy
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4 Notes

 1. The quality of genome-scale datasets for phylogenomic infer-
ence largely determines the outcome of the analyses. The aim 
of dataset assembly is to maximize the amount of reliable 
phylogenetic information but minimize noise in the datasets. 
Some considerations for assembling maximally informative 
datasets follow.

The number of single copy genes, and thus the amount of 
universally available information, naturally decreases as the 
number of species increases, due to rarely occurring gene 
duplications, even in housekeeping gene families. When ana-
lyzing a large number of species (>30) gene tree-based meth-
ods for identifying suitable marker genes may yield more genes 
that can be used for phylogenomic reconstruction (see meth-
ods in [22] for details). In this case, gene trees are used to 
distinguish deep paralogs (genes which were duplicated prior 
to the last speciation events) from inparalogs (paralogs that 
arise in terminal nodes of the species tree, i.e., species-specific). 
Note that deep paralogs interfere with species tree estimation, 
whereas inparalogs do not—the choice of which inparalog to 
retain for phylogenetic analysis can be arbitrary, or can be 
based on their distance from the root of the tree. Collections 

Table 3 
Comparison of trees using ETE Toolkit

Source target tree used RAxML FastTree NJ

Effective tree size used for 
comparisons (after pruning 
not shared items)

31 31 31

Normalized Robinson–Foulds 
distance (RF/maxRF)

0.11 0.11 0.14

Robinson–Foulds symmetric 
distance

6 6 8

Maximum Robinson–Foulds 
value for this comparison

56 56 56

Frequency of edges in target 
tree found in the reference 
(1.00 = 100% of branches are 
found)

0.95 0.95 0.93

Frequency of edges in the 
reference tree found in target 
(1.00 = 100% of branches are 
found)

0.95 0.95 0.93

Fungal Phylogenomics
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of gene trees can be screened for deep paralogs using the 
scripts published in [22].

Another factor that should be considered during the 
assembly of phylogenomic datasets is contamination by highly 
divergent genes (e.g., due to sequencing errors or pseudo-
genes). Excessively long branches in individual gene trees can 
are usually signs of such contamination: a general rule of 
thumb (but quite liberal cutoff) is to exclude genes whose 
branch length accounts for >60% of the sum of all branch 
lengths in the gene tree [23]. Lower cutoff values will result in 
less contamination by divergent genes, but the cutoff should 
depend on the number of species in the dataset too (e.g., in a 
4-species tree, if all branches are of equal length then each 
branch accounts for 20% of the total tree length).

The identified single-copy clusters usually show a decreas-
ing trend in taxon occupancy: some clusters contain sequences 
for all species, whereas from most clusters few or more species 
will be missing due to functional constraints or the incom-
pleteness of genomic assemblies and annotations [24]. 
Incomplete clusters are still useful for phylogenomic inference, 
although nonrandomly distributed missing data can compro-
mise results [25]. Some authors use only orthologous genes in 
which all the species are represented, while others apply taxon 
occupancy cut-off. Considering there is a tradeoff between 
taxon occupancy and combined alignment length and that 
concatenated phylogenetic analyses are generally robust to 
even high amounts (50–80%) of missing data, when the distri-
bution of missing data is random, we recommend a taxon 
occupancy cutoff of 50%—only gene families that contain 
genes for >50% of the total number of species will be included 
in the analyses. Naturally, this cutoff can be adjusted to the 
specific phylogenetic exercise, dataset size and availability of 
genomic data.

 2. As an alternative to a priori concatenation of sequences, single 
gene alignments are often inferred first, followed by the con-
catenation of quality-filtered alignments. This strategy pre-
serves gene boundaries, allows for both concatenation and 
summary-based phylogenetic methods (which combine data 
from individual gene trees to infer a species tree) to be applied 
to the data, and may be substantially less computationally 
intensive. The implementation of this alternate approach is left 
as an exercise to the reader. Inferring alignments for each gene 
can be done by MAFFT (see above), or by alternative approaches 
such as the probabilistic method PRANK [26], which is among 
the most accurate multiple sequence alignment software avail-
able (which comes at a cost of longer run time). Note that 
PRANK produces more fragmented, but generally more accu-
rate alignments.

Robert Riley and Laszlo Nagy
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 3. In Maximum Likelihood or Bayesian methods, the evolution-
ary model used to model nucleotide or amino acid substitu-
tions is an important parameter to consider. This is particularly 
true for phylogenomic analyses, where biases, such as long 
branch attraction, can become pronounced due to poor model 
fit in larger datasets [25] under some circumstances. Software 
like jModeltest [27] and Partitionfinder [28] can be used to 
identify best-fit models for each gene in the dataset, although 
run times often limit the use of these methods and constrain 
the analyses to be performed with ad hoc selected models. In 
these cases exploring the sensitivity of the results to alternative 
commonly used evolutionary models is recommended. 
Advanced models that can account for incongruence among 
gene genealogies (e.g., incomplete lineage sorting) or differ-
ences in the rate of evolution across sites or in time (hetero-
tachy) are now available for the analysis of genome-scale data 
[25, 29]. One very straightforward way to improve the fit of 
the model to the data is the use of partitioned models. 
Partitioning is an important factor in accounting for data het-
erogeneity and different evolutionary rates. Most commonly, 
datasets are partitioned by gene, however, other partitioning 
schemes, e.g., binning genes by evolutionary rate are also com-
monly used. Finally, while concatenation-based methods can 
be sensitive to certain biases, summary-based methods that 
combine information from individual gene trees into a species 
tree hold promise to evade some of these caveats [30, 31].

The promise of phylogenomics has been to eliminate 
uncertainty from the reconstructions of evolutionary relation-
ships [32]. However, this turned out to be an optimistic 
expectation [33] as a number of case studies reporting spuri-
ous, but strongly supported, relationships came to light. It is 
therefore very important to assess the robustness of the 
inferred relationships under multiple parameter combinations. 
These can include phylogeny reconstruction under multiple 
partitioning schemes (e.g., partitioned vs. unpartitioned), 
methods (ML vs. Bayesian), evolutionary models or data selec-
tion strategies. Although a detailed review of these strategies is 
beyond the scope of this chapter, we have highlighted several 
possibilities for exploring the robustness of results attained 
using the outlined protocols.

 4. The tree topologies from the various analyses are mostly in 
agreement, but as is to be expected with phylogenomic analy-
ses, there are some differences (Fig. 1). The NJ and ML trees 
differ in their relative placement of the three clades shown in 
Fig. 1. In the NJ tree (Fig. 1, panel A) clade 1, containing the 
orders Polyporales (Postia placenta, Wolfiporia cocos, Fomitopsis 
pinicola, Trametes versicolor, Dichomitus squalens, and 
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Phanerochaete chrysosporium), Corticiales (Punctularia strigo-
sozonata), and Gloeophyllales (Gloeophyllum trabeum), is a sis-
ter group (meaning that they have the same parent node) to 
clade 2, which consists of fungi of the order Russulales 
(Heterobasidion irregulare and Stereum hirsutum). Clade 3, 
containing the orders Agaricales (Coprinopsis cinerea, Laccaria 
bicolor, and Schizophyllum commune) and Boletales (Serpula 
lacrymans and Coniophora puteana) is a sister group to the 
clade made up of clades 1 and 2. However, in the ML analysis 
(Fig. 1, panel b), clades 2 and 3 are sister groups to each other, 
and clade 1 is sister to their combined clade. The published 
tree in [7], which used BEAST, a Bayesian method [34], is 
again slightly different, and places P. strigosozonata and G. tra-
beum in a separate clade sister to a clade containing the 
Agaricales, Boletales, Russulales, and Polyporales. The correct 
answer is an open research question, and the phylogeny of the 
fungi is continually being revised as new genomic data become 
available [7, 14, 22, 35, 36]. We thus see that varying the phy-
logenetic inference method used, data sets, and data selection 
strategies, can yield slightly different results. The wise 
researcher is advised to try them all.

Fig. 1 Difference in tree topologies of ML and NJ trees. The branches that differ between the trees are indi-
cated in dashed grey lines. The NJ tree (panel a) places clade 1 as a sister to clade 2, and clade 3 sister to 
them. The ML tree (panel b) places clade 2 as sister to clade 3, with clade 1 sister to them
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