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A Principled Kernel Testbed for Hardware/Software Co-Design Research

Alex Kaiser, Samuel Williams, Kamesh Madduri, Khaled Ibrahim,
David Bailey, James Demmel, Erich Strohmaier

Computational Research Division
Lawrence Berkeley National Laboratory

Abstract

Recently, advances in processor architecture have be-
come the driving force for new programming models in
the computing industry, as ever newer multicore proces-
sor designs with increasing number of cores are intro-
duced on schedules regimented by marketing demands.
As a result, collaborative parallel (rather than simply
concurrent) implementations of important applications,
programming languages, models, and even algorithms
have been forced to adapt to these architectures to exploit
the available raw performance. We believe that this op-
timization regime is flawed. In this paper, we present an
alternate approach that, rather than starting with an ex-
isting hardware/software solution laced with hidden as-
sumptions, defines the computational problems of inter-
est and invites architects, researchers and programmers
to implement novel hardware/software co-designed solu-
tions. Our work builds on the previous ideas of compu-
tational dwarfs, motifs, and parallel patterns by selecting
a representative set of essential problems for which we
provide: An algorithmic description; scalable problem
definition; illustrative reference implementations; veri-
fication schemes. This testbed will enable comparative
research in areas such as parallel programming mod-
els, languages, auto-tuning, and hardware/software co-
design. For simplicity, we focus initially on the compu-
tational problems of interest to the scientific computing
community but proclaim the methodology (and perhaps
a subset of the problems) as applicable to other commu-
nities. We intend to broaden the coverage of this problem
space through stronger community involvement.

1 Introduction

For decades, computer scientists have sought guidance
on how to evolve architectures, languages, and program-
ming models in order to improve application perfor-
mance, efficiency, and productivity. Unfortunately, with-

out an overarching direction, individual guidance is in-
ferred from the existing software/hardware ecosystem,
and each group often conducts their research indepen-
dently assuming all other technologies remain fixed. Ar-
chitects attempt to provide micro-architectural solutions
to improve performance on fixed binaries. Researchers
tweak compilers to improve code generation for exist-
ing architectures and implementations, and they may in-
vent new programming models for fixed processor and
memory architectures and computational algorithms. In
today’s rapidly evolving world of on-chip parallelism,
these isolated and iterative improvements to performance
may miss superior solutions in the same way gradient
descent optimization techniques may get stuck in local
minima.

To combat this tunnel vision, previous work set forth a
broad categorization of numerical methods of interest to
the scientific computing community (the seven Dwarfs)
and subsequently for the larger parallel computing com-
munity in general (13 motifs), suggesting that these were
the problems of interest that researchers should focus
on [1, 2, 9]. Unfortunately, such broad brush strokes of-
ten miss the nuance seen in individual kernels that may
be similarly categorized. For example, the computational
requirements of particle methods vary greatly between
the naive but more accurate direct calculations and the
particle-mesh and particle-tree codes.

In this paper, we present an alternate methodology for
testbed creation. For simplicity we restricted our domain
to scientific computing. Superficially, this is reminis-
cent of the computational kernels in Intel’s RMS work
[12]. However, we proceed in a more regimented effort.
We commence with the enumeration of problems, pro-
ceed by providing not only reference implementations
for each problem, but more importantly a mathematical
definition that allows one to escape iterative approaches
to software/hardware optimization. To ensure long term
value, we augment each with both a scalable problem
generator and a verification scheme. By no means is the



list of problems complete. Rather, it constitutes a suffi-
ciently broad yet tractable set for initial investigation.

2 An Evolved Testbed

For a testbed to have long-term and far-reaching value,
it must be free and agnostic of existing software and
hardware. Today, the underlying semantics of mem-
ory and instruction set architecture leech through into
benchmarks and limit the ability for researchers to en-
gage in truly novel directions. Languages and program-
ming models should not expose the details of an archi-
tectural implementation to programmers, but rather al-
low the most natural expression of an algorithm. When
operating on shared vectors, matrices, or grids, the dog-
matic load-store random access memory semantics may
be very natural and efficient. However, when operating
on shared sets, queues, graphs, and trees, programmers
are often forced to create their own representations built
on an underlying linear random access memory using
loads, stores, and semaphores. This should not be.

To ensure we did not fall prey to the tunnel vision op-
timization problem, we made several mandates on our
evolved testbed. To that end, we strived to stay away
from the conventional wisdom that suggests that paral-
lelization and optimization of an existing software im-
plementation is the challenging problem to be solved.
Rather we believe the starting point is not code, but a
problem definition expressed in the most natural lan-
guage for its field. The Sort benchmark collection [31]
initiated by Gray exemplifies the future vision for our ref-
erence kernel testbed. The sort benchmark definitions are
based on a well-defined problem, include a scalable in-
put generator, multiple metrics for assessing quality (for
instance, sort rate for a terabyte-sized dataset, amount of
data that can be sorted in a minute or less, records sorted
per joule, and so on), and finally a verification scheme.
Framing the benchmark objectives as an open challenge,
rather than providing an optimized implementation of a
particular approach, has led to novel algorithmic research
and innovative engineered sort routines. We believe sim-
ilar results can be attained in other fields.

Although this argument may sound vague, we found
the textbook taxonomy to describe problems illustrative.
The “solution” is the efficient co-design of software
and hardware to implement a “problem” described in a
domain-specific mathematical language (e.g. numerical
linear algebra, particle physics, spectral analysis, sort-
ing, etc.). The veracity of the solution is determined via
an accompanying verification methodology specified in
the same domain-specific mathematical language. We
may provide “hints” to the solution in the form of refer-
ence and optimized implementations using existing lan-
guages, programming models, or hardware. The quality

of the solution is based on the performance, energy, cost
(amortized by reuse), and designer productivity.

In the following sections, we will describe and illus-
trate this process of problem definition, scalable input
creation, verification, and implementation of reference
codes for the scientific computing domain. Table 1 enu-
merates and describes the level of support we’ve devel-
oped for each kernel. We group these important kernels
using the Berkeley Dwarfs/Motifs taxonomy using a red
box in the appropriate column. As kernels become pro-
gressively complex, they build upon other, simpler com-
putational methods. We note this dependency via or-
ange boxes. We must reiterate that by no means is our
list comprehensive. For example, the finite difference
methods listed in the structured grid section are easily
understood and representative, but are often replaced by
more complex methods (e.g. the finite volume and lattice
Boltzmann methods) and solver acceleration techniques
(multigrid, adaptive mesh refinement).

2.1 Problem Specification

After enumeration of a set of important numerical prob-
lems, we create a domain-appropriate high-level defini-
tion of each problem. To ensure future endeavors are
not tainted by existing implementations, we specified the
problem definition to be independent of both computer
architecture and existing programming languages, mod-
els, and data types.

For example, numerical linear algebra has a well de-
veloped lexicon of operands (scalars, vectors, matrices,
etc.) and operators (addition, multiplication, transpose,
inverse, etc.). Although programmers are now accus-
tomed to mapping such structures to the array-like data
structures arising from the linear random access mem-
ories in computer architecture, such an end state is the
product of decades of focused optimization of hardware
and software. It is not an inherent characteristic or man-
date in the problem definition.

Conversely, graph algorithms are often defined as op-
erating on edges and vertices via set and queue op-
erations. Programmers are often forced to map such
operands and operators onto architectures optimized for
linear algebra. Although such techniques have sufficed in
the single-core era, parallelization of set and queue op-
erations on shared random access memories via kludges
like atomic operations is unnatural and error prone. By
taking a step back to a high-level problem definition, we
hope designers may free themselves of their tunnel vi-
sion and build truly novel systems adept at such compu-
tations.

Whenever possible, we specify the high-level paral-
lel operations (for all, sum, etc.) to be independent of
whether or not such constructs will create data dependen-
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Scalar-Vector Mult. X X X
Elementwise-Vector Mult. X X X
Matrix-Vector Mult. X X X
Matrix-Matrix Mult. X X X
LU Factorization X X X X X
Symmetric Eigensolver (QR) X X X X
Cholesky Factorization X X
SpMV (y=Ax) X X X X X
SpTS (Lx=b) X X X X
Matrix Powers (yk=Akx) X X X X
CG X X X X
KSM/GMRES X X X X
SpLU
Finite Difference Derivatives X X X X
FD/Laplacian X X X X X
FD/Gradient X X X X X
FD/Divergence X X X X X
FD/Curl X X X X
FD/Solve PDE, Explicit X X X X
FD/Solve PDE, Implicit Iter. X X X X
FD/Solve PDE, Multigrid X X X X
There are a number of other important structured grid methods including
lattice Boltzmann, finite volume, and AMR, that we have yet to enumerate
representative kernels for.
Although even within our community unstructured grids are commonly
used, we have yet to enumerate any concise representative kernels.
1D FFT (complex→complex) X X X X
3D FFT (complex→complex) X X X X
Convolution X X X X
Solve PDE via FFT X X X X
2D N2 Direct X X X
3D N2 Direct X X X
2D N2 Direct (with cut-off) X X X X
3D N2 Direct (with cut-off) X X X X
2D Particle-in-Cell (PIC)
3D Particle-in-Cell (PIC)
2D Barnes Hut X X X X
3D Barnes Hut X X X X
2D Fast Multipole Method
3D Fast Multipole Method X X
Quasi-Monte Carlo Integration X X X X
EP Summation X X X
Graph traversal X X X X
Betweenness centrality X X X X
Integer Sort X X X X
100 Byte Sort X X X X
Spatial Sort X X
Our kernel selection predominantly reflects scientific computing applica-
tions. There are numerous other application domains within computing
whose researchers should enumerate their own representative problems.
Some of the problems from other domains may be categorized using the
aforementioned motifs, some may be categorized into other Berkeley Motifs
not listed above (such as branch-and-bound, dynamic programming), while
others may necessitate novel motif creation.

Table 1: Brief Overview of enumerated kernels with
their mapping to Dwarfs. Check marks denote progress
we’ve made towards a practical testbed for scientific
computing. Note, orange boxes denote the mapping of
supporting kernels to dwarfs.

cies when mapped to existing languages or instruction set
architectures. This ensures we neither restrict nor recast
parallelism. Moreover, we minimize the expression of
user-managed synchronization in the problem specifica-

tion.

2.2 Reference Implementation
To provide context as to how such kernels productively
map to existing architectures, languages and program-
ming models, we have proceeded by attempting to pro-
duce a reference implementation for each kernel. As a
reminder, these should be viewed as “hints” designed
to show how other designers have mapped a problem’s
operands and operators to existing hardware and soft-
ware. Since we wanted such implementations to be il-
lustrative, we tried to ensure they were the most straight-
forward implementation in the easiest to understand lan-
guages using familiar architectures. To that end, most
of the linear algebra-oriented computations are written
in MATLAB using array indexing to process matrices,
rather than one-line library calls to compute the same
kernel. This ensures that the kernel’s computation is ex-
plicit and readable in the implementation and not hidden
behind a library.

Unfortunately, MATLAB has limitations such as awk-
ward facilities for graphs and tree programming, and
does not permit low-level control of computations. For
these reasons, our reference implementations of kernels
such as the Barnes-Hut n-Body solver were written in
pure C without any supporting library computations.

2.3 Optimization Inspiration
There is a dramatic performance gap between the perfor-
mance that can be attained via productive programming
(the most natural means of implementing the problem us-
ing existing languages, programming models and hard-
ware) and the style needed to elicit high performance.
The discrepancy in performance should not be viewed as
the programmer’s failing. Rather, it should be viewed
as a lighthouse for future research into architecture, lan-
guages, and middleware.

There are decades of optimizations for each of the ker-
nels we have enumerated. As such, it would be wasteful
to try and recreate all of them. We will compile a list
of known top-performing algorithmic strategies and op-
timizations associated with each kernel, as well as docu-
ment autotuners, libraries, and benchmarks that are rep-
resentative of specific problem sizes and programming
models/languages. However, for a small subset of the
kernels, we created a reference optimized implementa-
tion designed to illustrate the most common optimization
techniques in sequential computation (such as maximiz-
ing data locality). For example, the optimized reference
implementations of the LU and QR factorizations take
the LAPACK-style cache blocking and BLAS-3 aggre-
gation optimizations and distill them into compact C im-
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plementations. In the future, we may explore a different
direction and produce a series of optimized versions that
rather than explore sequential optimizations, explore par-
allelization and synchronization techniques.

Ultimately, for each kernel, we will compile a list of
previous optimization work likely to be relevant in the
future.

2.4 Scalability

The last decade has not only seen an order-of-magnitude
increase in inter-SMP parallelism, but also a more chal-
lenging explosion in intra-SMP parallelism via SIMD,
hardware multithreading, and multiple cores. This ever
increasing parallelism constrains the fixed problem size
benchmarks into a strong scaling regime. Although this
might be appropriate for some domains, it is rarely ap-
propriate in the field of scientific computing where weak
scaling has been used to solve problems at petascale.
Similarly, such a constraint may drive designers to so-
lutions that, although they may be quite appropriate for
the benchmark, are utterly unscalable and inappropriate
for future problem scales.

To that end, we have created a scalable problem gener-
ator to accompany each computation. In some cases this
generator may be nothing more than a means of speci-
fying problems using the underlying method’s high-level
description language. In other cases, code is written to
create input datasets. In either case, the problem size is
independent of implementation or mapping to architec-
ture.

In the linear algebra world, inspired by the Linear Al-
gebra working note [11], we generate randomized matri-
ces for LU and QR on the fly adhering to certain condi-
tions than enable factorization. We apply similar tech-
niques in the spectral problems by specifying the FFT
input size, but randomizing initial values. The n-Body
computations can be scaled simply by increasing the
number of particles, and the computational challenges
seen in the particle-tree codes can be altered by changing
the spatial layout of particles and forces used.

Unfortunately, scalable problem generation can be
challenging for kernels in which the problem configu-
ration or connectivity is specified in the data structure.
Often, sparse linear algebra research has been focused
on fixed size matrices that have resided in collections for
decades. We believe this tradition must be evolved into
a form like [15] so that repositories of scalable matrix
generators exist. We acknowledge that this is not univer-
sally applicable as some matrices are constructed from
discrete real-world phenomena like connectivity of the
web.

2.5 Solution Verification
One could view the high level problem definition as a
means to verify the validity of a solution. In effect, one
can compare the results from two implementations (ref-
erence and HW/SW co-design), checking for discrepan-
cies on a bit by bit granularity. Unfortunately, such an ap-
proach may not always be appropriate. As problem size
scales, execution of the reference implementation may
not be feasible. Moreover, such a verification regime as-
sumes that implementation and verification code don’t
contain a common error (matching, but incorrect result).
Finally, this approach assumes that there is one true so-
lution. We wish to create a verification methodology that
is in some sense orthogonal to the problem definition.

In many cases, we construct problems whose solu-
tions are known a priori or can be calculated with mini-
mal cost. We verify the symmetric eigensolver by con-
structing randomized matrices with known eigenvalues.
To obtain such a matrix, one forms a diagonal matrix
D composed of the desired eigenvalues and a random-
ized orthogonal matrix Q. The test matrix is the prod-
uct QT DQ. This ‘reverse diagonalization’ produces a
randomized matrix with pre-determined eigenvalues, the
eigenvalues of which can be selected to be as numeri-
cally challenging or clustered as the user desires. Finite
difference calculations are verified by evaluating a func-
tion (e.g. sin(xy)) both symbolically and via the finite
difference method. We may then compare the grid at a
subset of the sampled points. Similarly, the result of the
Monte Carlo integration kernel can be compared to ana-
lytical or numerical results in any dimension.

2.6 Solution Quality
The quality of a solution is multifaceted. Thus far, our
group has primarily taken the rather narrow focus of op-
timization: time or energy to solution given a fixed ar-
chitecture. Unfortunately, given a set of programmers
unrepresentative of the community as a whole (we pride
ourselves in our knowledge of architecture and algo-
rithms), we likely minimize the programming and pro-
ductivity challenges required to attain such performance.
In the end, the quality of a solution must take into ac-
count not only performance or energy, but must engage
the programmer community to determine how productive
the solution is. Moreover, the solution must be evaluated
on its ability to integrate with existing software and hard-
ware.

3 Related Work

There is abundant prior work on defining micro-
benchmarks (e.g. LINPACK [29] for peak floating-
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point performance, pChase [28] for memory latency,
STREAM [22] for memory bandwidth), benchmarks for
evaluating specific architectural and programming mod-
els (e.g. HPC Challenge [16] for MPI and distributed-
memory systems, ParBoil [27] and Rodinia [8] for
GPUs and CUDA, PARSEC [6] for cache-based mul-
ticore, SPLASH [30] for shared-memory systems, and
STAMP [23] for transactional memory implementa-
tions), benchmarks that are focused on a particu-
lar application-space (e.g. ALPBench [20] and Medi-
aBench [19] for multimedia applications, BioPerf [3]
for computational biology algorithms, Lonestar [18] for
graph-theoretic and unstructured grid computations, NU-
MineBench [25] for data mining, PhysicsBench [38] for
physics simulations, NAS Parallel benchmarks [5] for
scientific computing, and the HPCS SSCA benchmark
suite [4] for Informatics applications), and large bench-
mark consortia (e.g. SPEC [32] and EEMBC [13]). From
our perspective, we view existing benchmarks as refer-
ence implementations of one or more kernels (since the
problem size, programming language, and algorithms are
typically fixed in the benchmark definition). In fact, the
Rodinia and the Parallel Dwarfs project [26] teams adopt
the Berkeley 13-motif classification to describe the un-
derlying computation in each of their benchmarks.

While all the aforementioned benchmarks serve the
computing research community well, their typical usage
is to generate a single performance number correspond-
ing to a benchmark-specific metric. Our intent with cre-
ating the kernel reference testbed is to drive hardware-
software co-design, leading to innovative solutions that
can be potentially applied across application domains.
Hence we emphasize that our reference and optimized
implementations are only hints on how problems should
be solved.

3.1 Example Uses

Consider application of this methodology with the sim-
plifying restrictions that we we must use existing hard-
ware, languages, and compilers. We may either embrace
existing programming models or develop new ones, but
we wish to explore alternate implementations of a par-
ticular kernel. In essence, this is the core thesis behind
modern auto-tuners [7, 10, 14, 17, 21, 33–37]. The auto-
tuner can implement a large number of functionally-
equivalent variants and simply benchmark them to find
the best. As its free of legacy code, auto-tuners are free
to explore novel data structures or execution models.

Recently, we’ve extended this approach to encompass
architectural exploration [24]. Using the highly con-
figurable Tensilica processor generator, we simultane-
ously explored the microarchitecture, memory architec-
ture, and software optimization space in order to find
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Fixed Binary X
Fixed Source Code X X X
Fixed Interface, but may optimize code X X X X
Code-based problem definition X X X X X
High-level problem definition X X X X X X X X

Table 2: Fields of research enabled by different styles of
Benchmarks

the most performant, power-efficient, or cost-effective
HW/SW solution.

We believe in the future, such a test best could be used
to explore the other fields listed in Table 2.

4 Summary

In this paper, we presented a methodology for defining
and constructing a domain-oriented problem testbed. As
an example, we applied this methodology to the field of
scientific computing and constructed a novel reference
testbed. Unlike previous benchmarking efforts, we be-
lieve this testbed will enable a much broader research
effort (Table 2). Moreover, we believe it will facilitate
collaboration between researchers from different fields.

The reference testbed contains a concise set of kernels
selected to span the most common and defining algorith-
mic and computational aspects of each problem domain.
By its very nature it is meant to be extendible. An es-
sential element of the testbed is a supporting framework
of methods for generating problem specifications such
as input data sets, illustrating reference implementations,
and solution verification procedures.

The flexibility of such a domain-oriented problem
testbed challenges researchers by removing a single fixed
code base as starting point for iterative improvements
in existing hardware or software solutions. Any val-
idated hardware/software solution becomes a possible
starting point. However, the drawback of having to se-
lect and possibly implement such a solution is greatly
outweighed by the potential benefits of finding new co-
designed hardware and software solutions not easily ob-
tainable with traditional fixed code benchmark sets.
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