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Abstract—We consider the collision-free motion planning prob-
lem for a group of robots using a library of motion primitives.
To cope with the complexity of the problem, we introduce an
incremental algorithm based on an SMT solver, where we divide
the robots into small groups based on a priority assignment
algorithm. The priority assignment algorithm assigns priorities
to the robots in such a way that the robots do not block the
cost-optimal trajectories of the other robots. While the priority
assignment algorithm attempts to assign distinct priorities to the
robots, the algorithm ends up with assigning the same priority
to some robots due to the dependencies among themselves. The
algorithm includes the robots with the same priority in the
same group. Our incremental algorithm then considers the robot
groups one by one based on their priority and synthesizes the tra-
jectories for the group of robots together. While synthesizing the
trajectories for the robots in one group, the algorithm considers
the higher priority robots as dynamic obstacles, and introduces a
minimal delay in executing the cost-optimal trajectories to avoid
collision with the higher priority robots. We apply our method to
synthesize trajectories for a group of quadrotors in our lab space.
Experimental results show that we can synthesize trajectories for
tens of robots with complex dynamics in a reasonable time.

I. INTRODUCTION

A major outstanding problem in cyber-physical system
(CPS) design is the effective programming of large teams
(“swarms”) of autonomous systems that must perform coordi-
nated tasks. In particular, many applications of multi-robot sys-
tems, in disaster management, law enforcement, exploration
of unknown environments, etc., fall into this category. In all
these applications, a group of robots need to move from their
initial locations to their final locations while avoiding obstacles
and collision with each other. Though the multi-robot motion
planning problem has been studied extensively in the past for
robots without modeling dynamics or with only simple models
of dynamics [9], [3], [15], [23], [22], [6], [16], [26], [4], [5],
there is no effective solution that is applicable for a large group
of robots with complex dynamics.

In this paper, we present an approach based on satisfiability
modulo theories (SMT) [1] to solve the motion planning
problem for large- scale multi-robot systems. Our objective
is to dispatch all the robots to their designated destinations

This work was supported in part by TerraSwarm, one of six centers
of STARnet, a Semiconductor Research Corporation program sponsored by
MARCO and DARPA, and by the NSF ExCAPE project (grants CCF-1138996
and CCF-1139138).

!"#$%

&"#$% &"#'%!"#'%

(a)

!"#$% !"#'% &"#'% &"#$%

(b)

Fig. 1. Instances of multi-robot motion planning problem

following their cost-optimal trajectories, where the cost of
a path for a robot represents the total energy consumption
by the robot to reach its destination. One way of achieving
this is to synthesize the cost-optimal trajectory for each
robot independently, and then dispatch the robots one-by-one
following their cost-optimal trajectories. However, one robot’s
optimal trajectory may be blocked by the initial or the final
location of another robot. For example, Figure 1(a) presents an
instance of multi-robot motion planning where robot R1 has to
move from its initial location I(R1) to its final location F (R1),
and robot R2 has to move from its initial location I(R2) to
its final location F (R2). If we dispatch robot R1 first, it may
block the (optimal) trajectory of robot R2. As the example in
Figure 1(a) suggests, the core challenge of incremental multi-
robot motion planning is to find an ordering of the robots that
will enable us to dispatch all the robots to their destination
one-by-one following their optimal trajectory, if feasible.

A total ordering of the robots may not always exist even if
there is a way to move the robots from their initial locations
to their final locations. For example, in Figure 1(b) there is
no way to move the robots R1 and R2 one by one to their
destinations. However, trajectories for both robots exist if we
synthesize their trajectories together — robot R2 first moves
in the vertical space in the middle, and waits for robot R1 to
move to its destination, and then moves to its final destination.
Thus, in finding the ordering of the robots, we might need to
group some robots together.

Our incremental algorithm uses an SMT-based priority
assignment algorithm at its core to find a feasible ordering for
the robots. The algorithm first synthesizes the cost-optimal
trajectories for all the robots independently by using the



SMT-based algorithm introduced in [20]. Then the algorithm
uses the SMT-based priority assignment algorithm to assign
priorities to the robots in such a way that the ordering induced
by the priority assignment enables the robots not to block the
trajectories of the other robots. While the priority assignment
algorithm attempts to assign distinct priorities to the robots,
the algorithm ends up with assigning the same priority to some
robots due to the dependencies among themselves, an example
of which is shown in Figure 1(b). The outcome of the priority
assignment algorithm is a set of groups of robots, where the
robots with the same priority are included in the same group.
If a group has more than one robot, we synthesize the cost-
optimal trajectory of the group of robots together using the
SMT-based multi-robot motion planning algorithm described
in [20]. Now, one can dispatch the robots to their destinations
according to their priority (robots with the same priority are
dispatched together), and it is guaranteed that all robots will
be able to reach their destination successfully.

A secondary objective of our incremental multi-robot mo-
tion planning algorithm is to minimize the maximum time to
send all the robots to their destinations. Once we have cost-
optimal trajectories for all the groups, we want the robots
to reach their destinations as early as possible. To achieve
this, we adapt the idea proposed in [26] for priority-based
motion planning for multi-robot systems. We synthesize the
final trajectories of the robot groups one by one based on
their priorities. While synthesizing the trajectories for the
robots in one group, we consider the higher priority robots
as dynamic obstacles, and introduce minimal delay at the
beginning of the cost-optimal trajectories to avoid collision
with the higher-priority robots. We model this minimum-delay
trajectory synthesis problem as an SMT formula in quantifier
free integer linear arithmetic.

The major drawback of the above-mentioned algorithm is
that the algorithm might entail synthesizing trajectories for a
large group of robots together due to their dependencies. This
situation arises when we have a large number of robots in a
compact workspace. If we need to synthesize the trajectories
for a large group of robots together, then the benefit of using
the incremental algorithm is not perceived. To alleviate this
problem, we present a practical incremental motion planning
algorithm where we trade optimality of the trajectories for
reducing computational effort. More specifically, we settle
for suboptimal trajectories for individual robots to reduce the
size of the group of robots for which we need to synthesize
trajectories together.

We have implemented both our optimal and practical incre-
mental motion planning algorithms in a tool named Implan.
Implan provides an automated mechanism to synthesize mo-
tion plans in the form of software code that can be directly
used to control the robots using a centralized computer. We
compare our incremental trajectory planning algorithm with
the SMT-based multi-robot motion planning algorithm in [20].
For a group of 6 robots, the monolithic approach in [20] takes
more than 3 hours to generate the (sub-optimal) trajectories,
whereas our incremental algorithm can generate the collision

free optimal trajectories in less than 40 mins. Our algorithm
also scales well with number of robots. We have synthesized
collision-free motion trajectories for 25 quadrotors in a com-
pact workspace in around 4 hours and up to 50 quadrotors in
obstacle free workspace in around 30 minutes.

II. PROBLEM

A. Preliminaries

1) Workspace: We represent the workspace as a 2D oc-
cupancy grid map, where we decompose the workspace into
rectangular blocks using a uniform grid. We specify the size
of the workspace by the number of blocks in each dimension.
Each block is assigned a unique identifier. The identifier of
the lower left block is assigned the identifier (0, 0). If the
identifier of a block is ID = (Ix, Iy) where Ix and Iy are non-
negative integers, then the identifiers of the neighboring blocks
are obtained by adding or subtracting 1 to the appropriate
component(s) of ID. Each block may either be free, or may
be occupied by an obstacle.

Example 1: Figure 2(a) shows a 2D workspace. The black
blocks denote the locations of the obstacles.

2) State of a Robot: The state of a robot has two compo-
nents: its position on the grid and a velocity configuration. A
velocity configuration of a robot represents a velocity with a
specific magnitude and direction. We denote by V the finite set
of velocity configurations for all robots. We denote by V0 ∈ V
the velocity configuration of a robot at the stationary position
(zero velocity).

Definition 1 (State of a Robot): The state of a robot is the
pair 〈V,X〉, where V ∈ V is the velocity configuration of the
robot and X ∈ N2

0 denotes its position on the grid representing
the workspace.

3) Motion Primitives: Motion primitives are a set of short
closed-loop trajectories of a robot under the action of a set of
precomputed control laws. The set of motion primitives form
the basis of the motion for a robot.

Definition 2 (Motion Primitive): A motion primitive is
defined based on the grid structure representing the workspace.
A motion primitive for a robot is formally defined as a 6-tuple:
〈τ, qi, qf , Xrf ,W, cost〉. The symbol τ denotes the duration
of motion of the motion primitive. The symbols qi ∈ V and
qf ∈ V are the initial and the final velocity configurations
of the robot, respectively. The symbol Xrf ∈ N2

0 denotes the
relative final position of the robot in the workspace grid with
respect to the grid block where the motion primitive is applied.
The symbol W denotes the set of relative grid blocks through
which the robot may pass to move from its initial location to its
final location. The execution cost cost ∈ R+ is the estimated
energy consumption to execute the associated control law in
free space.

Example 2: Let us consider a motion primitive for moving
a quadrotor in a 2D space. Let us assume that the set of
velocity configurations V = {V0, V1, . . . , V8} contains the zero
velocity (V0) and the velocities with constant magnitude in
8 uniform directions (V1, . . . , V8). Let us assume that for a
motion primitive, τ = 1s , qi = V1, qf = V3, Xrf = (2,−1),



W = {(0, 0), (0,−1), (1, 0), (1,−1), (2,−1)}. The controller
associated with the primitive can be applied to the robot at
location I in the workspace in Figure 2(a), if the velocity
configuration of the robot is V1. After 1s, the quadrotor
will move to the block denoted by F and it will be in the
velocity configuration V3. While moving, the quadrotor may
pass through the blocks indicated by triangles (in Figure 2(a))
decided by the set W .

Definition 3 (Rest Primitive): For each robot, there exists a
motion primitive that can be applied when the robot is at the
velocity configuration V0 and it keeps the robot in the same
state. This special primitive is called the rest primitive.

B. Problem Definition

The input motion planning problem is given by a five tuple
P = 〈R, I, F, PRIM,OBS〉, where R = {R1, . . . , RN} is
the set of robots, I : R → N2

0 maps each robot to an initial
location, F : R → N2

0 maps each robot to a final location,
PRIM is a vector [PRIM1, . . . , PRIMN ], where PRIMi

denotes the set of motion primitives available for the i-th
robot, and OBS is the set of blocks in the workspace that
are occupied by obstacles.

For R′ ⊆ R, we denote by I|R′, F |R′ and PRIM |R′ the
restriction of I , F and PRIM on R′ respectively. In this work,
we assume that the time durations for all motion primitives are
the same. Henceforth, we will denote by τ the common time
duration of all the motion primitives.

The runtime behavior of a multi-robot system is given by
a discrete transition system T R. The state of the transition
system is denoted by Φ = [φ1, . . . , φN ], where φi denotes the
state of the i-th robot.

Let Φ1 = [φ11, . . . , φ1N ] and Φ2 = [φ21, . . . , φ2N ]
be two states of the group of robots, and Prim =
[prim1, . . . , primN ], where primi ∈ PRIMi, be a vector
containing the primitives applied to individual robots in state
Φ1. The transitions of the transition system are given by the
following rule:

Φ1
Prim−−−→ Φ2

iff ∀i ∈ {1, . . . , N}: φ1i.V = primi.qi, φ2i.V = primi.qf ,
φ2i.X = φ1i.X + primi.Xrf , ∀Ri ∈ R obstacle_avoidance
(φ1i, primi, OBS), and collision_avoidance(Φ1, P rim). The
inputs to the predicate obstacle_avoidance are φ1i, the state
of robot Ri before the transition, primi, the primitive applied
to the robot in state φ1i, and OBS, the set of obstacles. This
predicate is true if the trajectory of robot Ri between the
states φi1 and φ2i does not overlap with any obstacle. The
inputs to the predicate collision_avoidance are Φ1 and Prim.
The predicate is true if no two robots collide with each other
while moving from state Φ1 to state Φ2.

Definition 4 (Trajectory of a Multi-Robot System): A tra-
jectory of a multi-robot system for an input problem P =
〈R, I, F, PRIM,OBS〉 is defined as a sequence of states Φ =
(Φ(0),Φ(1), . . . ,Φ(L)), where Φ(i) = [φ1(i), . . . , φN (i)],
such that for all Rj ∈ R, φj(0) = 〈V0, I(Rj)〉 and φj(L) =

〈V0, F (Rj)〉 and the states are related by the transitions in the
following way:

Φ(0)
Prim1−−−−→ Φ(1)

Prim2−−−−→ Φ(2) . . .Φ(L− 1)
PrimL−−−−→ Φ(L),

where Primi = [prim1i, . . . , primNi], primji ∈ PRIMj .
Definition 5 (Length of a Trajectory): The length of a

trajectory Φ of a multi-robot system is the number of tran-
sitions in the trajectory. We denote the length of a multi-
robot trajectory Φ as Length(Φ). If the trajectory is Φ =
(Φ(0),Φ(1), . . . ,Φ(L)), Length(Φ) = L.

The total duration to move all robots from their initial state
to final state is given by L×τ . Note that the previous definition
does not require the lengths of the trajectories of all the robot
to be equal to L when they are synthesized independently.
Using the rest primitive, a robot can wait in its initial state
or remain in its final state for an arbitrary amount of time to
stretch its length to match with that of the multi-robot system.

Definition 6 (Cost of a Trajectory): The cost of a trajectory
of a multi-robot system is equal to the cumulative cost of all
the primitives used in the trajectory. For a trajectory Φ:

Φ(0)
Prim1−−−−→ Φ(1)

Prim2−−−−→ Φ(2) . . .Φ(L− 1)
PrimL−−−−→ Φ(L),

where Primi = [prim1i, . . . , primNi], primji ∈ PRIMj ,
the cost of the trajectory Φ, denoted by Cost(Φ), is given by
Cost(Φ) =

∑L
i=1

∑N
j=1 primji.cost.

Definition 7 (Cost-optimal Trajectory): A multi-robot trajec-
tory Φ is cost optimal if there does not exist another trajectory
Φ′ that can be synthesized using the motion primitives in
PRIM such that Cost(Φ′) < Cost(Φ).

Now we formally define the motion planning problem we
study in this paper.
Problem (Trajectory Planning for a Multi-Robot System).
Given an input problem P , synthesize a trajectory Φ which is
cost-optimal and Length(Φ) is also minimized.

Our primary objective is to ensure that all the robots reach
their destination following the cost optimal trajectory. Our
secondary objective is to minimize the maximum time required
for all the robots to reach their destinations.

Example 3: Two instances of multi-robot motion planning
problem have been shown in Figure 2(a) and Figure 3(a). The
grid blocks denoted by i1, . . . , i6 are the initial locations of
robots R1, . . . , R6, and the grid blocks denoted by f1, . . . , f6
are the final locations of the robots. The black blocks denote
the locations covered by the obstacles.

III. INCREMENTAL TRAJECTORY GENERATION

We present an incremental algorithm for solving the multi-
robot motion planning problem introduced in Section II. The
algorithm is shown in Algorithm 1. The algorithm is described
in detail in the following subsections.

A. Finding Optimal Trajectories and Obstacle Robots

In this subsection, we describe the first phase of our
incremental motion planning algorithm (Lines 2-6). In
this phase, we first synthesize optimal trajectories for



Algorithm 1 Incremental Motion Planning Algorithm
1: procedure IncrementalMotionPlanning(P)
2: for i = 1 to |R| do
3: Pi ← 〈{Ri}, I | {Ri}, F | {Ri}, PRIMi, OBS〉, optTraj(Ri)← findOptimalTrajectory(Pi)
4: InitObs(Ri)← findInitialPositionObstacles(optTraj(Ri), I)
5: FinObs(Ri)← findFinalPosisionObstacles(optTraj(Ri), F )
6: end for
7: G← assignPrioritiesToRobots(R, InitObs, FinObs, optTraj)
8: for i = 1 to |G| do
9: G[i]← [Rk1 , . . . , Rk|G| ]

10: if |G[i]| = 1 then
11: optGroupTraj[i]← optTraj(Rk1)
12: else
13: PG ← 〈G[i], I | G[i], F | G[i], PRIM | G[i], OBS〉, optGroupTraj[i]← findOptimalTrajectory(PG)
14: end if
15: end for
16: FinTraj← synthesizeFinalTrajectories(G,PRIM, optGroupTraj)

17: end procedure

all the robots independently. To synthesize optimal tra-
jectory for robot Ri, we invoke the algorithm described
in Section III-D in [20] with input motion planning
problem Pi = 〈{Ri}, I | {Ri}, F | {Ri}, PRIMi, OBS〉.
Once we synthesize optimal trajectory for robot Ri,
we invoke the function findInitialPositionObstacles

(findFinalPositionObstacles) to find the subset of robots
whose initial (final) locations block the optimal trajectory of
robot Ri. The set of robots whose initial (final) locations block
the optimal trajectory of robot Ri is stored in InitObs(Ri)
(FinalObs(Ri)). To ensure safety, we assume that any two
robots have to always maintain one block distance from each
other, that is, if a robot is on a block in the grid, all its
neighboring blocks cannot be occupied by any other robot.
For a grid location X , let N (X) denote the set of all the
neighboring grid locations and X itself. Let Xj denote the
initial location of robot Rj . If any Y ∈ N (Xj) blocks
the optimal trajectory of robot Ri, then Rj is included in
InitObs(Ri). The elements of FinalObs(Ri) are selected
similarly.

Let the optimal trajectory of robot Ri is given as a sequence
of states φ = (φ(0), φ(1), . . . , φ(Li)), where the states are
related by the transitions in the following way:

φ(0)
prim1−−−−→ φ(1)

prim2−−−−→ φ(2) . . . φ(Li−1)
primLi−−−−−→ φ(Li),

where primt ∈ PRIMi for t ∈ {1, 2, . . . Li}. Let Xtest

denote the initial or final location of some robot Rj ∈ R\{Ri}.
To find if Xtest blocks the optimal trajectory of robot Ri, we
check the satisfiability of the following constraint:

Li−1∨
t=0

∨
w∈primt+1.W

∨
Y ∈N (φ(t).X+w)

Y = Xtest (1)

Here, the symbol ‘
∨

’ denotes logical disjunction. If the
above constraint is satisfiable, then Xtest blocks the optimal
trajectory of robot Ri.

Example 4: For the example in Figure 2(a), for each robot
Ri ∈ R, the sets InitObs(Ri) and FinalObs(Ri) are as
follows: InitObs(R1) = {R2, R3}, FinalObs(R1) = { },

InitObs(R2) = {R4}, FinalObs(R2) = { }, InitObs(R3)
= {R1, R2}, FinalObs(R3) = { }, InitObs(R4) = {R6},
FinalObs(R4) = { }, InitObs(R5) = {R4}, FinalObs(R5)
= {R6}, InitObs(R6) = { } and FinalObs(R6) = { }. The
computation of these sets requires total 4.724s.

B. Priority Assignment

In this subsection, we describe the function
assignprioritiesToRobots invoked at Line 7 of
Algorithm 1. The inputs to the function are a trajectory
for each robot, the initial obstacles list InitObs

and the final obstacle list FinalObs. The function
assignPrioritiesToRobots is shown in Algorithm 2.
The function assigns priorities to the robots in such a way
that if a robot’s path is blocked by the initial (final) location
of another robot, then the first robot has lower (higher)
priority than the second robot.

Let prioi denote the priority of robot Ri ∈ R. If prioj <
priok, then Robot Rj is dispatched before robot Rk. Let η
denote the set of pairs of robots for which the priorities have
to be equal. The role of η in our algorithm will be clear later.
Initially, η does not contain any element. Now, we generate
the following set of constraints:

∀Ri ∈ R. prioi ≥ 1 ∧ prioi ≤ |R|
(2)

∀Ri ∈ R,∀Rj ∈ R\{Ri}. (Ri, Rj) ∈ η ⇔ prioi = prioj
(3)

∀Rj ∈ R,∀Rk ∈ R\{Rj}.
Rk ∈ InitObs(Rj) ∧ (Rj , Rk) /∈ η ⇒ priok < prioj

(4)
∀Rj ∈ R,∀Rk ∈ R\{Rj}.

Rk ∈ FinalObs(Rj) ∧ (Rj , Rk) /∈ η ⇒ prioj < priok
(5)

We name the constraint for robot Rj and robot Rk in (4)
as init_obs_constraintj,k and each constraint in (5) as
final_obs_constraintj,k. If the set of constraints has a
solution, then we obtain a priority assignment to the robots.
However, if the set of constraints does not have a solution, it



implies that there exists a subset of the set of constraints that
cannot be satisfied together. Such a subset is called an “unsatis-
fiable core”. If a constraint named init_obs_constraintj,k
or final_obs_constraintj,k is in the unsatisfiable core, the
priority of robot Rj and robot Rk have to be the same for
all constraints being satisfiable. In such a case, we add the
pair (Rj , Rk) to η. Now, with the new η, we generate the
constraints in (2)–(5) and solve them again. The above process
continues until either we find a solution of the constraints, or
we are left with only equality constraints in (3).

Example 5: For the example in Figure 2(a), using the sets
InitObs(Ri) and FinalObs(Ri) for each robot Ri ∈ R, we
generate the following constraints:
(∀Ri ∈ R. prioi ≥ 1 ∧ prioi ≤ |R|) ∧
(∀Ri ∈ R,∀Rj ∈ R\{Ri}. prioi 6= prioj) ∧
prio2 < prio1 ∧ prio3 < prio1 ∧ prio4 < prio2 ∧
prio1 < prio3 ∧ prio2 < prio3 ∧ prio6 < prio4 ∧
prio4 < prio5 ∧ prio5 < prio6.

These set of constraints is unsatisfiable and the
solver produces the following two constraints to be in
the unsatisfiable core: init_obs_constraint1,3 and
init_obs_constraint3,1. We now add the pair (R1, R3)
to η. Based on the contents of η, our algorithm now
removes the constraints: prio1 6= prio3, prio3 < prio1,
prio1 < prio3, and adds the following constraint:
prio1 = prio3 in the constraints generation phase of the
next iteration. When the algorithm attempts to solve the new
set of constraints, the solver again generates an unsatisfiable
core with the following constraints: prio6 < prio4,
prio4 < prio5 and prio5 < prio6. We add (R4, R6),
(R4, R5) and (R5, R6) to η. Based on this new η, our
algorithm now removes the constraints: prio4 6= prio5,
prio4 6= prio6, prio5 6= prio6, prio6 < prio4,
prio4 < prio5 and prio5 < prio6, and add the
following constraints: prio4 = prio5, prio4 = prio6,
prio5 = prio6. The new set of constraints is now
satisfiable and we obtain the following priority assignment
to the robots: prio4 = prio5 = prio6 = 1, prio2 = 2
and prio1 = prio3 = 3. The output G is given by
[{4, 5, 6}, {2}, {1, 3}]. The priority assignment step for this
example requires 0.056s.

C. Synthesizing Trajectories for Robot Groups

The priority assignment algorithm in Section III-B outputs
an ordered list of disjoint subsets of R. Algorithm 1 synthe-
sizes optimal trajectories for each of such subsets (Line 8-15).

Let the function assignPrioritiesToRobots produces as
output the ordered list G = [G1, G2, . . . , GM ], where, M ≤
|R|, Gi ⊆ R, Gi∩Gj = ∅ for i, j ∈ {1, 2, . . .M}. If |Gi| = 1,
we already have the optimal trajectory for the only robot in
this group from the first phase of Algorithm 1 (Line 3). If
|Gi| > 1, we invoke the optimal trajectory synthesis algorithm
in [20] with the set of robots to be Gi to synthesize optimal
trajectory for the robots in Gi.

Example 6: For the example in Figure 2(a), we invoke the
optimal trajectory planning algorithm presented in [20] for the

robots groups {R4, R5, R6} and {R1, R3}. The third phase
for this example is the most time consuming and requires
35min34s of computation time.

D. Final Trajectory Generation

In the final phase of Algorithm 1, we synthesize the
final trajectories for each robot by invoking the function
synthesizeFinalTrajectories (Line 16).

The final trajectories are synthesized based on the ordering
induced by the priority assignment by minimally introducing
delays at the beginning of the trajectories. We consider the
groups of robots one by one for trajectory synthesis based on
the ordering induced by the priority assignment described in
Section III-B. While synthesizing a trajectory for the robots
in a group, we need to ensure that the synthesized trajectory
does not interfere with any of the previously synthesized
ones. To ensure this, we maintain a hash table that captures
the blocks in the workspace that are occupied by some
robot at different time instants. The indices of the hash table
corresponds to discrete time instances starting from 0, and the
value corresponding to an index represents the set of blocks
in the workspace that are occupied by some robot at the
corresponding time instant. At any time instant t, we denote
by ρ(t) the set of blocks that are occupied by some robot at
time instant t. When we synthesize motion plan for a robot,
we ensure that the robot does not pass through any block in
ρ(t) at time instant t.

Let max_len denote the maximum of the lengths of the
trajectories synthesized so far, i.e., the size of the hash table is
max_len. When we synthesize trajectory for a group of robots
Gk with length l, the following set of constraints ensures that
the synthesized trajectory does not intersect with any of the
previously synthesized ones.

∀Rj ∈ Gk, ∀t ∈ {0, . . . ,min(max_len, l)− 1},
∀w ∈ primj(t+1).W, ∀Y ∈ N (φj(t).X + w),

∀Z ∈ ρ(t) : Y 6= Z
(6)

Algorithm 4 presents how we synthesize the final tra-
jectories for all the robots in an incremental way by us-
ing the collision avoidance hash table ρ. In this algorithm,
max_len denotes the maximum length of the trajectories
synthesized so far. If the length of the trajectory of a group
of robots is len, then the length of the final trajectory
cannot be more than len + max_len. This is due to the
fact that if the robots in the current group wait up to
max_len time, the workspace will be clear for the cur-
rent group of robots. For each robot group Gi, we start
with its optimal trajectory optGroupTraj[i] and check using
checkTrajectoryFeasibility function whether the trajec-
tories of the already considered robots allow the current group
of robots reach their destination following their optimal tra-
jectories. If the function checkTrajectoryFeasibility re-
turns false, we insert a delay to optGroupTraj[i] and invoke
checkTrajectoryFeasibility again. If at any iteration
checkTrajectoryFeasibility function returns true, the
current trajectory is the final one. The synthesized trajectory is



Algorithm 2 Priority Assignment to the Robots
1: procedure assignPrioritiesToRobots(R, InitObs, FinalObs, T raj)
2: η ← ∅
3: while true do
4: C ← genConstraintsForPrio(InitObs, FinObs, η), [res, model, ucore]← solveSMTConstraints(C)
5: if res = SAT then
6: G← generateRobotGroups(model), return G
7: else
8: η ← findDependentRobots(ucore, η)
9: end if
10: end while
11: end procedure

Algorithm 3 Update Collision Avoidance Hash Table
1: procedure updateCollisionAvoidanceTable(R,PRIM, ρ,Φ)
2: for t = 0 to length(Φ)− 1 do
3: for j = 1 to |R| do
4: X ← φj(t).X , prim← primj(t+ 1), W ← prim.W
5: for all Z ∈W do
6: ρ(t)← ρ(t) ∪ (X + Z)
7: end for
8: end for
9: end for

10: return ρ

11: end procedure

Algorithm 4 Synthesize Final Trajectories
1: procedure synthesizeFinalTrajectories(G, PRIM , optGroupTraj)
2: ρ = NULL, max_len = 0
3: for i = 1 to |G| do
4: traj← optGroupTraj[i], len← length(traj)
5: while len ≤ len + max_len do
6: status← checkTrajectoryFeasibility(ρ, traj)
7: if status = false then
8: traj← addUnitDelay(traj)
9: else

10: finalTraj(Gi)← traj
11: ρ← updateCollisionAvoidanceTable(Gi, PRIM |Gi, ρ, traj)
12: max_len← max(max_len, length(traj))
13: end if
14: end while
15: end for
16: end procedure

then used to update the collision avoidance hash table ρ using
Algorithm 3.

Example 7: The final trajectories synthesized for the ex-
ample in Figure 2(a) are shown in Figure 2(b). The num-
bers in the figures indicate the timestamp when the robot
occupies the corresponding location. The execution time of
the final phase for the example is 27.765s. Thus, the total
time required to synthesize trajectories is 36min6.585s. The
maximum trajectory length is 19 and the average trajectory
length is 15. The total cost for all the trajectories if 64.64.
We compare our result with the algorithm presented in [20].
The synthesis for the example using the algorithm requires
193min54s. The average length of the trajectories is 12 and
the total cost of the trajectories is 71.30. Note that the increase
in the trajectory lengths for our incremental algorithm is due

to the fact that the robots of the lower priorities may need
to wait at their initial locations before moving towards their
destinations. However, as the robots follow their optimal paths
in case of our incremental algorithm, the total cost of the
trajectories obtained by our incremental algorithm is better
than those obtained by the algorithm in [20].

IV. A PRACTICAL INCREMENTAL MOTION PLANNING
ALGORITHM

The trajectories generated by Algorithm 1 in Section III
move the robots from their initial locations to their final
locations using their optimal trajectories. The algorithm also
attempts to minimize the delay to move the robots to their
destinations. However, the major drawback of the algorithm is
that it might synthesize trajectories for a large group of robots
together due to their dependencies. This situation arises when
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Fig. 2. (a) Multi-robot motion planning: Example 1, (b) Trajectories generated
by Algorithm 1.

the workspace is compact, or when we have a large number
of robots in a small workspace. If we need to synthesize the
trajectories for a large group of robots together, the benefit of
using the incremental algorithm is minor.

In this section, we present a practical incremental motion
planning algorithm that modifies Algorithm 1 to trade opti-
mality for reducing computational effort. More specifically,
we settle for suboptimal trajectories for individual robots to
reduce the sizes of the groups of robots for which we need to
synthesize trajectories together. To achieve this, we modify the
first phase of Algorithm 1. The modified algorithm is shown-
InitObs in Algorithm 5. For a robot Ri, the algorithm first
synthesizes the optimal trajectory and computes InitObs(Ri)
and FinObs(Ri). Next, the algorithm checks if the sets
InitObs(Ri) and FinObs(Ri) are satisfactory by calling the
function isSatisfactory, which can be implemented using
different heuristics. For example, the simplest heuristic is to
check if both the sets are empty. Another heuristic may be
to check if a robot Rj is included both in InitObs(Ri) and
FinObs(Ri), indicating obvious dependency between robot Ri
and robot Rj .

If the sets InitObs(Ri) and FinObs(Ri) are not satis-
factory, we attempt to synthesize the trajectory of robot Ri
considering the initial and final locations of all other robots as
static obstacles. Here our objective is to find a trajectory that
is not blocked by the initial or the final location of any robot.
We cannot expect optimality any more, however, we impose a
bound on the length of the trajectory to ensure that the synthe-
sized trajectory is not much longer from the optimal trajectory.
We invoke the optimal trajectory planning algorithm in [20]
with a bound on the length of length(optTraj(Ri)) + δ
by invoking the function findBoundedOptimalTrajectory.
If we find such a trajectory optTraj′(Ri) for robot Ri,
then we replace the optimal trajectory optTraj(Ri) with
optTraj′(Ri) and the sets InitObs(Ri) and FinObs(Ri) are
set to ∅. The trajectory is not optimal. Nevertheless, the sub
optimality is bounded, and depends on δ. If the maximum cost
of any primitive in PRIMi is max_prim_costi, then the cost
of the trajectory cannot be δ × max_prim_costi more than
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Fig. 3. (a) Multi-robot motion planning: Example 2, (b) Trajectories generated
by Algorithm 5.

the cost of the optimal trajectory for robot Ri.
Example 8: We illustrate the benefit of our practical in-

cremental motion planning algorithm on the example shown
in Figure 3(a). Algorithm 1 generates the following group of
robots: G = [{R2}, {R1, R3}, {R4, R5, R6}]. The synthesis of
trajectories takes total 40min35s. The total cost of the trajecto-
ries is 71.35. When we apply Algorithm 5, we get the follow-
ing group of robots: G = [{R2}, {R4, R6}, {R5}, {R1, R3}].
The synthesis takes total 8min17s. The total cost of the trajec-
tories is 71.67. The synthesized trajectories by Algorithm 5 are
shown in Figure 3(b). The computation time for the practical
algorithm improves as the optimal path of robot R5 passes
through the initial location of robot R4 and the final location
of robot R6. However, robot R5 has another trajectory that
does not pass through the initial or final location of any robot.
Our practical algorithm can find such trajectories.

V. ROBOT CONTROL SOFTWARE DEVELOPMENT
FRAMEWORK

In this section, we present a control software development
framework for multi-robot systems. The framework, as shown
in Figure 4, is based on our incremental motion plan gener-
ation tool Implan which incorporates the implementation of
Algorithm 4 and Algorithm 5. Implan generates the motion
plan for any robot in the multi-robot system as a sequence
of pre-computed motion primitives which contain information
regarding initial velocity, final velocity, offset of final pose
with respect to the initial pose, and the free space required
for the maneuver. The motion plan for each robot, in the
form of a sequence of the motion primitives, is then passed
to the Primitive Handler subsystem. The Primitive Handler
subsystem then outputs the corresponding time parameterized
trajectory for each of the motion primitives. The set of
time parameterized trajectories is then passed to the Robot
Controller subsystem, which is a PID (proportional-integral-
derivative) controller [28] that generates the motor outputs for
the quadrotors based on the current pose obtained from a local-
ization sensor attached to the robot and the desired pose from
the time parameterized trajectory. Thus, Implan together with
Primitive Handler and Robot Controller, provides the control



Algorithm 5 A practical incremental multi-robot motion planning algorithm
1: procedure PracticalIncrementalMotionPlanning(P)
2: for i = 1 to |R| do
3: Pi ← 〈{Ri}, I | {Ri}, F | {Ri}, PRIMi, OBS〉, optTraj(Ri)← findOptimalTrajectory(Pi)
4: InitObs(Ri)← findInitialPositionObstacles(optTraj(Ri), I)
5: FinObs(Ri)← findFinalPosisionObstacles(optTraj(Ri), F )
6: if (isSatisfactory(InitObs(Ri), FinObs(Ri)) = FALSE) then
7: OBS′ ← OBS ∪ I(R \ {Ri}) ∪ F (R \ {Ri}), l← length(optTraj(Ri))
8: Pi ← 〈{Ri}, I | {Ri}, F | {Ri}, PRIMi, OBS

′〉, optTraj′(Ri)← findBoundedOptimalTrajectory(Pi, l + δ)
9: if optTraj′(Ri) 6= ∅ then

10: InitObs(Ri)← ∅, FinObs(Ri)← ∅, optTraj(Ri)← optTraj′(Ri)
11: end if
12: end if
13: end for
14: G← assignPrioritiesToRobots(R, InitObs, FinObs, optTraj)
15: for i = 1 to |G| do
16: G[i]← {Rk1 , . . . , Rk|G|}
17: if |G[i]| = 1 then
18: optGroupTraj[i]← optTraj(Rk1)
19: else
20: PG ← 〈G[i], I | G[i], F | G[i], PRIM | G[i], OBS〉, optGroupTraj[i]← findOptimalTrajectory(PG)
21: end if
22: end for
23: FinTraj← synthesizeFinalTrajectories(G, optGroupTraj)

24: end procedure

software for a multi-robot system to satisfy the specification
given in terms of the input problem.

Fig. 4. The block diagram of the framework for developing multi-robot
control software based on Implan

VI. APPLICATION TO QUADROTORS AND EXPERIMENTAL
RESULTS

A. Experimental Setup

We implement our incremental trajectory planning algo-
rithm using the SMT solver Z3 [2] as the backend solver.
For our experiments, we consider the NanoQuad quadrotors
from KMel Robotics [11]. We use ROS Simulator [18] to
simulate the behavior of the quadrotors using the synthesized
trajectories. The ROS simulator incorporates a faithful model
of the NanoQuad quadrotor, thus a successful simulation
guarantees that the generated trajectories can safely fly the
quadrotors in real environment. In our experiments we use
rectangular workspace where each block is a square with the
length of the side to be 0.2m.

All quadrotors in our experiment share the same set of mo-
tion primitives, which has been generated using the algorithm
described in [13]. For two dimensional spaces, the velocity
profile has 9 configurations consisting of one hover state and a
constant velocity in 8 uniform directions (E, W, N, S, NE, NW,
SE, SW). For each quadrotor, we have 57 motion primitives,
and each motion primitive is active for 1s.

In the following subsection, we present our experimental
results. All experiments were run in a 64-bit Linux Ubuntu
12.04.3 machine with an Intel(R) Core(TM) i7-3840QM CPU
and 8GB RAM.

B. Results
To judge the scalability of our incremental motion planning

algorithm, we carry out two sets of experiments. In the first
set of experiments, we use a compact workspace where the
presence of the obstacles renders the motion planning for the
robots non-trivial. In the second set of experiments, we use a
workspace free from obstacles. In both the cases, the size of
the workspace is 15.2m×16.8m.

We first attempt to use Algorithm 1 to synthesize trajectories
for 25 robots in the compact workspace. We repeat the
experiment 10 times. Among these 10 experiments, we found
that the maximum robot group size computed in phase 2 of
Algorithm 1 can be as large as 6. Trajectory synthesis for such
a group of robots is computationally expensive. For a specific
instance, the trajectory synthesis for 6 robots together could
not be finished even in 6 hours.

For the rest of the experiments, we use Algorithm 5 to
synthesize trajectories for the robots in the compact workspace
and in the obstacle-free workspace. In the case of the compact
workspace, we increase the number of robots from 5 to 25 with
a step size of 5 robots. In the case of obstacle-free workspace,
we increase the number of robots from 10 to 50 robots with
a step size of 10 robots. The initial and the final locations
of the robots are generated randomly ensuring that the initial
locations (similarly, the final locations) are at least one block
away from each other. The parameter δ has been chosen to be
4 for the compact workspace and to be 2 for the obstacle-free
one.



|R| Phase 1 Phase 2 Phase 3 Phase 4 Total
5 2min41s 0.016s 0.002s 4s 2min46s
10 1h22min31s 0.024s 0.005s 16s 1h22min48s
15 1h24min14s 0.029s 0.005s 3min55s 1h28min10s
20 2h43min28s 0.030s 0.005s 16min45s 3h0min14s
25 3h33min33s 0.072s 56min59s 38min39s 4h12min13s

Fig. 5. Time required in different phases for motion plan synthesis in a
compact workspace for different number of robots

|R| Phase 1 Phase 2 Phase 3 Phase 4 Total
10 30s 0.028s 0.004s 22s 53s
20 1min35s 0.034s 0.005s 57s 2min33s
30 2min35s 0.044s 0.005s 4min11s 6min47s
40 4min11s 0.073s 0.005s 10min47s 14min59s
50 5min56s 0.102s 0.005s 24min22s 30min19s

Fig. 6. Time required in different phases for motion plan synthesis in an
obstacle-free workspace for different number of robots

The time required to execute different phases of Algorithm 5
is shown in Figure 5 for the experiments in the compact
workspace and in Figure 6 for the experiments in the obstacle-
free workspace. Each entry of the tables is average (and
rounded to the nearest integer wherever applicable) of 10
runs. In the compact workspace, a significant amount of
time is spent in synthesizing the independent optimal (or
near-optimal) trajectories in phase 1. The priority assignment
step requires less than 1s in phase 2. Synthesizing optimal
trajectories for the robot groups in phase 3 requires negligible
amount of time in most of the cases. This is because the
practical algorithm has been able to keep the maximum size
of the robot groups to be 1. Only for the case of 25 robots in
compact workspace, we encountered a robot group of size 2
in a few instances.

The tables in Figure 7 and Figure 8 show the maximum and
the average lengths of the trajectories synthesized in the first
phase, the maximum and the average lengths of the trajectories
synthesized in the final phase and maximum delay introduced
in the final phase of Algorithm 5 for different number of robots
in the compact workspace and in the obstacle-free workspace,
respectively. The length of the final trajectory of a robot is
obtained by adding the amount of delay introduced to the
length of its optimal trajectory. The tables show the benefit
of treating the higher-priority robots as dynamic obstacles. If
the average length of an independent trajectory is La, and
we send the robots one-by-one, then the maximum trajectory
length for a robot can by La × |R|. For example, for the 25
robot instance in the compact workspace, the length of the
worst delay trajectory could be as much as 25 × 15 = 375.
However, the maximum length trajectory for this instance is
only 47.

An instance of motion planning for 25 robots in the compact
workspace is shown in Figure 9(a), and for 50 robots in the
obstacle-free workspace is shown in Figure 9(b).

For the examples with 6 robots, we carry out experiments
in our laboratory using a set of nano-quadrotors developed by
KMel Robotics [11]. The synthesized trajectories are translated
to C programs and integrated with Robot Operating System
(ROS) [18]. During our lab experiments, the states of the

Independent Final
|R| Maximum Average Maximum Average Maximum

Length Length Length Length Delay
5 20 13 20 13 0
10 24 11 24 12 3
15 28 14 34 16 13
20 29 17 39 21 17
25 30 15 47 22 26

Fig. 7. The maximum and the average lengths of the trajectories synthesized
in the first phase, the maximum and the average lengths of the trajectories
synthesized in the final phase and maximum delay introduced in the final
phase of Algorithm 5 in a compact workspace for different number of robots

Independent Final
|R| Maximum Average Maximum Average Maximum

Length Length Length Length Delay
10 20 12 20 12 0
20 19 12 19 12 1
30 19 11 20 12 4
40 19 11 20 12 8
50 21 12 26 13 10

Fig. 8. The maximum and the average lengths of the trajectories synthesized
in the first phase, the maximum and the average lengths of the trajectories
synthesized in the final phase and maximum delay introduced in the final
phase of Algorithm 5 in an obstacle-free workspace for different number of
robots

robots are tracked using a Vicon motion capture system [27].
The control inputs are computed on external computer using
PID control theory [28]. Experimental results1 confirm that the
generated trajectories satisfy the desired specifications.

VII. RELATED WORK

The path planning problem for a multi-agent system tradi-
tionally takes either a centralized or a decentralized approach.
In the centralize approach, all agents are treated as a single
agent with a high dimensional configuration space, and the
state space becomes the cartesian product of the state space
of the individual agents. The path planning problem then can
be solved using sampling based method in the configuration
space [10], [12], or using A∗ search algorithm in the state
space [7]. Both these approaches offer poor scalability due to
the curse of dimensionality.

To alleviate the scalability issue with the centralized solu-
tions, a number of decentralized methods have been proposed.
Among these solutions, most popular is the decoupled plan-
ning [9], [15], [23], [22], [6], [16], where paths for individ-
ual agents are first synthesized independently, and then the
agents interact online to ensure collision avoidance. Another
decentralized approach is priority-based planning [3], [26],
where priorities are pre-assigned to the individual agents to
maintain an order among themselves. The combination of
these planning algorithms has also been developed [4], where
the collisions between the paths generated by the decoupled
planning have been resolved based on the priorities of the
agents. All these planning algorithms depend on some meth-
ods, such as navigation quad trees [21], visibility points [19],
and meshes [24], to abstract a problem map into a search

1The videos of our experiments are available at the following link: https:
//www.dropbox.com/s/ivymskxm3ntmuv4/iccps2016.mp4?dl=0.
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Fig. 9. Synthesized trajectories for (a) 25 robots in a compact workspace,
(b) 50 robots in an obstacle-free workspace

graph. Our method, on the other hand, does not depend on any
such abstraction technique. The possible motions considered
in these algorithms are also very simple, generally one step
advancement in any direction in unit time. Our technique can
incorporate complex motions of the agents as captured by a
rich set of motion primitives.

The optimal trajectory planning problem for multi-robot
systems has been addressed in a few recent work. Jingjin and
LaValle [29] address the optimal multi-robot path planning
problem on graph based on a reduction to integer linear
programming problem. Their optimization was based on the
last arrival lime and the total distance covered by the robots.
Their solution, though scalable, does not use motion primi-
tives for planning, thus is not suitable for robots that have
complex dynamics. Recently, Turpin et al. [25] proposed an
algorithm for simultaneous planning and goal assignment for
interchangeable robots and demonstrated their algorithm to
work on a group of quadrotors. However, our objective is to
solve the planning problem where the goals are pre-assigned
to the robots.

SMT solvers have been used in motion planning with
rectangular obstacles [8] and in synthesizing integrated task
and motion plans from plan outlines [14]. We introduce the use
of an SMT solver in solving the multi-robot motion planning
problem in a scalable way, and show how different capabilities
of SMT solvers, for example, finding a satisfiable solution and
finding an unsatisfiable core can be effectively applied to solve
motion planning problems.

VIII. CONCLUSION AND FUTURE DIRECTIONS

We have developed an SMT-based incremental motion plan-
ning framework and showed that our method can synthesize
trajectories for tens of robots with complex dynamics. We
have demonstrated that our synthesized software is capable of
controlling as many as 25 quadrotors in a compact workspace
and as many as 50 quadrotors in obstacle free workspace.
In our current work, we consider the robot specifications
of the form of reaching goals from initial locations while
avoiding obstacles. In our future research, we aim to extend

our framework to support specification in any arbitrary Linear
Temporal Logic (LTL) [17] formula.
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