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Abstract 

Computer simulations show that an unstructured neural-
network model (Shultz & Bale, 2001) covers the essential 
features of infant differentiation of simple grammars in an 
artificial language, and generalizes by both extrapolation and 
interpolation. Other simulations (Vilcu & Hadley, 2003) 
claiming to show that this model did not really learn these 
grammars were flawed by confounding syntactic patterns with 
other factors and by lack of statistical significance testing. 
Thus, this model remains a viable account of infant ability to 
learn and discriminate simple syntactic structures.  

 
One of the enduring debates in cognitive science concerns 
the proper theoretical account for human cognition. Should 
cognition be interpreted in terms of symbolic rules or 
subsymbolic neural networks? It has been argued that 
infants’ ability to distinguish one syntactic pattern from 
another could only be explained by a symbolic rule-based 
account (Marcus, Vijayan, Rao, & Vishton, 1999). After 
being familiarized to sentences in an artificial language 
having a particular syntactic form (such as ABA), infants 
preferred to listen to sentences with an inconsistent syntactic 
form (such as ABB). The claim about the necessity of rule-
based processing was promptly contradicted by a number of 
neural-network modelers, several of whom produced 
unstructured models that captured the basic finding of more 
interest in novel than familiar syntactic patterns (Altmann & 
Dienes, 1999; Elman, 1999; Negishi, 1999; Shultz, 1999; 
Shultz & Bale, 2001; Sirois, Buckingham, & Shultz, 2000).  

However, Vilcu and Hadley (2001, 2003) reported that 
two of these simulations (Altmann & Dienes, 1999; Elman, 
1999) could not be replicated. Vilcu and Hadley (2003) 
were able to replicate the results of one simulation (Shultz 
& Bale, 2001). But Vilcu and Hadley (2003) claimed that 
their extensions of this model failed to generalize, both in 
terms of interpolation within the training range and 
extrapolation outside of this range. They concluded that this 
model did not really learn the grammars.  

The present paper contains new simulations establishing 
that this model (Shultz & Bale, 2001) does indeed learn the 
simple grammars used in the infant experiments, 
interpolating and extrapolating successfully.  

The Original Simulations 
Shultz and Bale (2001) used an encoder version of the 
cascade-correlation (CC) learning algorithm to simulate the 
infant data. CC is a constructive algorithm for learning from 
examples in feed-forward neural networks (Fahlman & 
Lebiere, 1990). Being a constructive algorithm, CC builds 

its own network topology as it learns by recruiting new 
hidden units as needed. New hidden units are recruited one 
at a time and installed each on a separate layer. The 
candidate hidden unit that is recruited is the one whose 
activations correlate most highly with the current error of 
the network. CC has been used to simulate many aspects of 
psychological development (Shultz, 2003). For such 
developmental simulations, there are a number of 
advantages of constructive learning algorithms over static 
networks that only adjust connection weights, but do not 
grow during learning (Shultz, 2005a; Shultz, Mysore, & 
Quartz, 2005).  

Like other encoder networks, the encoder version of CC 
learns to reproduce its inputs on its output units. 
Discrepancy between inputs and outputs is considered as 
error, which CC attempts to reduce. Infants are thought to 
construct an internal model of stimuli to which they are 
being exposed, and then differentially attend to more novel 
stimuli that deviate from their models. Encoder networks are 
capable of simulating this attention preference. Network 
error is often used as an index of stimulus novelty in these 
simulations.  

The three-word sentences used in the infant experiments 
were coded by Shultz and Bale (2001) with a continuous 
sonority scale, shown in Table 1, based on previous 
phonological research (Vroomen, van den Bosch, & de 
Gelder, 1998). Sonority is the quality of vowel likeness and 
it has both acoustic and articulatory aspects. In Table 1, it 
can be seen that sonorities ranged from -6 to 6 in steps of 1, 
with a gap and change of sign between consonants and 
vowels.  

Each word in the three-word sentences used in the infant 
experiments was coded on two input units for the sonority 
of the consonant and the sonority of the vowel. For 
example, the sentence ga ti ga was coded on the network 
inputs as (-5 6 -6 4 -5 6). The consonant /g/ was coded as -5, 
and the vowel /a/ as 6, yielding (-5 6) for the word ga, 
which was the first and last word in this sentence. The 
consonant /t/ was coded as -6, and the vowel /i/ was coded 
as 4, yielding a code of (-6 4) for the ti word. Likewise the 
sentence ni ni la was coded on the inputs as (-2 4 -2 4 -1 6).  

The original simulation captured the essential features of 
the infant data including exponential decreases in attention 
to a repeated syntactic pattern, more interest in sentences 
inconsistent with the familiar pattern than in sentences 
consistent with that pattern, occasional familiarity 
preferences, more recovery to consistent novel sentences 
than to familiar sentences, and generalization both outside 
and inside of the range of the training patterns (Shultz & 
Bale, 2001).  
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Table 1: Phoneme sonority scale used in the original 
simulations. 

Phoneme category Examples Sonority 
low vowels /a/  /æ/ 6 
mid vowels /Є/  /e/  /o/  /ɔ/ 5 
high vowels /I/  /i/  /U/  /u/ 4 
semi-vowels and laterals /w/  /y/  /l/ -1 
nasals /n/  /m/  / ŋ / -2 
voiced fricatives /z/  /ʒ/  /v/ -3 
voiceless fricatives /s/  /ʃ/  /f/ -4 
voiced stops /b/  /d/  /g/ -5 
voiceless stops /p/  /t/  /k/ -6 

Note. Example phonemes are represented in International 
Phonetic Alphabet. From “Infant familiarization to artificial 
sentences: Rule-like behavior without explicit rules and 
variables.” By T. R. Shultz and A. C. Bale. In L. R. 
Gleitman & A. K. Joshi (Eds.), Proceedings of the Twenty-
Second Annual Conference of the Cognitive Science Society 
(p. 461), 2000. Mahwah, NJ: Erlbaum. Copyright 2000 by 
the Cognitive Science Society, Inc. Adapted by permission. 

Interpolation 
Vilcu and Hadley (2003) based their critique of the Shultz 
and Bale (2001) model on extended simulations that seemed 
to show that the model cannot actually interpolate or 
extrapolate. Interpolation is the ability to generalize within 
the range of the training patterns. Interpolation was tested 
by introducing a phonemic change to one of the four test 
patterns in each experiment. The original and modified test 
patterns are shown in Tables 2 and 3, respectively.  

These tables also include sonority sums for these 
sentences, computed as the sonority of the consonant plus 
the sonority of the vowel. Knowledge representation 
analyses had established that CC encoder networks 
represented these single-syllable words by computing such 
sums, or equivalently by computing sonority differences 
(Shultz & Bale, 2001). For example, a network would learn 
to code the word wo as the sonority of the consonant /w/ 
plus the sonority of the vowel /o/: -1 + 5 = 4.  

In Table 3, the syllables changed by Vilcu and Hadley 
(2003) are identified by a solid underline. Apparently their 
idea was to trip up the networks with a very small change of 
a single consonant; from wo to vo in the third test sentence 
of Experiment 1, and from ba to ma in the first test sentence 
of Experiments 2 and 3. With these changes, Vilcu and 
Hadley reported that networks could no longer distinguish 
consistent from inconsistent test patterns, although they did 
not report any testing of statistical significance. 

However, by changing only one test pattern in each 
experiment, Vilcu and Hadley (2003) confounded phoneme 
with syntactic pattern. Shultz and Bale (2001) had followed 
the design of the infant experiments by using the same 
phonemes in both consistent and inconsistent test sentences. 
In Experiments 1 and 2, for example, two of the test 
sentences follow an ABA pattern and two follow an ABB 
pattern. Depending on condition, one of these syntactic 
patterns is consistent with those the infant is familiar with, 
whereas the other pattern is inconsistent. The syntactic 
patterns in Experiment 3 are slightly different, AAB vs. 

ABB, but the same principle holds there as well. It is 
important, whether testing or simulating infants, to use the 
same phonemes in both patterns so as not to confound 
phonemes with syntactic patterns. This is because both 
infants and artificial neural networks can be sensitive to 
both phonemic content and syntactic structure. When the 
two are confounded, results cannot be unambiguously 
interpreted as being due to one or the other factor.  
 

Table 2: Original test patterns. 
Experiment Sentence Sonority sums 
1 wo fe wo  4  1  4 
 de ko de  0 -1  0 
 wo fe fe  4  1  1 
 de ko ko  0 -1 -1 
2 ba po ba  1 -1  1 
 ko ga ko -1  1 -1 
 ba po po  1 -1 -1 
 ko ga ga -1  1  1 
3 ba ba po  1  1 -1 
 ko ko ga -1 -1  1 
 ba po po  1 -1 -1 
 ko ga ga -1  1  1 

 
 

Table 3: Modified test patterns. 
Experiment Sentence Sonority sums 
1 vo fe vo  2  1  2 
 de ko de  0 -1  0 
 vo fe fe  2  1  1 
 de ko ko  0 -1 -1 
2 ma po ma  4 -1  4 
 ko ga ko -1  1 -1 
 ma po po  4 -1 -1 
 ko ga ga -1  1  1 
3 ma ma po  4  4 -1 
 ko ko ga -1 -1  1 
 ma po po  4 -1 -1 
 ko ga ga -1  1  1 

 
In the present simulations, I eliminated Vilcu and 

Hadley’s confound by extending the same phonemic change 
to the other syntactic pattern in each experiment, marked in 
Table 3 by dashed underlines. In Experiment 1, for example, 
I used vo fe vo as well as vo fe fe. In Experiment 2, I tested 
ma po po, as well as ma po ma. And in Experiment 3, I 
included ma po po as well as ma ma po.  These additional 
changes ensure that comparisons across syntactic patterns 
reflect only syntactic differences and not phonemic 
differences. Once the confounding is removed, there are 
robust differences between consistent and inconsistent test 
patterns as in the original simulations. In each experiment, 
with eight networks per condition as with the infant 
experiments, consistent test patterns showed less error than 
did inconsistent test patterns (p < .0001).  

Apparently reasoning along similar lines, Vilcu and 
Hadley (2003) reported a simulation in which they changed 
/f/ to /b/ in both the first ABA test sentence and the first 
ABB test sentence of Experiment 1. Their networks failed to 
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discriminate consistent test sentences from inconsistent test 
sentences, but again no statistical significance test was 
provided. I repeated that simulation with eight networks per 
condition and did find a significant main effect of 
consistency, F(1, 15) = 5.52, p < .05, reflecting more error 
to inconsistent test sentences (M = 11.69) than to consistent 
test sentences (M = 9.30). 

Moreover, I could not replicate Vilcu and Hadley’s 
(2003) finding of a lack of discrimination between 
consistent and inconsistent test patterns even using their 
single-pattern changes that confound phoneme with 
syntactic pattern. In each of the three experiments, run with 
20 networks per condition to increase statistical power, there 
was less network error to consistent test patterns than to 
inconsistent test patterns, p < .0001.  

These new results contradict Vilcu and Hadley’s (2003) 
claim that the Shultz and Bale (2001) networks do not 
interpolate successfully. With properly controlled tests, 
interpolation ability is reliable and strong. Moreover, even 
with the confounding introduced by Vilcu and Hadley, the 
networks still interpolate well. The lack of statistical 
analysis in Vilcu and Hadley’s research may have obscured 
differences between familiar and novel test patterns.  

Extrapolation 
To test the for extrapolation outside of the sonority training 
range in the Shultz and Bale model, Vilcu and Hadley 
(2003) assigned four consonant values beyond the minimum 
value of -6 (i.e., -7, -8, -9, -10), and combined them with 
two vowel values beyond the maximum value of 6 (i.e., 7, 
8). They found that networks showed more error to 
consistent test patterns than to inconsistent test patterns, a 
direction opposite to that of both the infants and the 
networks. However, once again Vilcu and Hadley did not 
test the statistical reliability of this difference.  

A major problem with testing outside the sonority range is 
that such extreme values do not correspond to the sounds in 
human languages. Testing network generalization in this 
way is thus somewhat irrelevant to simulations of 
psychology.  

Furthermore, in arguing that networks fail to extrapolate 
beyond the training range, Vilcu and Hadley ignored the 
Shultz and Bale (2001) results showing that with less 
extreme deviations beyond the limits of the training range, 
networks do successfully extrapolate, with the consistency 
effect growing significantly larger with more extreme (i.e., 
+-7) as compared to less extreme (i.e., +-6.5) sonorities. 
Here I report on a replication of the Shultz and Bale 
extrapolation results and extend the study to the more 
extreme sonority values used by Vilcu and Hadley (2003).  

The sonority values I used are shown in Tables 4 and 5, 
along with a reminder of the original training anchor values 
used by Shultz and Bale (2001). As in Shultz and Bale 
(2001), I included test values inside the training range (by 
+-0.5) and values that were outside of this range but close to 
it (by +-0.5) or far from it (by +-1.0). There were three 
additional sonority values ranging farther outside of the 
training range in steps of +-1.0, labeled in Tables 4 and 5 as 
farther, even farther, and farthest. The farthest values were 

as far outside the training range as the most extreme values 
used by Vilcu and Hadley (2003).  

In one set of simulation experiments, portrayed in Table 
4, the highest vowel sonority was paired with the lowest 
consonant sonority, keeping the sonority sums for syllables 
at a constant value of 0.0 in Pattern A and 3.0 in Pattern B. 
These simulations were characterized by a negative 
correlation between consonant and vowel sonority values, 
which can be seen in Table 4 by ignoring the first, anchor 
row.  

 
Table 4: Test patterns for evaluating extrapolation in the 
simulation of Experiment 1: Highest vowel paired with 

lowest consonant and vice versa. 
 Pattern A Pattern B 
Distance Consonant Vowel Consonant Vowel 
Original anchors -6.0 6.0 -1.0 4.0 
Inside +-0.5 -5.5 5.5 -1.5 4.5 
Close +-0.5 -6.5 6.5 -0.5 3.5 
Far +-1.0 -7.0 7.0 0.0 3.0 
Farther +-2.0 -8.0 8.0 1.0 2.0 
Even farth. +-3.0 -9.0 9.0 2.0 1.0 
Farthest +-4.0 -10.0 10.0 3.0 0.0 

 
In another set of simulations, shown in Table 5, the vowel 

columns in Table 4 were switched, pairing the highest 
vowel with the highest consonant. Here the correlation 
between consonant and vowel sonority values is positive, 
which can be seen in Table 5 by ignoring the first, anchor 
row. In this set of simulations, the sonority sums of the 
syllables were allowed to vary with distance from the 
training range. Both sets of simulations focused on 
Experiment 1 and used eight networks per condition as in 
the infant study. It was unclear whether these two different 
pairing methods for creating test patterns would produce 
different results, so it seemed appropriate to run the 
simulations both ways.  
 

Table 5: Test patterns for evaluating extrapolation in the 
simulation of Experiment 1: Highest vowel paired with 

highest consonant and vice versa. 
 Language A Language B 
Distance Consonant Vowel Consonant Vowel 
Original anchors -6.0 4.0 -1.0 6.0 
Inside +-0.5 -5.5 4.5 -1.5 5.5 
Close +-0.5 -6.5 3.5 -0.5 6.5 
Far +-1.0 -7.0 3.0 0.0 7.0 
Farther +-2.0 -8.0 2.0 1.0 8.0 
Even farth. +-3.0 -9.0 1.0 2.0 9.0 
Farthest +-4.0 -10.0 0.0 3.0 10.0 

 
In each of the two simulations, test error was subjected to 

a mixed ANOVA in which familiarization condition served 
as a between-network factor and consistency and distance 
served as repeated measures. In both experiments there were 
significant main effects of consistency and distance as well 
as an interaction between them, p < .0001. The relevant 
means are presented in Figures 1 and 2 for constant and 
varying sonority sums, respectively. Note that extrapolation 
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is involved at all distances from the training range except 
for the condition labeled inside. As in the Shultz and Bale 
(2001) simulations, error increased with distance from the 
training range, error was greater to inconsistent than to 
consistent test patterns at each distance, and the consistency 
effect was larger with increasing distance.  
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Figure 1: Mean error to consistent and inconsistent test 

patterns at various distances from the training range, where 
sonority sums were constant. 

 
These results indicate that the Shultz and Bale networks 

interpolate and extrapolate very well. Error increases with 
distance outside the training range because the networks do 
not recognize the particular novel phonemes and syllables 
being presented. But even with very novel sounds, the 
networks are sensitive to the relative syntactic novelty of the 
sentences. As noted, outside of the range of human speech 
sounds, it is difficult to design realistic tests of the model’s 
predictions, but the present results provide in-principle 
evidence of network extrapolation ability.  
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Figure 2: Mean error to consistent and inconsistent test 

patterns at various distances from the training range, where 
sonority sum was allowed to vary. 

Discussion 
Vilcu and Hadley’s (2003) critique of neural-network 
models of infant learning of artificial grammars is important 
because it addresses a debate that has dominated cognitive 
science for the last 20 years – whether human cognition is 
better explained by symbolic rules or subsymbolic 
connections. They focused on the Shultz and Bale (2001) 

model because that is the simulation they could replicate 
that covered the Marcus et al. infant findings. Because Vilcu 
and Hadley’s extensions of the Shultz and Bale model failed 
to generalize to novel sentences, in terms of both 
interpolation and extrapolation, they concluded that this 
model does not really learn the grammars.  

However, results presented here showed that, by not 
confounding phoneme and syntactic pattern as in Vilcu and 
Hadley’s experiments, there was robust interpolation and 
extrapolation, in the form of reliable differences between 
consistent and inconsistent test patterns. Moreover, even 
with Vilcu and Hadley’s confounds left in, these effects 
were still reliable by conventional statistical tests. The 
inadvertent experimental confounds and lack of statistical 
significance tests in Vilcu and Hadley’s research appeared 
to obscure reliable differences between test patterns, thus 
leading to underestimation of network ability to learn these 
simple grammars. If generalization by interpolation and 
extrapolation is the sine qua non for grammar learning, then 
these networks did learn these simple grammars. 

To be fair and complete, Vilcu and Hadley (2003) raised 
another argument against these network models besides the 
alleged generalization difficulties. They also argued that the 
Shultz and Bale (2001) networks only learned the numerical 
contours of the artificial sentences, and not the syntactic 
relations involving the duplicated words. Vilcu and Hadley 
supported this argument with a simulation in which sonority 
contours of the familiar ABA sentences always formed a 
peak, whereas sonority contours of the test sentences could 
form either a peak or a valley. When sonority contours of 
test sentences formed a peak, then there was the usual 
novelty preference; but when sonority contours of the test 
sentences formed a valley, then there appeared to be a 
familiarity preference. Again, there were no tests of 
statistical significance.  

Although this appears to suggest that networks are 
sensitive to input contours and not syntax, it ignores the fact 
that, in both the infant experiments and the Shultz and Bale 
(2001) simulations, sonority contours were balanced within 
each language rather than confounded with syntax. The 
contours of these familiar sentences were not simply 
sonority peaks or sonority valleys as Vilcu and Hadley 
(2003) suggested, but rather a complex combination of 
sonority-sum contours containing peaks, valleys, and 
plateaus in Experiments 1 and 2, and increases, decreases, 
and plateaus in Experiment 3 (Shultz & Bale, 2005b).  

In the ABA familiarization condition of Experiment 1, 
eight of the training sentences formed a sonority-contour 
peak and the other eight formed a sonority-contour valley 
(Figure 3). In the ABB condition of that experiment, eight 
of the familiar sentences showed an increasing sonority 
contour and the other eight showed a decreasing sonority 
contour (Figure 4). The same was true of Experiment 2 
except that two of the ABA (Figure 5) and two of the ABB 
(Figure 6) familiar sentences showed a completely flat 
sonority profile. Both the AAB (Figure 7) and ABB (Figure 
6) familiar sentences of Experiment 3 had a similar mix of 
sonority contours: seven had an increasing contour, seven a 
decreasing contour, and two a flat profile. For simplicity, 
Figures 3-7 all show schematic sonority profiles.  
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Figure 3: Sonority profiles in the training patterns of the 

ABA familiarization condition of Experiment 1. 
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Figure 4: Sonority profiles in the training patterns of the 

ABB familiarization condition of Experiment 1. 
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Figure 5: Sonority profiles in the training patterns of the 

ABA familiarization condition of Experiment 2. 
 
To deal with this complex mix of contours, the networks 

(and presumably the infants) discovered near-identity 
relations to differentiate the syntactic patterns of old vs. new 
sentences. In none of these experiments was it sufficient to 
learn a single sonority profile as suggested by Vilcu and 
Hadley.  

It is unknown how infants would perform in an 
experiment with Vilcu and Hadley’s confounds between 
syntactic pattern and sonority contour in familiar sentences, 

but infants might well be sensitive to sonority contours. 
Sonority contours might help the infant identify syllable 
boundaries which might, in turn, facilitate word 
identification. If so, this would be a difficult pattern of 
results for a purely syntactic, symbolic model to account for.   
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Figure 6: Sonority profiles in the training patterns of the 
ABB familiarization conditions of Experiment 2 and 3. 
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Figure 7: Sonority profiles in the training patterns of the 

AAB familiarization condition of Experiment 3. 
 

Networks learned to decode representations of the two 
duplicate words in a sentence by using highly similar sets of 
weights entering the output units that represent the duplicate 
words (Shultz & Bale, 2001, 2005b). This virtually identical 
pattern of weights entering the output units representing the 
duplicate words allowed the network to recognize the near 
identity of the duplicate words.  

The relatively large connection weights to the duplicated-
word outputs from the first hidden unit showed that this 
hidden unit recognized the category (A or B) of these 
duplicate words. The second hidden unit performed the 
complementary job of recognizing the category of the single 
word, as indicated by its relatively large weights to outputs 
representing that single word.  

Analyses of hidden-unit activations showed that the first 
hidden unit learned to encode the sonority sum of the 
duplicated words, and the second hidden unit learned to 
encode the sonority sum of the single word. This means that 
the duplicated words were being treated in similar fashion.  

Additional analysis of network knowledge representations 
used principle-component analyses of network 
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contributions. Network contributions are products of 
sending-unit activations and connection weights entering the 
output units. They effectively summarize all of the 
information used by the network to generate its outputs 
(Shultz, Oshima-Takane, & Takane, 1995). This analysis 
revealed two components, one representing sonority 
variation in the duplicate-word category and the other 
representing sonority variation in the single-word category. 
This provides additional evidence that the networks learned 
to treat the duplicate words in a nearly identical fashion.   

All of this is not to say that these rather simple networks 
could acquire the full grammar of a human language. It is 
certain that some aspects of human syntactic acquisition 
would require different and more powerful models. But the 
ability of the Shultz and Bale (2001) networks to master the 
simple artificial grammars used by Marcus et al. (1999) with 
infants is well established. Indeed, these unstructured neural 
networks can learn these grammars more effectively and 
generalize better than a leading symbolic rule-learning 
algorithm, C4.5 (Shultz, 2001).  

An interesting feature of this controversy is that it can be 
surprisingly difficult to replicate computer simulations. 
Vilcu and Hadley (2003) were unable to replicate the results 
of two other connectionist simulations of the infant data. 
Also, the present paper reveals that I could not replicate the 
results of some of the Vilcu and Hadley simulations. It is 
commonplace that human or animal results cannot always 
be replicated, but the notion that replication can be a 
problem with computer simulations seems novel. The 
mathematical and computational precision of these models 
have led many to assume that replication of results would 
not be a problem. The numerous non-replications uncovered 
in this relatively small literature suggest that researchers 
should perhaps replicate simulations routinely. In this 
context, it should be remembered that several other 
unstructured network simulations of the infant data have not 
been shown to be difficult to replicate (Negishi, 1999; 
Shultz, 1999; Sirois, Buckingham, & Shultz, 2000).  

Another important lesson of this exercise is that, even 
with computer simulations, it is important to use statistical 
tests to evaluate the significance and reliability of results. 
Such tests are particularly critical with neural network 
models, because of their stochastic properties. It is not 
always sufficient to rely on visual comparisons of means.  
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