
LBL-13627 
Preprint 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA ~ECEIVE:o 

LAWRENCE 

Materials & Molecular 
Research Division 

FEB ~ ~ i982 

LIBRARY AND 
DOCUMENTS SECTION' 

Submitted to the Journal of Chemical Physics 

EFFECT OF REACTION PATH CURVATURE AND DIMENSIONALITY 
ON THE ACCURACY OF CLASSICAL TRANSITION STATE THEORY 

William H._ Miller 

November 19-81 TWO-WEEK LOAN COPY 

This is a library Circulating Copy 
which may be borrowed for two weeks. 
For a personal retention copy, call 

Tech. Info. Dioision, Ext. 6782 

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48 

• 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



, .. 

LBL 1113627 

Effect of Reaction Path Curvature and Dimensionality 

on the Accuracy of Classical Transition State 

Theory 

William H. Miller 

Department of Chemistry, and Materials and Molecular Research Division 
of the Lawrence Berkeley Laboratory, University of California, 

Berkeley, CA 94720 

This work has been s,upporte.d by the Dir.ector, Offi.ce "of -Energy Research. 
Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. 
Department of Energy under Contract Number W-7405-ENG-48; an.d in part 
'by the Nationa1 Science Foundation under grant CHE-79-20181. 



-1~ 

Abstract 

Using a simple dynamical approximation based on the reaction path 

Hamiltonian of Miller, Handy, and Adams [J. Chem. Phys. ~' 99 (1980)], 

it is shown how reaction path curvature and dimensionality affect the 

accuracy of classical transition state theory. Also, an explicit 

expression is obtained for the critical energy up to which classical 

transition state theory is exact. A variety of implications of these 

results are discussed. 



..;2-

I. Introduction. 

In spite of the many advances in the theory of chemical reaction 

dynamics over the last twenty years, transition state theory is still 

the most generally useful and reliable method for determining the rate 

constants of most non..-state-selected (i.e., thermally averaged) bimolecular 

reactions. There has, moreover, been much progress in recent years in 

illucidating the dynamical basis of transition state theory and in 

extending its range of validity by including quantum effects (e.g., 

tunneling, non-separability of the transition state, etc.) in a vari·ety 

of more sophi~ticated ways. 1 Together with high level quantum chemical 

calculations of the transition state and its necessary properties, these 

modern versions of transition state theory are providing quantitatively 

reliable rate constants for a number of simple bimolecular reactions. 

One of the key developments which spurred the revival of interest 

2 in transition state theory was Pechukas and McLafferty's work showing 

that for simple barrier reactions classical transition state theory is 

exact for at least some range of energies above the barrier height. 

Classical traj-ec·tory ·calculations f.o:r ·the s.tandard .t-es.t .r.eac.tion, 

H + H2 + H2 + H, showed3 this critical energy, :u,p ·to which ,transition 

state theory is exact, to be 'V 0.2-0.4 eV above the energy of the saddle 

point (i.e., the ·transiition ·Stat:e') ,of dua poeenti.al :ener.gy :surface .• 

Even more intere·sting was the observati:on3 that for ,enez-g.ices ,above 

.. 
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the same potential energy surface for both cases. This seemed to 

suggest the happy result that transition state theory is more accurate 

in three-dimensions thcnin one-dimension. 

The original motivation for this paper was to explore this 

"dimensionality effect" noted above, i.e, to see if on the basis of 

a simple model one could understand (if it is indeed true) that classical 

transition state theory is a better approximation the higher the 

dimensionality (other things being equal). The results of the analysis 

do indeed show this effect; i.e., at energies above the critical energy 

E (up to .which transition state theory is exact) transition state theory 
c 

deviates less from the correct result the higher the number of degrees 

of freedom. Furthermore, the simple model that is proposed and 

developed in the paper provides an estimate of the critical energy E c 

in terms of transition state frequencies and reaction path curvature, 

and shows that E is in many cases expected to be approximately c 

independent of dimensionality. Finally, for the canonical (i.e., 

thermally averaged) rate constant, as opposed to the microcanonical 

-case discussed above, it is seen that the fractional error in transition 

state theory (i.e., the transmission coefficient) given by the model 

is actually independent of the dimensionality. This result thus supports 

the :ap:pt-oach ·suggas.ted · (~nd-·applied) recently by Bowman e.t al. 4 of using 

.the ··thermal transtldssion ·coefficient from an accurate collinear calculation 

;to .correc.t .the :transition .s:tat.e. theor:y rate constant for the three-

;sec::t!on II des'C:t~hes .:the approxima.te .model on which the analysis 

t)f ';the ,;:paper is :based~ Tt titili:z·es .the . reaction path Hamiltonian model5 
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of the polyatomic system and includes in an approximate fashion the 

effect of reaction path curvature on the reaction probability. The 

calculation is carried out first for the'microcanonical (fixed total 

energy E) case~ and implications of the results are discussed in Section 

III. Section IV considers the canonical (fixed temperature) case and 

also the modifications of the classical analysis to include quantum 

mechanical effects. 



... 

..::s-

II. Theory; The Microcanonical Case. 

The quantity of interest here is N(E), the microcanonical average 

of the reactive flux through a surface which divides reactants from 

products, and within classical mechanics it is given by1 ' 6 

o(E-H) o(s)~ x (p,q) 
r - -

(2 .1) 

where F is the number of degrees of freedom of the complete molecular 

system, (f,g) :: (pk,qk)' k=l, ••• , F is any set of canonical coordinates 

and momenta, H is the classical Hamiltonian, s the reaction coordinate 

(s=O defines the dividing surface separating reactants and products), 

s its time derivative, and X is the characteristic function for 
r 

reaction. The characteristic function X (p,q) = 1 if the trajectory 
r - -

determined by the phase point (p,q) evolved in the infinite past from 

reactants, and is 0 otherwise. To evaluate this expression it is 

in general necessary to compute classical trajectories to determine 

when X is 0 or 1. 
r 

The thermally averaged rate constant, to be 

considered more specifically i·n Sectien IV, is .giv:en in -t-erms .af 

N(E) by 

k(T) = (2nfl <la) -l f GE N(E) ""'''{~E/kT) 

where Q0 is the partition .fu~ction (per uni,t v:alUIIle) .f.or ,r,ea.c:ean:ts .• 

·Appz;oximad,ons to ,N(iE.) ,corr:espond .t·o .ma\lt~g .appi;ox.li.mati:ons ·:to 

.corresponds to .the approxima;titon 



where h is the step function 

h(x) = 
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{ 1, X > 0 

0, X < 0 

(2.3) 

but in the present analysis we wish to do better than this. For this 

purpose the reaction path Hamiltonian as formulated by Miller, Handy 

and Adams 4 is used to characterize the molecular system, 

H(p ,s,n,q) 
s - -

+ 

(2.4) 

where s is the (mass-weighted) distance along the reac.tion path., ,p :its 
,s 

conjugate momentum, and (n,q) the action-angle variables for normal mode 

vibrations orthogonal to the reaction path. {wk(s)} are the local 

harmonic frequencies f.or these modes, and ~0-(s) :ics the :potent1,-al energy 

surface along the reaction path. (Rot.ati:on i's ·being i:grtol::ed·in.the 

present analysis.) The functions Bk 'k'' {s) ar-e cor.iolis~.lik.e ,coupl~ .,. 

elE:!lllents which couple vibrat·ional mode 1t and .k'', and B:k,:F(s) .are 

,c-urvature-·coll,pling el·ements which couple .mode ik ~to ~the rearc~ti:on 

coordinate {labeled ·as mode F). 

.. 
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To evaluate the phase space integral in Eq. (2.1) it is clearly 

convenient to take the reaction path variables (ps,s), (~,qk), k=l, ... , 
as the canonical variables. Because of the two delta functions in the 

integrand of Eq. (2.1), two integrations can be carried out, and the 

obvious ones are the integral over s and the one over p • Since s 

. aH 
s =-a­

Ps 
(2.5) 

it is straight-forward to show that integration over these two variables 

gives 

N(E) = (2nh)-(F-l) ~ dnldq 
J 1 - -
-2 0 

+Sign(s_) x~(~,~)] (2. 6) 

where 

(2.7) 

and where+ and-- refer to the two possible values of ps' and thus s, that 

.:ar.e det·e:rmine!i ,:by ·energy co.nserv.ati:on a.t s=O, 

(2 .8) 

F-1, 



(2.9) 

where 

(2.10) 

Equation (2.6) is still exact (at least within the reaction path 

Hamiltonian model of the molecular system) as it stands, but we now 

introduce .assumptions about X in order to be able to proceed further . r 

(without requiring a trajectory calculation). First, it is assumed 

that trajectories which emmante from regions of the transition state 

(i.e., values of ~,g and s=O) for which 

1 + E(O) > 0 (2.lla) 

have come directly from reactants (and proceed directly to products). 

Since f-or all values of s energy conservation gives 

s = ± 12[E-V (s)J/[l+l:(s)] .. n ' 

::thi·s is ·equiva3:en·t to ·the .as·sum.p.tion that l "+ ~ (s) > ·0 for all values of 

>s .fai:ong rsu'ch a :t~~jlecitory,, i. .• e .• , ;tiha:t s does ,not :Change sign. Since 

'lthe ·.transi:.ti:on .'Sitat:e :(;i ..• ;e,. ,, 's=O) :±s .. ty,pi.ca'lJ.y ·.the :r.egion .of larges:t 
. ' 

. JC:urvat-ur:e (!L.·.e .• " lL'az:1g·eSlt ·Y.a:l:ues ~of I!~k .F(:s}}) and since l:{s) -+ ·0 as 
'· 

.. 
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0 (2.llb) 

for values of (n,q) for which Eq. (2.lla) is satisfied • ... ... 
Trajectories which emmanate from regions of the transition state 

for which 

1 + reo> < o (2.12a) 

are more complicated to deal with. Since r(s) -+ 0 as s -+ +en and ...oo, 

it must be that 1 + r(s) goes through (at least one) zero for s > 0 and 

also for s < 0, and thus that s has sign changes for s > 0 and s < 0. 

It thus seems reasonable to assume that such trajectories correspond 

to some sort of collision complex. For a long-lived collision complex 

one would expect it to be equally likely that the trajectory has come 

from reactants if s < 0 at s = 0 (which is s+) or if s > 0 at s = 0 

(which is s). This implies the assumption that on the average 

(2.l2b) 

so that such trajectories would not contribute to Eq. (2.6). Other 

somewhat more sophisticat.ed .approximations are poss±bl·e ~in this "Cas·e, 

but none that we have thought of influence the outcome ,s..ignificantly .• 

Combining the assumpti·ons in Eqs. (2.11) and (2 .• l'2), the 

approximation arrived :at for 'Eq. ('2 .6} is 

N(E) = '(27th) -{F-l) l 1
2 

dn .. / d·q 
' . ... '0 ... -:z 

,, . 1(2 .• 13) 
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with L(s) defined by Eq. (2.10). It is clear that if one makes a zero-

curvature approximation, then L(O) -+- 0 and Eq. (2.13) becomes ordinary 

transition state theory. Equation (2.13) thus incorporates 

(approximately) the effects of reaction path curVature into transition 

state theory. (It may also be interesting to note that the requirement 

expressed by Eq. (2.13), namely that 1 + L(O) ~ 0, is also equivalent 

7 
to restricting the phase space integral to the single-valued region of 

the reaction path coordinates at s=O.) 

The result obtained from Eq. (2.13) is most conveniently expressed 

by giving the transmission coefficient K, the ratio of N(E) to the usual 

transition s.tate theory (i.~., zero curvature) approximation to it. 

Thus K(E) is defined by 

N(E) = K(E) NTST(E) 

where NTST is the usual microcanonical transition state theory 

expression 

F-1 
= (E-v

0
> F-l 1 [ (F-1) ! lT tttl 1 

k=l k 
, 

with~* = ~(0) and v0 = v0 (0). Carrying out the integrals .in 

Eq. (2.13) gives the transition coefficient as 

K(:E) = 1 ,_, .E $ .Ec 

= 1 - (2n")~l __ ]--dx. (l~x/R)F""'l 
_ .. xix...,i 

where R = (E-v0) l (E -v0) .and .E , the critical energy up to which c . c . 

(2.14) 

(2 .15) 

{2.16) 

.. 
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transition state theory is exact (i.e., K=l), is given by 

(2 .17) 

The one remaining integral in Eq. (2.16) can also be carried out, to 

give K explicitly as 

K(E) = 1- 7T-l [tan-1 (/R-1) 

+~ '2: 
R.=O 

R.+.!. 
2 

(k-:-1) (R-1) ] 
R. 2R.+l 

(2.18) 

Equations (2.14)-(2.18) are the basic results of the present model, 

the implications of which the remainder of the paper explores • 
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III. Discussion. 

Consider first the expression for the critical energy E , Eq. (2 .17) • c 

It behaves qualitatively correctly in that if there is no curvature 

(Bk,F + 0), then Ec + co• 
' i.e., if the reaction path is straight, 

transition state theory is correct for all energies. Conversely, the 

larger the curvature coupling elements, the lower E . 
c 

Consider also the example of an atom-diatom reaction, A + BC + 

AB + C, for which the reaction path is collinear. This means that 

Bk,F(s) = 0 for modes k that are bending modes, which in term implies 

that E is the same for the collinear reaction as for the three-c 

dimensional version of the same reaction. This is indeed what is 

observed3 empirically for the collinear/three-dimensional versions of 

the H + H2 reaction on the Porter-Karplus potential surface. In 

general, Eq. (2.17) shows that only modes k which the curvature couples 

significantly to the reaction coordinate (i.e., for which Bk,F are 

significant) contribut:e to determining E • c 

One can give Eq. (2 .17) a semi-quantitative check via the H + H2 

reac·tion on 'the Porter-Karplus ·surface. The -only amhiguous aspect is 

that ·the :saddl-e pof.nt on this ·surface is not the point of maximum 

curvature, and Eq. (2.17) gives a value of 'V 2 eV above the barrier 

:the ::.pc:d:nt )of :maximum ··curvature (s ·!:::: .8 ·mass ... wel,:ghted atomic units-""'see 

.-Figur,e -··4 :of r·ef:erence .:5 l:, 1th•en ·'one :ob:t•ai.ns ~c ;!:::: Cl.3 .. ev :abov-e .the barrier 

'ihei:ght,, ~tl !e:KceJI.l'en<t -~gr .• eemettlt ~t·h ;the 'eiJ!P.ir.iea:I]:y observ;ed
3 

value .• 

•Now 1c•onsi!aer ~he ·]:imi:t ,co'f '!K(£~ ~fcor ~ :tltdy :s.ligh'tly ;abov:e -•the 

.!ct~\ti'Cai 2ener,gy,. ~Et"01iLEq, •. (;'2 .• I~) rEmos•t :easi];y) '()ne .f:lnds 
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where 

K(E) = 

...;13-

1 - c F 

1 E-E F--
(--c) 2 
E -v c 0 

= !c~F)-l/2 for large F 
2 

(3.1) 

(3.2) 

This displays the dimensionality effect mentioned in the Introduction, 

i.e., 

1 F--
K(E)-1 'V-(E-E ) 2 . c ' 

for E-E small; the larger F the more gradually K(E) differs from unity 
c 

for E > E • 
c 

It is also easy to sh.ow that the high energy limit of K (E) is 

1 
Um K(E) = '2 
E-+<n 

(3.3) 

This limit can also be thought of as the large curvature limit for 

fixed energy, and in this sense is actually the corr-ect limit. Thus 

consid·er the family ·of atom-diatom reactions of the .heavy-light-heavy 

variety, e.g., 
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coordinates). They are in many respects similar to symmetric charge 

transfer reactions, and for energies above the barrier the reaction 

probability behaves as8 

where L\n is a phase shift difference. The only relevant point for 

present considerations is that the energy-averaged reaction probability 

is ~ ~ ! (One should not make too much of this perhaps coincidental 

agreement, however; the assumptions contained in Eqs. (2.11)-(2.12) 

are probably too crude to bel:-ieve the high curvature limit in detail.) 

Finally, Figure 1 shows K(E) as a function of the energy relative 

to the critical energy (both relative to v0 (0) as zero of energy) for 

several values of F. F=2 is the lowest possible value, corresponding 

to a collinear atom-diatom reaction. This figure shows more explicitly 

the effect of dimensionality on K and how relatively slowly it approaches 

1 its infinite energy limit of 2· 
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IV. The Canonical Case. 

The quantity of perhaps more interest than N{E) is the thermal 

rate constant k{T), which is given in terms of N(E) by Eq. (2.2). By 

using the integral representation of K(E) in Eq. (2.16) it is not hard 

to show that one obtains 

k(T) = K(T) kTST(T) (4.1) 

where ~ST is the standard (i.e., zero curvature) transition state 

expression, 

F-1 
[ 1T __!g_] /Q 
k=l h~:j: 0 ' 

(4 .2) 

with the effective thermal transmission coefficient K(T) given by 

(4.3) 

Within the present model, therefore, the effective the:rma,l transmission 

coefficient K(T)·- [Eq. (4.3)] depends on ·the dimensionality of the system only 

through the critical energy E • As noted in Section III, though, E is expected c . c 

to be often approximately independent of the dimensionality, and·to the extent 

that this is :true K(T) is t'hus indepE:mden,t ,of the dimensionality~ A,s noted in 

the In.troduc:tli.:on,, th:i.s :iaea -o'£ ·the :indepetrdence :o£ 'K (T~ :to dilil.ensiona.li,ty has 

been assumed and .a,pplied wi.th some .su'ccess re~tly Q.Y Bowman et a1~ 4 



This modification unforutnately makes it more difficult to carry out the 

remaining integrals over the angle variables. For the canonical case, 

for example, Eq. (4.4) (together with Eqs. (2.2) and (2.13)) leads to 

(4.5a) 

where 

• (4. Sb) 

By use of the following integral representation for the step-function, 

h(x) =.tim (27Ti)-lldz 
~-+{) 

Eq. (2.5b) for K can be simplified to 
n 

No.further progress can be made in general, but if the coupling 

(4.6) 

elements are small enough for one to approximate the Bessel functions 

.as 

., 
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Equation (4.7) certainly shows the correct trend: if all Bk,F's ~ 0, 

then K ~ 1 and Eq. (4.5a) gives ordinary (quantized) transition state 
n 

1 
theory; for Bk,F very large Kn ~ 2,the correct limit within the model 

considered in this paper. 
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V. Concluding Remarks. 

The point of this paper has been to show how a relatively simple 

dynamical approximation, based on the reaction path Hamiltonian of 

Miller, Handy and Adams, is able to describe the effect of reaction 

path curvature and the effect of dimensionality on classical transition 

state theory. The proposed model only describes these effects 

approximately, of course, but the discussion in Section III shows that 

it is at least capable of describing some of these effects correctly. 

It is interesting to see, for example, that dimensionality effects in 

the microcanonical transmission coefficient K(E) are not inconsistent 

with the lack of such effects in the thermal transmission coefficient 

K(T). 
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Figure Caption 

The solid curves are the transmission coefficient K of Eq. (2.18) 

as a function of the energy parameter R = (E-E )/(E -v0) for the cases c c 

of F = 2, 8, and 20 degrees of freedom. (v
0 

is the barrier height, and 

E the critical energy up to which K = 1; thus K = 1 for R S 1.) The 
c 

broken curve is the canonical (i.e., temperature dependent) transmission 

coefficient of Eq. (4.3), and for this curve the abscissa R = kT/(Ec-v0) • 
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