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Abstract

Using a simple dynamical approximation bﬁsed on the reaction path
Hamiltonian of Miller, Handy, and Adams [J. Chem. Phys. 72, 99 (1980)],
it is shown how reaction path curvature and dimensionality affect the
accuracy of classical transition state theory. Also, an explicit
expression is obtained for the critical énergy up to which classical
transition state theory is exact. A variety of implications of these

results are discussed.



I. Introduction.

In spite of the man& advances in the theory df chemical reacfion
dynamics over the last twenty years, transition state theory is still
the most genefally useful and reliable method for determining the rate
constants of most non-state-selected (i.e., thermally averaged) bimolecular
reactions. There has, moreover, been much progress in recent years in
illucidating the dynamical basis of transition state theory and in
gxtending its range of validity by including quantum effects (e.g.,
tunneling, non-separability of the transition state, etc.) in a variety
-of more sophisticated ways.1 Together with high level quaﬁtum chemical
calculations of the transition state and its necessary properties, these
modern vérsions of transition state theory are providing quantitatively
reliable rate consfahts for é number of simple bimolecular reactions.

One of the key developments which spurred the revival of interest
in transition staté theory was Pechukas and McLafferty's2 work showing
that for simple barrier reactions classical transition state theory is
exact for at least some range of energies above the barrier height.
Classical trajectory calculations for the standard test reactiop,

H + H2 g H2 + H, showed3 this critical energy, up to which tranmsition
state theory is exact, to Be N 0.2-0.4 eV above the energy of the saddle
point (i.e., the transition state) .of ‘the potential energy ssurface.

Even more‘interesting-was:theaobservatioh; that for -enexrgies :above

this critical;enexgy,-i‘e,,«enengies.ior;which.the transition :state
{(microcanonical) rate constant -was too large, the fractional error 4in
transition state theory was much lESSfior ¢heithmeeiﬂimensionaiuvensien

of the reaction than for the one-dimensional (collinear) version, using

«
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. the same potential energy surface for both cases. This seemed to

suggest the happy result that transition state theory is more accurate
in three-~dimensions then in one-dimension.
The original motivation for this paper was to explore this

"dimensionality effect' noted above, i.e, to see if on the basis of

‘a simple model one could understand (if it is indeed true) that classical

transition state theory is a better approximation the higher the
dimensionality (other things being equal). The results of the analysis
do indeed show this effect; i.e., at energies above the critical energy
Ec (up to which transition state theory is exact) transition state theory
deviates less from tne correct result the higher the number of degrees
of freedom. Furthefmore, the simple mndel that is proposed and
developed in the paper provides en estimate of the critical energy Ec

in terms of trensition state frequencies and reaction path»curvature,_.
and shows that Ec is in many cases expected to be approximately
independent of dimensionality. Finally, for the canonical (i.e.,
thermally avefaged) rate constant, as opposed to the microcanonical

case discussed above, it is seen that the fractional error in tranmsition

state theory (i.e., the transmission coefficient) given by the model

- is actually independent of the dimensionality. This result thus supports

the :approach suggested: (and-applied) r_ecent-ly'by'Bowman..'_e;t_'al.4 of using
the ‘thermal transmission coefficient from an accurate collinear calculation

o correct the transition state theory rate constant for the three-

. dimensional -version iof the reaction.

Section II describes trhe approximate model on which the analysis

©of ithe paper Is based. Tt.utilizes the reaction path Hamiltonian model5



of the polyatomic system and includes in an approximatevfashion the
effect of reaction path curvature on the reaction probability. The
calcuiation is.carriéd out first‘for.tﬁe'microcanonical (fixed total
enérgy E)'case, and implications of the .results are discussed in Section
III. Section IV considers the canonical (fixed temperature) case and
also the modifications of the classical analysis to include quéntum

mechanical effects.



' products, and within classical mechanics it is given by

II. Theory; The Microcanonical Case.

The quantity of interest here is N(E), the microcanonical average

of the reactive flux through a surface which divides reactants from
1,6

N(E) = 27h BT fdg ﬁg S(E-H) 8(s)s X (po@) - (2.1)

where F is the number of degrees of freedom of the complete molecular
system, (B’S) E'(pk’qk)’.k=l’ ..., F is any set of canonical coordinates
and momenta, H is the classigal Hamiltonian, s the reaction coordinate
(s=0 defines the dividing surface separating reactants and products),
§ its time derivative, and')(r is the characteristic function for
reaction. The characteristic function Xr(g,g) = 1 if the trajectory
determined by the phase point (E,g) evolved in the infinite past from

reactants, and is 0 otherwise. To evaluate this expression it is

in general necessary to compute classical trajectories to determine

when Xy is 0 or 1. The thgrmélly.averaged rate constant, to be
considered more specifically in Sectiom 1V, is given in terms of

N(E) by
k(T) = {(2mh QO)‘l f dE N(E) wexp(~E/kT) (2.42)

where Qy is the partition function (per unit volume) .for reactants.
Approximations to N(E) .correspond to making .approximations to
the‘Characteristic.£unction,xru .TiﬁﬂsitiDn&Sﬁaté‘ﬁheﬁiyuff@I&EXémﬁia,

corresponds to the approximation



X.(p:q) > h(3) o (2.3)

where h is the step function

1, x>0
h(x) = {
0, x<20

but in the present analysis we wish to do better than this. For this
purpose the reaction path Hamiltonian as formulated by Miller, Handy

and Adams4 is used to characterize the molecular systemn,

F-1 , 1
H(p,,s,n,q) = Zi how (s) (o +3) + Vy(s)

F=. ‘
%{Ps - ;Ei'=1 3k,k'(s) /(an+1)(2nk,+l)w .(s)/mk(s) sinqk cosqk,]2

4

1+ :Z; Bk,F(s) /(2nk+1)/wk(s) sinqk]2

(2.4)

where s is the (mass-weighted) distance along the reaction path, gstits
conjugate momentum, and (B,gi the action-angle variables for normal mode
vibrations orthogonal to the reaction path. {wk(s)} are the local
harmonic frequencies for thesefmodes, and Vo(s) is the potential energy
surface along the reaction path. {(Rotation is being ignored in the
present analysis.) The functions Bk§k,(s)vare«coriolisalikefcouplﬁgg
elements which couple vibrational mode k and k', and ﬁkgixs)qarg
curvature=~coupling elements which couple mode k ito the reaction

coordinate {labeled as mode F).



To evaluate the phase space integral in Eq. (2.1) it is clearly

convenient to take the reaction path variables (ps,s), (nk,qk), k=1, ..., F-1,

as the canbnical variables. Because of the two delta functions in the

integrand of Eq. (2.1), two integrations can be carried out, and the

obvious ones are the integral over s and the one over Pg- Since

&= 3B . | v (2.5)

it is straight-forward to show that integration over these two variables

gives
N(E) = (zwh)'(F’l). f dnqu h[E-Vn(_O)]Bign(é+) X:(n,q)
_ 1 - ~ ~ T
-3 0
+sign(s) (91, | 2.6)
where

Yn(.s) = VO(S_) + 2.7)

~

and where + and — refer to the two possible values of 1§S , and thus §, that

.are «determined by energy conservation at s=0,

Hlps=0,n59) = E . o (2.8)

Hith ithe reaction path Hamiltonian, :Eq. {2.4), and Egs. (2. 5:) and

L2+8), -one finds



§, = * Y2[E-V_(0)]/[1+2(0)] | (2.9)
where
I(s) = IZ_ Bk,F(S) /(.2nk+l)/wk(s) singq, . (2.10)

Equation (2.6) is still exact (at least within the reaction path
Hamiltonian model of the molecular system) as it stands, but we now.
introduce assumptions about‘j(r in order to be able to proceed further
(without requiring a trajectory calcﬁlation). First, it is assumed
that trajectories which ennnante from regions of the transition state

(i.e., values of n,q and s=0) for which
1+ %) >0 , ’ (2.11a)

have come directly from reactants (and proceed directly to products).

Since for all values of s energy conservation gives

§ =+ /2] E-Vnz,ss T/[1+Z(s)] s

this is ‘equ‘ivéibexrt to the assumption that 1-+ I(s) >0 for all values of
is -along such -a trajectory, i.e., that § does not change sign. Since
the transition state (i.e., :se;(){j :Ls typically the region of largest
.xcum’a‘it.gre {i.e., largest walues ‘of {Bk,F(s)}) .and since L(s) - 0 as

s+ oo, it seems 1ike a reasondble approximation to assume that if

A # Z{s) begins jpositive at s=0 that it will remain positive as s + +»

and <o, With this approximation :one thus has



. +
Sign (S+) Xp = + 1

X, = 0 (2.11b)

for values of (n,q) for which Eq, (2.1la) is satisfied.
Trajectories which emmanate from regions of the transition state

. for which

1+ Z(0) <0 ' (2.12a)

are more complicated to deal with. Since'Z(s) > 0 as s > +o and —«,

it must be thaﬁ 1 + IZ(s) goes through (at least one) zero for s > 0 and
‘also for s < 0, and thus that § has sign changes for s > 0 and s < 0.
It thus seems reasonable to assume that such trajectorieé correspond

to some sort of collision complex. For a long-lived collision complex
one would expect it to be eqﬁally likely that the trajectory has come
from reactants if § < 0 at s = 0 (which is é;) or if § >0at s =20

(which is §_). This implies the assumption that on the average
. . + . -
5. < ; . ~ p 191 )
<S}gn (8,) x>+ Sign ) x> 0 ; (2.12b)

so that such trajectories would not contribute to Eq. (2.6). Other

.somewhat morevsophisticated‘approximations are possible in this*case,

but none that we have thought of influence the outcome significantly.
Combining the assumptions in Egqs. (2.11) and (2.12), the .

approximation arrived at for Eq. (2.6) is

1

2

{d4g BIEY_(0)] AIHIO] , 2.13)
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with Z(s) defined by Eq. (2.10). It is clear that if one makes a zero-
curvature approximation, then Z(0) > 0 and Eq. (2.13) becomes ordinary
transition state theory. Eduation (2.13) thus incorporates
.(approximately) the effects of reaction path curvature into transition
state theory. (It may also be interesting to note thaf the requirement
expressed by Eq. (2.13), namely that 1 + Z(0) > 0, is also equivalent
to resﬁricting the phase space‘integral to the single-valued region7 of
the reaction path coordinates at s=0.)

The result obtained from Eq. (2.13) is most conveniently expressed
by giving the transmission coefficient k, the ratio of N(E) to the usual
transition state thebry (i.e., zero curvature) approximation to it.

Thus K(E) is defined by

N(E) = K(E) Npgp(E) , o (2.14)
where NTST is the usual microcanonical transition state theory
expressipn

F-1 L '
= - - !
Npgp(E) = (E-Vg)™ ~/[(F-1)! ‘l;'l; w,] , (2.15)

. * - = : ‘ ' . .
with w.o = wk(O) and vy £ VO(O). Carrying out the integrals in

Eq. (2.13) gives the transition coefficient as

K(E) =1 ., E <.E

o]
(2.16)
PO 2L |
~ad X X—l €

where R = (EhVO)/(Eﬁ—VU)‘and‘EC’ the critical enmergy up to which



[
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transition state theory is exact (i.e., k=1), is given by

(o4

o _
E, =V, +-% IE;; Bk’F(O)z/wk(O)Z]-l i C(2.1])

The one remaining integral in Eq. (2.16) can also be carried out, to

give Kk explicitly as

K(E) = 1 - T % [tan *(/R=I)
L+i

p i N 4 - 2
+ 3 FhhE E oy &Ly (2.18)
kTR gt e T |

Equations (2.14)-(2.18) are the basic results of the present'model,

the implications of which the remainder of the paper explores.
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III. Discussion.

Consider first the expression for the critical energy Ec’ Eq. (2.17).
It behaves qualitatively correctly in that if there is no curvature
(Bk,F -+ 0), then Ec + o3 j,e., if the reaction path is straight,
transition state theory is correct for all energies. Conversely, the
larger the curvature coupling elements, the lower Ec.

Consider also the examﬁle of an atom—diétoﬁ reaction, A + BC >
AB + C, f§r which the reaction path is collinear. This means that
Bk,F(S) =0 fo? modes k that are bending bgdes, which in Ferm implies
that Ec is the same for the collinear reaction as for the three~
dimensional version of the same reaction. This is indeed_what is
obsérved3 empiricaliy for the collinear/three-dimensional versions of
the H + H2 reaction on the Porter-Karplus poﬁential surface. 1In
general, Eq. (2.17) shows that only modes k which the curvature couples
significantly to the reaction coordinate (i.e., for which Bk,F are
significant) coﬁtribute to determining Ec'

One can give Eq. (2.17) a semi-quantitative check via the H + H,
reaction on the Porter-Karplus surface, The only ambiguous aspect is
that the saddle point on this -surface is not the point of maximum
curvature, and Eq. (2.17) gives a value of "2 eV above the barrier
" ‘height, much too large. Tf rather one evaluites the expression at
the point .of maximum curvature {s = 8 mass-weighted atomic units--=see
Figure-4 of vreferetnce 5), then one obtains ﬁcw=?Gw3:ev.ébove-thefbarrier
“hedght, ﬁmkekceiientxagmeementamith.the:eqpirically 6hserved3'walue_

‘Now consider the 1imit of «{E) For £ only slightly above the

wcritical ;energy. .From Eq. (2.16) (most easily) -one finds



3
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1
E-E F- 2

c
1-cqg (57137 ) R (3.1
c O

K(E)

where

T'(F)

C, =T 7
P PTE+P

/2

1]

%{ﬂF)—l for large F . (3.2)

This displays the dimensionality effect mentioned in the Introduction,

i.e.,

1
K(E)-1 N-(E—Ec) 2 s
for E—Ec small; the larger F the more gradually k(E) differs from unity

for E> E .
c

It is also easy to show that the high energy limit of x(E) is

%im K(E) = 5 . (3.3)
Eoo
This limit can also be thought of as the large curvature limit for
fixed energy, and in this sense is actually the correct limit. 'Thus

consider the family of atom-diatom reactions of the heavy-light~heavy

variety, e.g.,

CL-H + €L CL + H~CL

“which have»very;sharply.curved'reactian paths {(in the proper scaled/skewed
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coordinates). They are in many respects similar to symmetric charge
transfer reactions, and for energies above the barrier the reaction

probability behaves as8
2
P(E) = sin"[An(E)] )

where An is a phase shift difference. The only relevant point for

present consideratiéns is that the energy-averaged reaction probability

is N-% ! (One should not make too much of this perhaﬁs coincidental

agreement, however; the assumptioné contained in Eqs. (2.11)-(2.12)

are probably too crude to believe the high curvature limit in detail.)
Finally, Figure 1 showst(E) as a function of tﬁe energy relative

to the critical energy (both relative to Vo(O) as zero of energy) for

. several values of F. F=2 is the lowest possible value, corresponding

to a collinear atom—-diatom reaction. This figure shows more explicitly

the effect of dimensionality on Kk and how relatively slowlyvit approaches

its infinite energy limit ofl%u
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IV. The Canonical Case.

The quantity of perhaps more interest than N(E) is the thermal
rate constant k(T), which is given in terms of N(E) by Eq. (2.2). By
using the integral representation of k(E) in Eq. (2.16) it is not hard

to show that one obtains

K(T) = k(T) k. (T) , 4.1)

TST

where kTST is the standard (i.e., zero curvature) transition state

expression,

F-1
KT KT
(T) = = exp(-V,/kT) [TT —=%1/q , (4.2)
kpst h o/ Lt 0

with the effective thermal transmission coefficient K(T) given by

<+

N
N[

k(T) =

erf [/TE::VBT7ET ] . - (4.3)

Within the present model, therefore, the effective thermal transmission
cdéfficient k(T)-[Eq. (4.3)] depends on the dimensionality of the system only
through the éritical energnyc. As noted_in.Section.III,-thqu-gh;TEc is expected
to be often approximately independent of the dimensionality, and't§ the e#tent
that this is true kK(T) is thus independent .of the dimensionality. As mnoted in
the Introduction, this:i&ea 0f‘ﬁhe%inaepéﬁ&énce-bf«K(T) to.ﬁim;nsionality'has
been assumedméndlapplied with somersutcesssrecehtly by*Bowman”éﬁ;éi;é

A finaigpbint‘has*1@Jﬁpfmith-guan$izatianenf‘mhelmlassitai:e#pmessions
discussed throughout the "paper. imhis;isqaccam@iiéheﬁrat'the:most:elementa:y
level (i.e., neglecting tunneling) by -replacing the integrals over the action

variables m,ﬂeﬁg«ﬁ'inqusa,Kﬁ;%):and?(2;133§fby,sums=bver:int@ger*Vé1uest

(b.b)
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This modification unforutnately makes it more difficult to carry out the
remaining integrals over the angle variables. For the canonical case,

for example, Eq. (4.4) (together with Eqs. (2.2) and (2.13)) leads fo

K(T) = 3+ exp(=V,/kT) [Z ,, expl-hu’ (n+2)/k’r]]/Q0 ., (4.59)

n=C ~

where

' =
= (2m~F-D [) dq h[1 + g B p(0) YD /u} sing] . (4.5b)

By use of the following integral representation for the step-function,

-1 eixz
h(x) = %im (2mi) Z dz ’
£50 z-ie

(2.5b) for K, can be simﬁlified to

~

=00

iz F=1
= (Zwi)’l J7.dz g:— 1-_ J [z Bk F(O)V(an+1)7w ] . (4.6)
k=1

1=

No further progress can be made in general, but if the coupling
elements are small enough for one to approximate the Bessel functions

.as

“Jao(V? = ad 14 . | |

*

then Eq. {%.6) can be evaluated o .give

2 +1 -
Tk _yyoli2y @)

“%k

‘k'FCG) =

B



-17-

Equation (4.7) certainly shows the correct trend: if all B -+ 0,

]
S
then Ky > 1 and Eq._(4.5a) gives ordinary (quantized) transition state

theory; for Bk F very large K, ™ %3the correct limit within the model
? .

~

considered in this paper.
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V. Cdncluding Remarks.

The point of this péper has been to show how a relatively simple
dynamical approximation, based on the reaction path Hamiltonian of
Miller, Handy and Adams, is able to describe the effect of reaction
path curvature and the effect of dimensionality on classical transition
state theory. The proposed model only describes these effects
apprbximately, of course, but the discussion in Section III shows that
it is at least capable of describing some of these effects correctly.
It is interesting to see, for example, that dimensionality effects in
the microcanonical transmission coefficient k(E) are not inconsistent
with the lack of such effects in the thermal transmission coefficient

k(T).
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Figure Caption

Thé-solid curves are the transmission coefficient k of Eq. (2.18)
as a function of the energy parameter R = (E-Ec)/(Eé_VO) for the cases
of F =2, 8, and 20 degrees of freedom. (Vb is the barrier height, and
Ec the ctitical energy up to which Kk = 1; thus k = 1 for R < 1.) The
-broken curve is the canonical (i.e., temperature dependent) transmission

coefficient of Eq. (4.3), and for this curve the abscissa R = kT/(Ec—Vo).
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