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Identification of novel risk loci, causal insights, and heritable 
risk for Parkinson’s disease: a meta-genome wide association 
study

A full list of authors and affiliations appears at the end of the article.

SUMMARY

Background—Genome-wide association studies (GWASs) in Parkinson’s disease (PD) have 

increased the scope of biological knowledge about the disease over the past decade. We sought 

to use the largest aggregate of GWAS data to identify novel risk loci and gain further insight into 

disease etiology.

Methods—We performed the largest meta-GWAS of PD to date, involving the analysis of 7.8M 

SNPs in 37.7K cases, 18.6K UK Biobank proxy-cases (having a first degree relative with PD), 

and 1.4M controls. We carried out a meta-analysis of this GWAS data to nominate novel loci. We 

then evaluated heritable risk estimates and predictive models using this data. We also utilized large 

gene expression and methylation resources to examine possible functional consequences as well as 

tissue, cell type and biological pathway enrichments for the identified risk factors. Additionally we 

examined shared genetic risk between PD and other phenotypes of interest via genetic correlations 

followed by Mendelian randomization.

Findings—We identified 90 independent genome-wide significant risk signals across 78 genomic 

regions, including 38 novel independent risk signals in 37 loci. These 90 variants explained 16–

36% of the heritable risk of PD depending on prevalence. Integrating methylation and expression 

data within a Mendelian randomization framework identified putatively associated genes at 70 

risk signals underlying GWAS loci for follow-up functional studies. Tissue-specific expression 

enrichment analyses suggested PD loci were heavily brain-enriched, with specific neuronal cell 

types being implicated from single cell data. We found significant genetic correlations with brain 

volumes, smoking status, and educational attainment. Mendelian randomization between cognitive 

performance and PD risk showed a robust association.

CAdenotes corresponding author, mike@datatecnica.com.
*denotes shared first authorship.
AUTHOR CONTRIBUTIONS
Study level analysis
MAN, CB, CLV, KH, SB-C, DC, MT, DK, LR, JS-S, LK, LP, ABS
Additional analysis and data management
MAN, CB, SB-C, AJN, AX, JY, JG, PMV, ABS
Design and funding
MAN, CB, CLV, KH, SB-C, LP, MS, KM, MT, AB, JY, ZG-O, TG, PH, JMS, NW, DAH, JH, HRM, JG, PMV, RRG, ABS
Critical review and writing the manuscript
MAN, CB, CLV, KH, SB-C, DC, MT, DAK, AJN, AX, JB, EY, RvC, JS-S, CS, MS, LK, LP, AS, HI, HL, FF, JRG, DGH, SWS, JAB, 
MM, OAA, J-CC, SL, JJ, LMS, MS, PT, KM, MT, AB, JY, ZG-O, TG, PH, JMS, NW, DAH, JH, HRM, JG, PMV, RRG, ABS

All others have no disclosures or potential conflicts of interest.

Full consortia membership (PubMed indexed) is available in the supplemental materials (Text S1).

HHS Public Access
Author manuscript
Lancet Neurol. Author manuscript; available in PMC 2021 September 07.

Published in final edited form as:
Lancet Neurol. 2019 December ; 18(12): 1091–1102. doi:10.1016/S1474-4422(19)30320-5.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Interpretation—These data provide the most comprehensive understanding of the genetic 

architecture of PD to date by revealing many additional PD risk loci, providing a biological 

context for these risk factors, and demonstrating that a considerable genetic component of this 

disease remains unidentified.

INTRODUCTION

Parkinson’s disease is a neurodegenerative disorder, affecting approximately 1 million 

individuals in the United States alone (5). PD patients suffer from a combination of 

progressive motor and non-motor symptoms affecting daily function and quality of life. The 

prevalence of PD is projected to double in some age groups by 2030, creating a substantial 

burden on healthcare systems (5).

Early investigations into the role of genetic factors in PD focused on the identification 

of rare mutations underlying familial disease, (6,7) over the past decade there has been 

a growing appreciation for the contribution of genetics in sporadic disease(1,8). Genetic 

studies of sporadic PD have altered the foundational view of disease etiology.

We executed a series of experiments to explore the genetics of PD (summarized in Figure 

1). We performed the largest-to-date GWAS for PD, including 7.8M SNPs, 37.7K cases, 

18.6K UK Biobank (UKB) “proxy-cases” (individuals without PD that have a family history 

of PD) and 1.4M controls. We identified mechanistic candidate genes for PD, providing 

valuable therapeutic targets. We assessed the function of these potential risk genes via 

Mendelian randomization, expression enrichment, and protein-protein interaction network 

analysis. We estimated PD heritability, developed a polygenic risk score that predicted 

a substantial proportion of this heritability, and leveraged these results to inform future 

studies. Finally, we identified candidate PD biomarkers and risk factors using genetic 

correlation and Mendelian randomization.

SUMMARY OF METHODS

GWAS Study design and risk locus discovery

Three sources of data were used for discovery analyses, these include three previously 

published studies, 13 new datasets, and proxy-case data from the UK BioBank (UKB). 

Previous studies include summary statistics published in Nalls et al. 2014, GWAS summary 

statistics from the 23andMe Web-Based Study of Parkinson’s Disease (PDWBS) in Chang 

et al. 2017, and the publicly available NeuroX dataset from the International Parkinson’s 

Disease Genomics Consortium (IPDGC) previously used previously as a replication sample. 

These cohorts have been reported in detail (1,9). We included 13 new case-control sample 

series for meta-analyses through either publicly available data or collaborations (please 

see Supplementary Table S1 for details regarding these studies). All samples from the 13 

new datasets underwent similar standardized quality control for inclusion, mirroring that of 

previous studies. We attempted to generate summary statistics for GWAS meta-analyses as 

uniformly as possible. This analysis utilized fixed-effects meta-analyses as implemented in 

METAL to combine summary statistics across all sources (10).
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Conditional-joint analysis to nominate variants of interest

To nominate variants of interest, we employed a conditional and joint analysis strategy 

(COJO, http://cnsgenomics.com/software/gcta/) to algorithmically identify variants that best 

account for the heritable variation within and across loci (11). Additional analyses described 

below were utilized to further scrutinize putative associated variants and account for possible 

differential linkage disequilibrium (LD) signatures, including using the massive single site 

reference data from 23andMe in more conditional analyses. If a variant nominated during 

the COJO phase of analysis was greater than 1Mb from any of the genome-wide significant 

loci nominated in Chang et al. 2017, we considered this to be novel. We defined nominated 

risk variants as from a single locus if they were within +/− 250kb of each other. We 

instituted two filters after fixed-effects and COJO analyses, excluding variants that 1) had 

a random-effects P value across all datasets > 4.67E-04 and 2) a conditional analysis P > 

4.67E-04 using participant level 23andMe genotype data. Please see Supplementary Table 

S2 summarizing all variants nominated plus the Methods and Results Supplement.

Refining heritability estimates and determining extant genetic risk

We used the R package PRSice2 for risk profiling (12), this carries out polygenic risk 

score (PRS) profiling in the standard weighted allele dose manner (1,9,13–15). In addition, 

PRSice incorporates permutation testing where case and control labels are swapped in the 

withheld samples to generate an empirical P. This workflow identifies the best P thresholds 

for variant inclusion while carrying out LD pruning. In many cases this best P threshold for 

PRS construction does not meet what is commonly regarded as genome-wide signfiicance.

A two stage design was also employed, training on the largest single array study (NeuroX­

dbGaP) and then tested on the second largest study (HBS) using the same array. These two 

targeted array studies were chosen for three reasons: precedent in the previous publications 

where the NeuroX-dbGaP dataset was used in PRS; direct genotyping of larger effect rare 

variants in GBA and LRRK2; participant level genotypes for these datasets are publicly 

available.

To calculate heritability in clinically defined PD datasets, we used LD score regression 

(LDSC) employing the LD references for Europeans provided with the software (16). This 

workflow was also repeated on a per cohort level (see Supplementary Appendix).

Functional causal inferences via Quantitative Trait Loci (QTL)

We used MR to test whether changes in DNA methylation and/or RNA expression of genes 

physically proximal to significant PD risk loci were causally related to PD risk. To nominate 

genes of interest for MR analyses, we took our putative 90 loci in the large LD reference 

used for the COJO phase of analysis and identified SNPs in LD with our SNPs at an r2 

> 0.5 within +/− 1MB (Supplementary Table S5). MR was used by integrating discovery 

phase summary statistics with quantitative trait locus (QTL) association summary statistics 

across well-curated methylation and expression datasets. We used the curated versions 

of Qi et al., 2018 brain methylation and expression summary statistics (multi-study and 

multi-tissue meta-analysis), as well as a specific focus on substantia nigra data (GTEx), we 

made use of the blood expression data from Võsa et al. 2018 (eQTLGen, all available here 
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http://cnsgenomics.com/software/smr/#Overview and here http://www.eqtlgen.org) (17–21). 

For all QTL analyses, we utilized the multi-SNP summary-based Mendelian randomization 

(SMR) method as a framework to carry out MR. All MR effect estimates are reported on the 

scale of a standard deviation increase in the exposure variable relating to a similar change 

in PD risk. Simply, these MR analyses compare the local polygenic risk of an exposure 

(methylation or expression) to similar polygenic risk in an outcome (PD), inferring causal 

associations under the assumption that there is no intermediate confounder associated with 

both parameters and that the association is not simply due to LD.

To further investigate expression enrichment across cell types in PD, we integrated GWAS 

summary statistics with expression and network data from the FUMA webserver (https://

fuma.ctglab.nl/, version 1.3.1) (22).

Rare coding variant burden tests

A uniformly quality controlled and imputed dataset from the IPDGC was used to carry out 

burden tests for all rarer coding variants successfully imputed in an average of 85% of the 

sample series (17,188 cases and 22,875 controls). These analyses include all variants at a 

hard call threshold of imputation quality > 0.8. After annotation with annovar, we had a 

total of 37,503 exonic coding variants (nonsynonymous, stop or splicing) at MAF < 5% 

and a subset of 29,016 at MAF < 1% (23). For inclusion in this phase, a gene must have 

contained at least 2 coding variants. After assembling this subset of 113 testable genes, 

we used the optimized sequence kernel association test to generate summary statistics at 

maximum MAFs of 1% and 5% (24).

LD score regression and causal inference

To investigate correlations of PD genetics with that of multiple traits and diseases, we 

employed bivariate LDSC (16). These analyses were carried out using data from the 757 

GWAS available via LD Hub and biomarker GWAS summary statistics on c-reactive protein 

and cytokine measures; LD Hub was accessed on June 20th, 2018 (version 1.2.0) (25–27). 

P values from the bivariate LDSC were adjusted for FDR to account for multiple testing. 

Traits showing significant genetic correlations with PD were analyzed using MR methods. 

We excluded the UKB data when a nominated trait was from summary statistics derived 

from the UKB or if the UKB was included as part of a meta-analysis.

When complete GWAS summary statistics were available for traits of interest (relating 

to smoking and education), we used the more powerful bi-directional generalized summary­

data-based Mendelian Randomization (GSMR). We analyzed GWAS summary statistics 

for smoking initialization (453,693 records from a self-report survey with 208,988 regular 

smokers and 244,705 never regular smokers) and current smoking (CS) within the UKB, CS 

contrasted 47,419 current smokers versus 244,705 never regular smokers. The same analysis 

was carried out incorporating recent GWAS data regarding educational attainment (N = 

766,345) from self report in the UK and cognitive performance (N = 257,828) as measured 

by the g composite score (28). These were analyzed using methods to mirror that of the 

UKB PD GWAS dataset. Combined left and right putamen volume from a T2 magnetic 

resonance imaging GWAS available from Oxford Brain Imaging Genetics (BIG) Server 
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(accessed December 28th, 2018) (29). All MR analyses included GWAS on the scale of tens 

of thousands of samples and overcame the considerable power demands of the methodology.

For additional quality control, methods details and ancillary results, see the Methods 

Supplement.

The funder of the study had no role in study design, data collection, data analysis, data 

interpretation, or writing of the report. The corresponding author had full access to all of the 

data and the final responsibility to submit for publication.

RESULTS

To maximize our power for locus discovery we used a single stage design, meta-analyzing 

all available GWAS summary statistics. Supporting this design, we found strong genetic 

correlations using PD cases ascertained by clinicians compared to 23andMe self-reported 

cases (genetic correlation from LDSC (rG) = 0.85, SE = 0.06) and UKB proxy cases (rG = 

0.84, SE = 0.134).

We identified a total of 90 independent genome-wide significant association signals through 

our analyses of 37,688 cases, 18,618 UKB proxy-cases and 1,417,791 controls at 7,784,415 

SNPs (Figure 2, Table 1, Supplementary Appendices, Table S1, Table S2). Of these, 38 

signals are new and more than 1MB from loci described previously (1) (Table S3).

We detected 10 loci containing more than one independent risk signal (22 risk SNPs in total 

across these loci), of which nine had been identified by previous GWAS, including multi­

signal loci in the vicinity of GBA, NUCKS1/RAB29, GAK/TMEM175, SNCA and LRRK2. 

The novel multi-signal locus comprised independent risk variants rs2269906 (UBTF/GRN) 

and rs850738 (FAM171A2). Detailed summary statistics on all nominated loci can be found 

in Table S2, including variants filtered out during additional quality control.

To quantify how much of the genetic liability we have explained and what direction to take 

with future PD GWAS we generated updated heritability estimates and PRS. Using LDSC 

on a meta-analysis of all 11 clinically-ascertained datasets from our GWAS and estimated 

the liability-scale heritability of PD as 0.22 (95% CI 0.18 – 0.26), only slightly lower than 

a previous estimate derived using GCTA (0.27, 95% CI 0.17 – 0.38) (2,16,30). LDSC is 

known to be more conservative than GCTA, however, our LDSC heritability estimate does 

fall within the 95% confidence interval of the GCTA estimate.

To determine the proportion of SNP-based heritability explained by our PD GWAS 

results using PRS, we used a two-stage design, with variant selection and training in the 

NeuroX-dbGaP dataset (5,851 cases and 5,866 controls) and then validation in the Harvard 

Biomarker Study (HBS, 527 cases and 472 controls). Using equations from Wray et al. 2010 

and our current heritability estimates, the 88 variant PRS explained a minimum 16% of the 

genetic liability of PD assuming a global prevalence of 0.5% (2,31). The 1805 variant PRS 

explained roughly 26% of PD heritability. In a high-risk population with a prevalence of 2%, 

the 1805 variant PRS explained a maximum 36% of PD heritable risk (2,31) (Table S4).
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We then attempted to quantify strata of risk in our more inclusive PRS. Compared to 

individuals with PRS values in the lowest quartile, the PD odds ratio for individuals with 

PRS values in the highest quartile was 3.74 (95% CI = 3.35 – 4.18) in the NeuroX-dbGaP 

cohort and 6.25 (95% CI = 4.26 – 9.28) in the HBS cohort (Table 2, Figure 3, Figure S1).

Variants in the range of 5E-08 < P < 1.35E-03 (used in the 1805 variant PRS) were rarer 

and had smaller effect estimates than variants reaching genome-wide significance. These 

sub-significant variants had a median minor allele frequency of 21.3% and a median effect 

estimate (absolute value of the log odds ratio of the SNP parameter from regresion) of 

0.047. Genome-wide significant risk variants were more common with a median minor 

allele frequency of 25.1%, and had a median effect estimate of 0.081. Here we assume 

that the lower minor allele frequencies and smaller effect size estimates are typical and 

representative of variants contributing to our more inclusive PRS and represent future 

GWAS hits. We performed power calculations to forecast the number of additional PD 

cases needed to achieve genome-wide significance at 80% power for a variant with a minor 

allele frequency of 21.3% and an effect estimate of 0.047 (32). Assuming that future data 

is well-harmonized with current data and that disease prevalence is 0.5%, we estimated that 

we would need a total of ~99K cases, ~2.3 times more than this work for these to reach 

genome-wide significance. These variants already contribute towards the current increases in 

AUC when considering the 1805 variant PRS outperforms the 88 variant PRS. Expanding 

future studies to this size will invariably identify new loci and improve the AUC for a 

genetic predictor in PD (maximum potential AUC estimated at 85% using the equations 

from Wray et al. 2010) (31).

There were 305 genes within the 78 GWAS loci. We sought to identify the likely 

causal gene(s) in each locus using large QTL datasets and summary-data-based Mendelian 

randomization (Table 3, Table S5, Table S6) (33). This method allows for functional 

inferences between two datasets to be made in an analogous framework to a randomized 

controlled trial, treating the genotype as the randomizing factor.

Of the 305 genes under linkage disequilibrium (LD) peaks around our risk variants of 

interest, 237 were possibly associated with at least one QTL in public reference datasets 

and were therefore testable via SMR (Methods Supplement, Table S6). The expression or 

methylation of 151 of these 237 genes (63.7%) was significantly associated with a possible 

causal change in PD risk.

Of the 90 PD GWAS risk variants, 70 were in loci containing at least one of these putatively 

causal genes after multiple test correction (Table 3). For 53 out of these 70 PD GWAS 

hits (75.7%), the gene nearest to the most significant SNP was a putatively causal gene 

(Table S2). Most loci tested contained multiple putatively causal genes. Interestingly, the 

nearest putatively causal gene to the rs850738/FAM171A2 GWAS risk signal is GRN, a 

gene known to be associated with frontotemporal dementia (FTD) (34). Mutations in GRN 
have also been shown to be connected with another lysosomal storage disorder, neuronal 

ceroid lipofuscinosis (35).
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As an orthogonal approach for nominating genes under GWAS peaks we carried out rare 

coding variant burden analyses. We performed kernel-based burden tests on the 113 genes 

out of the 305 under our GWAS peaks that contained two or more rare coding variants 

(MAF< 5% or MAF < 1%). After Bonferroni correction for 113 genes, we identified 

7 significant genes: LRRK2, GBA, CATSPER3 (rs11950533/C5orf24 locus), LAMB2 
(rs12497850/IP6K2 locus), LOC442028 (rs2042477/KCNIP3 locus), NFKB2 (rs10748818/

GBF1 locus), and SCARB2 (rs6825004 locus). These results suggest that some of the risk 

associated with these loci may be due to rare coding variants or that these are pleomorphic 

risk loci. The LRRK2 and NFKB2 associations at MAF < 1% remained significant after 

correcting for all ~20,000 genes in the human genome (P = 2.15E-10 and P = 4.02E-07, 

Table S7, Table S5).

We tested whether genes of interest were enriched in 10,651 biological pathways(from 

gene ontology annotations) using Functional Mapping and Annotation of Genome-Wide 

Association Studies (FUMA) (22,36). We found 10 significantly enriched pathways 

(FDR-adjusted P < 0.05, Table S8), including four related to vacuolar function and 

three related to known drug targets (calcium transporters: ikeda_mir1_targets_dn and 

ikeda_mir30_targets_up, kinase signaling: kim_pten_targets_dn). At least three candidate 

genes within novel loci are involved in lysosomal storage disorders (GUSB, GRN, and 

NEU1), a pathway of keen interest in PD (37). Our GWAS results also include candidate 

genes VAMP4 and NOD2 from the endocytic pathway (38).

To determine the tissues and cell types most relevant to PD etiology using FUMA (22,36) 

we tested whether the genes highlighted by our PD GWAS were enriched for expression 

in 53 tissues from across the body. We found 13 significant tissues, all of which were 

brain-derived (Figure S2A), in contrast to what has been seen in Alzheimer’s disease 

which shows a strong bias towards blood, spleen, lungs and microglial enrichments (39). 

To further disentangle the enrichment in brain tissues, we tested whether our PD GWAS 

genes were enriched for expression in 88 brain cell types using single cell RNA sequencing 

reference data from mouse brains (http://dropviz.org)(40). After FDR correction we found 

seven significant brain cell types, all of which were neuronal (Figure S2B). The strongest 

enrichment was for neurons in the substantia nigra (SN) at P = 1.0E-06, with additional 

significant results at P < 5.0E-4 for the globus pallidus (GP), thalamus (TH), posterior cortex 

(PC), frontal cortex (FC), hippocampus (HC) and entopeduncular nucleus (ENT).

Next, we used cross-trait genetic correlation and MR to identify possible PD biomarkers and 

risk factors by comparing with 757 other GWAS datasets curated by LD hub (41). We found 

four significant genetic correlations (FDR-adjusted P < 0.05, Table S10) including positive 

correlations with intracranial volume and putamen volume (42), and negative correlations 

with current tobacco use and “academic qualifications: National Vocational Qualifications 

(NVQ) or Higher National Diploma (HND) or Higher National Certificate (HNC) or 

equivalent” (43). The negative association with one’s academic qualifications suggests that 

individuals without a college education may be at less risk of PD. The correlation between 

PD and smoking status may not be independent from the correlation between PD and 

education as smoking status and years of education were significantly correlated (44).
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We used MR to assess whether there was evidence of a causal relationship between PD and 

five phenotypes related to academic qualification, smoking, and brain volumes described 

above (Figure S4). Cognitive performance had a large, significant causal effect on PD risk 

(MR effect = 0.213, SE = 0.041, Bonferroni-adjusted P = 8.00E-07), while PD risk did not 

have a significant causal effect on cognitive performance (Bonferroni-adjusted P = 0.125). 

Educational attainment also had a significant causal effect on PD risk (MR effect = 0.162, 

SE = 0.040, Bonferroni-adjusted P = 2.06E-04), but PD risk also had a weak but significant 

causal effect on educational attainment (MR effect = 0.007, SE = 0.002, Bonferroni-adjusted 

P = 7.45E-3). There was no significant causal relationship between PD and current smoking 

status (forward analysis: MR effect = −0.069, SE = 0.031, Bonferroni-adjusted P = 0.125; 

reverse analysis: MR effect = 0.004, SE = 0.010, Bonferroni-adjusted P = 1). Smoking 

initiation (the act of ever starting smoking) did not have a causal effect on PD risk (MR 

effect = −0.063, SE = 0.034, Bonferroni-adjusted P = 0.315), whereas PD had a small, but 

significantly positive causal effect on smoking initiation (MR effect = 0.027, SE = 0.006, 

Bonferroni-adjusted P = 1.62E-05). Intracranial volume could not be tested because its 

GWAS did not contain any genome-wide significant risk variants. There was no significant 

causal relationship between PD and putamen volume (P > 0.05 in both the forward and 

reverse directions).

DISCUSSION

Our work marks a significant step forward in our understanding of the genetic architecture 

of PD and provides a genetic reference set for the broader research community. We 

identified 90 independent common genetic risk factors for PD, nearly doubling the number 

of known PD risk variants. We re-evaluated the cumulative contribution of genetic risk 

variants, both genome-wide significant and not-yet discovered, in order to refine our 

estimates of heritable PD risk. We also nominated likely genes at each locus for further 

follow-up using QTL analyses and rare variant burden analyses. Our work has highlighted 

the pathways, tissues, and cell types involved in PD etiology. Finally, we identified 

intracranial and putaminal volume as potential future PD biomarkers, and cognitive 

performance as a PD risk factor. Altogether, the data presented here has significantly 

expanded the resources available for future investigations into potential PD interventions.

We were able to explain 16%−36% of PD heritability, the range being directly related to 

prevalence estimates varying (0.5% to 2%). Power estimates suggest that expansions of case 

numbers to 99K cases will continue to reveal additional insights into PD genetics. While 

these risk variants will have relatively small effects and/or be quite rare, they will help to 

further expand our knowledge of the genes and pathways that drive PD risk.

Population-wide screening for individuals who are likely to develop PD is currently not 

feasible using our 1805 variant PRS alone. There would be roughly 14 false positives per 

true positive assuming a prevalence of 0.5%. While large-scale genome sequencing and 

non-linear machine learning methods will likely improve these predictive models, we have 

previously shown that we will need to incorporate other data sources (e.g. smell tests, 

family history, age, sex) in order to generate algorithms that have more possible value in 

population-wide screening (4).
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Evaluating these results in the larger context of pathway, tissue, and cellular functionality 

revealed that genes near PD risk variants showed enrichment for expression in the brain, 

contrasting with previous work in Alzheimer’s disease. Strikingly, we showed that the 

expression enrichment of genes at PD loci occurred exclusively in neuronal cell types. 

We also found that PD genes were enriched in chemical signaling pathways and pathways 

involving the response to a stressor. We believe that this contrast, in which the pathway 

enrichment analyses suggest at least some immune component to PD and the expression 

enrichment analysis does not suggest any significant immune related tissue component 

should be viewed with a critical eye. In particular, the marginal P values of most immune 

related pathways in our recent analyses after multiple test correction reinforce this moderate 

view. These observations may be informative for disease modeling efforts, highlighting the 

importance of disease modeling in neurons and possibly incorporating a cellular stress 

component. This information can help inform and focus stem cell derived therapeutic 

development efforts that are currently underway.

We found four phenotypes that were genetically correlated with PD. Putamen and 

intracranial volumes may prove to be valuable in future PD biomarker studies. Our 

bi-directional GSMR results suggest a complex etiological connection between smoking 

initiation and PD that will require further follow-up. One of the implications of this work 

is that PD trials of nicotine or other smoking-related compound(s) may be less likely 

to succeed. The strong causal effect of cognitive performance on PD is supported by 

observational studies (45).

While this study marks major progress in assessing genetic risk factors for PD, there remains 

a great deal to be done. No defined external validation dataset was used, which may be 

seen as a limitation. Also, external replication of the novel associations we present will be 

difficult simply due to the sample sizes needed. Simulations have suggested that without 

replication variants with P values between 5E-08 and 5E-9 should be interpreted with greater 

caution (46,47). We found 16 risk variants in this range, including two known variants near 

WNT3 (proximal to the MAPT locus) and BIN3. To a degree, the fact that we filtered our 

variants with a secondary random-effects meta-analysis may make our 90 PD GWAS hits 

somewhat more robust due to the conservative nature of random-effects.

This study focused on PD risk in individuals of European ancestry. Adding datasets 

from non-European populations would be helpful to further improve our granularity in 

association testing and ability to fine-map loci through integration of more variable LD 

signatures while also evaluating population specific associations. Also, risk predictions 

may not generalize across populations in some cases and ancestry specific PRS should be 

investigated. Additionally, large ancestry-specific PD LD reference panels, such as those 

for Ashkenazi Jewish patients, will help us further unravel the genetic architecture of loci 

such as GBA and LRRK2. This may be particularly crucial at these loci where LD patterns 

may be variable within European populations, accentuating the possible influence of LD 

reference series on conditional analyses in some cases (48). Finally, our work utilized 

state-of-the-art QTL datasets to nominate candidate genes, but many QTL associations are 

hampered by both small sample size and low cis-SNP density. Larger QTL studies and 
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PD-specific network data from large scale cellular screens would allow us to build a more 

robust functional inference framework.

As the field moves forward there are some critical next steps that should be prioritized. First, 

allowing researchers to share participant-level data in a secure environment would facilitate 

inclusiveness and uniformity in analyses while maintaining the confidentiality of study 

participants. Our work suggests that GWASes of increasing size will continue to provide 

useful biological insights into PD. In addition to studies of the genetics of PD risk, studies 

of disease onset, progression, and subtype will be important and will require large series 

of well-characterized patients(49). We also believe that work across diverse populations is 

important, not only to be able to best serve these populations but also to aid in fine mapping 

of loci. Notably, the use of genome sequencing technologies could further improve discovery 

by capturing rare variants and structural variants, but with the caveat that very large sample 

sizes will be required. While there is still much left to do, we believe that our current work 

represents a significant step forward and that the results and data will serve as a foundational 

resource for the community to pursue this next phase of PD research.
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RESEARCH IN CONTEXT

Evidence before this study

Previous studies such as Chang et al. 2017 and its predecessors have utilized GWAS 

methods to discover 42 independent risk loci associated with PD (1). Some of these loci 

harboring common risk variants also include rare variants implicated in familial PD risk 

such as SNCA, LRRK2 or GBA. Earlier studies like Keller et al. 2012 have attempted 

to quantify how much heritable risk is captured by common variation that can be easily 

imputed using commercial genotyping arrays and estimate the amount of risk explained 

by GWAS (2). As far back as Nalls et al. 2011, GWAS studies of PD have integrated 

expression and methylation datasets to evaluate possible candidate genes for follow-up 

at PD loci (3). Many epidemiological and observational studies have attempted to assess 

risk of PD and various exposures like smoking, caffeine or occupational hazards, with a 

mixed track record of success at validating putative associations.

Added value of this study

The primary deliverable of this study was increasing the count of independent common 

genetic risk factors for PD to 90. We added 38 novel risk variants not identified as 

genome-wide significant in previous reports. We refined heritability estimates and genetic 

risk predictions suggesting that common genetic variants account for approximately 

22% of PD risk on the liability scale, with a range of 16–36% of that risk being 

explained by GWAS loci in this study. These updated risk predictions also suggested 

that polygenic risk scoring can be used to achieve an area under the curve of near 

70%, although this prediction uses many more variants than just the 90 independent risk 

factors identified in this report. Of the 90 risk variants we have characterized here, we 

have nominated at least one possible candidate gene for follow-up functional studies in 

70 of these genomic regions by mining recently available expression and methylation 

reference datasets on a scale not possible just a few years ago. We have additionally 

mined single cell RNA sequencing data from mice to identify tissue-specific signatures 

of enrichment relating to PD genetic risk, showing a major focus on neuronal cell types. 

We also utilized the massive amount of publicly available GWAS results to survey 

genetic correlations between PD and other phenotypes showing significant correlations 

with smoking, education and brain morphology. Subsequent analyses using Mendelian 

randomization (MR) methods showed that there are likely causal links between increased 

cognitive performance and PD risk on a genetic level.

Implications of all available evidence

First and foremost, this study increased the scope of our knowledge of PD genetics 

by adding 38 novel risk factors, directly broadening our knowledge base of disease 

etiology. Using updated heritability estimates and risk predictions, we took preliminary 

steps down the long path to early detection. In future studies, combining genetic and 

clinico-demographic risk factors may lead to earlier detection and refined diagnostics, 

which may help improve clinical trials (4). The generation of copious amounts of public 

summary statistics created by this effort relating to both the GWAS and subsequent 

analyses of gene expression and methylation patterns may be of use to investigators 
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planning follow-up functional studies in stem cells or other cellular screens, allowing 

them to prioritize targets more efficiently using our data as additional evidence. We hope 

our findings may have some downstream clinical impact in the future such as improved 

patient stratification for clinical trials and genetically informed drug targets.
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Figure 1: Workflow and rationale summary.
This figure describes study design and rationale behind the analyses included in this report.
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Figure 2: Manhattan plot.
The nearest gene to each of the 90 significant variants are labeled in green for previously­

identified loci and in blue for novel loci. −log10 P values were capped at 40. Variant points 

are color coded red and orange, with orange representing significant variants at P 5E-08 and 

5E-9 and red representing significant variants at P < 5E-9. The X axis represents the base 

pair position of variants from smallest to largest per chromosome (1–22).
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Figure 3: Predictive model details.
A. The odds ratio of developing PD for each quartile of polygenic risk score (PRS) 

compared to the lowest quartile of genetic risk. B. PRS receiver-operator curves for the 

more inclusive 1805 variant PRS in the validation dataset as well as in the corresponding 

training dataset that was used for PRS thresholding and SNP selection.
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