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Abstract

This paper analyzes a class of singular control problems for which value functions
are not necessarily smooth. Necessary and sufficient conditions for the well-known
smooth fit principle, along with the regularity of the value functions, are given. Explicit
solutions for the optimal policy and for the value functions are provided. In particular,
when payoff functions satisfy the usual Inada conditions, the boundaries between action
and no-action regions are smooth and strictly monotonic as postulated and exploited in
the existing literature (Dixit and Pindyck (1994); Davis, Dempster, Sethi, and Vermes
(1987); Kobila (1993); Abel and Eberly (1997); Øksendal (2000); Scheinkman and
Zariphopoulou (2001); Merhi and Zervos (2007); Alvarez (2006)). Illustrative examples
for both smooth and non-smooth cases are discussed, to highlight the pitfall of solving
singular control problems with a priori smoothness assumptions.
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1 Introduction

Consider the following problem in reversible investment/capacity planning that arises nat-

urally in resource extraction and power generation. Facing the risk of market uncertainty,

companies extract resources (such as oil or gas) and choose the capacity level in response

to the random fluctuation of market price for the resources, subject to some capacity con-

straints, as well as the associated costs for capacity expansion and contraction. The goal of

the company is to maximize its long-term profit, subject to these constraints and the rate

of resource extraction.

This kind of capacity planning with price uncertainty and partial (or no) reversibility

originated from the economics literature and has since attracted the interest of the ap-

plied mathematics community. (See Dixit and Pindyck (1994); Brekke and Øksendal (1994);

Davis, Dempster, Sethi, and Vermes (1987); Kobila (1993); Abel and Eberly (1997); Baldurs-

son and Karatzas (1997); Øksendal (2000); Scheinkman and Zariphopoulou (2001); Wang

(2003); Chiarolla and Haussmann (2005); Guo and Pham (2005) and the references therein.)

Mathematical analysis of such control problems has evolved considerably from the initial

heuristics to the more sophisticated and standard stochastic control approach, and from

the very special case study to general payoff functions. (See Harrison and Taksar (1983);

Karatzas (1985); Karatzas and Shreve (1985); El Karoui and Karatzas (1988, 1989); Ma

(1992); Davis and Zervos (1994, 1998); Boetius and Kohlmann (1998); Alvarez (2000, 2001);

Bank (2005); Boetius (2005)). Most recently, Merhi and Zervos (2007) analyzed this problem

in great generality and provided explicit solutions for the special case where the payoff is of

Cobb-Douglas type. Their method is to directly solve the HJB equations, assuming certain

regularity conditions for both the value function and the boundaries between the action and

no-action regions. Guo and Tomecek (2007) later established sufficient conditions for the

smoothness of the value function by connecting the singular control problem with a collection

of optimal switching problems.

However, for many singular control problems in reversible investment and in areas such

as queuing and wireless communications (Martins, Shreve, and Soner (1996); Assaf (1997);

Harrison and Van Mieghem (1997); Ata, Harrison, and Shepp (2005)), there is no regularity

for either the value function or the boundaries. Therefore, two important mathematical issues

remain: 1) necessary conditions for regularity properties; and 2) characterization for the

value function and for the action and no-action regions when these regularity conditions fail.

Understanding these issues is especially important in cases where only numerical solutions

are available, and for which the assumption on the degree of the smoothness is wrong (see

also discussions in Section 5.2).

This paper addresses these two issues via the study of a class of singular control problems.

Both necessary and sufficient conditions on the differentiability of the value function and on

the smooth fit principle are established. Moreover, these conditions lead to a derivative-

based characterization of the investment, disinvestment and continuation regions even for

non-smooth value functions. In fact, when the payoff function is not smooth, this paper is the

2



first to rigorously characterize the action and no-action regions, and to explicitly construct

both the optimal policy and the value function. To be consistent with the literature in

(ir)reversible investment, the running payoff function in this paper depends on the resource

extraction rate and the market price in the form of H(Y )Xλ. It is worth noting that H(·)
is any concave function of the capacity, and may be neither monotonic nor differentiable.

This includes the special cases investigated by Guo and Pham (2005); Merhi and Zervos

(2007); Guo and Tomecek (2007). In particular, when H satisifies the well-known Inada

conditions (i.e., continuously differentiable, strictly increasing, strictly concave, with H(0) =

0, H ′(0+) = ∞, H ′(∞) = 0), our results show that the boundaries between regions are

indeed continuous and strictly increasing as postulated and exploited in previous works:

Dixit and Pindyck (1994); Davis, Dempster, Sethi, and Vermes (1987); Kobila (1993); Abel

and Eberly (1997); Øksendal (2000); Scheinkman and Zariphopoulou (2001); Merhi and

Zervos (2007); Alvarez (2006). Also note that our method can be applied to more general

(diffusion) processes for the price dynamics, other than the geometric Brownian motion

assumed for explicitness in this paper. Finally, the construction between the functional form

of the boundaries and the payoff function itself is also novel, as the value function and the

boundaries may be neither smooth nor strictly monotonic as in the existing literature.

The most relevant and recent work to this paper is Alvarez (2006), which provides a

great deal of economic insight into the problem. However, Alvarez (2006) only handles

payoff functions satisfying the Inada conditions. In contrast, our solution is independent of

the regularity of the payoff and value functions.

Outline. The control problem is formally stated, with its value function and optimal policy

described in Section 2; details of the derivation are in Section 3. The main result of this

paper regarding the regularity of the value function is in Section 4. Examples are provided

in Section 5, including cases for which the value function is not differentiable, the optimal

controlled process not continuous, the boundaries of the action regions not smooth, and the

interior of the continuation region not simply connected.

2 Mathematical Problem and Solution

2.1 Problem

Let (Ω,F ,F,P) be a filtered probability space and assume a given bounded interval [a, b] ⊂
(−∞,∞). Consider the following problem:

Problem A.

VH(x, y) := sup
(ξ+,ξ−)∈A′′y

JH(x, y; ξ+, ξ−),
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with the payoff function JH given by

JH(x, y; ξ+, ξ−) :=E
[∫ ∞

0

e−ρt[H(Yt)(X
x
t )λ − C0Yt − C1

∫ t

0
Ysds]dt

−
∫ ∞

0

e−ρt(K1 + K2(X
x
t )λ)dξ+

t −
∫ ∞

0

e−ρt(K0 −K2(X
x
t )λ)dξ−t

]
,

subject to

Yt := y + ξ+
t − ξ−t ∈ [a, b], y ∈ [a, b],

dXx
t := µXx

t dt +
√

2σXx
t dWt, X0 := x > 0,

H : [a, b] → R concave, and continuous at a and b,

C0, C1, K2 ∈ R, (and to prevent arbitrage) K1 + K0 > 0.

The supremum is taken over a set of admissible strategies

A′′
y :=

{
(ξ+, ξ−) : ξ± are left continuous, non-decreasing processes, ξ±0 = 0;

y + ξ+
t − ξ−t ∈ [a, b];

E
[∫ ∞

0

e−ρtdξ+
t +

∫ ∞

0

e−ρtdξ−t

]
< ∞;

|K2|E
[∫ ∞

0

e−ρt(Xx
t )λdξ+

t +

∫ ∞

0

e−ρt(Xx
t )λdξ−t

]
< ∞

}
.

This is a continuous time formulation of the aforementioned risk management problem.

The capacity level Y is a controlled process represented by (ξ+
t )t≥0 and (ξ−t )t≥0, which are F-

adapted, non-decreasing càglàd processes and respectively stand for the cumulative capacity

expansion and reduction by time t; the market price X is modeled by a geometric Brownian

motion; the rate of resource extraction is a modeled by the function H(Y ); K0 is the cost

of capacity reduction with K0 < 0 representing a partial recovery of the initial investment;

K1 is the cost of capacity contraction; C0 is the running cost; and C1 is the cumulating cost.

The goal of the company is to maximize its long-term profit with a payoff function that

depends on both the resource extraction rate and the market price, with a form of H(Y )Xλ.

Clearly, when λ ∈ (m, n), where m < 0 < n are the roots of σ2λ2 + (µ − σ2)λ − ρ = 0,

VH(x, y) < ∞ and well defined. And the control problem can be reduced to an equivalent

yet simpler singular control problem (the detailed proof for the equivalence can be found in

the Appendix).

Fundamental problem.

V (x, y) := sup
(ξ+,ξ−)∈A′y

J(x, y; ξ+, ξ−), (1)

with

J(x, y; ξ+, ξ−) := E
[∫ ∞

0

e−ρtH(Yt)X
x
t −

∫ ∞

0

e−ρtK1dξ+
t −

∫ ∞

0

e−ρtK0dξ−t

]
,
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subject to

Yt := y + ξ+
t − ξ−t , y ∈ [a, b],

dXx
t := µXx

t dt +
√

2σXx
t dWt, X0 := x > 0,

H : [a, b] → R is concave with H(y) =

∫ y

a

h(z)dz,

K1 + K0 > 0, µ < ρ, and (without loss of generality) K1 > 0.

The supremum is taken over all strategies (ξ+, ξ−) ∈ A′
y, where

A′
y :=

{
(ξ+, ξ−) : ξ± are left continuous, non-decreasing processes, ξ±0 = 0;

y + ξ+
t − ξ−t ∈ [a, b];

E
[∫ ∞

0

e−ρtdξ+
t +

∫ ∞

0

e−ρtdξ−t

]
< ∞.

}

In fact, this equivalent control problem is more standard in the existing literature for both

singular control and (ir)reversible investment. Thus, throughout the paper, our focus is on

the fundamental problem with K1 > 0 1 and with h appropriately left- or right- continuous2.

Remark 2.1. A word of caution: A solution (ξ̂+, ξ̂−) ∈ A′
y that is optimal for V is also

optimal for VH if and only if (ξ̂+, ξ̂−) ∈ A′′
y. However, even if (ξ̂+, ξ̂−) /∈ A′′

y, an ε-optimal

policy for VH is the truncated policy ((ξ̂+
t∧T )t≥0, (ξ̂

−
t∧T )t≥0), where T is sufficiently large.

2.2 Preliminaries

Throughout the paper, we define m < 0 < 1 < n to be the roots of σ2x2 +(µ−σ2)x−ρ = 0,

so that

m,n =
−(µ− σ2)±

√
(µ− σ2)2 + 4σ2ρ

2σ2
.

We also observe the identity ρ = −σ2mn and define the useful quantity η > 0:

η :=
1

ρ− µ
=

−mn

(n− 1)(1−m)ρ
=

1

σ2(n− 1)(1−m)
, (2)

Next, let R(x, y) := J(x, y; 0, 0) be the no-action expected payoff, then

R(x, y) := E
[∫ ∞

0

e−ρtH(y)Xx
t dt

]
= ηH(y)x, (3)

r(x, y) := Ry(x, y) = E
[∫ ∞

0

e−ρth(y)Xx
t dt

]
= ηh(y)x. (4)

1The assumption of K1 > 0 is without loss of generality. Indeed, if K1 ≤ 0, then one considers the control
problem on [0, b− a] for b− Yt instead of Yt.

2h is clearly non-increasing from the concavity of H, so one can choose its left or right continuous versions
without changing H or the value function of the control problem V . Moreover, if H is differentiable at y, h

can be chosen to be continuous at y.
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Moreover, |J(x, y; ξ+, ξ−)| < ∞ for all (ξ+, ξ−) ∈ A′
y from the boundedness of H. In fact,

we have

Proposition 2.2. (Finiteness of Value Function) V (x, y) ≤ ηMx + b − a, where M =

supy∈[a,b] |H(y)| < ∞.

Proof. Let x > 0 and y ∈ [a, b] be given. Since ρ > µ we have

E
[∫ ∞

0

e−ρt[H(Yt)X
x
t ]dt

]
≤ E

[∫ ∞

0

e−ρt[MXx
t ]dt

]
≤ ηMx.

Note that for any given (ξ+, ξ−) ∈ A′
y, a− y ≤ ξ+

t − ξ−t ≤ b− y. From integration by parts,

for any t > 0,

−
∫

[0,T )

e−ρtdξ+
t ≤ −

∫

[0,T )

e−ρtdξ−t + (y − a). (5)

Which, together with K1 + K0 > 0 and K1 > 0, implies

E
[
−K1

∫ ∞

0

e−ρtdξ+
t −K0

∫ ∞

0

e−ρtdξ−t

]
≤ (y − a)− (K1 + K0)E

[∫ ∞

0

e−ρtdξ−t

]
≤ b− a.

Since these bounds are independent of the control, we have

V (x, y) ≤ ηMx + b− a < ∞.

2.3 Solution: Optimal Singular Control and Value Function

The solution for problem (1) can be summarized as follows.

Theorem 2.3. [Value function]

V (x, y) = ηH(a)x +

∫ y

a

v1(x, z)dz +

∫ b

y

v0(x, z)dz, (6)

where v0 and v1 are solutions to the following optimal switching problems

vk(x, z) := sup
α∈B
κ0=k

E

[∫ ∞

0

e−ρt [h(z)Xx
t ] Itdt−

∞∑
n=1

e−ρτnKκn

]
. (7)

Here, α = (τn, κn)n≥0 is an admissible switching control so that almost surely τ0 = 0, τn+1 >

τn for n ≥ 1, τn → ∞, and for all n ≥ 0, κn ∈ {0, 1}, with κn = κ0 for n even and

κn = 1− κ0 for n odd. B is the subset of admissible switching controls α = (τn, κn)n≥0 such

that E [
∑∞

n=1 e−ρτn ] < ∞}, and It is the regime indicator function for any given α ∈ B so

that It =
∑∞

n=0 κn1{τn<t≤τn+1}.

Moreover, vk(x, y) can be solved explicitly based on K0:

Case I (K0 ≥ 0):
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1. For each z ∈ (a, b) such that h(z) = 0 : v0(x, z) = v1(x, z) = 0.

2. For each z ∈ (a, b) such that h(z) > 0:




v0(x, z) =

{
A(z)xn, x < G(z),

ηh(z)x−K1, x ≥ G(z),

v1(x, z) = ηh(z)x,

where G(z) = νh(z)−1, and A(z) = K1

(n−1)
(h(z)

ν
)n, with ν = K1σ

2n(1−m).

3. For each z ∈ (a, b) such that h(z) < 0:




v0(x, z) = 0,

v1(x, z) =

{
B(z)xn + ηh(z)x, x < F (z),

−K0, x ≥ F (z),

where F (z) = − κ
h(z)

, and B(z) = K0

(n−1)
κ−n(−h(z)

κ
)n, with κ = K0σ

2n(1−m).

Case II (K0 < 0):

1. For each z ∈ (a, b) such that h(z) ≤ 0: v0(x, z) = 0, v1(x, z) = −K0.

2. For each z ∈ (a, b) such that h(z) > 0 :

v0(x, z) =

{
A(z)xn, x < G(z),

B(z)xm + ηh(z)x−K1, x ≥ G(z),
(8)

v1(x, z) =

{
A(z)xn −K0, x ≤ F (z),

B(z)xm + ηh(z)x, x > F (z).
(9)

Here

A(z) =
h(z)n

(n−m)νn

(
ν

σ2(n− 1)
+ mK1

)
=

h(z)n

(n−m)κn

(
κ

σ2(n− 1)
−mK0

)
;

(10)

B(z) =
−h(z)m

(n−m)νm

(
ν

σ2(1−m)
− nK1

)
=

−h(z)m

(n−m)κm

(
κ

σ2(1−m)
+ nK0

)
.

(11)

The functions F and G are non-decreasing with

F (z) =
κ

h(z)
and G(z) =

ν

h(z)
, (12)

where κ < ν are the unique solutions to

1

1−m

[
ν1−m − κ1−m

]
= − ρ

m

[
K1ν

−m + K0κ
−m

]
, (13)

1

n− 1

[
ν1−n − κ1−n

]
=

ρ

n

[
K1ν

−n + K0κ
−n

]
. (14)
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F(z)

G(z)

b

h(z) < 0

h(z) = 0

h(z) > 0

Figure 1: Illustration: Case I–when boundaries are smooth

G(z)

a=0

b=2

1

x

z

F(z)

Figure 2: Illustration: Case I–when boundaries are NOT smooth: h(z) = c/z for z < 1 and

h(z) = −d/(2− z) for z > 1 with K0/d < K1/c.

G(z)

b

a

h(z) <=0

h(z) > 0

0 x

z

F(z)

Figure 3: Ilustration of Case II–when boundaries are smooth
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0

F(z) G(z)

x

z
b

Figure 4: Example from Guo-Tomecek (2006) of Case II–when boundaries are smooth

Theorem 2.4. [Optimal control] The optimal singular control (ξ̂+, ξ̂−) ∈ A′
y exits. For

each z ∈ (a, b), the optimal control is described in terms of F (z) and G(z) from Theorem 2.3

such that

• (Case I, K0 ≥ 0): For z such that h(z) > 0, it is optimal to invest in the project past

level z when Xx
t ∈ [G(z),∞), and never disinvest. When h(z) < 0, it is optimal to

disinvest below level z when Xx
t ∈ [F (z),∞), and it is never optimal to invest. When

h(z) = 0, it is optimal to neither invest nor disinvest (i.e. F (z) = ∞ = G(z)).

• (Case II, K0 < 0): For z such that h(z) > 0, it is optimal to invest in the project past

level z when Xx
t ∈ [G(z),∞), and to disinvest below level z when Xx

t ∈ (0, F (z)]. For

z such that h(z) ≤ 0, it is always optimal to disinvest.

Theorem 2.5. [Optimally controlled process] The resulting optimal control process Ŷt

is give by:

Case I: (up to indistinguishability) for t > 0,

• If h(y+) > 0 then Ŷt = max{G→(Mt), y},

• If h(y+) = 0 or h(y−) = 0 then Ŷt = y,

• If h(y−) < 0 then Ŷt = min{F→(Mt), y}.

Here Mt = max{Xx
s : s ∈ [0, t]}, and F→ and G→ are respectively the left-continuous inverses

of F (non-increasing) and G (non-decreasing).

Case II: (up to indistinguishability) for t > 0,

Ŷt =





G→(M0
t ) ∨ y, on {t ≤ S1},

F←(mn
t ) ∧ ŶSn , on {Sn < t ≤ Tn},

G→(Mn
t ) ∨ ŶTn , on {Tn < t ≤ Sn+1},

(15)

and limn→∞ Sn = ∞ = limn→∞ Tn almost surely.
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Here F←(x) and G→(x) are respectively the right continuous inverse of F and the left-

continuous inverse of G. Moreover, the stopping times (Sn) and (Tn) are given by

S1 = inf{t > 0 : (Xx
t , Ŷt) ∈ S0}, T1 = inf{t > S1 : (Xx

t , Ŷt) ∈ S1},
Sn = inf{t > Tn−1 : (Xx

t , Ŷt) ∈ S0}, Tn = inf{t > Sn : (Xx
t , Ŷt) ∈ S1}.

Lastly, the processes Mn
t , mn

t are defined by M0
t = max{Xx

t : 0 ≤ s ≤ t}, and

mn
t = min{Xx

t : Sn ≤ s ≤ t}1{Sn≤t}, Mn
t = max{Xx

t : Tn ≤ s ≤ t}1{Tn≤t}.

Theorem 2.6. [Region characterization] Under the optimal singular control (ξ̂+, ξ̂−) ∈
A′

y, define the corresponding investment (S1), disinvestment (S0), and continuation (C) re-

gions by




S0 :=

{ {(x, z) ∈ (0,∞)× [a, b] : x ≥ limw↑z F (w)}, if K0 ≥ 0 (Case I),

{(x, z) ∈ (0,∞)× [a, b] : x ≤ limw↑z F (w)}, if K0 < 0 (Case II),

S1 := {(x, z) ∈ (0,∞)× [a, b] : x ≥ limw↓z G(w)},
C := (0,∞)× [a, b] \ (S0 ∪ S1).

(16)

Then, the action and continuation regions can be characterized as




S0 = {(x, y) ∈ (0,∞)× [a, b] : Vy(x, y) = −K0},
S1 = {(x, y) ∈ (0,∞)× [a, b] : Vy(x, y) = K1},
C = {(x, y) ∈ (0,∞)× [a, b] : Vy−(x, y) > −K0, Vy+(x, y) < K1}.

(17)

3 Derivation of the Solution

The derivation goes as follows: first, a collection of corresponding optimal switching problems

is established and solved; then, the consistency of the optimal switching controls is proved;

finally, the existence of the corresponding integrable optimal singular control (ξ̂+, ξ̂−) ∈ A′
y

is established and the corresponding value function are derived. This method is built on

the general correspondence between singular controls and switching controls outlined in Guo

and Tomecek (2007).

3.1 Setup and Solution of the Optimal Switching Problems

3.1.1 Corresponding Optimal Switching Problems

In this section, we shall solve the switching problem (7),

vk(x, z) := sup
α∈B
κ0=k

E

[∫ ∞

0

e−ρt [h(z)Xx
t ] Itdt−

∞∑
n=1

e−ρτnKκn

]
.

First, according to Pham (2005, Theorem 1.4.1), and Ly Vath and Pham (2006, Lemma

3.2)), in addition to X being a geometric Brownian motion, we see easily

10



Proposition 3.1. For fixed z ∈ [a, b] and k ∈ {0, 1}, vk(x, z) is C1 in x. Moreover, for

every x > 0,
∣∣∣ ∂
∂x

vk(x, z)
∣∣∣ ≤ η|h(z)|.

Next, by modifying the argument in Ly Vath and Pham (2006, Theorem 3.1) for h ≥ 0

to the case of h < 0, we obtain

Proposition 3.2. v0 and v1 are the unique viscosity solutions with linear growth condition

to the following system of variational inequalities:

min {−Lv0(x, z), v0(x, z)− v1(x, z) + K1} = 0, (18)

min {−Lv1(x, z)− h(x, z), v1(x, z)− v0(x, z) + K0} = 0, (19)

with boundary conditions v0(0
+, z) = 0 and v1(0

+, z) = max{−K0, 0}. Here L is the genera-

tor of the diffusion Xx, killed at rate ρ, given by Lu(x, z) = σ2uxx(x, z)+µux(x, z)−ρu(x, z).

3.1.2 Solution of the Optimal Switching Problems

Based on Ly Vath and Pham (2006, Theorem 4.2), we see that

Case I: K0 ≥ 0. For each z ∈ (a, b), the switching regions are described in terms of F (z)

and G(z), which take values in (0,∞].

First, for each z ∈ (a, b) such that h(z) = 0, it is never optimal to switch, since K0 ≥ 0

and K1 > 0 and so we take F (z) = ∞ = G(z). For this case, v0(x, z) = 0 = v1(x, z).

Secondly, for z such that h(z) > 0, G(z) < ∞ and it is optimal to switch from regime 0

to regime 1 (to invest in the project at level z) when Xx
t ∈ [G(z),∞). Since K0 ≥ 0, it is

never optimal to switch from regime 1 to regime 0 (i.e. F (z) = ∞). Furthermore, we have

v0(x, z) =

{
A(z)xn, x < G(z),

ηh(z)x−K1, x ≥ G(z),

v1(x, z) = ηh(z)x,

Since v0 is C1 at G(z), we get
{

A(z)G(z)n = ηh(z)G(z)−K1,

nA(z)G(z)n−1 = ηh(z).

That is,
{

G(z) = νh(z)−1,

A(z) = K1

(n−1)
G(z)−n = K1

(n−1)
ν−nh(z)n,

where ν = K1σ
2n(1−m).

Finally, when h(z) < 0, it is optimal to switch from regime 1 to regime 0 (disinvest at

level z) when Xx
t ∈ [F (z),∞). Since K1 > 0, it is never optimal to switch from regime 0 to

regime 1 (i.e. G(z) = ∞). The derivation of the value function proceeds analogously to the

derivation for the case of h(z) > 0.
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Case II: K0 < 0. First of all, for each z ∈ (a, b) such that h(z) ≤ 0, it is always optimal

to disinvest because K0 < 0. That is, F (z) = ∞ = G(z). In this case, clearly v0(x, z) = 0

and v1(x, z) = −K0.

Next, for each z ∈ (a, b) such that h(z) > 0, it is optimal to switch from regime 0 to

regime 1 (to invest in the project at level z) when Xx
t ∈ [G(z),∞), and to switch from regime

1 to regime 0 (disinvest at level z) when Xx
t ∈ (0, F (z)], where 0 < F (z) < G(z) < ∞.

Moreover, v0 and v1 are given by

v0(x, z) =

{
A(z)xn, x < G(z),

B(z)xm + ηxh(z)−K1, x ≥ G(z),

v1(x, z) =

{
A(z)xn −K0, x ≤ F (z),

B(z)xm + ηxh(z), x > F (z).

Smoothness of v(x, z) at x = G(z) and x = F (z) from Proposition 3.1 leads to




A(z)G(z)n = B(z)G(z)m + ηG(z)h(z)−K1,

nA(z)G(z)n−1 = mB(z)G(z)m−1 + ηh(z),

A(z)F (z)n = B(z)F (z)m + ηF (z)h(z) + K0,

nA(z)F (z)n−1 = mB(z)F (z)m−1 + ηh(z).

(20)

Eliminating A(z) and B(z) from (20) yields
{

K1G(z)−m + K0F (z)−m = −m
(1−m)ρ

h(z)(G(z)1−m − F (z)1−m),

K1G(z)−n + K0F (z)−n = n
(n−1)ρ

h(z)(G(z)1−n − F (z)1−n).
(21)

Since the viscosity solutions to the variational inequalities are unique and C1 according

to Proposition 3.2, for every z there is a unique solution F (z) < G(z) to (21). Let κ(z) =

F (z)h(z), ν(z) = G(z)h(z), then the following system of equations for κ(z) and ν(z) is

guaranteed to have a unique solution for each z:
{

K1ν(z)−m + K0κ(z)−m = −m
(1−m)ρ

(ν(z)1−m − κ(z)1−m),

K1ν(z)−n + K0κ(z)−n = n
(n−1)ρ

(ν(z)1−n − κ(z)1−n).

Moreover, these equations depend on z only through ν(z) and κ(z), implying that there

exist unique constants κ, ν such that κ(z) ≡ κ and ν(z) ≡ ν for all z. Hence F (z) =

κh(z)−1, G(z) = νh(z)−1, with κ < ν being the unique solutions to
{

1
1−m

[ν1−m − κ1−m] = − ρ
m

[K1ν
−m + K0κ

−m] ,
1

n−1
[ν1−n − κ1−n] = ρ

n
[K1ν

−n + K0κ
−n] .

Given F (z) and G(z), A(z) and B(z) are solved from Eq. (20),




B(z) = −G(z)−m

n−m

(
G(z)h(z)
σ2(1−m)

− nK1

)
= −F (z)−m

n−m

(
F (z)h(z)
σ2(1−m)

+ nK0

)
,

A(z) = G(z)−n

n−m

(
G(z)h(z)
σ2(n−1)

+ mK1

)
= F (z)−n

n−m

(
F (z)h(z)
σ2(n−1)

−mK0

)
.
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3.2 Derivation of the Optimal Switching Controls

In this section we shall first describe the optimal switching control α̂(z) = (τ̂n(z), κ̂n(z))n≥0

for all z ∈ (a, b). We then define a collection of these switching controls and prove that this

collection satisfies the consistency property from Guo and Tomecek (2007), which implies

that it corresponds to an admissible singular control. Note that since the regime values κ̂n

are alternating, it suffices to define the switching times τ̂n.

3.2.1 Optimal Switching Controls

Given the solution to the optimal switching problems, it is clear that the optimal switching

control for any level z ∈ (a, b) is given by the following:

Case I: For z ∈ (a, b) and x > 0, let F and G be as given in Theorem 2.3 for Case I. The

switching control α̂k(x, z) = (τ̂n(x, z), κ̂n(z))n≥0, starting from τ̂0(x, z) = 0 and κ̂0(z) =

k is given by, for n ≥ 1

– If k = 0, τ̂1(x, z) = inf{t > 0 : Xx
t ∈ [G(z),∞)} and for n ≥ 2, τ̂n(z) = ∞,

– If k = 1, τ̂1(x, z) = inf{t > 0 : Xx
t ∈ [F (z),∞)} and for n ≥ 2, τ̂n(z) = ∞.

Case II: For z ∈ (a, b) and x > 0, F and G as given in Theorem 2.3 for case II. The switching

control α̂k(x, z) = (τ̂n(x, z), κ̂n(z))n≥0, starting from τ̂0(x, z) = 0 and κ̂0(z) = k is given

by, for n ≥ 1

– If κ̂n−1(z) = 0, τ̂n(x, z) = inf{t > τn−1 : Xx
t ∈ [G(z),∞)}, κ̂n(z) = 1.

– If κ̂n−1(z) = 1, τ̂n(x, z) = inf{t > τn−1 : Xx
t ∈ (0, F (z)]}, κ̂n(z) = 0,

3.2.2 Consistency of the Switching Controls

Now, define the collection of admissible switching controls (α̂(x, z))z∈(a,b) so that α̂(x, z) =

α̂0(x, z) for z > y and α̂(x, z) = α̂1(x, z) for z ≤ y. Then,

Proposition 3.3. The collection of switching controls (α̂(x, z))z∈(a,b) is consistent.

To prove the consistency, the following monotonicity property of F and G are essential:

F is non-increasing and G is non-decreasing in Case I, and F is non-decreasing and G is

non-increasing in Case II.

To start, for each z ∈ (a, b), denote Ît(x, z) to be the regime indicator function of the

optimal switching control α̂(x, z). That is, Ît(x, z) =
∑∞

n=0 κ̂n(z)1{τ̂n(x,z)<t≤τ̂n+1(x,z)}.
Then the consistency follows from the following lemmas.

Lemma 3.4. For every x > 0 and t > 0, Ît(x, ·) is non-increasing.

Proof. For simplicity, we omit the dependence on x from the notation.
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• Case I: Fix x > 0 and t > 0. Let w < z be given and suppose that Ît(z) = 1. On

the event that t ≤ τ̂1(z) we have w < z ≤ y and hence F (w) ≥ F (z) since F is

non-increasing. So by definition τ̂1(w) ≥ τ̂1(z) ≥ t. Thus, Ît(w) = 1 for w ≤ y.

Now on the event that t > τ̂1(z), Ît(z) = 1 implies that for some s < t, Xx
s ∈ [G(z),∞),

i.e., sup{s ≤ t : Xx
s } ≥ G(z). However, since G is non-decreasing, G(z) ≥ G(w). Hence

sup{s ≤ t : Xx
s } ≥ G(w) and Ît(w) = 1.

Since Ît(z) = 1 implies that Ît(w) = 1 for any w < z, Ît(x, ·) is non-increasing.

• Case II: Fix x > 0 and t > 0. Let w < z be given and suppose that Ît(z) = 1. On

the event that t ≤ τ̂1(z) we have w < z ≤ y and hence F (w) ≤ F (z). So by definition

τ̂1(w) ≥ τ̂1(z) ≥ t. Thus, Ît(w) = 1 for w ≤ y.

Now on the event that t > τ̂1(z), Ît(z) = 1 implies that for some s < t, Xx
s ∈ [G(z),∞)

and also that Xx must have been in the set [G(z),∞) more recently than in [0, F (z)],

i.e.,

sup{s ≤ t : Xx
s ∈ [G(z),∞)} > sup{s ≤ t : Xx

s ∈ (0, F (z)]}.

However, since [G(z),∞) ⊂ [G(w),∞) and (0, F (w)] ⊂ (0, F (z)] for w < z, this

implies,

sup{s ≤ t : Xx
s ∈ [G(w),∞)} ≥ sup{s ≤ t : Xx

s ∈ [G(z),∞)}
> sup{s ≤ t : Xx

s ∈ (0, F (z)]}
≥ sup{s ≤ t : Xx

s ∈ (0, F (w)]}.

Hence Xx was in [G(w),∞) more recently than in (0, F (w)], meaning Ît(w) = 1.

Since Ît(z) = 1 implies that Ît(w) = 1 for any w < z, Ît(x, ·) is non-increasing.

Lemma 3.5. For every x > 0, t > 0,
∫ b

a
(Î+

t (x, z) + Î−t (x, z))dz < ∞, almost surely.

Proof. • Case I is easy by recalling that Î+
t (x, z) + Î−t (x, z) represents the number of

switches at level z up to time t. Since there is at most one switch at each level z,

Î+
t (x, z) + Î−t (x, z) ≤ 1. Hence

∫ b

a
(Î+

t (x, z) + Î−t (x, z))dz ≤ b− a < ∞.

• Case II: Since [a, b] is bounded, it suffices to show that for all (x, t), Î+
t (x, z)+ Î−t (x, z)

is almost surely bounded in z. Let x > 0 and t > 0 be given. Recall that Î+
t (x, z) +

Î−t (x, z) represents the number of switches at level z up to time t. When h(z) ≤ 0,

there is exactly one switch. When h(z) > 0, 0 < F (z) < G(z) < ∞, G(z) = νh(z)−1

and F (z) = κh(z)−1. Note that after the first switch, each subsequent switch requires

that Xx move from (0, F (z)] to [G(z),∞) or vice versa.
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Alternatively, log(Xx) must move from (−∞, log(F (z))] to [log(G(z)),∞), travelling

a minimum distance of log(G(z)) − log(F (z)) = log(ν) − log(κ) > 0 for each switch.

In particular, this quantity is independent of z.

Since log(Xx) is a Brownian motion with drift, its sample paths are almost surely

uniformly continuous on [0, t]. Thus, for almost all ω ∈ Ω, there exists some δ(ω) > 0

such that for any x > 0 and all s, r ∈ [0, t], with |s− r| < δ(ω),

| log(Xx
s (ω))− log(Xx

r (ω))| < log(ν)− log(κ) = log(G(z))− log(F (z)).

Hence, for any level z ∈ [a, b], there is at least δ(ω) amount of time in between any two

switches (after the first one). Hence there can be at most 1 + t
δ(ω)

switches at level z

in [0, t]. Thus

Î+
t (x, z) + Î−t (x, z) ≤ 1 +

t

δ
< ∞, almost surely.

3.3 Derivation of the Optimal Singular Control

Clearly, the following proposition holds, from Merhi and Zervos (2007).

Proposition 3.6. For any y ∈ [a, b] and any pair (ξ+, ξ−) of left-continuous, non-decreasing

processes, with ξ±0 = 0 and y + ξ+
t − ξ−t ∈ [a, b] for all t, either

A. (ξ+, ξ−) ∈ A′
y, or

B. there exists an F-adapted process Z such that U· ≤ Z· almost surely, E[|ZT |] < ∞ for

all T ≥ 0, and lim supT→∞ E[ZT ] = −∞, where

UT (y, ξ+, ξ−) :=

∫ T

0

e−ρt[H(Yt)X
x
t ]dt−K1

∫

[0,T )

e−ρtdξ+
t −K0

∫

[0,T )

e−ρtdξ−t .

Therefore, after verifying the Standing Assumptions A1, A2 and A3, one can invoke Guo

and Tomecek (2007, Proposition 2.13, Theorem 3.13, Theorem 3.10) and conclude that there

exists a corresponding integrable singular control (ξ̂+, ξ̂−) ∈ A′
y, and that the value function

V (x, y) is given by (6). We define Ŷt = y + ξ̂+
t − ξ̂−t .

To prove Theorem 2.5, we first establish some Lemmas. First, from Guo and Tomecek

(2007, Proposition 2.13) and Lemma 3.4,

Lemma 3.7. Given (x, y) ∈ (0,∞) × [a, b], the optimally controlled process Ŷ is indistin-

guishable from sup{z ∈ (a, b) : Ît(x, z) = 1} = inf{z ∈ (a, b) : Ît(x, z) = 0}.
Lemma 3.8. Let S ≤ T be non-negative random variables. Then with probability one,

• Ŷ is non-decreasing on (S, T ] for (Xx, Ŷ ) ∈ (S0)
c on (S, T );
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• Ŷ is non-increasing on (S, T ] for (Xx, Ŷ ) ∈ (S1)
c on (S, T );

• Ŷ is constant on (S, T ] for (Xx, Ŷ ) ∈ C on (S, T ).

Consequently, with probability one, (Xx
t , Ŷt) ∈ C for all t > 0 and dŶt is supported on ∂C.

Proof. We shall prove only the first claim. (The second one follows by a similar argument,

and the last one is immediate from the definition of C and the first two.) Take any x > 0.

If (Xx, Ŷ ) ∈ (S0)
c on (S, T ), then in light of Lemma 3.7 and the fact that h has at most

countably many discontinuities, clearly it suffices to show that for any z ∈ (a, b) such that h

is continuous at z, Ît(x, z) is almost surely non-decreasing on (S, T ].

Given z ∈ (a, b) where h is continuous. Fix t > 0 and consider the event that t ∈ (S, T )

and Ît(x, z) = 1. On this event Ŷt ≥ z almost surely. Furthermore, for any s ∈ [t, T ),

(Xx
s , Ŷs) ∈ C, and hence Xx

s > F (Ŷ −
s ) ≥ F (z−) = F (z), since z is a continuity point of h.

This implies that there is no switching to regime 0 at level z, and hence with probability

one, Îs(x, z) = 1 for all s ∈ [t, T ). By the left continuity of Î, this implies ÎT (x, z) = 1 as

well. Since Ît(x, z) ∈ {0, 1}, this implies that Ît(x, z) is indeed non-decreasing on (S, T ].

Proof. of Theorem 2.5. We shall prove Cases I and II separately.

Case I: The left-continuous inverses of F (non-increasing) and G (non-decreasing) are

given by

F→(x) = inf{z ∈ (a, b) : F (z) < x} = sup{z ∈ (a, b) : F (z) ≥ x},
G→(x) = inf{z ∈ (a, b) : G(z) ≥ x} = sup{z ∈ (a, b) : G(z) < x},

with inf ∅ = b and sup ∅ = a.

Recall the optimal switching controls for Case I. Suppose 0 < h(y+) then 0 < h(y) since

h is non-increasing and thus F (z) = ∞ and G(z) < ∞. Let t > 0 be fixed and observe that

Ît(z) ≡ 1 for all z ≤ y and for z > y, Ît(z) = 1{τ̂1(z)<t}. So Ît(z) = 1 if and only if z ≤ y or

t > τ̂1(z). Almost surely, t > τ̂1(z) is equivalent to Mt > G(z). Hence

Ŷt = sup{z ∈ (a, b) : It(z) = 1} = y ∨ sup{z ∈ (a, b) : t > τ̂1(z)}
= y ∨ sup{z ∈ (a, b) : G(z) < Mt} = max{G→(Mt), y}.

Now, Ŷt and since M is increasing, max{G→(Mt), y} is also left-continuous, thus, they are

indistinguishable.

A similar argument proves the result for h(y−) < 0.

Suppose h(y+) = 0 or h(y−) = 0. Then for all z > y, h(z) ≤ 0 and hence it is never

optimal to switch to regime 1. Since Ît(0) = 0, this is true for all t and Ît(z) ≡ 0. Similarly,

for all z ≤ y, h(z) ≤ 0 and so Ît(z) ≡ 1. Thus Ŷt = y for all t.
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Case II: The right continuous inverse of F and the left-continuous inverse of G, both of

which are non-decreasing, are given by

F←(x) = inf{z ∈ (a, b) : F (z) > x} = sup{z ∈ (a, b) : F (z) ≤ x},
G→(x) = inf{z ∈ (a, b) : G(z) ≥ x} = sup{z ∈ (a, b) : G(z) < x},

with inf ∅ = b and sup ∅ = a.

First we show that limn→∞ Sn = ∞ = limn→∞ Tn almost surely. Let S̃n = sup{t <

Tn : (Xx
t , Ŷt) ∈ S0} be the last exit time of the process (Xx, Ŷ ) from S0 before Tn. Then

Sn ≤ S̃n ≤ Tn, and (Xx
t , Ŷt) ∈ C on (S̃n, Tn). By Lemma 3.8, Ŷ is constant on (S̃n, Tn].

Thus, in between S̃n and Tn, the process (Xx
t , ŶTn), must travel between S0 and S1. This

means that between S̃n and Tn, log(Xx) must travel between log(F (Ŷ −
Tn

) and log(G(Ŷ +
Tn

).

Meanwhile, we have

log(G(Ŷ +
Tn

))− log(F (Ŷ −
Tn

)) = log(ν)− log(h(Ŷ +
Tn

))− log(κ) + log(h(Ŷ −
Tn

))

≥ log(ν)− log(κ) > 0.

Since this quantity is positive, and independent of n, and log(Xx) is a Brownian motion,

there exists a positive random variable ε > 0 such that ε ≤ Tn − S̃n ≤ Tn − Sn ≤ Sn+1 − Sn.

Hence limn→∞ Sn = ∞ almost surely. Since Tn ≥ Sn for all n, limn→∞ Tn = ∞ almost surely

as well.

Next, fix t > 0 and note that that almost surely t ∈ (Tn, Sn+1] or t ∈ (Sn, Tn], for some

n, where T0 = 0. We consider the case that t ∈ (Tn, Sn+1] for some n ≥ 0. The proof for the

case t ∈ (Sn, Tn] is similar.

Note that (Xx, Ŷ ) ∈ (S0)
c on (S̃n, Sn+1), and hence by Lemma 3.8, Îs(x, z) is non-

decreasing on [Tn, Sn+1] ⊂ (S̃n, Sn+1] for all z ∈ (a, b) such that h is continuous at z.

Thus, on the event that t ∈ (Tn, Sn+1] we know that ÎTn(z) = 1 for all z < ŶTn and

ÎTn(z) = 0 for all z > Ŷt. Since Î is non-decreasing on [Tn, Sn+1], this means that Ît(x, z) = 1

if and only if z < ŶTn or if Xx
s ≥ G(z) for some s ∈ [Tn, t). The latter condition is almost

surely equivalent to G(z) < Mn
t . Thus, by Lemma 3.7, on the event that t ∈ (Tn, Sn+1], we

almost surely have

Ŷt = sup{z ∈ (a, b) : It(z) = 1} = ŶTn ∨ sup{z ∈ (a, b) : G(z) < Mn
t }

= G→(Mn
t ) ∨ ŶTn .

A similar argument shows that on the event that t ∈ (Sn, Tn], we almost surely have

Ŷt = F←(mn
t ) ∧ ŶSn . Hence, we have proved that for each t, the statement in (15) holds

almost surely. Moreover, since Mn is increasing and G→ is left continuous, G→(Mn
t ) is

left-continuous in t. Similarly, since mn is decreasing and F← is right continuous, F←(mn
t )

is left-continuous in t. Thus, the right hand side of (15) is left-continuous in t, and hence

indistinguishable from Ŷ .
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4 Regularity, Smooth Fit and Region Characterization

In this section, we shall establish necessary and sufficient conditions for the smooth fit

principle by exploiting both the structure of the payoff function and the explicit solution of

the value function. This analysis leads to the proof of Theorem 2.6 on region characterization.

4.1 Regularity and Smooth Fit

Theorem 4.1. [Sufficient Conditions] V (x, y) is C1 in x for all (x, y) ∈ (0,∞) × [a, b],

and

∂

∂x
V (x, y) = ηH(a) +

∫ y

a

∂

∂x
v1(x, z)dz +

∫ b

y

∂

∂x
v0(x, z)dz.

Moreover, if H is C1 on an open interval J ⊂ [a, b], then V (x, y) is C1 in y on (0,∞)×J ;

that is, V (x, y) is C1,1 on (0,∞)× J .

Proof. First, by the representation of V (x, y) in Eq. (6), it suffices to check that for a fixed

y ∈ [a, b], u′(x) =
∫ y

a
∂
∂x

v1(x, z)dz for all x > 0, where u(x) =
∫ y

a
v1(x, z)dz.

Note that
∫ y

a
|v1(x, z)|dz < ∞, and | ∂

∂x
v1(x, z)| is locally bounded by a constant factor

of h(z) by Proposition 3.1. Moreover, for every δ > 0 such that x − δ > 0, there exists a

constant C such that
∫ y

a

∫ δ

−δ

∣∣∣ ∂

∂x
v1(x + θ, z)

∣∣∣dθdz ≤
∫ y

a

∫ δ

−δ

Ch(z)dθdz = 2δC[H(y)−H(a)] < ∞.

Hence, by the Dominated Convergence Theorem, v is continuous; and by Durrett (1996,

Theorem A.9.1), u′(x) =
∫ y

a
∂
∂x

v1(x, z)dz for all x > 0.

Furthermore, suppose that H(y) is C1 in an open interval J ⊂ [a, b]. Then for x > 0,

and y ∈ J ,

lim
z→y

E
[∫ ∞

0

|e−ρth(z)(Xx
t )− e−ρth(y)Xx

t |dt

]
= lim

z→y
E

[∫ ∞

0

e−ρtXx
t dt

]
|h(z)− h(y)|

= ηx lim
z→y

|h(z)− h(y)| = 0

So by Proposition 3.15 in Guo and Tomecek (2007), vk(x, ·) is continuous at y and hence

V (x, y) is C1 in y for all (x, y) ∈ (0,∞)× J .

To study the necessary conditions for the continuous differentiability of the value function

on y, we start by defining d(x, y) = Vy+(x, y)− Vy−(x, y).

First, by Guo and Tomecek (2007) and by recalling that h(y) is non-increasing and hence

E
[∫ τ

0
e−ρth(z)Xx

t dt
]

is non-increasing in z for any stopping time τ , we have

Lemma 4.2. For x > 0, v1(x, ·)−v0(x, ·) is decreasing. Therefore, d(x, ·) has only countably

many discontinuities.
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This lemma, coupled with the variational inequalities in (18) and (19), leads to

Proposition 4.3. V (x, y) is both left and right differentiable in y, with Vy+ and Vy− de-

creasing in y and −K0 ≤ Vy+(x, y) ≤ Vy−(x, y) ≤ K1. Thus, d(x, y) ≤ 0.

Note that the above results on regularity are based on the general properties of the payoff

function H and on the relation between the value function V (x, y) of singular control problem

(1) with the value functions vk(x, z) of the corresponding optimal switching problems.

In the following, we exploit the explicit solutions of vk(x, y) to establish further regularity

properties of V (x, y) with respect to y.

Proposition 4.4. The left and right derivatives Vy−(x, y) and Vy+(x, y) are C1 in x. That

is, d(x, y) is C1 in x.

Proof. We provide the proof for Vy+(x, y) in Case II with h(y+) > 0, and other cases can be

verified by similar arguments. Clearly, it suffices to verify that Vy+(x, y) is continuous and

differentiable (with zero derivative) at x = F (y+) and x = G(y+).

In Case II, F and G are non-decreasing, and so taking limits of the difference between

v0 and v1 in (9) and (8) gives

Vy+(x, y) =




−K0, x ≤ F (y+),

B(y+)xm − A(y+)xn + ηh(y+)x, F (y+) < x ≤ G(y+),

K1, x > G(y+),

(22)

Vy−(x, y) =




−K0, x < F (y−),

B(y−)xm − A(y−)xn + ηh(y−)x, F (y−) ≤ x < G(y−),

K1, x ≥ G(y−).

(23)

By the continuity of v1 and v0 in (8), we have

lim
x↓G(y+)

Vy+(x, y) = K1

lim
x↑G(y+)

Vy+(x, y) = B(y+)G(y+)m − A(y+)G(y+)n + ηh(y+)G(y+)

= lim
z↓y

[B(z)G(z)m − A(z)G(z)n + ηh(z)G(z)]

= lim
z↓y

[v1(G(z), z)− v0(G(z), z)] = K1.

Hence Vy+(x, y) is continuous at G(y+).
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Moreover, by the continuous differentiability of v1 and v0 in (8) and (9), we have

lim
h↓0

Vy+(G(y+) + h, y)− Vy+(G(y+), y)

h
= lim

h↓0
K1 −K1

h
= 0

lim
h↑0

Vy+(G(y+) + h, y)− Vy+(G(y+), y)

h

= mB(y+)G(y+)m−1 − nA(y+)G(y+)n−1 + ηh(y+)

= lim
z↓y

[mB(z)G(z)m−1 − nA(z)G(z)n−1 + ηh(z)]

= lim
z↓y

∂

∂x
[v1(G(z), z)− v0(G(z), z)] = 0.

Hence Vy+(x, y) is C1 at G(y+), (and similarly, at F (y+)).

Theorem 4.5. [Necessary and Sufficient Conditions for Smooth Fit] V (x, y) is con-

tinuously differentiable in x for all (x, y) ∈ (0,∞) × [a, b]. V (x, y) is differentiable in y at

the point (x, y) if and only if

(x, y) ∈{(x, y) ∈ (0,∞)× (a, b) : H is differentiable at y} ∪ S0 ∪ S1,

where S0 and S1 are given in Eq. (16). Alternatively, it is not differentiable in y at the point

(x, y) if and only if

(x, y) ∈{(x, y) ∈ (0,∞)× (a, b) : H is not differentiable at y} ∩ C.
This theorem follows naturally from the following Lemma and the Proposition.

Lemma 4.6. If h is continuous at y, then for all x > 0, d(x, y) = 0.

Proposition 4.7. If h is not continuous at y, then in Case I, d(x, y) = 0 for x ≥ min{F (y−), G(y+)}
and d(x, y) < 0 for x < min{F (y−), G(y+)}. In Case II, d(x, y) = 0 for x ≤ F (y−) and

x ≥ G(y+) and d(x, y) < 0 for x ∈ (F (y−), G(y+)).

Proof. (of Proposition 4.7). Suppose that there exists y ∈ (a, b) where h is not continuous.

We shall prove the result in Case II when h(y+) > 0, and other cases can be verified by

similar arguments.

First, since h is non-increasing, limz↓y h(z) < limz↑y h(z). This also implies that the

switching boundaries F (z) = κh(z)−1 and G(z) = νh(z)−1 are discontinuous at y. Clearly,

by (22) and (23), d(x, y) = 0 for x < F (y−) and for x > G(y+). By the continuity of d, this

is also true of x = F (y−) and x = G(y+).

Next, without loss of generality, assume that h and hence G is right continuous. Then,

pick x such that G(z−) ≤ x < G(y) = G(y+). Since x < G(y), then v1(x, y)− v0(x, y) < K1

from the HJB Eqs. (18) and (19)). Furthermore, by Lemma 4.2, v1(x, z) − v0(x, z) ≤
v1(x, y)− v0(x, y) < K1 for all z > y. Hence

Vy+(x, y) = lim
z↓y

v1(x, z)− v0(x, z) ≤ v1(x, y)− v0(x, y) < K1, and

Vy−(x, y) = lim
z↑y

v1(x, z)− v0(x, z) = K1,

20



where the last equality follows from the fact that x ≥ G(z) for all z < y. Thus, d(x, y) < 0 for

all x ∈ [G(y−), G(y+)). A similar argument proves that in addition to the above, d(x, y) < 0

for all x ∈ (F (y−), F (y+)].

Finally, let x0 ∈ (F (y+), G(y−)) be given. We know that d(F (y−), y) = 0 = d(G(y+), y),

d(x, y) ≤ 0 and that d is C1 in x. Suppose d(x0, y) = 0, implying that x0 is a local maximum,

and hence dx(x0, y) = 0. Furthermore, by the mean value theorem, there must be two points

x1 ∈ (F (y−), x0) and x2 ∈ (x0, G(y+)) such that dx(x1, y) = 0 = dx(x2, y). In fact, since

d(x, y) < 0 for all x ∈ (F (y−), F (y+)] and x ∈ [G(y−), G(y+)), we must have x1 ∈ (F (y+), x0)

and x2 ∈ (x0, G(y−)).

Let f(x) = x−(m−1)dx(x, y). Since x0, x1, x2 > 0 and 0 = dx(x0, y) = dx(x1, y) = dx(x2, y),

we must also have 0 = f(x0) = f(x1) = f(x2). However, by (22) and (23), for x ∈
(F (y+), G(y−)), d(x, y) = ∆B(y)xm −∆A(y)xn + η∆h(y)x, with ∆B(y) = B(y+)−B(y−),

∆A(y) = A(y+) − A(y−) and ∆h(y) = h(y+) − h(y−). So by differentiating, we have that

for x ∈ (F (y+), G(y−)),f(x) = x−(m−1)dx(x, y) = m∆B(y)− n∆A(y)xn−m + η∆h(y)x1−m.

Now, f is C1 on (F (y+), G(y−)), hence by the mean value theorem again, there must be

two points, x̂1 ∈ (x1, x0) ⊂ (F (y+), G(y−)) and x̂2 ∈ (x0, x2) ⊂ (F (y+), G(y−)) such that

fx(x̂1) = 0 = fx(x̂2). Thus fx must have at least two positive roots. Differentiating again,

we have, for x ∈ (F (y+), G(y−)),

fx(x) = −n(n−m)∆A(y)xn−m−1 + (1−m)η∆h(y)x−m

= x−m
(
(1−m)η∆h(y)− n(n−m)∆A(y)xn−1

)
.

Thus, fx(x) can have at most one positive root, contradiction. Thus d(x0, y) < 0. Since

x0 ∈ (F (y+), G(y−)) was arbitrary, d(x, y) < 0 for all x ∈ (F (y+), G(y−)).

Finally, we can explicitly compute Vxy and Vyx from the derivatives of vk(x, y).

Theorem 4.8. If Vy(x, ŷ) exists in a neighborhood of x̂, then Vxy and Vyx exist at (x̂, ŷ),

with Vxy(x̂, ŷ) = Vyx(x̂, ŷ) = ∂
∂x

[v1(x̂, ŷ)− v0(x̂, ŷ)].

Proof. The existence of Vyx exists at (x̂, ŷ) is clear with Vyx(x̂, ŷ) = ∂
∂x

[v1(x̂, ŷ) − v0(x̂, ŷ)].

Moreover, By Theorem 4.5, the existence of Vy(x̂, y) for all y in a neighborhood of ŷ means

that either ŷ is a continuity point of h, or (x̂, ŷ) is in the interior of S0 ∪ S1.

If ŷ is a continuity point of h, by the representation of Vx in Theorem 4.1, it is sufficient

to show that u1(y) := ∂
∂x

v1(x, y) and u0(y) := ∂
∂x

v0(x, y) are continuous at ŷ.

We prove that u0(y) is continuous at ŷ for Case II. (Similar arguments apply to other

cases.) In this case, v0 is C1 in x and from (8),

u0(y) =
∂

∂x
v0(x, z) =

{
nA(z)xn−1, x < G(z),

mB(z)xm−1 + ηh(z), x ≥ G(z),

where nA(z)G(z)n−1 = mB(z)G(z)m−1 + ηh(z). Since h is continuous at ŷ, the continuity

of A, B and G follows by their representation in Theorem 2.3, hence the continuity of u0(y)

at ŷ from its expression.
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If (x̂, ŷ) is in the interior of S1. Then, the explicit forms in Theorem 2.3 imply that for

all (x, y) in a neighborhood of (x̂, ŷ), we have ∂
∂x

v0(x, y) = ∂
∂x

v1(x, y), and the limits in y

from both the left and the right exist. Thus, by the representation in Theorem 4.1, the left

and right derivatives of Vx(x̂, ŷ) exist and are given by

Vxy+(x̂, ŷ) = lim
y↓ŷ

∂

∂x
v1(x̂, y)− lim

y↓ŷ
∂

∂x
v0(x̂, y) = lim

y↓ŷ

(
∂

∂x
v1(x̂, y)− ∂

∂x
v0(x̂, y)

)
= 0,

Vxy−(x̂, ŷ) = lim
y↑ŷ

∂

∂x
v1(x̂, y)− lim

y↑ŷ
∂

∂x
v0(x̂, y) = lim

y↑ŷ

(
∂

∂x
v1(x̂, y)− ∂

∂x
v0(x̂, y)

)
= 0.

Thus, Vxy exists, since the left- and right- derivatives are equal. Furthermore, it is easy to

verify that for (x̂, ŷ) in the interior of S1, Vyx(x̂, ŷ) = ∂
∂x

[v1(x̂, ŷ) − v0(x̂, ŷ)] = 0. A similar

argument applies to (x̂, ŷ) in the interior of S0, thereby proving the claim.

Corollary 4.9. If H is C1 on an open interval J ⊂ [a, b] then Vyx and Vxy exist and are

continuous with Vxy(x, y) = Vyx(x, y) = ∂
∂x

[v1(x, y)− v0(x, y)] on (0,∞)× J .

4.2 Derivation of Theorem 2.6 on Region Characterization

Proof. of Theorem 2.6.

Recall that Vy− and Vy+ exist by Proposition 4.3 and that −K0 ≤ Vy+ ≤ Vy− ≤ K1.

Thus, Vy(x, y) = −K0 if and only if Vy−(x, y) = −K0, and from the expression for Vy− in

(23), we have that Vy−(x, y) = −K0 for x < F (y−) (in Case II). However, by the continuity

of Vy− in Proposition 4.4, we get Vy−(x, y) = −K0 if and only if x ≤ F (y−), which is true if

and only if (x, y) ∈ S0 by Eq. (16). Thus, Vy(x, y) = −K0 if and only if (x, y) ∈ S0.

The same argument applied to Vy+(x, y) = K1 shows that Vy(x, y) = K1 if and only if

(x, y) ∈ S1. Lastly, the claim for C follows since it is the complement of S0 ∪ S1.

A similar argument also applies in Case I.

5 Examples and Discussions

By now, it is clear from our analysis that without sufficient smoothness of the payoff function,

the value function may be non-differentiable and the boundaries may be non-smooth or not

strictly monotonic. Moreover, when the payoff function H is not continuously differentiable,

the interior of C may not be simply connected. Note, however, the regions S0, S1 and C are

mutually disjoint and simply connected by the monotonicity of F and G.

We elaborate on these points with some concrete examples.

5.1 Examples

Taking parameters κ, ν, h as defined in the main results in Section 2.3, we fix here [a, b] =

[0, 2], K0 < 0 and 0 < β < 1. Recall that since K0 < 0, F (z) = κh(z)−1 and G(z) = νh(z)−1.
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Example 5.1. [Value function NOT C1, boundaries are C1 but NOT strictly in-

creasing: because H is not strictly concave]

H(z) =

{
z, z ≤ 1,

arctan(z − 1) + 1, z > 1.

h(z) =

{
1, z ≤ 1,

1
1+(z−1)2

, z > 1.

See Figure 5.

x+

2

1

νκ

C

S0

0

z

G(z)F(z)

C

S1

Figure 5: Value function is C1, F,G are C1, but NOT strictly increasing: because H is NOT

strictly concave.

Example 5.2. [Value function C1, F, G are only C0: because H is not C2]

H(z) =

{
z, z ≤ 1,
zβ−1

β
+ 1, z > 1,

h(z) =

{
1, z ≤ 1,

zβ−1, z > 1.

See Figure 6.

Example 5.3. [Value function NOT C1, F,G NOT continuous: because H is not

C1.]

H(z) =

{
z, z ≤ 1,

2κ
(κ+ν)

zβ−1
β

+ 1, z > 1,

h(z) =

{
1, z ≤ 1,
2κ

κ+ν
zβ−1, z > 1.

See Figure 7.
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x+

2

1

νκ

C

S0

0

z

G(z)F(z)

C

S1

Figure 6: Value function C1, F,G are only C0: because H is not C2.

(κ+ν)/2

2

1

νκ

C

CS

S

0

1

0

z

F(z) G(z)

x+

Figure 7: Value function NOT C1, F, G NOT continuous: because H is not C1.

Example 5.4. [Interior of continuation region NOT connected]

H(z) =

{
z, z ≤ 1,
κ
2ν

zβ−1
β

+ 1, z > 1,

h(z) =

{
1, z ≤ 1,
κ
2ν

zβ−1, z > 1.

See Figure 8.

G(z)
2

1

x+2ννκ 2ν  /κ2

C

CS

S

0

1

0

z

F(z)

Figure 8: Interior of continuation region NOT connected

Note that Examples 5.2 - 5.4 all have payoff functions of the form

H(z) =

{
z, z ≤ 1,

φ zβ−1
β

+ 1, z > 1,
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for some constant φ. To ensure the concavity of H, we must have φ ∈ [0, 1]. When φ = 1,

we recover Example 5.1 and Figure 6. For κ
ν

< φ < 1, the regions are described by Figure 7.

Lastly, for 0 < φ ≤ κ
ν
, the interior of the continuation region is not connected as in Figure 8.

5.2 Discussion

The above examples demonstrate how the regularity assumptions typically assumed by the

traditional HJB approach may fail. According to that approach, the value function V (x, y)

would satisfy some (quasi)-Variational Inequalities so that

max{σ2x2Vxx(x, y) + bxVx(x, y)− rV (x, y) + H(x, y), Vy(x, y)−K1,−Vy(x, y)−K0} = 0.

In general, while searching for a solution, one would assume a priori smoothness for the

value function and the boundary. For example, in Alvarez (2006) and Merhi and Zervos

(2007), V is derived from the class of C2,1. However, Example 5.2 shows that although the

HJB variational inequality may still hold, one should search for a solution in a larger class

of functions, such as in C1,0.

Furthermore, Example 5.3 shows that in general, one may not have the smoothness of

the boundary, as the boundaries F and G are not necessarily continuous or not even strictly

increasing. Indeed, in this example, F and G are inversely proportional to h, which may be

neither.

Finally, we compare our results and method with those in Alvarez (2006).

Example 5.5. [General case of Alvarez (2006) for GBM] Let x > 0 and y ∈ [a, b],

with K0 < 0 and h > 0 on [a, b]. Then F and G are non-decreasing and given by Eq. (12).

Define

y0(x) = G←(x) ∧ b = sup{z : G(z) ≤ x} = sup{z : h(z) ≤ (x/ν)−1} ∧ b,

y1(x) = F→(x) ∨ a = inf{z : F (z) ≥ x} = inf{z : h(z) ≥ (x/κ)−1} ∨ a.

Then y0(x) ≤ y1(x), and

• x ≤ F (z) for z > y1(x);

• F (z) < x < G(z) for y0(x) < z < y1(x);

• G(z) ≤ x for z < y0(x)

When, in addition, H satisfies the Inada conditions, this example generalizes those in

Alvarez (2006) when X is a geometric Brownian motion. Compared to the very special form

appearing in Alvarez (2006), our results show that, in order to compute the value function,

integration of vk(x, z) is necessary, which we reduce to three possible cases, depending on

whether (x, y) is in S0, S1 or C.
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1. (x, y) ∈ S0: Then y1 ≤ y and

V (x, y) = ηH(y1)x + xm

∫ y1

a

B(z)dz + xn

∫ b

y1

A(z)dz −K0(y − y1).

2. (x, y) ∈ C: Then y0 < y < y1 and

V (x, y) = ηH(y)x + xm

∫ y

a

B(z)dz + xn

∫ b

y

A(z)dz.

3. (x, y) ∈ S1: Then y ≤ y0 and

V (x, y) = ηH(y0)x + xm

∫ y0

a

B(z)dz + xn

∫ b

y0

A(z)dz −K1(y0 − y),

where A and B are given by Eqs. (10)-(11).

A Appendix: Equivalence of Problem A and Problem

(1)

Proposition A.1. For all (ξ+, ξ−) ∈ A′′
y, , we have

JH(x, y; ξ+, ξ−) = Ky + xλ[K2(y − a) + ηH(a)] + J̃H̃(xλ, y; ξ+, ξ−)

where K = −C0

ρ
+ −C1

ρ2 , η = 1
ρ−µ̃

and

J̃H̃(x, y; ξ+, ξ−) =E
[∫ ∞

0

e−ρtH̃(Yt)X̃
x
t dt− K̃1

∫ ∞

0

e−ρtdξ+
t − K̃0

∫ ∞

0

e−ρtdξ−t

]

where

K̃0 = K0 + K, K̃1 = K1 −K,

H̃(y) = H(y)−H(a)−K2(ρ− µ̃)(y − a) =

∫ y

a

[H ′(z)−K2(ρ− µ̃)]dz,

dX̃x
t = µ̃X̃x

t dt +
√

2σ̃X̃x
t dW̃t, X̃x

0 := x > 0,

µ̃ = σ2λ2 + (µ− σ2)λ < ρ, σ̃ = σ|λ|,
W̃t = sign(λ)Wt.

Proof. Let (ξ+, ξ−) ∈ A′′
y be given. To obtain K̃1 and K̃0, observe that

E
[∫ ∞

0

e−ρtC1(
∫ t

0
Ysds)dt

]
= E

[∫ ∞

0

∫ ∞

s

e−ρtC1Ysdtds

]
= E

[∫ ∞

0

e−ρs C1

ρ
Ysds

]
.
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Thus, from the integration by parts formula,

E
[∫ ∞

0

e−ρt[−C0 − C1/ρ]Ytdt

]
= Ky + KE

[∫ ∞

0

e−ρtdξ+
t

]
−KE

[∫ ∞

0

e−ρtdξ−t

]
,

where K = −C0

ρ
+ −C1

ρ2 .

Next, for any λ ∈ (m,n), let x̃ = xλ, X̃ x̃
t = (Xx

t )λ. Ito’s formula shows

dX̃ x̃
t = µ̃X̃ x̃

t dt +
√

2σ̃X̃ x̃
t dW̃t, X̃ x̃

0 := x̃ > 0,

where µ̃ = σ2λ2 + (µ− σ2)λ, σ̃ = σ|λ| and W̃t = sign(λ)Wt.

To get H̃(y), let Zt = e−ρtX̃ x̃
t . Then E[

∫∞
0

Zsds] < ∞, and by Ito’s formula, we have

dZt = −(ρ− µ̃)Ztdt +
√

2σZtdWt, Z0 = x̃ > 0.

Note that (ρ− µ̃) > 0 for λ ∈ (m,n). Thus limt→0 Zt = 0 almost surely and in L1.

Now, from the integration by parts formula in Protter (2004, p. 68) and noting that X

and Y are left continuous,

∫ t

0

Zs−dYs = ZtYt −
∫ t

0

Ys−dZs − [Z, Y ]t

= ZtYt + (ρ− µ̃)

∫ t

0

YsZsds−
√

2σ

∫ t

0

YsZsdWs − x̃y,

because [Z, Y ]t = Z0Y0 = x̃y for all t from the finite variation of Y .

Moreover, from Protter (2004, p. 63), the process
∫ t

0
YsZsdWs is a martingale, so for all

t > 0,

E
[∫ t

0

ZsdYs

]
= E

[
ZtYt + (ρ− µ̃)

∫ t

0

YsZsds

]
− x̃y.

And since Zt → 0 in L1 and Yt ∈ [a, b] is bounded, limt→∞ E[ZtYt] = 0.

Furthermore, since (ξ+, ξ−) ∈ A′′
y and Zt is integrable, the dominated convergence theo-

rem gives

E
[∫ ∞

0

ZsdYs

]
= lim

t→∞
E

[∫ t

0

e−ρs(Xx
s )λdYs

]
= lim

t→∞
E

[
ZtYt + (ρ− µ̃)

∫ t

0

YsZsds

]
− x̃y

= E
[
(ρ− µ̃)

∫ ∞

0

YsZsds

]
− x̃y.

Hence,

E
[
−K2

∫ ∞

0

e−ρtX̃ x̃
t dξ+

t + K2

∫ ∞

0

e−ρtX̃ x̃
t dξ−t

]
= K2x

λy − E
[
K2(ρ− µ̃)

∫ ∞

0

e−ρtYtX̃
x
t dt

]
.

Lastly, for η = 1
ρ−µ̃

, E
[∫∞

0
e−ρt[H(a) + K2(ρ− µ̃)a]X̃ x̃

t dt
]

= xλ[ηH(a) + K2a]. The

conclusion is immediate by putting the above calculations together.
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Now, the equivalence of the control problems follows from the above equivalence of the

payoffs, with an easy application of the Dominated Convergence Theorem.

Theorem A.2. The value function VH defined in Problem A is given by

VH(x, y) = Ky + xλ[K2(y − a) + ηH(a)] + V (xλ, y),

where K = −C0

ρ
+ −C1

ρ2 , η = 1
ρ−µ

and

V (x, y) = sup
(ξ+,ξ−)∈A′y

J̃H̃(x, y; ξ+, ξ−). (24)
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Ma, J. (1992). On the principle of smooth fit for a class of singular stochastic control

problems for diffusions. SIAM J. Control Optim. 30 (4), 975–999.

Martins, L. F., S. E. Shreve, and H. M. Soner (1996). Heavy traffic convergence of a con-

trolled, multiclass queueing system. SIAM J. Control Optim. 34 (6), 2133–2171.

Merhi, A. and M. Zervos (2007). A model for reversible investment capacity expansion.

Working Paper, King’s College, London.

Øksendal, A. (2000). Irreversible investment problems. Finance Stoch. 4 (2), 223–250.

Pham, H. (2005). On the smooth-fit property for one-dimensional optimal switching problem.
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