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ABSTRACT 

Dairy cows are managed and fed in pens. These pens are constructed for uniform 

handling and management, and cluster cows on stage of lactation, reproduction status, or milk 

production. The variation in nutrient requirement of the cows is not accounted for, and different 

distributions of dry matter intake (DMI) occur depending on cow selection. These pens are fed 

by a ration supplied collectively. This ration is solved to meet a nutrient requirement and scaled 

to the number of cows in the given pen. But the solution cannot account for within pen variation 

because DMI is not individually recorded. The common measurement is the average nutrient or 

DMI per cow, dividing the quantity of ration consumed by the number of cows present. Another 

approach is predicting a DMI value for a hypothetical mean cow to represent the pen. Both 

systems result in one DMI value, rather than a distribution. The only scenario where this would 

be considered precise or accurate nutrition is if the cows within the pen were completely uniform 

in their requirements. Failing this, if the distribution of the pen were normal, and the tails 

symmetrical, the lower requirement cows could have their feed consumed by the higher 

requirement cows, striking a crude balance.  

 

The first chapter of this work examined this assumption. Its hypothesis was the DMI of 

cow pens are not normally distributed, and the total pen DMI can be better calculated by 

describing it with an appropriate distribution shape. Cow DMI was first described by week of 

lactation for skew and kurtosis, then a large dataset of cow pens representing Fresh, High, and 

Low milk yield lactation stages were assembled from individual observations. The distribution of 

DMI for each pen was fit to the best distribution shape, then the total pen DMI was calculated 

from the area under its curve. This was compared to a second model that calculated the total 
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DMI by applying an empirical equation to the pen’s mean values. The Beta distribution shape 

was the most common best fit of all pens, and the distribution shape predicted pen DMI with less 

than 1 % error, and more accurately than the comparison model, with an error of 11 – 22 %.   

 

The second chapter predicted the distribution shape of DMI. In chapter I the distribution 

was demonstrated as a good calculation of pen DMI, but the shape is only known when 

described from individual DMI values. To build a prediction model in the case of unknown 

individual DMI, we trained machine learning algorithms to a known dataset. A large dataset of 

pens was assembled, and these were described with their best fit distribution, either the Beta or 

Generalized Normal distribution shape. Machine learning algorithms were trained to classify 

these pens to their best shape and predict DMI values that fit the distribution; the Distribution 

Shape Model (DSM). A second model was contrasted to this that predicted pen DMI by applying 

the mean descriptive statistics of the pen to an empirical equation, the NASEM equation model 

(NSM). Both models were validated for their DMI prediction performance on a naïve dataset and 

compared by model diagnostics. The DSM was very precise and accurate, with low error, or 

bias, and outperformed the NSM in consistently predicting pen DMI.  

  

The last chapter of this work performed precision nutrition with the distribution shape of 

DMI for ration formulation. Three pens were considered: Fresh, High and Low. Each pen had its 

DMI predicted by the DSM, and by applying an empirical equation to each cow’s characteristics, 

individual NASEM equation model (iNSM). These DMI values were used to formulate 

individual rations for every cow, and compared by cost, DMI, and metabolizable energy. As 

individual rations cannot be practically applied on dairies, precision nutrition pen rations were 
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also solved. Each pen had a nutrient requirement calculated by summing its constituent cow’s 

requirements, and rations were solved with these totals. The DSM and the iNSM were compared 

to an ideal ration solved to the observed DMI values (TRU) to evaluate these two precision 

nutrition approaches. Two imprecise approaches were also considered. One where an empirical 

equation was applied to the mean of each pen, the average NASEM equation model (aNSM), 

and one where it was applied to the 75th of the pen, the adjustment factor NASEM equation 

(fNSM). In the individual, and pen ration solutions, the DSM was the only model that was not 

significantly different to the TRU. It was also cheaper and less nutrient wasting than all other 

ration models, as its solution was almost identical to the TRU for individual cows, and pen 

rations.  
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CHAPTER I.  

DESCRIBING THE DISTRIBUTION TYPE OF DRY MATTER INTAKE FOR DAIRY 

COW PENS BASED ON PEN CHARACTERISTICS 

P.M. Lucey and H. A. Rossow, animal, Volume 17, 2023 

ABSTRACT 

In practice cows are fed by pen, but a diet is formulated to the nutrient requirements of a 

single cow. If the dry matter intake (DMI) of a pen were equal for all cows this approach would 

have no error, but cows are grouped into pens on pregnancy and other management factors 

creating a distribution of DMI. The goal of precision feeding is to meet the requirements of 

individual animals to increase efficiency and reduce environmental impact but is not achieved 

when a group is fed as if the individuals have uniform requirements, and the DMI distribution is 

not normal. The hypothesis of this work was that the DMI of cow pens are not normally 

distributed and the total DMI from the best fit distribution shape for a cow pen would have lower 

percentage error to the observed DMI than a prediction of a single DMI that is fed at a uniform 

level and assumes a normal distribution. Our objective was to describe the distribution shape of 

DMI by week of lactation, and for different pen types. Pens were generated by randomly 

assorting cows by week of lactation from a database into different categories of pen for size and 

lactation period. These pens were fitted to the best distribution type, and its parameters were 

used to randomly generate distribution plots that predict the total DMI for each pen. A second 

predictive model estimated the DMI of each pen using an empirical equation of DMI that was 

multiplied by the number of cows in the pen to represent feeding of a uniform DMI quantity. The 

percentage error for the distribution shape model was significantly lower than the empirical 

model with pen errors being less than 1 %. The Beta distribution type was the most common 

distribution to best represent the data of pen DMI. Describing the distribution and using it to 

predict a total pen DMI provided accurate estimates of feed quantity for a group. Reducing error 
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by using the distribution of DMI for feed formulation, instead of the nutrient requirements of an 

individual animal can provide a precision nutrition approach to group feeding. 

 

INTRODUCTION 

In practice, cows are fed by pen, and a diet is formulated to a single estimate of DMI that 

represents the pen’s mean cow. This is scaled to the number of cows in the pen and a uniform 

quantity of feed per cow is provided. If the DMI of a pen were constant, there would be zero feed 

quantity error in this approach. However, if DMI is not constant, the mean is not an appropriate 

parameter. It is accepted in the dairy industry that milk production and DMI are not constant 

within cow pens. Feeding cows uniformly, consistently underestimates feed quantity. Then, 

mathematical corrections are employed to ensure sufficient feed to high production cows, such as 

feeding to the 83rd percentile nutrient requirements of the pen (Stallings and McGilliard, 1984), 

or over-formulation where the estimated DMI quantity is increased by a fixed proportion (Weiss, 

2019). Precision feeding of dairy cows requires accurate estimates of the pen feed quantity, as 

the goal of precision feeding is to minimize nutrient waste through minimizing leftover feed. But 

pen level management prohibits individual cow feeding (Schulze, Spilke, and Lehner, 2007), as 

diets formulated for an individual do not meet the requirements of a group. 

 

Precision feeding addresses between-animal variation to deliver the correct amount of 

feed to each animal and can reduce nutrient excretion, feed cost, environmental impact and 

increase nutrient efficiency (Bewley, 2010; Pomar et al., 2011; Capper and Cady, 2020).  To 

employ precision feeding in a pen, the distribution of DMI by pen cannot be represented by a 

constant as cows are not uniform across a pen. For example, cows are sorted into pens based on 
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pregnancy status, milk production level (low and high) and nutrient efficiency (St-Pierre and 

Thraen, 1999). Variation in DMI is affected by milk yield (45 %), feed management (22 %), 

bodyweight (BW) (17 %), climate (10 %) and body condition score (BCS) (6 %) (Roseler et al., 

1997). Grouping cows by these same factors will create a distribution of DMI. The current 

assumption of uniformity when formulating pen diets does not address between-cow variation. 

There is concern in the applicability of individual cow studies to commercial operations where 

cows are grouped in pens (St-Pierre, 2007). Empirically derived predictions of DMI and nutrient 

requirements for an individual cow, such as Nutrient Requirements of Dairy Cattle (NASEM, 

2021) or the Cornell Net Carbohydrate and Protein System (Van Amburgh et al., 2015), assume 

all cows in a pen eat the same amount, and do not consider how distribution of DMI differs for 

groups of cows at different production levels. 

 

The hypothesis of this chapter is that feeding a uniform DMI does not represent the 

distribution shape of DMI for cow pens, and the total DMI quantity for a pen calculated as the 

density of the best fitting distribution shape will be closer to the true DMI when compared to the 

empirically calculated DMI for the mean cow of the pen. Using a database of individual cow 

DMI by week we first described the skew and kurtosis of DMI of cows when grouped by week 

of lactation, then generated sample pens of cows within a range of weeks of lactation, described 

the distribution type and parameters, and predicted a total pen DMI. This was compared to the 

observed total DMI. The total pen DMI was also predicted by applying the NASEM 2021 DMI 

equation to the mean of the pens and compared to the observed DMI. Both prediction models 

were contrasted by their performance to the observed.  
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MATERIALS AND METHODS 

No approval from the University of California, Davis, Animal Care and Use Committee 

was needed for this study as it was conducted using only previously collected data. 

 

Database description 

A database was constructed from datasets of nine research trials for this mathematical 

modelling study. All trials were nutrition or management-based interventions on lactating cows 

and seven of the nine have been published in peer reviewed journals. Each trial included data for 

different ranges of the lactation period, with the recording period starting at 1 wk (first 7 d 

immediately after parturition) and extended up to 44 wk (Table I-1). All cows had individual 

milk yield and components recorded at each milking daily, and DMI recorded daily using Calan 

gates (American Calan, NH, USA). Data were averaged by week per cow for 426 cows in total. 

 

Inclusion criteria   

Every dataset needed to list individual records by unique cow identification number, 

identify treatment assignment, parity, diet composition, days in milk (DIM), weekly milk yield, 

weekly milk fat and weekly DMI consecutively for at least 4 wk. Some of the datasets also 

included milk protein, bodyweight, and BCS, but these were not required for inclusion. 

 

Data cleaning  

Cows with missing values for some of their weekly observations were not removed. 

Datasets were imported to a SQL database using an open database connector pipeline. Within the 

database, a variable for fat corrected milk was created using 𝟑. 𝟓% 𝑭𝑪𝑴 = (𝟎. 𝟒𝟑𝟐𝟒 ∗ 𝒌𝒈) +



 

5 
 

(𝟏𝟔. 𝟐𝟏𝟔 ∗ 𝒎𝒊𝒍𝒌𝒇𝒂𝒕) (Tyrrell and Reid, 1965; Eq. I-1). We used fat corrected milk instead of 

energy corrected milk because one dataset did not record milk protein values. A variable for feed 

efficiency (FE) was created using the formula 𝑭𝑬 = 𝑭𝑪𝑴 𝑫𝑴𝑰⁄  (Korver, 1988; Eq. I-2). We 

used FE to compare the metabolic efficiency of cows across trials despite differences in diet and 

environment to determine if data were reasonable and if these cows could hypothetically exist on 

a single dairy and be grouped together into pens.  

 

Database variance assessment  

All datasets were compared for similarity of variance in DMI, milk yield and FE. The 

variance of FE by dataset and treatment group within dataset was used as the main measure of 

comparability, as this represents metabolic efficiency and allows the comparison of cows with 

different levels of feed intake and milk yield. Data were retained in the overall database if 50% 

of the FE data overlapped with all other datasets on boxplot analysis, and less than 20% of the 

weeks of lactation had a FE mean significantly different from other datasets on analysis of 

variance (ANOVA) analysis. The database was imported to R 4.2.1 (R Core Team, Vienna, 

Austria, 2018) and milk yield, DMI, and FE were examined visually using scatter plots to 

identify and remove outliers and assess the range of the three variables (not shown). The mean 

and median of milk yield, DMI and FE was plotted by week for each dataset (Figure I-1). 

Boxplots were examined at every week by dataset, and treatment within dataset, for visual 

comparison of the mean and variance of milk yield, DMI and FE (not shown). We used ANOVA 

models with the R 4.2.1 base package to compare the means of the variables of milk yield, DMI 

and feed efficiency with cow as the unit of interest. Data were first evaluated using treatment 

group within dataset as the subgroup for the outcomes of milk yield, DMI and FE. Next the 



 

6 
 

database was evaluated by ANOVA using dataset within database as the subgroup for the 

outcomes of milk yield, DMI and FE. Using the equation 𝒀𝒊,𝒋 = 𝝁 + 𝜷𝒊 +∈𝒊,𝒋 (Eq. I-3), where 

𝑌𝑖,𝑗 is the 𝑗-th observation of the 𝑖-th group (𝑖=1, 2, … , 9 datasets or 𝑖 = 1, 2, … , 35 treatment 

within dataset), 𝛽𝑖 is the 𝑖-th subgroup effect and  ∈𝑖,𝑗 is the random error present in the 𝑗-th 

observation on the 𝑖-th treatment of these fixed effect models. 

 

Model description 

Skew and Kurtosis by week of lactation  

The skew, kurtosis and Shapiro-Wilk test for normality (Shapiro and Wilk, 1965) was 

calculated based on DMI data for each week of lactation separately starting at 1 wk to 44 wk 

using the Moments package of R 4.2.1 (Komsta, L., Novomestky, F., 2022). This was performed 

on all cows in the database, then with primiparous cows only, and then multiparous cows (Table 

I-2). The null hypothesis of the Shapiro-Wilk test is that the data comes from a normal 

distribution. The null hypothesis was rejected at a significance level of P < 0.05. 

 

Creation of pens to simulate DMI distributions 

The database was used to generate multiple cow pens for a set number of cows within a 

range of weeks of lactation. Three pen types were created: fresh, high and low. Fresh pens were 

lactation range 1 – 3 wk, high range 4 – 18 wk and low range 19 – 44 wk. We also generated a 

large and small dairy pen size for each type. We chose pen size and lactation range as 

representative of management in the California dairy industry (M. Wukadinovich, personal 

communication, November 2022). Fresh pens were set at 20 (FRESH20) and 60 cows 

(FRESH60), high at 50 (HIGH50) and 200 (HIGH200), and low at 50 (LOW50) and 150 
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(LOW150). One additional high pen was created with 50 primiparous cows only (HIGHP50), 

resulting in seven pen types (Table I-3). To create replicates of each pen type, data was prepared 

in longform with one row per cow per week of data observation. The data were subset into the 

week of lactation ranges for each pen type, and 100 unique pens for each type were generated by 

selecting one weekly observation of DMI per unique cow within that week range. This pen 

generating code was nested in a “FOR” loop with a changing random seed number in R 4.2.1 for 

100 replications. Observations were replaced between each pen generation. This resulted seven 

sets of 100 unique pen replicates via bootstrapping. Each bootstrapped pen contained unique 

weekly DMI observations by cow within the lactation range for that pen, no cow occurred at 

multiple time points as each pen represents a temporal snapshot of potential grouping on a dairy. 

Each replicate selected a random weekly DMI observation per cow from the data pool available 

for the pen constraints, and uniqueness comes from the diversity of arrangements of different 

cow week observations, and different cows grouped within pens together. Bootstrap selection 

restores the data pool between each replicate, and random selection of DMI observations 

provides the potential for many unique pens. All weekly observations included DMI and milk 

information, cows with missing information of BW and BCS were included in pen generation, 

and their missing information was excluded when calculating summary statistics of these 

variables.  

 

Best distribution type fitting of DMI 

All 100 replicates of each seven pen types were fit to the best probability distribution 

type using the “ExtDist” package in R 4.2.1 (Wu, Godfrey, and Pirikahu, 2020). The 

distributions Normal, 4-parameter Beta, Weibull and Logistic were selected by preliminary 
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visual assessment of the distribution shape of DMI of replicated pens, then tested with maximum 

log likelihood estimation. The value closest to zero represented the best fit to the data of the four 

tested distributions. For each of the 100 replicates of the seven pen types, the best distribution 

type to the DMI data of that pen replicate was calculated by this method. The number of 

occurrences of best fit for each tested distribution type were summed for each pen type to 

calculate the proportion of each’s 100 replicates that were best fit by each distribution candidate. 

The skew and kurtosis values of every replicate were calculated, and the mean of both values for 

each pen type was reported (Table I-3). This method described the distribution of DMI for 

multiple randomly generated pens to report the most common distribution shape that best fits 

these pen types. The observed total DMI for each of the 700 replicated pens was known and 

calculated as the sum of observed DMI values per pen. 

 

Model results 

Predicting total DMI for a distribution shape 

A total DMI for every replicate of the seven pen types was predicted using its best fitting 

distribution. This distribution type had appropriate parameters for the data it described calculated 

using the function for that distribution in the R 4.2.1 package “ExtDist” by maximum likelihood 

estimation (Wu et al., 2020). For each distribution and its parameters, we randomly generated 

DMI values that fit the shape of the curve (“rBeta”, “rNormal”, “rLogistic”, “rWeibull” 

functions, base R 4.2.1). The sum of these values was considered the prediction of DMI for each 

pen for that fitted distribution shape. This random generation and summing of DMI values was 

performed 1000 times for each pen replicate, then the mean value of total DMI for the 1000 

iterations was taken as the final pen DMI estimate. This was performed because of variance 
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between the randomly predicted values for a given distribution’s parameters, and to standardize 

the prediction of total DMI across all replicates. (Table I-4). 

 

Predicting total DMI by empirical equation  

The descriptive statistics of each of the 700 generated pen replicates of the seven pen 

types were used to calculate the predicted DMI by the NASEM 2021 equation 𝑫𝑴𝑰(𝒌𝒈 𝒅⁄ ) =

[(𝟑. 𝟕 + 𝑷𝒂𝒓𝒊𝒕𝒚 × 𝟓. 𝟕) + 𝟎. 𝟑𝟎𝟓 × 𝑴𝒊𝒍𝒌𝑬(𝑴𝒄𝒂𝒍 𝒅⁄ ) + 𝟎. 𝟎𝟐𝟐 × 𝑩𝑾(𝒌𝒈) +

(−𝟎. 𝟔𝟖𝟗 + 𝑷𝒂𝒓𝒊𝒕𝒚 × −𝟏. 𝟖𝟕) × 𝑩𝑪𝑺] × [𝟏 − (𝟎. 𝟐𝟏𝟐 + 𝑷𝒂𝒓𝒊𝒕𝒚 × 𝟎. 𝟏𝟑𝟔) ×

𝒆(−𝟎. 𝟎𝟓𝟑 × 𝑫𝑰𝑴)] (de Souza et al., 2019; NASEM, 2021; Eq. I-4) in R 4.2.1. The mean 

values of parity, milk energy (NRC, 2001), BW, BCS, and DIM for each pen replicate were used 

as the input values. The predicted DMI was multiplied by the n of cows in that pen replicate to 

produce a total DMI of the pen at an assumption of uniform DMI.  

 

Comparing predicted DMI to observed and model diagnostics 

Every pen had predicted DMI compared to the observed DMI for percentage error with 

the formula 𝑷𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆𝑬𝒓𝒓𝒐𝒓 = (𝑽𝒂𝒍𝒖𝒆𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅– 𝑽𝒂𝒍𝒖𝒆𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅) 𝑽𝒂𝒍𝒖𝒆𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅⁄ × 𝟏𝟎𝟎 

(Eq. I-5). Observed total DMI was considered the sum of the observed DMI values of every cow 

in each pen replicate. The predicted total DMI for a distribution shape, and the predicted total 

DMI by empirical equation of every pen were both compared to the observed total DMI for their 

percentage error of total pen DMI prediction. The mean error for each of the seven pen types by 

both methods of prediction was compared for a difference in means by student’s t-test at a 

significance level of P < 0.05 (Table I-4). Both prediction models, distribution fitting vs. 

NASEM, were compared to the observed data for their model fit to the data using mean squared 
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prediction error (MSPE) (𝑴𝑺𝑷𝑬 = 𝑴𝑬𝟐 + 𝑽𝑨𝑹, ME = mean error, VAR = variance; Eq. I-6) 

using Microsoft Excel (Microsoft, WA, USA) and partitioned into error due to mean, slope and 

random bias as described by Benchaar et al., 1998 and Theil, 1966). 

 

RESULTS AND DISCUSSION 

 

The goals of this modeling study were to create a pool of cows that could be assembled 

into virtual pens that represent possible grouping of cows as may occur on a commercial dairy, 

determine the best fit DMI distribution, and then estimate DMI of the pen using the distribution. 

With bootstrap sampling, we generated virtual pens by selecting a different weekly observation 

per unique cow and assembling them into pens of cows for a range of weeks of lactation. To 

observe the distribution in DMI of a pen and represent how this truly may occur on a dairy, it 

was important to examine many possible cow groupings for the consistency of distribution shape 

and estimate the group level variables that defined the distribution.  Because dairies are 

composed of many different cows, variance between cows in the dataset was desired. But to 

avoid generating pens of cows that would not realistically be grouped together, FE was used to 

compare metabolism between cows. Cows are most commonly grouped by reproductive status, 

lactation stage and milking performance (Contreras-Govea et al., 2015), so we assumed FE 

should be comparable across the database as a measure of the cow’s ability to produce milk from 

feed, and to avoid skew by introducing an artifact from combining metabolically dissimilar 

cows.  
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Database construction 

Inclusion Criteria 

Three of the nine datasets were different (P < 0.05) in milk yield or DMI to all others due 

to the intervention in their publication. All datasets had overlap of at least 50 % of the data on 

boxplot analysis by treatment group. Results of the ANOVA analysis showed differences 

between treatment groups for multiple datasets at occasional weeks of lactation. But there were 

no differences observed for a period of three or more consecutive weeks, and differences did not 

occur for more than 20% of all weeks of lactation of the trial. Therefore, all treatment levels of 

each dataset were retained. Datasets were compared to each other visually using boxplots and 

statistically by ANOVA with dataset within database as the level for the means of DMI, milk 

yield and FE. Dataset seven had consistently lower DMI and milk yield than other datasets, and 

the range of these did not overlap by at least 50 % of the data of other datasets at all weeks of 

lactation. This dataset also had repeated weeks of milk yield, DMI and FE that were different 

from other datasets (P < 0.05). All observations from dataset seven were removed from the 

database, resulting in a total of 375 cows with 8,982 weekly DMI observations retained and used 

in this study.  

 

Database variance assessment  

Bootstrapping of pen groups allowed the generation of many virtual cow pens, but as the 

pen size approached the total number of unique cows available, or number of replicates 

increases, the variation between replicates would diminish. To generate reasonable pens from 

this database, a high tolerance for variation in milk yield and DMI within and between datasets 

was accepted, including reported significant differences by the published studies. Dairies 
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intentionally group cows of similar milk production levels, and low milk yield accounts for 21 % 

of all cow culling removal (USDA, 2014). To satisfy that the cows in the database could be 

grouped together on a dairy, metabolic efficiency as FE, and the overlap in the variance of milk 

yield and DMI was used to validate that generated virtual pens are reasonable, as dairies will 

group cows to reduce variance in these variables. 

 

Distribution of DMI by week of lactation 

Week of lactation was the grouping factor for this study and is an important determinant 

of DMI as energy demand of milk production changes with DIM. To understand how this 

contributes to the distribution of DMI for pens, we first described DMI distribution at each week 

of lactation. Skewness is an asymmetry in a distribution, and a normal distribution is considered 

to have no skew. Positive skewness indicates the mass of the distribution is shifted to the lower 

value of the variable with a right tail (right skew), and the median is lower than the mean. 

Negative skewness indicates the mass of the distribution is shifted to the higher value of the 

variable with a left tail (left skew), and the median is higher than the mean. Kurtosis is a measure 

of the data in a distribution’s tails. The normal distribution has a kurtosis of three, with higher 

values indicating more data in the tails.  

 

Cows were first examined together, then the primiparous and multiparous separately 

(Table I-2) for skew, kurtosis, and Shapiro-Wilk test of normality for DMI. The best distribution 

shape fit was not presented for these data as cows would not be grouped in pens or fed by 

individual week of lactation on a dairy. For all cows together: 2 – 10 wk of lactation were non-

normal except for 6 wk. Normality was observed from 11 – 35 wk for these cow groups at 
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almost every week, then non-normality was again observed occasionally between 37 – 44 wk. 

Almost all non-normal weeks were left skewed. For primiparous, non-normality was observed at 

20 and 28 wk with left skew. For multiparous, non-normality was observed for the fresh and 

early high period (2 – 6 wk), and 16 – 23, 36, 40 and 43 wk. For all three animal groups (mixed 

parity, primiparous, and multiparous) for most weeks of lactation the DMI distribution shape was 

negatively skewed (left skew).  

 

Under the central limit theorem, we expect the random variable of DMI at each week of 

lactation would assume a near-normal distribution for a large sample size. This was only 

observed when looking at primiparous cows. For all cows during the early lactation period the 

effects of parturition on energy balance, metabolism and immunity (Pascottini, Leroy, and 

Opsomer, 2020) may be creating a non-normal distribution of DMI. This distribution in the early 

lactation period is not considered in empirical prediction equations of DMI. The NASEM 2021 

and Cornell Net Carbohydrate and Protein System are both calculated using observed data of 

cows after their peak lactation milk yield. Normality was only observed for early lactation 

primiparous cows. Primiparous cows may be more uniform in their milking potential and DMI as 

these animals still have growth energy demands and lower incidence of production diseases or 

intramammary infections than older animals. Further non-normality was observed in the 

multiparous cows after the milk yield peak (6 – 9 wk, Figure I-1), and this distribution may be 

introduced by factors such as the age diversity, pregnancy status, disease history or management 

differences.  
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The mean and median of all cows were presented by week for the variables milk yield, 

DMI and FE (Figure I-1). There was a rapid increase in DMI and milk yield across the early 

lactation period. This difference in DMI level early in lactation will impact the DMI distribution 

of fresh pens. Later in lactation we see a gradual decline in DMI. Pens at this period of the 

lactation usually include cows across a wider range of weeks, and the number of cows at each 

week will influence the DMI distribution for a pen. The median and mean lines of Figure I-1 

deviate when skew occurs, as the mean is drawn away from the median by outliers. These 

factors, the construction of pens across a range of the lactation, and skew in DMI within cows at 

the same week, both highlight the concern in assuming uniformity of DMI for a pen. 

 

Distribution fitting by pen type 

One hundred replicates of the seven pen types were randomly generated and each one 

was fit to the best distribution. The 4-parameter Beta was the best distribution for all the pen 

types. For pens FRESH20 and FRESH60 the Beta was the best fit for 85 and 87 % of replicates 

respectively. For HIGH50, HIGHP50 and HIGH200 the Beta was the best fit for 77, 80 and 60 % 

of replicates respectively, and for LOW50 and LOW150 it was the best fit for 62 and 36 % 

respectively (Table I-3). The shape and scale parameters of the Beta distribution allow it to 

accommodate right and left skewness in its shape and made it the best distribution to represent 

these data. For FRESH20 and FRESH60, the mean skewness of all the replicates were close to 0, 

indicating an even number of positive and negative skew values in the replicates, and the mean 

kurtosis was less than three, describing a platykurtic distribution with flat tails and small outliers.  

The HIGH50 and HIGH200 pens both had negative mean skewness, indicating a left sided tail, 

and mean kurtosis close to three, describing tails similar in weight to a normal distribution. The 
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HIGHP50 pen had a negative mean skew value and normal mean kurtosis. Both LOW50 and 

LOW150 had a mean negative skewness and mean kurtosis values higher than three. This 

positive excess kurtosis indicates a leptokurtic distribution with heavier weighted tails, 

describing large outliers. This may be due to the largest week range of the LOW50 and LOW150 

pens at 19 – 44 wk. The skew values of all pen types led to the beta distribution as the best 

overall fit. The pens FRESH20 and FRESH60 had a mean skewness close to zero, but when 

examining each replicate separately pens were equally dispersed as either heavily negative or 

heavily positive in skewness (not shown), resulting in a mean skewness close to zero.  

 

This demonstrates that in the early lactation fresh cow pens may have non-normal 

distributions, with outliers to either the right or left side, depending on the cows in the group. 

Pens later in the lactation, HIGH50, HIGH200, LOW50 and LOW150 were consistently left 

skewed and best described by the Beta distribution as it accommodates this spread of data. The 

proportion of replicates best described by the Normal was higher for HIGH200, LOW50 and 

LOW150 than other pens. The HIGH200 pen may move closer to the Normal as the n of this pen 

was the largest, but Beta was still a better distribution fit for most of these replicates. Pens 

LOW50 and LOW150 had the Normal as the best fit for 10 and 29% respectively, and the 

Logistic distribution as best fit for 24 and 34 % of replicates respectively. These pens were 

spread across the longest lactation range, and at the lower milk production period, when most 

cows that remain in the herd would be pregnant and at a lower intake level so the decline in DMI 

is less steep for these weeks. The HIGHP50 pen was still described best by the Beta distribution 

but had a skewness and kurtosis close to the Normal. This pen only consisted of primiparous 

cows, and as only three of the eight final datasets in the database included primiparous, this pen 
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had less variation by DMI. But the Beta distribution was still most appropriate, indicating that 

skewness was an important component of these pen groups at that lactation range. 

 

The description of these pens as a Beta distribution indicates that uniform feeding of 

cows within a pen to a fixed DMI value is not appropriate. When a DMI value is estimated for a 

hypothetical cow of a pen and that number is multiplied by the number of cows, not all cows are 

eating at the same level. There is an assumption that the symmetric tails of a normal distribution 

will correct for this feeding rate. By feeding as if every cow will eat the same, it is expected that 

cows who eat less will have their excess feed consumed by cows who require more DMI. But if 

distributions are not normal, the pen will be over or underfed depending on how the distribution 

is skewed. Correction factors are routinely applied to increase the pen DMI as this method under-

supplies the pen in practice. This is proven by the description of the pen distributions in this 

study. All high and low yielding pens, except for HIGHP50, had consistent left skew and non-

normal distributions. With left sided outliers the main mass of the data is in the upper range of 

values for these pens. The mean is only an appropriate parameter of the Normal distribution, and 

the mean is pulled towards extreme outliers. For these pens, the mean value will be below the 

center of mass of this distribution leading to an underestimate of total DMI when the pen is fed at 

a uniform rate.   

 

Total DMI prediction 

Predicting total DMI for a distribution shape 

All 100 replicates of the seven pen types had a total DMI by pen predicted using the best 

fit distribution shape for those data (Table I-4). The observed DMI for every pen replicate of the 
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seven pen types was calculated by summing the observed DMI of the cows in each replicate, and 

the pen DMI predicted by its best distribution shape was compared to the observed for 

percentage error. A percentage error was calculated for every replicate and the mean percentage 

error by pen type is presented. All seven pens had a percentage error less than 1 % for the best 

distribution prediction of DMI. 

 

Predicting total DMI by empirical equation 

Pen DMI was also predicted for all replicates by calculating a DMI value with the 

NASEM 2021 equation with the inputs as the mean values of the pen for each and multiplying 

that value by the n of cows in the pen. These predicted values were compared to the observed 

DMI by pen type for mean percentage error and ranged from 11 to 22 %.  

 

The MSPE of each pen type was calculated for both prediction models to assess the fit of 

the predicted values to the observed (Table I-4, Figure I-2). Every pen type had a lower MSPE 

for the distribution shape prediction model as compared to the empirical equation model showing 

a better fit to data of the distribution shape model. This analysis demonstrates the model fit of a 

DMI predicted by an estimated distribution shape is more appropriate than assuming uniform 

feeding. The model error was partitioned into error due to bias, random variance and slope not 

equaling one. For the distribution prediction model 77 – 98 % of error was due to random 

variation in the data indicating that the model is well fitted to the data. For HIGHP50 the mean 

bias error was 21 % suggesting systematic error in prediction of the DMI mean by the model for 

this group. For the NASEM prediction model random error ranged from 6 – 68 % with the 

HIGHP50 pen type at 6 % error due to random variation and 93 % due to mean bias. This 
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HIGHP50 group was made up of primiparous only animals and from a smaller subset of possible 

animals and both models demonstrated systematic error in their prediction of mean producing 

this proportion of error in the model fit.  

 

The NASEM 2021 empirical equation was derived using post milking peak cow data so 

estimates for early lactation pens may be inaccurate. High and low lactation range pens were all 

underestimated by this equation. High pen underestimation by the empirical model of this study 

agrees with the observed practice of necessary over-formulating diet on commercial dairies, as 

underfeeding cows can limit milk production. Describing a distribution type for a pen DMI 

predicts a DMI closer to the observed DMI of a pen, allowing diets to be calculated to a more 

accurate amount at formulation rather than utilizing an imprecise correction factor. The practice 

of formulating diets by increasing DMI by a fixed level is not precision feeding, and ingredient 

composition may change if DMI is a binding constraint in the formulation. 

 

Model assessment 

This modeling study was conducted by generating virtual pens with data of known DMI 

values. But the application of this work relies on the future ability of predicting the distribution 

shape of a cow pen with unknown DMI. For group housed dairy cows, DMI estimation is 

crudely approximated by measuring the feed remaining after a given time-period from the supply 

of a known feed quantity. Individual DMI measurements, such as Calan gates, are not feasible 

for large groups as one gate would be needed per cow and would probably change inter-cow 

feeding behavior (Seymour et al., 2019). Sensor technology attempts to measure individual cow 
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DMI with accelerometers and cameras at feed bunks, and if the data are validated could 

contribute to pen calculation of total DMI.  

 

Pens with known individual cow DMI values can describe the distribution shape and 

parameters. This model generated virtual pens to build a labelled database of known distribution 

shapes. For pens on commercial dairies where individual DMI is not known, supervised learning 

could predict the distribution characteristics of a pen by a model trained with a labeled database. 

The model presented in this study demonstrates that predicting pen DMI with a distribution can 

provide accurate estimates. Current group feeding approaches supply a uniform level of DMI and 

are not precision feeding. Utilizing the distribution of DMI for each pen of cows is a necessary 

factor in achieving precision feeding aims for group feeding methods.   

 

CONCLUSION 

Precision feeding for cow pens is not achieved by formulating a DMI value for an 

individual cow and feeding it uniformly. Describing the distribution shape of DMI for cow pens 

predicts a pen DMI with less error and can provide an approach to precision feeding in this 

industry. 
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TABLES 

Table I-1. Description of the trial datasets used in the database of this dairy cow study. 

  n1   

Trial Index2 Total Primi3 Multi4 Breed 

Lactation 

range, wk5 Intervention6 

Difference 

(P < 0.05)7 

DePeters et al. 

19858 1 55 15 40 
Holste

in 
1 – 44 Management No 

Dhiman and 

Satter 19979 2 74 29 45 
Holste

in 
1 – 36 Diet Yes 

Greenfield et 

al. 200010 

3 37 0 37 

Holste

in & 

Jersey 

1 – 8 Therapy Yes 

Unpublished10 4 45 0 45 
Not 

stated 
3 – 18 Not stated Not stated 

Unpublished10 5 40 0 40 
Not 

stated 
1 – 21 Diet Not stated 

Huyler et al. 

199910 6 31 0 31 
Holste

in 
1 – 10 Diet No 

Livesey et al. 

199811 7 51 0 51 
Holste

in 
1 – 14 

Diet & 

management 
No 

Chalupa et al. 

19968 
8 36 12 24 

Holste

in 
3 – 43 Diet Yes 

Dann et al. 

199910 9 57 57 0 
Holste

in 
1 – 9 Diet No 

Total  426 113 313     
Primi = Primiparous 

Multi = Multiparous 
1 Cow population per trial as the total, and primiparous and multiparous separately.  
2 Identifying index of each dataset. 
3 Primiparous dairy cows in their first lactation. 
4 Multiparous cows. 
5 The weeks of lactation for which each dataset recorded weekly individual cow milk yield and dry matter intake. 
6 The type of treatment intervention studied by each trial. 
7 Publication reported significant difference in the milk yield or dry matter intake of a single treatment group in the 

dataset. 
8 Dataset recorded weekly average dry matter intake, milk, milkfat, milk protein and bodyweight.  
9 Dataset recorded weekly average dry matter intake, milk, milkfat, and milk protein. 
10 Dataset recorded weekly average dry matter intake, milk, milkfat, milk protein, bodyweight, and body condition 

score.  
11 Dataset recorded weekly average dry matter intake and milk, and monthly milkfat, bodyweight and body 

condition score. 
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Table I-2. Skew, kurtosis and Shapiro-Wilk test of goodness of fit to normal distribution for dry matter intake values of all dairy cows 

by parity, 

 All cows  Primiparous  Multiparous 

Week1 n2 Skew3 Kurtosis4 

Shapiro-

Wilk P-

value5  n Skew Kurtosis 

Shapiro-

Wilk P-

value  n Skew Kurtosis 

Shapiro-

Wilk P-

value 

1 294 -0.10 2.70 0.5  101 -0.49 3.24 0.08  193 -0.04 2.31 0.1 

2 294 -0.32 2.93 0.01  101 -0.012 2.61 0.2  193 -0.47 3.43 0.03 

3 342 -0.34 3.02 0.05  102 0.10 2.28 0.2  240 -0.56 3.87 0.004 

4 360 -0.45 3.22 0.001  109 0.10 2.38 0.5  251 -0.77 4.40 < 0.001 

5 364 -0.30 3.24 0.06  110 -0.031 2.52 0.2  254 -0.47 4.04 0.001 

6 374 -0.24 3.21 0.5  113 0.24 2.78 0.4  261 -0.42 4.20 0.008 

7 375 -0.37 3.15 0.006  113 0.072 3.00 0.4  262 -0.29 3.19 0.1 

8 373 -0.30 2.69 0.003  113 0.014 2.33 0.4  260 -0.23 2.79 0.005 

9 337 -0.36 2.79 0.003  113 -0.022 2.37 0.3  224 -0.30 3.07 0.1 

10 280 -0.11 2.33 0.02  56 0.063 2.69 0.6  224 -0.18 2.68 0.2 

11 250 -0.21 2.61 0.09  56 -0.61 3.46 0.09  194 -0.16 2.79 0.3 

12 250 -0.21 2.47 0.05  56 -0.13 2.46 0.5  194 -0.37 3.29 0.1 

13 250 -0.15 2.91 0.8  56 -0.47 3.70 0.4  194 -0.11 3.37 0.5 

14 250 0.052 2.65 0.9  56 -0.012 3.11 0.8  194 -0.071 3.21 0.7 

15 250 -0.091 2.72 0.8  56 -0.26 2.58 0.7  194 -0.33 3.52 0.1 

16 250 -0.27 3.05 0.3  56 0.35 3.06 0.4  194 -0.70 4.67 < 0.001 

17 250 -0.22 2.78 0.4  56 -0.32 3.18 0.4  194 -0.55 3.68 0.01 

18 250 -0.20 3.40 0.1  56 0.25 2.83 0.8  194 -0.65 4.71 < 0.001 

19 205 -0.23 3.69 0.2  56 -0.12 3.06 0.7  149 -0.67 4.14 0.003 

20 205 -0.42 3.96 0.002  56 -1.8 9.34 < 0.001  149 -0.66 3.93 0.003 

21 205 -0.18 3.67 0.1  56 -0.40 3.16 0.3  149 -0.54 4.05 0.01 

22 164 -0.16 3.65 0.04  56 0.21 3.03 0.9  108 -0.68 4.33 0.008 

23 162 -0.16 4.01 0.2  56 -0.062 2.73 0.6  106 -0.59 4.59 0.02 

24 162 0.34 2.93 0.2  56 -0.50 2.78 0.04  106 0.051 2.59 0.3 

25 162 0.32 2.49 0.03  56 -0.052 2.45 0.5  106 -0.023 2.21 0.1 

26 162 0.21 3.03 0.5  56 -0.53 3.32 0.4  106 -0.082 2.73 0.9 

27 162 0.52 3.01 0.01  56 0.012 2.79 0.6  106 0.20 2.48 0.2 

28 162 -0.082 3.46 0.6  56 -1.2 5.94 0.001  106 -0.081 2.63 0.7 

29 162 0.16 2.58 0.2  56 0.19 2.29 0.3  106 -0.22 2.49 0.2 
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30 162 0.11 2.88 0.8  56 -0.17 3.63 0.4  106 -0.062 2.59 0.9 

31 162 0.033 2.60 0.9  56 0.48 3.33 0.4  106 -0.23 2.43 0.3 

32 162 0.11 2.74 0.2  56 0.68 3.55 0.05  106 -0.19 2.44 0.2 

33 161 -0.18 2.66 0.4  56 -0.062 2.91 0.9  105 -0.39 2.45 0.03 

34 161 -0.11 2.74 0.09  56 -0.13 3.55 0.5  105 -0.31 2.37 0.02 

35 161 -0.21 2.84 0.1  56 0.17 3.47 0.2  105 -0.42 2.57 0.03 

36 160 -1.2 8.10 < 0.001  56 -0.082 2.70 0.8  104 -1.4 7.31 < 0.001 

37 86 -0.29 3.44 0.2  27 0.053 2.18 0.7  59 -0.29 3.07 0.3 

38 85 0.094 4.16 0.08  26 -0.19 2.14 0.6  59 0.034 3.64 0.3 

39 83 -0.27 4.15 0.07  26 -0.23 2.64 0.5  57 -0.22 4.10 0.1 

40 82 -0.36 4.27 0.2  26 -0.20 2.07 0.4  56 -0.45 4.45 0.09 

41 65 -0.46 3.72 0.3  21 -0.64 2.62 0.1  44 -0.39 4.14 0.5 

42 62 -0.80 3.62 0.02  21 -0.86 2.48 0.01  41 -0.72 4.28 0.1 

43 58 -0.87 3.92 0.01  21 -0.64 2.63 0.3  37 -0.97 5.19 0.03 

44 26 -0.26 2.39 0.5  8 -0.091 1.68 0.5  18 -0.15 2.69 0.9 
1 The week of lactation of data observation 
2 The population of cows observed at the given week of lactation 
3 Measure of data skew. Negative values indicate left skew, positive values indicate right skew.  
4 Measure of data in tails of distribution. Kurtosis of 3 is considered normal.  
5 A P < 0.05 rejects the null hypothesis that the data are normally distributed. 
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Table I-3. The proportion of best distribution fit for 100 replicates of each dairy cow pen class. 

 

   

 

DMI Distribution 

description1 

Proportions of best distribution of DMI 

for all replicates2 (%) 

Pen type 

index3 Cows, n 

Lactation 

range4, wk 

Pen replicates5, 

n 

Mean DMI, 

cow6 (kg) Skew Kurtosis Normal Beta Weibull Logistic 

FRESH20 20 1 – 3 100 17.06 0.07 2.76 8 85 1 6 

FRESH60 60 1 – 3 100 16.97 -0.03 2.49 8 87 0 5 

HIGH50 50 4 – 18 100 22.71 -0.2 2.99 8 77 0 15 

HIGHP50 50 4 – 18 100 20.51 0.05 2.87 7 80 8 5 

HIGH200 200 4 – 18 100 22.97 -0.2 3.12 28 60 0 12 

LOW50 50 19 - 44 100 20.90 -0.2 3.22 10 62 4 24 

LOW150 150 19 – 44 100 20.86 -0.2 3.43 29 36 1 34 

FRESH20 = Pens of 20 random cows within the lactation range 1 – 3 week. 

FRESH60 = Pens of 60 random cows within the lactation range 1 – 3 week. 

HIGH50 = Pens of 50 random cows within the lactation range 4 – 18 week. 

HIGHP50 = Pens of 50 random primiparous cows within the lactation range 4 – 18 week. 

HIGH200 = Pens of 200 random cows within the lactation range 4 – 18 week. 

LOW50 = Pens of 50 random cows within the lactation range 19 – 44 week. 

LOW150 = Pens of 150 random cows within the lactation range 19 – 44 week. 
1 The mean distribution statistics of skew and kurtosis for all replicates of each pen type.  
2 The proportion of each distribution type occurring as the best fit for DMI of a pen across all replicates of pen types.  
3 Index of generated virtual pen type for given lactation range and population size. 
4 The range of weeks of lactation the pen type was constructed across. 
5 The number of replicates generated for each pen type with a random and unique selection of cows in each replicate. 
6 The mean cow DMI of all replicates of each pen type. 
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Table I-4. DMI predictions by best distribution type and by NASEM equation of all pen replicates of each dairy cow pen class and 

model fit statistics. 

   Predicted pen DMI by distribution1  Predicted pen DMI by NASEM2 

Pen type 

index3 

Observ

ed pen 

DMI 

(kg)4 

 
DMI 

(kg) 

% Error 

of 

distribut

ion5 

MSPE6 % 

Bias7 

% 

Slope 

not 18 

% 

Random 

variation9 

 
DMI 

(kg) 

% Error 

of 

NASEM 

MSPE 
% 

Bias 

% 

Slope 

not 1 

% 

Random 

variation 

FRESH20 341.09  
342.4

3 
+ 0.4a 55.64 0 5 95  

291.6

6 
- 14.37b 211.4 0 32 68 

FRESH60 
1,018.1

7 
 

1,019

.8 
+ 0.09a 60.42 0 2 98  

876.9

6 
- 13.82b 641.6 0 42 58 

HIGH50 
1,135.6

1 
 

1,136

.6 
+ 0.09a 43.63 0 2 98  

937.4

5 
- 17.42b 545.9 0 35 65 

HIGHP50 
1,025.6

9 
 

1,026

.2 
+ 0.05a 55.28 21 2 77  

921.8

1 
- 10.11b 7 612 93 1 6 

HIGH200 
4,593.0

8 
 

4,595

.1 
+ 0.04a 182.8 2 2 96  

3761.

0 
- 18.11 b 1 573 0 33 67 

LOW50 
1,044.7

9 
 

1,045

.6 
+ 0.08a 47.44 0 2 98  

810.6

7 
- 22.38b 587.1 0 64 36 

LOW150 
3,127.8

2 
 

3,131

.1 
+ 0.1a 81.99 0 3 97  

2 

427.9 
- 22.37b 803.2 0 82 18 

DMI = Dry matter intake 

MSPE = Mean squared prediction error 

FRESH20 = Pens of 20 random cows within the lactation range 1 – 3 week. 

FRESH60 = Pens of 60 random cows within the lactation range 1 – 3 week. 

HIGH50 = Pens of 50 random cows within the lactation range 4 – 18 week. 

HIGHP50 = Pens of 50 random primiparous cows within the lactation range 4 – 18 week. 

HIGH200 = Pens of 200 random cows within the lactation range 4 – 18 week. 

LOW50 = Pens of 50 random cows within the lactation range 19 – 44 week. 

LOW150 = Pens of 150 random cows within the lactation range 19 – 44 week. 
1 Distribution type prediction model. The mean total pen DMI of 100 replicates of the given pen type from the predictive model of the best fitted distribution 

shape for each replicate. 
2 Empirical predication model (NASEM, 2021). The mean total pen DMI of 100 replicates of the given pen type from the predictive model of a single empirical 

DMI estimate that is fed uniformly to the population of cows. 
3 Index of generated virtual pen type for given lactation range and population size. 
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4 The observed mean total pen DMI for 100 replicates of each pen type.  
5 Mean percentage error of each predicted pen DMI estimate from the observed value for each replicate. Means of percentage error for each pen replicate were 

compared across both prediction models using Students t-test. 
6 Model fit evaluated as the predicted total pen DMI of both prediction models to the observed values of each replicate. Mean square prediction error to evaluate 

the error in model fit. 
7 Proportion of model error as MSPE due to bias (Benchaar et al., 1998). 
8 Proportion of model error as MSPE due to the slope of data not equal to 1 (Benchaar et al., 1998).  
9 Proportion of model error as MSPE due to random variation in the data (Benchaar et al., 1998). 
a-b Values within a row with different superscripts differ significantly at P < 0.05 for t-test comparison of mean percentage error of both prediction models. 
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FIGURES 

Figure I-1. Line plots of the mean and median of (Figure A) Milk Yield, (Figure B) DMI and 

(Figure C) feed efficiency of dairy cows by week of lactation and dataset separately. 

Abbreviations: DMI = Dry matter intake. 
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Figure I-2. Scatter plots of observed versus predicted model diagnostics for each of the 

seven dairy cow pen types for both the Distribution and NASEM model. Abbreviations: 

DMI = DM intake. FRESH20 = Pens of 20 random cows within the lactation range 1–3 weeks. 

FRESH60 = Pens of 60 random cows within the lactation range 1–3 weeks. HIGH50 = Pens of 

50 random cows within the lactation range 4–18 weeks. HIGH50Lact1 = Pens of 50 random 

primiparous cows within the lactation range 4–18 weeks. HIGH200 = Pens of 200 random cows 

within the lactation range 4–18 weeks. LOW50 = Pens of 50 random cows within the lactation 

range 19–44 weeks. LOW150 = Pens of 150 random cows within the lactation range 19–

44 weeks. 

 
 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/dairy-cattle
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CHAPTER II.  

PREDICTING THE DISTRIBUTION SHAPE AND DRY MATTER INTAKE OF COW 

PENS WITH MACHINE LEARNING 

 

ABSTRACT 

The individual cow is not representative of the dry matter intake (DMI) of a pen, but we 

formulate rations based on an average cow with a correction factor. This is not precision feeding, 

and we feed by pen. A normal distribution of DMI is assumed, but it usually has skew or 

kurtosis. If the distribution of DMI is described, rations can be formulated to the unit of pen 

more precisely. Two models of estimating pen DMI were compared. The first used a trained 

Extreme Gradient Boosting (XGB) algorithm to predict the distribution shape of pen DMI: a 

Beta or Generalized Normal distribution. Another XGB algorithm predicted the input features 

that describe that distribution shape. The best selected input features for the XGB algorithms 

were parity, week in milk, and descriptive statistics of milk yield. A set of DMI values that fit the 

predicted shape were randomly generated to estimate total pen DMI for validation of the model’s 

prediction. Each set was summed to estimate total pen DMI. The second model was the NASEM 

2021 DMI equation of cow variables, which used a representative cow to predict DMI for each 

pen. The pen means of each input value were applied to the NASEM equation: milk energy, days 

in milk, parity, bodyweight (BW), and BCS. To calculate total pen DMI, this value was 

multiplied by the number of cows, simulating the scenario where DMI is assumed to be uniform. 

Results from both models were compared to the observed pen DMI for assessment of mean 

squared error of prediction (MSEP) using a dataset of 229,909 pens. Pens were subset by their 

distribution shape prediction. For Beta pens: the distribution shape model, and NASEM equation 
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model had a MSEP of 5,249 and 50,320, with 3% and 85% due to mean bias, 5% and 10% due to 

regression slope not equal to one, and 92% and 5% due to random bias respectively. For 

Generalized Normal pens: the distribution shape, and NASEM DMI models had a MSEP of 

2,085 and 45,779 respectively, with 1% and 73% due to mean bias, 7% and 7% due to regression 

slope not equal to one, and 92% and 20% due to random bias. The NASEM equation model 

consistently underestimated pen DMI, contributing to the high error. Applying the equation to 

each cow, instead of the pen mean, may improve the estimation but is not how it is commonly 

applied. The machine learning algorithm described the distribution for a highly precise and 

accurate DMI prediction, only requiring the inputs of pen size, week in milk, milk yield and 

parity.   

 

INTRODUCTION 

On commercial dairies, the unit for ration formulation should be pen, not individual cow. 

The individual cow is not representative of the DMI of a pen, but we formulate rations based on 

an average cow or the 75th percentile cow (Linn et al., 2021). This is not precision feeding. Most 

pens contain cows with a broad range of DMI, milk yield, and nutrient requirements within the 

pen. All ration formulation programs include a DMI constraint. When the DMI of a single cow is 

known, a ration can be formulated precisely to her requirements (NASEM, 2021), but if that 

ration is fed to a pen, it assumes that the cows have a uniform DMI value. Precision and accuracy 

are lost, and the distribution of feed intake is unknown. This raises a concern on the applicability 

of individual cow studies to operations where cows are housed in pens (St-Pierre, 2007). Rations 

should be formulated for the unit they are feeding, the pen.   
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Practically, individual DMI values are difficult to measure. Pen weigh backs (feed 

refusals subtracted from feed delivered divided by the number of cows in the pen) estimates DMI 

for an average cow in the pen. But the number of cows in the pen is not always known and 

depends on the day relative to when cows are moved in and out of pens on the dairy. Individual 

feed bins are impractical and cost-prohibitive; spatial imaging attempts to circumvent this are yet 

to be validated or implemented (Lassen et al., 2023). Common practice is to use the herd mean as 

input values in diet formulation (Seymour et al., 2019). Lucey and Rossow (2023) reported the 

Beta distribution as the most common shape of DMI for dairy pens of multiple types. This 

proves the mean is an inappropriate input value, as it is only a property of the Normal 

distribution. For example, a distribution shape predicted DMI values for pens with an error of 

less than 1% from the observed, in comparison to a 22% error when the mean was assumed as 

the DMI of all cows. A robust method of estimating this distribution shape without knowledge of 

individual cow DMI will improve diet precision and accuracy.  

 

Cow DMI has been calculated by formulas using biological and environmental 

information: milk yield, milk energy, BCS and BW (Fox et al., 2004; NASEM, 2021). This is 

constrained by the relevant input information being available from commercial dairies (Higgs et 

al., 2012). Data that describe the level of the pen are not observations of these listed variables, 

but instead their descriptive statistics: minimum, maximum, mean, and median of milk yield, 

week in milk (WIM) or parity, etc. Lactating cows are usually grouped in pens by WIM, parity, 

reproductive status, or milk production (Contreras-Govea et al., 2015) and this affects the 

distribution of cow’s nutrient requirements. There are biologically plausible relationships 

between cow factors, such as milk yield and DMI, facilitating the empirical deduction of DMI 
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equations. But the minimum or maximum WIM, milk yield, or parity, etc., of a pen does not 

have a biological relationship to the distribution that fits the DMI. Since empirical modeling 

assumes biological plausibility, construction of a pen level model empirically is limited. Instead, 

techniques such as machine learning algorithms could connect these arbitrary relationships 

(Halevy et al., 2009).  

 

The objectives of this paper were to construct and compare two models of pen DMI 

prediction: A) Create a large training dataset of pens based on real cow weekly observations, B) 

Develop a distribution shape model (DSM) by training machine learning algorithms to predict 

the distribution shape of DMI. Validate it with an external dataset by comparing predicted DMI 

to observed, C) Use a NASEM equation model (NSM; NASEM, 2021) of DMI to predict the 

DMI of each pen and validate it with an external dataset by comparing predicted DMI to 

observed, D) Compare the model diagnostics of the DSM and NSM. Therefore, this modeling 

study will test if the pen DMI predicted by the DSM will be closer to the true value than the 

NSM. 

 

MATERIALS AND METHODS 

No approval from the University of California, Davis, Animal Care and Use Committee 

was needed for this study as it was conducted using only previously collected data.  

 

Individual cow observations 

Weekly individual cow observations of DMI were joined into a single dataset from nine 

separate studies. To be included, each observation required an identifier, parity, WIM, average 
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weekly DMI (kg) and average weekly milk yield (kg). Some of the studies recorded milk protein 

(kg), milk fat (kg), BCS or bodyweight (kg) (Table II-1). Outliers were removed from the 

variables milk fat and milk protein if they were greater than the 99th percentile.  

 

Creation of pen training dataset based on individual cow observations  

Similar to Lucey and Rossow (2023), individual cow observations were randomly 

assorted into pens of different sizes, ranges of WIM, and parity with a function in Python 3.10 

(Python Software Foundation, https://www.python.org/; Appendix 1). All values of parity level, 

primiparous, multiparous, or both, pen size ranging from 25 to 250 cows, and range of WIM 

from the individual cow records in the data were combined to create the pens. Only observations 

from unique cows were selected to meet the pen size; if the number of qualifying cows was less 

than the pen size then it was not assorted at those criteria. This was performed 20 times with a 

different random seed for every pen, providing 20 pens of different cows for every pen 

possibility. This methodology delivered snapshots of pens at different ranges of WIM, with no 

cow present more than once per pen.  

 

Distribution shape model - DSM 

Descriptive statistics of mean, median, minimum, maximum, 5th, 25th, 75th and 95th 

percentile, standard deviation, skew and kurtosis of milk yield, milk fat, milk protein, BW, BCS 

and WIM were calculated for every pen (Appendix 2) to act as features in the model. Missing 

values of these variables were excluded from the calculations, except for milk yield, parity, and 

WIM as these had no missing data. The unit of interest in this modeling study was pen. The 

percentile values from 5th to 95th represented the distribution shape of the variables, the mean and 

https://www.python.org/
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median inferred information about data skew, kurtosis and skew statistics described the spread of 

data. 

 

The distribution shape of DMI for each pen was fit to either the Beta or Generalized 

Normal shape based on the highest value of the Kolmogorov-Smirnov goodness of fit test 

(Smirnov, 1939) using the “SciPy” package (Virtanen et al., 2020) of Python 3.10. Preliminary 

analysis of these data demonstrated the Beta and Generalized Normal were the most frequent 

shapes to describe pen DMI from a candidate pool of 60 shapes (Appendix 3), so fitting was 

restricted to these distributions. Beta distributions can represent skewed or symmetrical data. The 

Generalized Normal is the Normal distribution with an additional shape parameter and can 

describe data with a concentration around the mean, and different tails than the Normal 

distribution. Two distributions were chosen so a binary decision algorithm could be constructed 

for the outcome of the best fitting distribution shape. After selecting the distribution, the pens 

were split by distribution shape, and the respective parameter values of each were calculated 

using maximum likelihood estimation. The four parameters of the Beta distribution were shape, 

 and  (which together explain symmetry, peak location, spread and skewness), location and 

scale (which explains dispersion of data). The three parameters of the Generalized Normal were 

shape (tails), location, and scale. These parameters replicated the curved line of the distribution 

of DMI, and the area under the curve was the total DMI for each pen. These data were the 

training dataset.  
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Predicting the distribution shape of DMI using DSM and NSM 

Feature preparation 

The descriptive statistics of each pen of the training dataset were included as features for 

training the machine learning algorithms. All continuous variables were visually assessed for 

normality to fulfil their assumption. The parity variable was encoded to columns using the 

“OneHotEncoder” function of the Scikit-learn package (Pedregosa et al., 2011) in Python 3.10.  

 

Machine learning training, and algorithm selection 

For the DSM, three separate machine learning systems were used: one classification, and 

two non-linear regressions. The classification algorithm was trained to the outcome label of DMI 

distribution shape; Beta or Generalized Normal. The pens were split by distribution shape and 

two multi-output regression algorithms, one for each distribution, were trained to the outcome 

labels of the respective shape and scale parameters. All were trained on 75% of the training 

dataset, which was split randomly by the “train_test_split” function of Scikit-learn. The other 

25% of data were not included in algorithm training and were used in testing. These training and 

testing data together were the DSM training data and were not used in validation.  

 

Preparation of validation data 

Data from a single site study of 88 multiparous Holstein cows and 2,086 weekly 

observations (Lean et al., 1992) of DMI, milk yield, milk fat, milk protein and BW were assorted 

into pen data that was prepared and cleaned as described in the creation of pen training dataset 

section of the methods of this paper. The pen size for these data was a maximum of 88 cows, as 

only one observation per cow was included per pen. The WIM range of these observations was 1 
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to 15, and pens were only assorted within this window. Pen DMI was calculated as the sum of 

the observed cow DMI values in each pen, and the true DMI distribution shape was selected 

from the Beta or Generalized Normal shapes by the highest value of the Kolmogorov-Smirnov 

goodness of fit test. 

 

Pen DMI DSM prediction of validation data 

We validated the DSM prediction of pen DMI calculation with these data using the 

pipeline of the trained algorithms that predicted the DMI distribution shape of these pen data, the 

distribution shape parameters, and plotted a set of DMI values for that distribution (Lucey and 

Rossow, 2023). The classification algorithm predicted the pen DMI data as Beta or Generalized 

Normal. These data were split on the prediction and separated by the distribution shape selected, 

and the non-linear regression algorithms predicted the parameter values for each shape 

separately. A set of individual cows’ DMI values were plotted to fit the predicted distribution, 

and they were summed for a calculation of total pen DMI of these validation data. This step was 

repeated 100 times for each pen so that 100 random sets of DMI values for the predicted 

distribution were generated, with the mean taken as the final pen DMI.  

 

Pen DMI NSM prediction of validation data 

To compare the DSM calculation of pen DMI to a conventional method, the DMI of each 

pen in the validation data were predicted with a model of the NASEM empirical equation, the 

NSM using Eq. II-1 (NASEM, 2021).  

 



 

41 
 

 

𝑫𝑴𝑰 = [(𝟑. 𝟕 + 𝒑𝒂𝒓𝒊𝒕𝒚 × 𝟓. 𝟕) + 𝟎. 𝟑𝟎𝟓 × 𝑴𝒊𝒍𝒌𝑬 + 𝟎. 𝟎𝟐𝟐 × 𝑩𝑾(𝒌𝒈) + (−𝟎. 𝟔𝟖𝟗 +

𝒑𝒂𝒓𝒊𝒕𝒚 × −𝟏. 𝟖𝟕) × 𝑩𝑪𝑺 × [𝟏 − (𝟎. 𝟐𝟏𝟐 + 𝒑𝒂𝒓𝒊𝒕𝒚 × 𝟎. 𝟏𝟑𝟔) × 𝒆𝒙𝒑(−𝟎.𝟎𝟓𝟑×𝑫𝑰𝑴)]       Eq. II-1 

 

𝑴𝒊𝒍𝒌𝑬 = ((𝟎. 𝟎𝟗𝟐𝟗 × 𝒎𝒊𝒍𝒌 𝒇𝒂𝒕 (%)) + (𝟎. 𝟎𝟓𝟒𝟕 × (𝒎𝒊𝒍𝒌 𝒑𝒓𝒐𝒕𝒆𝒊𝒏 (%) ÷ 𝟎. 𝟗𝟑)) +

𝟎. 𝟏𝟗𝟐)                                  Eq. II-2 

 

The input parameters of this equation included milk energy (Eq. II-2); NRC, 2001), days in milk 

(DIM), parity, BW and BCS. Information on BCS was not available for any pens in these data, 

so this value was fixed at three. All other inputs were set at the mean of each pen, and a DMI 

value was calculated. Assuming a uniform DMI (as is the case when one DMI represents a pen) 

for all cows, this calculated value was multiplied by the pen size for the pen DMI estimate. 

These pen DMI predictions were compared to the observed, and model diagnostic evaluation was 

performed.  

 

Statistical Analyses 

For the DSM, the best performing algorithm from three possibilities was selected: 

Decision Tree, Random Forest, and Extreme Gradient Boosting (XGB). The default 

hyperparameters of these algorithms (Pedregosa et al., 2011), and the features of pen size, parity, 

WIM, and milk yield descriptive statistics were used for evaluation with the training data. For 

classification, the best was chosen by the highest combined skill scores calculated with a 5-fold 

cross validation using Eq. II-3, 4, 5:  

 

Accuracy      (
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔+𝑻𝒓𝒖𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔+𝑻𝒓𝒖𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔+𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔+𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔
 Eq. II-3 
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Precision      (
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔+𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔
)                                                  Eq. II-4 

Recall           (
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔+𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔
)                                                 Eq. II-5 

F1-score       (
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏∗𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏+𝑹𝒆𝒄𝒂𝒍𝒍
)                                                                       Eq. II-6 

 

Each skill score was calculated on one of five data folds of the training data, and the mean of the 

folds was the result. For the non-linear regression algorithms, the root mean squared error 

(RMSE) was evaluated by a 3-fold cross validation, and the algorithm with the lowest score was 

selected.  

 

DSM Feature inclusion  

The best algorithm of classification and non-linear regression were evaluated with 

additional features. The base feature set included: pen size, parity, WIM, and milk yield 

descriptive statistics. The algorithms were trained again with the addition of milk protein and 

milk fat descriptive statistics, followed by the further addition of BW and BCS descriptive 

statistics. For both additional feature sets, the algorithms were evaluated by skill scores and 

RMSE, and compared to the scores of the base for selection of the best feature set.  

 

DSM Hyperparameter tuning 

Hyperparameters were the properties of each algorithm that affected its decision process, 

including the depth of decision trees, number of decision splits, or the learning rate, loss 

function, and number of boosting rounds. The machine learning algorithms of the DSM were 

trained with different combinations of their hyperparameter values by a Random Search cross 

validation using the “RandomizedSearchCV” function of Scikit-learn. This was done in 3-folds 
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for 50 iterations of possible hyperparameters. Using three folds ensured training was robust and 

not dependent on any subset of the data. The best combination of hyperparameters were selected 

at the lowest RMSE.  

 

DSM and NSM model diagnostics 

Predicted pen DMI was compared to the observed of every pen for model diagnostics by 

mean square error of prediction (MSEP) partitioned into error due to mean bias, error due to the 

slope not equal to 1 and error due to random variation. The coefficient of determination (R2), 

root mean square error of prediction (RMSEP), ratio of RMSEP/standard deviation (RSR), 

concordance correlation coefficient (CCC), correlation coefficient (r) and bias correction factor 

(Cb) were calculated to evaluate model performance (Bibby and Toutenberg, 1977). 

 

RESULTS AND DISCUSSION 

Individual cow observations and pen assortment 

The dataset from all nine studies included 9,029 weekly observations of 609 cows, after 

the exclusion of outliers or observations with missing values of DMI or milk yield (Table II-1). 

Observations with missing values of milk protein (2,434), milk fat (197), bodyweight (2,948) 

and BCS (7,397) were not removed. To achieve objective A, pen assortment was designed to 

represent pen types on commercial dairies and was based on four pen types: Fresh pens (1 to 3 – 

5 WIM), Early (1 to 6 – 41 WIM), Peak (3 – 16 to 8 – 41 WIM), and Late (10 – 20 to 18 – 45) 

(Appendix 1). The total number of resulting pens after outlier removal was 5,203,685, and of 

these 871,956 contained no BCS information, and their BCS descriptive statistics were assumed 

to be the mean of all other pens. Cow observations had a maximum WIM of 45 wk.  
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Selection of distribution shape 

Before data cleaning, 3,533,115 pens were best fit by Beta, and 3,657,925 pens were best 

fit by Generalized Normal. After removal of outliers from these pen data, there were 1,547,611 

Beta and 3,656,074 Generalized Normal pens. This is a loss of 56% of Beta, and 0.05% of 

Generalized Normal data. Based on visual assessment of the distributions, pens with values for 

shape, location, and scale outside of the range –40 to +80 were removed; these plotted 

distributions did not describe curves of the expected shape and were considered an overfitting 

error. This error was introduced when a pen was fit to one of the two possible distribution 

shapes, when neither may have been appropriate for those data.  

 

For example, neither of the two candidate distribution shapes can describe multimodal 

data, but both candidates can represent almost identical shapes to each other at certain parameter 

values. Because of these properties, it may be difficult to predict the best shape when pens have 

DMI distributions well described by both Beta and Generalized Normal. If pen DMI was 

multimodal, or an atypical shape, neither Beta nor Generalized Normal were a good fit, and 

insensible distribution parameters were calculated when one of these shapes were forced to the 

data. Since the Generalized Normal shape does not describe skew, it would be expected that the 

Beta was selected for any non-normal shapes, including multimodal. This may explain the large 

attrition of pens classified as Beta. The addition of other candidate distribution shapes to the best 

fitting algorithm could reduce this but would increase the complexity of the classifier. The best 

fit distribution shape algorithm could also be constrained so that a distribution shape with 

extreme outliers was not chosen instead of a distribution with appropriate parameter values, even 

if its maximum likelihood score was less optimal than the distribution with extreme parameters.  
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DSM machine learning algorithm selection 

Objective B was to develop the DSM by training and selecting the best machine learning 

algorithms to predict the distribution shape and its parameter values for DMI. For the 

classification algorithm, the XGB had the highest performance, achieving an average accuracy of 

71%, 72% precision, 96% recall, and an F1-score of 82% (Appendix 4). For the non-linear 

regression algorithms, the Beta and Generalized Normal distributed pens were trained separately. 

The XGB algorithm with a feature set of pen size, milk yield descriptive statistics, parity, and 

WIM had the best performance for both distribution shape subsets with the lowest RMSE 

(Appendix 4). Extending the feature set to include milk fat and milk protein descriptive statistics, 

and further with the addition of bodyweight and BCS yielded no improvement in performance of 

the classification or non-linear regression algorithms as the skill scores and RMSE were not 

different between feature sets (Table II-2). 

 

The decision tree had the worst performance and was a simple algorithm that predicts the 

outcome by splitting the data at different feature values. It was prone to overfitting, sensitive to 

outliers, and can have high variance. Random Forest was an ensemble of decision trees generated 

on random splits of the data. The entire set of these decision trees was the forest, and their results 

were combined for the final output. This results in lower variance and makes it less sensitive to 

outliers than a decision tree. The XGB algorithm was a gradient boosting technique that uses 

tree-based learning, but instead of combining trees like Random Forest (bagging), it builds the 

best model sequentially and passed the error (loss function) of each learning tree onto the next 

(boosting). The residuals of each tree were used to fit the next, and regularization was included 

to reduce overfitting. The XGB algorithm is a compiled C++ library that efficiently employs 
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CPU, memory, and parallelization. For these large training data of this project, XGB was more 

time efficient than Random Forest (20 minutes for XGB, 25 minutes for random forest with an 

AMD Ryzen 9 7950X 16-Core Processor 4.50 GHz, 32 GB RAM, NVIDIA GeForce RTX 

4070). The XGB was faster than Random Forest in the order of tens of hours in hyperparameter 

fitting because of its parallelization use and produced higher skill scores for both classification 

and regression. However, boosting algorithms such as XGB are more sensitive to outliers, which 

is why features were assessed for normality in the preparation step.  

 

More features provide more information for the algorithms to learn from, but do not 

guarantee better performance. Part of objective B was to assess the features necessary for 

prediction of the DMI distribution, as it impacts the application in commercial settings. 

Empirical equations of DMI utilize physiologic parameters: age, milk production, milk 

composition, bodyweight and BCS at the level of cow. To apply these to the unit of pen, it is 

necessary to predict a DMI value for each cow and combine the results. But with more variables, 

the quality of data and the labor time for data collection impacts application. In these machine 

learning systems, parity and WIM information were included in all training, and these data were 

easily available for dairy pens and provided information on the stage of lactation and cow 

makeup. Milk production features were added to the base feature set, as these could be recorded 

routinely when the equipment and technology are present. There is an established relationship 

between milk yield and DMI, but milk components and BW, and BCS also impacted energy 

requirements (NASEM 2021), so these additional features were added to test for improvements 

in performance. The lack of difference in skill scores (Table II-2) demonstrates that information 

on milk production, pen size, WIM and parity was sufficient to predict the distribution of DMI 
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for a pen. No information on BCS was included in the final models, removing the limitation of 

missing BCS information in these data.   

 

Algorithm testing after hyperparameter tuning 

The final XGB algorithms were evaluated with testing data to assess overfitting, 

generalization, and model performance on previously unseen data. The classification algorithm 

had an overall accuracy of 71% on testing. For Beta classification it had a precision of 58%, 10% 

recall, and an F1-score of 17%. For Generalized Normal classification it had a precision of 72%, 

97% recall and an F1-score of 82% (Table II-3). Accuracy is the total number of correctly 

classified instances over the total data and is a simple measure of correctness but can be 

misleading as the dataset was imbalanced with 1,547,611 Beta and 3,656,074 Generalized 

Normal pens. Precision (positive predictive value) was the ratio of correctly classified positive 

predictions from all positive classifications and decreases with more false positives. Recall 

(sensitivity) was the ratio of correctly predicted positive observations from all observations of 

that class and decreases with greater false negatives. Good classifiers have values close to one 

for both precision and recall. The F1-score was the harmonic mean of precision and recall and 

can be a better measure of classifier performance than accuracy in class imbalance. The RMSE 

measures error by the square root of the squared differences between predicted and true values. 

For these multi-output regressions, it is the average error of the multiple outcomes. The non-

linear regressions had a testing performance of 10.9 RMSE for Beta, and 0.46 for Generalized 

Normal (Table II-3).   

 



 

48 
 

 

The classifier only had good performance for the Generalized Normal class. The 

performance for Beta pens was impacted by the low number of Beta pens in the training data, 

with a high number of false negatives (347,626), a low number of false positives (28,246), a low 

number of true positives (39,559), and high true negatives (885,491) (Figure II-1). Generalized 

normal had 885,491 true positives, 39,559 true negatives, 347,626 false positives, and 28,246 

false negatives (Figure II-1) and had high skill scores for classification with an F1 of 82%. The 

imbalanced data exhibited a bias towards the majority class, Generalized Normal, in its 

performance. Many Beta pens were removed as outliers, and their shape cannot handle atypical 

or multimodal DMI distributions. The addition of other distributions to the classification may 

balance the dataset. Or the Generalized Normal class could be under sampled prior to fitting. 

Given the high proportion of pens fit to Generalized Normal, a system where all pens are 

assumed as Generalized Normal distribution should also be evaluated.   

 

The issue in classification was due to the nature of the candidates. The Beta can represent 

skewed data but will also describe data similar to a normal distribution. The Generalized Normal 

represents normal data with flexibility of kurtosis, and well describes data concentrated around 

the mean. This made it appropriate for livestock management as our practical goal should be to 

group animals by similarity in nutrient requirements. As the Beta distribution can represent 

shapes very similar to the Generalized Normal, there may be overlap in pens described, and the 

training features may not well distinguish them. Neither describe multimodal data, which could 

fail to describe pens with both primiparous and multiparous animals because of the difference in 

energy requirements.  
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For both non-linear regressions, the prediction error was low relative to the parameter 

values. The RMSE of the Beta model on testing was 10.9. The minimum and maximum of each 

parameter for Beta ranged from 0.32 – 80, 0.38 – 50, -60 – 22 and 6.8 – 161. Given the large 

ranges of some of these parameters (maximum of 154), an RSME of 10.9 is up to 6% from the 

true value. The RMSE of the Generalized Normal model on testing was 0.46, this error is 

averaged across the three Generalized Normal parameters, and their minimum and maximum 

ranges were 0.32 – 33, 12 – 28 and 0.033 – 12. The ranges of these parameters are smaller, and 

the error in prediction is also lower (up to 1%). The low error demonstrates that these parameters 

can be estimated to provide a way to describe the distribution curves of DMI. Given the similarly 

of Beta and Generalized Normal shapes, we hypothesized that in classification error 

(Generalized Normal predicted instead of Beta, or vice versa), DMI could be calculated by the 

incorrect shape and still produce a final DMI prediction with low error and this was tested in the 

DSM validation.   

 

Feature importance 

Feature importance was calculated by their weights. The number of times a feature was 

used to split the data increased its weight value and this statistic was used to interpret the 

algorithm predictions (Table II-4). For the classification algorithm the parity category of a pen 

was the top three features. This was expected, as primiparous, and multiparous cows have 

systematically different DMI due to growth requirements. Only the Beta distribution can 

represent skewed data, making the parity category the most important feature. For the non-linear 

regression algorithms, parity category was also in the top four most important features. The 

maximum and minimum milk yield were also top features for all models, as they influence the 
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spread of DMI data. Pen size was one of the top three features for the Beta regression algorithm, 

but the fourth lowest feature of importance for the Generalized Normal regression algorithm. 

This may indicate that pen size had a large importance in fitting non-normal or skewed 

distributions such as the Beta (Table II-4).  

 

DSM pen DMI prediction validation 

To complete objective B a naïve dataset of pens was used for validation. After outlier 

removal these data were 229,909 pens, 148,311 fit to Generalized Normal and 81,598 fit to Beta. 

With the DSM, the classification algorithm predicted the distribution shape of DMI with a 

performance of 63% accuracy. The classification performance for Beta was a precision of 47%, 

recall 25% and F1-score 33%. The classification performance for Generalized Normal was 

precision of 67%, recall of 84% and F1-score of 75% (Table II-3). The classification of Beta 

pens on these validation data was higher performing than to the testing data because the 

validation data was less imbalanced by classification level (Figure II-2).  

 

The non-linear regression algorithms of the DSM were applied to the validation data for 

the respective Beta and Generalized Normal pens as they were classified by the DSM. Pens 

correctly and incorrectly classified as Beta were applied to the Beta regression algorithm for 

parameter prediction, and similarly for Generalized Normal. Performance metrics were not 

calculated on these predictions, as incorrectly classified pens would falsely elevate the RMSE. A 

pen DMI was calculated for each predicted distribution curve, and observed versus predicted was 

plotted for total pen DMI (Figure II-3, A & B).  

 



 

51 
 

 

DSM pen DMI diagnostics 

For the DMI prediction of pens classified as Beta: the R2 was 0.95, MSEP was 5,249, 

with 3% of error due to mean bias, 5% due to the regression slope not equal to one, and 92% due 

to random bias. The RSR, CCC, r and Cb of the model were 0.22, 0.98, 0.98 and 0.99 (Table II-

5). For the DMI prediction of pens classified as Generalized Normal: the R2 was 0.99, MSEP 

was 2,085, with 1% of error due to mean bias, 7% due to the regression slope not equal to one, 

and 92% due to random bias. The statistics of RSR, CCC, precision and accuracy were 0.12, 

0.99, 0.99 and 0.99 respectively (Table II-5). The Generalized Normal model had lower total 

MSEP for prediction of pen DMI, and an RSR closer to 0, but both models indicated good 

performance based on these statistics. The CCC, precision and accuracy close to one for both 

models indicate a good ability to correctly predict this outcome. 

 

NSM pen DMI validation and diagnostics 

Objective C was to contrast the DSM to a conventional method of calculating pen DMI, 

the NSM, with a deterministic equation to the average cow values of the pen, but with no 

correction factor. The DSM and NSM were compared to the observed DMI, and performance of 

both models was contrasted. The calculated total pen DMI of the NSM were plotted as observed 

versus predicted (Figure II-3). For the DMI prediction by the NSM of pens classified as Beta: the 

R2 was 0.55, the MSEP was 50,320, with 85% of the error due to mean bias, 10% due to the 

regression slope not equal to one, and 5% due to random bias. The RSR, CCC, r and Cb were 

0.67, 0.84, 0.99 and 0.85 respectively (Table II-5). For the DMI prediction by the NSM of pens 

classified as Generalized Normal: The R2 was 0.69, the MSEP was 45,779, with error due to 
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mean bias of 73%, error due to regression slope not equal to one at 7%, and error due to random 

bias of 20%. The RSR, CCC, r and Cb were 0.55, 0.87, 0.97 and 0.90 respectively (Table II-5). 

 

Comparison of DSM and NSM 

Objective D compared the model diagnostics of the DSM and the NSM. The error for 

both Beta and Generalized Normal using the NSM was much higher than the DSM, with a 10-

fold and 22-fold increase in MSEP respectively. This error was calculated on kg of DMI per pen, 

and the magnitude is large. The NSM had numerically large error as the DMI of every cow was 

assumed to be uniform, so every cow observed above or below this (in the distribution shape of 

that pen) added error in its prediction of pen DMI.  The dimensionless statistics of RSR, CCC, r 

and Cb were also superior for the DSM, indicating better prediction ability. The error due to 

mean bias for the NSM in both Beta and Generalized Normal was high at 85% and 17% of the 

total error. This indicates systematic error, due to a consistent underprediction, seen in the 

observed versus predicted plots (Figure II-3). The RSR of 0.22 and 0.12 for Beta and 

Generalized Normal in the DSM signifies high predictive precision and reliable performance as 

the error is small relative to the variability of the observed values, compared to the higher values 

of RSR for the NSM of 0.67 and 0.55 for Beta and Generalized Normal. The NSM had values 

for CCC, r and Cb all above 0.84, showing consistent prediction, but the distribution shape DMI 

models had higher values for each of these metrics, at over 0.98.  

 

The NSM is simplistic, as a DMI value was calculated using the pen means for each of its 

input parameters, but this is akin to the real-world application where pen averages are commonly 

used. A more robust approach would be to calculate the DMI for each cow in every pen by this 
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equation and sum those values. For this comparison that approach was not possible as the 

individual cow information of each of the 229,909 validation pens was not captured, but if 

individually assessing pens this may provide a better performing pen DMI prediction. The pens 

of these validation data only included a WIM up to 15, and the NASEM 2021 equation was 

empirically derived from mid-lactation cows (75 – 175 DIM), meaning it may not be appropriate 

for cows less than 10 WIM.  

 

The consistent underprediction of the NSM illustrates that the mean is not an appropriate 

parameter for assessing dairy cow pens. Since the mean is a parameter of the Normal 

distribution, it should not be used if a different distribution shape is expected. In practice 

nutritionists may choose a percentile, such as the 75th of milk yield for DMI prediction, rather 

than the mean, to overcome the underprediction of high producing pens (Linn et al., 2021). 

Using either the mean or 75th percentile still provides no information on how the DMI is 

distributed within that pen. Understanding the distribution of DMI leads to calculation of 

nutrition quantities required by that animal group, rather than the uniform supply of each. This 

can enhance nutrient utilization and excretion, precision feeding, and ration cost if understood 

and applied to commercial dairy pens; formulating a ration to the pen’s requirements will 

provide a more precise solution than using the mean, 75th percentile, or applying a correction 

factor to the ration. These approaches are a crude scaling of quantity, rather than the optimized 

solution appropriate to the correct requirements.  

 

Both the Beta and Generalized Normal distribution shapes from the machine learning 

system of this paper appropriately predicted pen DMI, and both shapes can tolerate data 
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clustered at its center. The goal of dairy management is to group cows in pens that are similar in 

reproductive status, production, and nutrient need. In a normal distribution, 95% of the data falls 

within two standard deviations of the mean, but if the data is skewed left, or has heavy tails, then 

using the mean for a DMI equation like the NASEM 2021 will not well predict the true value. 

Starting first with a prediction of the expected shape of DMI distribution based on pen 

descriptive statistics, then calculating a pen DMI from this shape, we demonstrated high 

precision and accuracy. Explaining the distribution of DMI by pen will improve the precision of 

diet formulation, as the input constraint of DMI will be closer to the true value. This work also 

demonstrated that the distribution could be predicted from only descriptive information on the 

milk yield, WIM, and parity of the pen, removing the need to collect further data on individual 

cows.    

 

CONCLUSION 

The distribution shape that described pen DMI was accurately predicted by a machine 

learning system of classification and non-linear regression with only information on pen level 

milk yield, parity, WIM, and pen size as features. This system was constructed into a model of 

DMI prediction, by calculating a set of DMI values that fit this distribution shape. This model 

precisely, accurately and consistently predicted total pen DMI in validation with naïve data. A 

similar model of DMI prediction was constructed by applying the NASEM 2021 DMI equation 

to each pen and assuming a uniform DMI of cows in each pen. This model had large mean bias 

and model error when compared to the observed DMI of these pens. Predicting the distribution 

of DMI with this model provides nutrient constraints for a pen that can be used to optimize a 

precise ration formulation. 
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TABLES 

Table II-1. Description of the cow records from the separate datasets used to build the database 

of this study. 

 n1  

Trial Total Primi2 Multi3 Breed 
Weeks in 

Milk, wk5 

DMI 

recording 

DePeters et al., 19856 55 15 40 Holstein 1 – 44 Calan gate10 

Dhiman and Satter, 19977 74 29 45 Holstein 1 – 36 Calan gate 

Greenfield et al., 20008 37 0 37 Holstein & Jersey 1 – 8 Calan gate 

Unpublished8 45 0 45 Not stated 3 – 18 Calan gate 

Unpublished8 40 0 40 Not stated 1 – 21 Calan gate 

Huyler et al., 199910 31 0 31 Holstein 1 – 10 Calan gate 

Chalupa et al., 19966 36 12 24 Holstein 3 – 43 Calan gate 

Dann et al., 19998 57 57 0 Holstein 1 – 9 Calan gate 

A. N. Hristov6 308 119 189 Holstein 1 – 48 Calan gate 

Lean, 19929 88 0 88 Holstein 1 - 15 Calan gate 

Total 771 232 539    
1 Cow population per trial.  
2 Primiparous cows in their first lactation. 
4 Multiparous cows. 
5 The weeks of lactation for which each dataset recorded weekly individual cow milk yield and dry matter intake. 
6 Dataset recorded weekly average dry matter intake, milk, milkfat, milk protein and bodyweight. 
7 Dataset recorded weekly average dry matter intake, milk, milkfat, and milk protein. 
8 Dataset recorded weekly average dry matter intake, milk, milkfat, milk protein, bodyweight, and BCS.  
9 Dataset reserved for validation and was not included in model development.  
10 American Calan, NH, USA. 
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Table II-2. Performance of the XGB algorithm with different feature sets by 5-fold cross 

validation. 

XGB algorithm:1 Milk only2 Milk and solids3 Full feature set4 

Classification model5    

Accuracy 0.71 0.71 0.71 

Precision 0.72 0.72 0.72 

Recall 0.96 0.96 0.96 

F1-score 0.82 0.82 0.82 

    

Regression models    

Beta    

  RMSE6 10.9 10.9 10.9 

Generalized Normal    

  RMSE 0.47 0.47 0.46 
1 Extreme Gradient Boosting.  
2 Training features included descriptive statistics of milk yield, parity, and week in milk.  
3 Training features included descriptive statistics of milk yield, parity, week in milk, milk fat, and milk protein.  
4 Training features included descriptive statistics of milk yield, parity, week in milk, milk fat, milk protein, 

bodyweight, and BCS.  
5 Scores of Precision, Recall, and F1-score were averaged across both classification levels. 
6 Root mean squared error. 
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Table II-3. Model performance of the hyperparameter tuned XGB algorithm with both testing 

and validation data. 

 Classification  Regression 

 Accuracy2 Precision Recall F-1 score  RMSE3 

Performance to testing data      

Beta  0.58 0.10 0.17  10.9 

Generalized Normal  0.72 0.97 0.82  0.46 

 0.71      

       

Performance to validation data      

Beta  0.47 0.25 0.33   

Generalized Normal  0.67 0.84 0.75   

 0.63      
1 Extreme Gradient boosting.  
2 Accuracy is calculated on both classification levels. 
3 Root mean squared error. 
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Table II-4. Feature importance of the three XGB1 trained and hyperparameter tuned models. 

Rank  Classification model Beta Regression model Generalized Normal Regression 

model 

1 Parity: Heifers & Cows Parity: Heifers only Parity: Heifers only 

2 Parity: Heifers only Parity: Cows only Parity: Cows only 

3 Parity: Cows only Pen size Parity: Heifers & Cows 

4 Maximum milk yield Parity: Heifers & Cows 75th percentile milk yield 

5 Minimum WIM2 Maximum milk yield Maximum milk yield 

6 25th percentile WIM Milk yield SD 95th percentile milk yield 

7 5th percentile WIM Minimum milk yield Mean milk yield 

8 Maximum WIM 95th percentile milk yield Median milk yield 

9 Pen size Minimum WIM Median WIM 

10 95th percentile milk yield 25th percentile WIM 25th percentile WIM 

11 75th percentile milk yield 5th percentile WIM Milk yield SD 

12 Median WIM 75th percentile milk yield Minimum WIM 

13 75th percentile WIM Skew of milk yield 5th percentile WIM 

14 Minimum milk yield Median WIM 75th percentile WIM 

15 Milk yield SD 5th percentile milk yield 25th percentile milk yield 

16 WIM SD Mean WIM 95th percentile WIM 

17 Mean milk yield 95th percentile WIM Mean WIM 

18 25th percentile milk yield Maximum WIM Maximum WIM 

19 Median milk yield Median milk yield 5th percentile milk yield 

20 Kurtosis of milk yield Mean milk yield WIM SD 

21 Mean WIM 75th percentile WIM Pen size 

22 95th percentile WIM 25th percentile milk yield Kurtosis of milk yield 

23 5th percentile milk yield WIM SD Skew of milk yield 

24 Skew of milk yield Kurtosis of milk yield Minimum milk yield 
SD = Standard Deviation 
1 Extreme Gradient Boosting.  
2 Week in milk. 
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Table II-5. Model diagnostics of the Dry Matter Intake prediction of both the distribution shape 

model and the NASEM equation model when compared to observed. 

Model:          

 MSEP1 % 

bias 

% Slope 

not 1 

% Random 

Variation 

R-

squared  

RSR2 CCC3 r4 Cb5 

DMI 

distribution 

         

Beta 5,249 3 5 92 0.95 0.22 0.98 0.98 0.99 

Generalized 

Normal 

2,085 1 7 92 0.99 0.12 0.99 0.99 0.99 

          

NASEM 

equation 

         

Beta 50,320 85 10 5 0.55 0.67 0.84 0.99 0.85 

Generalized 

Normal 

45,779 73 7 20 0.69 0.55 0.87 0.97 0.90 

1 MSEP = mean square error of prediction  
2 RSR = ratio of RMSEP/Standard deviation 
3 CCC = Concordance correlation coefficient. CCC = r*Cb 
4 r = Correlation coefficient. 
5 Cb = Bias correction factor.  
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FIGURES 

Figure II-1. A confusion matrix of the actual and predicted classification classes of the Extreme 

Gradient Boosted (XGBoost) trained and hyperparameter tuned model.1,2 

 

1 True positives and negatives are the quadrants with a matching class for both actual and prediction.  
2 False positives and negatives are the quadrants where the class of actual and prediction are mismatched.  
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Figure II-2. Figure 2. A confusion matrix of the actual and predicted classification classes of the 

Extreme Gradient Boosted (XGBoost) trained and hyperparameter tuned model for the validation 

data.1,2 

 

1 True positives and negatives are the quadrants with a matching class for both actual and prediction.  
2 False positives and negatives are the quadrants where the class of actual and prediction are mismatched.  
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Figure II-3. Observed versus Predicted plots of Dry Matter Intake by pen plotted for the 

Distribution Shape Model (DSM), and the NASEM Equation Model (NSM), for a) pens 

classified as Beta distribution, and b) pens classified as Generalized Normal Distribution.  

Figure II-3a. 
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Figure II-3b.
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APPENDIX 

1. Pen level bounds for assortment from individual cow weekly observations. 

 Value range n of pens 

Pen Type Earliest Week Latest Week Pen Size1,2  

Fresh 1 3, 4, 5 25 – 100 10,360 

Early 1 6 – 41 25 – 250 390,300 

Peak 3 - 16 8 – 41 50 – 250 4,092,140 

Late 10 - 20 18 – 45 50 – 250 2,698,240 

Total    7,191,040 

1 Increments of 1. 
2 All pens were assorted with primiparous cows only, multiparous cows only, or both. 



 

 
 

6
9

 

2. The range of values of descriptive statistics of all pens in the database after outlier removal.   

 
Mean Median Min Max 

5th 

quantile 

25th 

quantile 

75th 

quantile 

95th 

quantile 
Variance Skew Kurtosis 

DMI (kg) 12.2-27.3 12-27.8 5.3-22.2 15.4-36.4 7.5-22.8 10.6-25.5 
13.7-

30.7 
15.1-35.6 2.4-49 -2.3-2.4 

-1.5-

10.4 

Milk (kg) 22.9-47.3 
23.5-

48.4 

22.9-

37.3 
29.1-68.7 7.7-29.3 18.1-43.5 

26.2-

54.9 
28.5-63.4 8.8-193.9 -1.9-1.7 -1.5-4.9 

Milk fat 

(kg) 
0.9-3.7 0.9-4.2 0.07-1.3 1.3-5.1 0.2-1.4 0.6-3.7 1.1-4.5 1.2-4.9 1.9-2.9 -2.2-3.9 

-1.9-

15.9 

Milk protein 

(kg) 
0.7-3.1 0.7-3.3 0.2-1.2 0.9-3.9 4.1-2.8 0.6-3.1 0.8-3.4 0.8-3.7 0.004-1.5 -3.9-5.3 -1.9-3.5 

Bodyweight 

(kg) 
488-667 485-681 363-606 542-839 367-608 443-640 511-728 538-795 352-11285 -2.5-2.3 -1.8-8 

BCS 1.25-4.5 1.25-4.5 1-4.5 1.25-4.5 1-4.5 1.25-4.5 1.25-4.5 1.25-4.5 0-2.25 -3-3 -2-1.1 

Week 2-30 1-32 1-21 3-44 1-21 1-26 2-37 3-43 0-159 - - 
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3. List of all distributions tested to the cow pens for selection of best fitting shape. 

All distributions and their probability density functions were obtained from the SciPy package of 

Python 3.10 (Python Software Foundation, https://www.python.org/) (Virtanen, 2020). 

norm: Normal (Gaussian) distribution 

beta: Beta distribution 

expon: Exponential distribution 

gamma: Gamma distribution 

genextreme: Generalized Extreme Value distribution 

logistic: Logistic distribution 

lognorm: Log-normal distribution 

triang: Triangular distribution 

uniform: Uniform distribution 

fatiguelife: Fatigue life (Birnbaum-Saunders) distribution 

gengamma: Generalized Gamma distribution 

gennorm: Generalized normal distribution 

dweibull: Double Weibull distribution 

dgamma: Double Gamma distribution 

gumbel_r: Right-skewed Gumbel distribution (Extreme Value Type I) 

powernorm: Power normal distribution 

rayleigh: Rayleigh distribution 

weibull_max: Maximum Weibull (inverse Weibull) distribution 

weibull_min: Minimum Weibull distribution 

laplace: Laplace (double exponential) distribution 

alpha: Alpha distribution 

genexpon: Generalized Exponential distribution 

bradford: Bradford distribution 

betaprime: Beta prime distribution 

burr: Burr (Type XII) distribution 

fisk: Fisk (Log-logistic) distribution 

genpareto: Generalized Pareto distribution 

hypsecant: Hyperbolic Secant distribution 

halfnorm: Half-normal distribution 

halflogistic: Half-logistic distribution 

invgauss: Inverse Gaussian distribution 

invgamma: Inverse Gamma distribution 

levy: Levy distribution 

loglaplace: Log-Laplace distribution 

loggamma: Log-Gamma distribution 

maxwell: Maxwell distribution 

mielke: Mielke's Beta-Kappa distribution 

ncx2: Non-central Chi-squared distribution 

ncf: Non-central F distribution 

nct: Non-central Student's t distribution 

https://www.python.org/
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nakagami: Nakagami distribution 

pareto: Pareto distribution 

lomax: Lomax distribution (Pareto Type II) 

powerlognorm: Power log-normal distribution 

powerlaw: Power-law distribution 

rice: Rice distribution 

semicircular: Semicircular distribution 

trapezoid: Trapezoidal distribution 

invweibull: Inverse Weibull distribution 

foldnorm: Folded normal distribution 

foldcauchy: Folded Cauchy distribution 

cosine: Cosine distribution 

exponpow: Exponential power distribution 

exponweib: Exponential Weibull distribution 

wald: Wald (Inverse Gaussian) distribution 

wrapcauchy: Wrapped Cauchy distribution 

truncexpon: Truncated Exponential distribution 

truncnorm: Truncated Normal distribution 

t: Student's t distribution 

rdist: R-distribution 
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4. Algorithm performance comparison using the default hyperparameters with the features 

of pen size, milk yield, parity, and week in milk by 5-fold cross validation. 

Model algorithms: Decision tree Random forest XGB1 

Classification model    

Accuracy 0.62 0.70 0.71 

Precision 0.73 0.72 0.72 

Recall 0.72 0.95 0.96 

F1-score 0.73 0.82 0.82 

    

Regression models    

Beta    

  RMSE2 16.1 11.2 10.9 

Generalized Normal    

  RMSE 0.68 0.51 0.47 
1 Extreme Gradient Boosting.  
2 Root mean squared error 
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CHAPTER III. 

PRECISION RATION FORMULATION BY PREDICTING THE DISTRIBUTION OF 

DRY MATTER INTAKE OF LACTATING COW PENS 

 

ABSTRACT 

Precision nutrition cannot be achieved for individual dairy cows, as they are managed and 

fed by pen. When individual dry matter intake (DMI) is not recorded, the distribution within the 

pen can be accurately predicted with machine learning. Rations are conventionally formulated 

imprecisely for an approximation of a pen’s DMI and nutrient requirement. This work used least 

cost linear programming to assess precision nutrition formulation approaches for cow pens with 

different estimates of DMI. The observed DMI (TRU) of each cow was known, individual DMIs 

were predicted by the distribution shape generated from a machine learning algorithm (DSM), 

and individual DMIs were predicted with an empirical equation (iNSM). Cow observations were 

sorted into three pens, Fresh, High lactating, and Low lactating, based on their weeks in milk. 

The different DMI values were used to formulate an individual ration for each cow, and the 

resulting DMI, metabolizable energy, and ration cost were compared by pen. Next, a total pen 

nutrient requirement was calculated as the sum of the constituent cows. A whole pen ration 

solution was formulated for three (Fresh, High lactating, Low lactating) pens using this nutrient 

requirement, and the DMI of the TRU, DSM, iNSM, and two additional models: a DMI 

calculation using the pen average in the empirical equation (aNSM), and a DMI calculation 

using the pen 75th percentile in the empirical equation (fNSM). The aNSM and the fNSM 

represented imprecise dairy nutrition approaches, and their solutions were compared to the TRU 

diet, which was the ideal. The DSM model was the closest to the TRU in individual cow, and 
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pen ration formulation solutions. In the individual cow rations, there was no difference between 

DSM and TRU in DMI, cost and metabolizable energy, and for the pen rations its solutions were 

almost identical to the TRU for Fresh, High and Low pens. All models using an empirical DMI 

equation, including the precision approach of the iNSM, were inaccurate in their prediction of 

individual and pen rations. This demonstrates that precision nutrition can and should be applied 

on a population level when cows are managed in this manner to avoid systematic bias.  

 

INTRODUCTION 

Precision nutrition is defined as minimizing the error between differences in nutrient 

requirements and nutrients provided. Knowing and supplying an exact ration for each dairy cow 

would maximize sustainability and milk production efficiency, less nutrients would be wasted, 

and cow performance would not be limited by dietary factors (Bewley, 2010: Meijer & Peeters, 

2010; Maltz, 2020). This is not practiced; cows are fed by pen at an assumed constant DMI. 

Individually feeding cows for their energy needs does increase milk yield, solids, and energy-

corrected milk per kg of ration dry matter (Maltz, 2013), but is not practical compared to the 

time and fuel-efficient large group feeding of a TMR (Schingoethe, 2017). Ration formulation 

should be adapted to precisely feed pens by setting the pen as the unit of feeding because dairy 

cows are managed by pen on commercial dairy farms. 

 

Pens are assembled to manage reproduction, milk yield, stage of lactation (Weiss, 2017), 

or grouped by metabolizable energy and protein requirements (Cabrera, 2012). This results in a 

distribution of DMI that is usually not normal (Lucey and Rossow, 2023). In all these scenarios, 

rations are formulated based on the ‘average cow’ of the pen, which does not exist. The mean 

milk yield, composition, bodyweight, and BCS are used to estimate DMI and energy for the 
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ration solution. Therefore, half the cows will be underfed, and the other half overfed (Maltz, 

2020), necessitating over-formulation to sustain high milk production (Linn et al., 2021). The 

distribution of DMI is ignored, and over-formulation imprecisely supplies nutrients.  

Measuring the individual DMI of cows within a pen is not practical in commercial settings 

(Seymour, 2019), so the true distribution is unknown. But machine learning technology can 

predict this shape with accuracy and precision from information based on milk yield (Chapter II). 

The total DMI of the pen is known from the distribution shape and provides ration solutions that 

account for inter-cow variation within the pen.  

 

The hypothesis of this work is that formulating rations by pen and using estimates of pen 

DMI distribution shape will lead to improved precision nutrition. The objective of this research 

is to use five DMI prediction models to formulate least cost rations for fresh, high and low 

milking pens to compare the impact of precision of pen DMI prediction on ration solutions. The 

first model represents the ‘true’ ration DMI (TRU), which is the actual DMI of the pens. The 

second is a model that represents the distribution shape of DMI for the pens (DSM; Chapter II) 

The third is the (NASEM 2021; Eq. II-1 & 2) DMI empirical model that can predict individual 

cow DMI that is summed to represent pen DMI (iNSM), the fourth model also uses the DMI 

equation from NASEM 2021 to predict pen DMI but uses data from the average cow in the pen 

(aNSM), and the 5th model uses the DMI equation from NASEM 2021 to predict DMI but uses 

data from the 75th percentile of the pen which in effect adds an adjustment factor to the DMI 

(fNSM) (Linn et al., 2021). Ration ingredient profiles, nutrients and cost will be compared 

between these models to determine which is closest to the TRU ration formulation.  
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MATERIALS AND METHODS 

No approval from the University of California, Davis, Animal Care and Use Committee 

was needed for this study as it was conducted using only previously collected data.  

 

Pen selection and description 

Three pens were assembled from a database of 8,239 weekly observations of 443 

individual lactating dairy cows, after removal of outliers above the 95th percentile for milk 

protein % and milk fat %. They were assembled by randomly selecting cows from this 

observation pool for the size of each pen, as per Lucey and Rossow (2023). The three pens were 

Fresh: fifty cows of WIM from one to three, High: one hundred and fifty cows of WIM from 

four to twenty-seven, and Low: one hundred cows of WIM from twenty-eight to forty-four 

(Table III-1). These ranges were chosen to reflect current industry practices of pen groups 

(Campos et al., 2023). All three pens included random mixtures of primiparous and multiparous 

cows. Only one observation per cow was included, and the WIM, and weekly average milk yield 

(kg) and DMI (kg) were required for inclusion into the dataset. Some observations also included 

bodyweight (kg), BCS, milk fat (%), and milk protein (%), but were not excluded if these data 

were missing. If these data were missing, the mean observation value of the pen was imputed for 

the missing values. For example, BCS was missing in all the Low pen data, so BCS was set to 

three for all cows. 

 

Distribution shape prediction of pen DMI 

As previously described, the distribution shape model (DSM) with a machine learning 

pipeline was used to predict the distribution of DMI for the three pens. This required the inputs 
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pen size, parity category (primiparous, multiparous, or mixed), and descriptive statistics (mean, 

median, minimum, maximum, 5th, 25th, 75th, 95th percentile, standard deviation, skew and 

kurtosis) of milk yield and WIM. The model predicted the distribution shape as Beta or 

Generalized Normal, and the parameters of the selected shape. The DMI was calculated as the 

area under the distribution curve.  

 

The three NSM empirical predictions of pen DMI 

The three NSM models for DMI used Eq. II-1 & 2 to calculate pen DMI but differed by 

what data was used in the calculations. The iNSM used each cow’s observed milk yield (kg), 

DMI (kg), milk fat (%), milk protein (%), parity, bodyweight (kg), BCS and DIM to calculate a 

DMI, and the sum was the pen DMI. The aNSM used the mean data from the pen for each input, 

and fNSM used the 75th percentile of the pen for the input variables, this calculated one DMI 

value for each pen, which was multiplied by the number of cows for each pen DMI estimate.  

 

Ration formulation program development 

A least cost linear program was developed using the PuLP package (Roy, J., et al, 2005) 

in Python 3.12 (Python Software Foundation, https://www.python.org/) to solve rations to the 

nutrient requirements of dairy cows (Moraes et al., 2012). The ration objective function was to 

minimize cost (Eq. III-1) where 𝑥 is the amount (kg of DM) of feed 𝑖, and 𝑐 is the cost ($/kg of 

DM) of feed 𝑖, and 𝑛 is the number of feeds available to the solution.  

 

𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆 𝑪𝑶𝑺𝑻 =  ∑ 𝒄𝒊𝒙𝒊
𝒏
𝒊=𝟏            Eq. III-1 
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Every cow of each pen was assigned nutrient requirements for metabolizable energy 

(ME) Mcal/kg, Rumen-degradable protein (RDP) %, Rumen-undegradable protein (RUP) %, 

Crude protein (CP) %, and Neutral Detergent Fiber (NDF) % based on their days in milk, and 

parity (Table 21-1, NASEM 2021). A feed bank was available for the Fresh, High and Low pen 

based on common ingredient usage (Table III-2; Rossow and Aly, 2013), and the nutrient 

composition of each was the listed value of table 19-1 NASEM 2021. The listed digestible 

energy (DE) of the feeds was converted to metabolizable energy (ME) using equation 2-10 of the 

NRC 2001 (Eq. III-2) where EE is ether extract of the feed as a percent of DM.  

 

𝑴𝑬(𝑴𝒄𝒂𝒍/𝒌𝒈) = [𝟏. 𝟎𝟏 × 𝑫𝑬 − 𝟎. 𝟒𝟓] + 𝟎. 𝟎𝟎𝟒𝟔 × (𝑬𝑬 − 𝟑)  Eq. III-2 

 

Feed costs were obtained in $/kg of DM from the Penn State feed prices for December 

2023 (Penn State Feed Price List, 2023) and personal communication with a nutrition 

professional (Table III-2). 

 

Ration program constraints 

Maximum inclusion limits on a kg/kg of DM were included for Corn Silage, Dried 

Distillers Grains, Molasses and Urea (Table III-2). The DMI was constrained to 2.5% above and 

below the predicted value for every solution where 𝑦 is the cow’s observed or predicted DMI 

and 𝑥 is the DM in kg of feed 𝑖 (Eq. III-3).  

 

𝒚 × 𝟎. 𝟗𝟕𝟓 ≤ ∑ 𝒙𝒊  ≤ 𝒚 × 𝟏. 𝟎𝟐𝟓𝒏
𝒊=𝟏   Eq. III-3 
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The ration value of ME and proportions of CP, RDP, RUP, NDF and starch were 

constrained by Eq. III-4. A minimum ME value was constrained to the nutrient requirement of 

Mcal/kg of DM. The CP was limited to a maximum of 20% kg DM, and RUP and RDP were 

constrained to minimums at the nutrient requirement (10% and 6.2 – 7.5% kg DM). The NDF 

was constrained between 25 and 35% kg DM, and starch between 18 and 33% kg DM.  

 

𝒖𝒕 ≤
∑ 𝒙𝒊𝝎𝒕𝒊

𝒏
𝒊=𝟏

∑ 𝒙𝒊
𝒏
𝒊=𝟏

≤ 𝒒𝒕 Eq. III-4 

 

Where 𝑥𝑖 is the amount of feed 𝑖, 𝜔𝑡𝑖 is the nutrient 𝑡 proportion of feed 𝑖 in kg/kg DMI, 

𝑢𝑡 is the minimum proportion of nutrient 𝑡, and 𝑞𝑡 is the maximum proportion of nutrient  𝑡.  

 

 The ration NDF as forage proportion was constrained between 19 and 25% of kg/kg DM 

of the solutions by Eq. III-5. The feeds Legume hay-mature, Corn silage-typical, and Wheat 

straw were considered the forage feeds.  

 

𝒅𝒇 ≤
∑ 𝒙

𝒊′𝒇
𝒊′

𝟑
𝒊′=𝟏

∑ 𝒙𝒊
𝒏
𝒊=𝟏

≤ 𝒆𝒇 Eq. III-5 

 

Where 𝑑𝑓 is the minimum and 𝑒𝑓 is the maximum ration proportion of NDF from forage 

as kg/kg DM, 𝑥𝑖′  is the amount of feed for the 𝑖′ forage, 𝑓𝑖′  is the NDF proportion of the 𝑖′th 

forage, and 𝑥𝑖 is the amount of feed 𝑖. The summation of variable 𝑥𝑖′  is the feeds that are 

considered forages and is a subset of 𝑥𝑖. 
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Ration solutions 

Individual cow ration solutions 

A least cost ration was solved using the described formulator for every cow within a pen. 

The feeds available to each solution were restricted to the feed bank of the respective pen of the 

cow. A solution was generated three times for each cow: for TRU, DSM, and the iNSM models. 

The aNSM and fNSM were not used for individual cow ration solutions, as one DMI value was 

assigned to every cow in each pen. The distribution of the solutions for DMI, ME, and ration cost 

were plotted by pen for the three different models. 

 

Pen ration solutions 

Combining individual cow ration solutions would incorporate different ingredients by 

cow, introducing low inclusions of certain ingredients. Single ration solutions for each pen were 

formulated to prevent this. For all models, the nutrient constraints other than DMI were a sum of 

the nutrient requirements for all cows within the pen. The % of CP, RDP, RUP, NDF and starch 

required by each cow were multiplied by their observed DMI to calculate the quantity required, 

then summed for the kg DM required by the pen. This total quantity of CP, RDP, RUP and NDF 

were divided by the pen DMI of each model to calculate their % requirements. These 

requirements were the constraints to solve a single ration for each pen by all five models.  

 

Statistical Analysis 

Model diagnostics of pen DMI predictions 

The distribution of DMI was plotted by kernel density plots for the TRU, DSM, and 

iNSM models for each pen (Figure III-1). The DSM and iNSM were individually compared to 
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the observed values from TRU for every cow in each pen by the mean square error of prediction 

(MSEP) partitioned into error due to mean bias, error due to slope not equal one, and error due to 

random variation. They were also evaluated by the coefficient of determination (R2), relationship 

between observed and predicted, root mean square error of prediction (RMSEP), ratio of 

RMSEP/standard deviation (RSR), concordance correlation coefficient (CCC), correlation 

coefficient (r) and bias correction factor (Cb) (Bibby and Toutenberg, 1977). Observed (TRU) 

versus predicted regression plots for the DSM and iNSM models DMI predictions were 

evaluated (Figure III-2).  

 

Individual cow ration solutions 

The final ration solution DMI, ME, and cost values were compared by pen for 

homogeneity of variance (Levene, 1960), then with Welch’s ANOVA (Welch, 1951) and 

Games-Howell post-hoc pairwise comparisons (Games & Howell, 1976) to test for a difference 

between groups of unequal variances for the DMI, ME and cost of the observed, DSM, and 

iNEM, aNSM, and fNSM ration solutions.  

 

Pen ration solutions 

All pen ration solutions for the models: DSM, iNSM, aNSM, and fNSM, were compared 

for their total values of DMI, ME to the solution of TRUE for a calculation of RMSE.  
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RESULTS AND DISCUSSION 

Pen DMI description and diagnostics of the distribution predictions 

The three pens were assembled from a database of individual cow observations then their 

predictions of DMI distribution by the two models: DSM and iNSM were compared by Kernel 

density plots (Figure III-1) and MSEP (Table III-3) to the DMI distribution of the TRU model. 

For the Fresh pen the DMI distribution of the DSM was similar to TRU in peak and spread, the 

iNSM data peak was at a higher value than TRU, and its data spread did not include the lower 

range of observed data, overpredicting the density. For the High pen the DSM was similar to the 

TRU in peak and spread; the iNSM data had a similar peak location, but the peak was much 

higher than the TRU, with narrower tails. The same was observed for the Low pen, the DSM 

data matched the TRU, but the iNSM described a higher and narrower peak.  

 

Model diagnostics were calculated comparing the DSM and iNSM separately to TRU 

(Table III-3; Figure III-2). The DSM had lower MSEP, with a maximum of 1.4 for the Low pen, 

compared to a range of 11 – 35 for the iNSM, indicating higher model accuracy for the DSM. 

The proportion of error due to % mean bias was low for the Fresh and Low pen with the DSM at 

1%, showing little bias in prediction, but was greater for the High pen at 57% suggesting some 

bias. The proportion of error due to regression slope not equal to one was moderate for the DSM, 

showing that the model has a different prediction scale to the TRU. Error due to random 

variation for the DSM was moderately low, indicating a good representation of the data variance 

by this model. The iNSM had a high proportion of error due to % mean bias for the Fresh and 

High pen at 71 and 24%, indicating consistent bias in prediction. The proportion of error due to 

regression slope not equal to one was less than 10% for all pens in the iNSM, showing that it 
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responded to changes appropriately, even though it is inaccurate overall. The proportion of error 

due to random variation for the iNSM was high, with 91% for the Low pen. This shows the 

iNSM is unreliable as it does not represent the variation of the observed data.  

 

These model diagnostics demonstrated that predicting the distribution shape (DSM) was 

a more accurate and robust method to predict DMI when examining pens of cows. The iNSM 

employed an empirical equation that calculated a DMI for each individual cow based on their 

characteristics to describe the distribution by pen. The proportion of error due to regression slope 

not equal one was the lowest for that iNSM approach as the empirical equation could 

appropriately scale its response with changes in the individual, but when examined across a 

population (the cow pen) a large error was introduced as shown by the higher magnitude of 

MSEP when compared to the DSM. This is an example of the atomistic fallacy and its risk; when 

studying a group, such as the nutrient requirements of a cow pen, assumptions drawn from the 

individual level do not apply to the group as a whole. The empirical equation iNSM predicted 

DMI with a narrow data range and large peaks, in a normal distribution (Figure III-1) for each 

pen, but when compared to the TRU the pen distribution was not represented. 

 

Individual cow ration solutions 

A ration solution was formulated for every cow’s individual nutrient requirement using 

the TRU, DSM and iNSM predicted DMI as constraints, and compared between the three pens. 

Violin plots visualized the distribution of the solved ration’s DMI, ME and cost (Figure III-3). 

For the three pens, the distribution of DMI, ME and cost of each cow’s ration solution was 

similar between the TRU and the DSM. The distribution of solved DMI for each pen was higher 
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and with a narrower data range for the iNSM than the two other ration solutions. For the pen ME 

and cost, the distribution by pen was similar for TRU, DSM and iNSM, but with a consistently 

higher mean and right skew for the iNSM. 

 

 The variance between the groups for DMI, ME and cost were unequal in all pens when 

assessed with Levene’s test of homogeneity of variance (P < 0.05), so Welch’s ANOVA was 

used to compare the means of the observed, DSM, and iNSM ration solutions. On pairwise 

comparison the solution values of DMI, ME and cost for the iNSM were significantly different 

from the observed, and the DSM. The largest differences were in the Fresh pen; the iNSM ration 

cost was $1.30 greater than the observed at $5.60, and $1.10 greater than the DSM. The equation 

used in the iNSM was empirically derived from observed cow data that did not include Fresh 

cows, and these ration solutions demonstrate it is inappropriate when predicting the DMI at that 

stage of lactation. The DMI and ME for the Fresh ration solutions was greater for the iNSM than 

the TRU or DSM. Employing this equation introduced error when applied to this pen type due to 

excess feed quantity and energy. The High pen ration solutions were also different with iNSM 

when compared to TRU and DSM. This ration cost was $0.50 - $0.60 more expensive and also 

supplied excess energy and feed. Given that this pen was the biggest (150 cows), this difference 

generates an excess cost of $75/d, waste of 195 kg/d DM, and 585 Mcal/d when compared to the 

DSM ration solution. The Low ration solution had the smallest differences between the iNSM to 

TRU and DSM but was still higher for all values. On large dairies these ration inaccuracies 

compound to a substantial increase in cost, waste of nutrients and feed.  
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Pen ration solutions 

Pen rations were formulated to their total nutrient requirement with each model (Table 

III-5, 6 & 7). The TRU model used the observed DMI of each cow, so its solution was 

considered the ideal and most cost-effective. Formulating rations for individual cows is not 

applicable to commercial dairy management as they are fed by pens. Combining individual 

rations would affect the composition of a TMR; different ingredients may be present in different 

solutions and are diluted across the feed bunk at low levels. A single ration per pen is the 

common application of a TMR (Schingoethe, 2017), with some operations providing separate 

rations for cow types (e.g. Fresh, High, or Low), or feed the same ration to all pens, but at 

different quantities for different energy needs. The goal of this work was to provide a ration that 

can be applied similarly but formulated more precisely. The DSM predicted DMI with a 

distribution shape; the iNSM applied a DMI prediction equation to each cow. The aNSM and 

fNSM provided a single DMI for each pen which was multiplied by the number of cows; this 

assumes a constant DMI and represents industry usage of ration formulation when individual 

DMIs are not measured.  

 

 The DSM predicted a distribution very close to the TRU, and its pen ration was almost 

identical. The Fresh ration was formulated for 50 cows, and the DSM model under supplied the 

energy of this group by 6 kg DMI and 14 Mcal ME. In contrast the iNSM, aNSM, and fNSM 

over predicted this ration in cost by $68, $45, and $78 more than TRU, and DMI and ME by up 

to 319 kg DM and 852 Mcal, while the DSM was $2 more expensive. Maintaining energy 

balance in early lactation cows is important. However, all NSM models overpredicted the 

required ration, incurring monetary, and nutrient losses. If pens are overfed, the remainder can be 
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fed to others, but the composition of the remainder is unknown, wasteful, and may promote 

feeding spoiled rations. The results of this work show that different constraint inputs lead to 

different combinations of ingredients, even for the same pen. Rations should always be 

formulated with the best-known requirements, especially for high-value ingredients and 

nutrients. It is important to note that the Fresh pen in this work consisted of cows between WIM 

1 and 3, while the NASEM equation used for all three NSM models was derived from cow data 

of WIM 10 and greater, so greater inaccuracy in this pen’s DMI is expected.  

 

 The High and Low pen ration solutions were again almost identical for the TRU and 

DSM models. The RMSE of cost, DMI and ME were less than 1 for the High pen between these 

two and ranged from 2.6 – 26.6 for the Low pen. For the iNSM model the cost of High ration 

was overpredicted by $33/pen/d, which is a higher cost of $0.22 per cow/d as 150 cows were in 

this pen. However, the aNSM and fNSM models overpredicted cost by $66/pen/d, and 

$169/pen/d. The difference in cost for the Low pen was $3/pen for the DSM, $21/pen, $23/pen, 

and $58/pen for the iNSM, aNSM, and fNSM. The difference in cost between iNSM and aNSM 

was lower than for the High pen. Less variation in DMI may exist in later lactation pens as cows 

are beyond their milking peak, showing that approximating a pen’s requirements with a pen 

descriptor, such as the mean or 75th percentile, is more appropriate in these pens, but still 

inaccurate when compared to the DSM.  

 

These extra costs add unnecessary expense, especially as the number of cows per ration 

and the cost of the ration increases. The aNSM and fNSM models assumed a uniform DMI for 

the pens, ignoring distribution, and while the iNSM was closer to the TRU, is not as easily 
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applied. The NASEM equation requires multiple cow inputs for its use: individual cow milk 

solids, BW, and BCS, which may not be routinely collected on dairies without the necessary 

infrastructure. But milk yield, parity and WIM were the main inputs of the DSM, which can be 

obtained when dairies record the milk yield of each cow. Using the NASEM based models 

incorrectly balanced the feed ingredients for each pen and did not offer precision feed utilization. 

Even if excess was fed as waste to other animal groups, nutrient wasting occurs as these would 

not be balanced correctly for the recipient groups.  

 

 

 

CONCLUSION 

It is understood that DMI is not a normal distribution for dairy cow pens. When the DSM 

model was applied, the nutrient requirements of a Fresh, High, and Low pen were accurately 

predicted. This was compared to models using the NASEM DMI equation for ration solutions. 

The model that applied the equation to each cow per pen (iNSM), to just the mean of the pen 

(aNSM), and the 75th percentile of the pen (fNSM) all overestimated the energy needs. Ration 

solutions using these models demonstrated that the DSM could provide a cost and ingredient 

composition close to the ideal ration, improving precision feeding and nutrient utilization.  
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TABLES 

Table III-1. Description of pens.  

 Fresh pen High pen Low pen 

Animals (n) 50 150 100 

DMI (kg/d) 11.6 – 25.4 10.4 – 32.4 9.4 – 29  

Milk yield (kg/d) 14 – 49.6 16.1 – 57 8.7 – 57 

Milk fat (%) 0.5 – 5.1 0.7 – 8.2 0.4 – 3.6 

Milk protein (%) 0.5 - 5 0.6 – 3.8 0.24 – 2.7 

WIM 1 - 3 4 – 27 28 – 43 

BW (kg) 483 - 727 383 – 756 432 – 748 

BCS 2.75 - 4 2 – 4.5 ---1 
WIM = Weeks in milk. 

BW = Bodyweight. 
1 Not recorded on any cows in this pen. 
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Table III-2. Ingredient nutrient composition, inclusion, and cost.  

Ingredient 
NASEM 

Entry No.1 Fresh2 High2 Low2 Limit3 Cost 

Legume hay, mature 90 ✓ ✓ ✓ No limit 0.224 

Corn silage, typical 48 ✓ ✓ ✓ 0.6 0.174 

Oat hay mid-maturity 101 ✓ ✓ ✓ No limit 0.0985 

Wheat silage, HEADED 171 ✓ ✓ ✓ No limit 0.00875 

Wheat straw 173 ✓ ✓ ✓ No limit 0.154 

Corn grain dry, coarse grind 255 ✓ ✓ ✓ No limit 0.444 

Corn gluten feed, dry 40 ✓ ✓ ✓ No limit 0.274 

Canola meal 28 ✓ ✓ ✓ No limit 0.494 

DDGS, high protein 60 ✓ ✓ ✓ 0.10 0.225 

Molasses 99 ✓ ✓ ✓ 0.03 0.424 

Urea 165 ✓   0.0005 0.245 

Soybean meal, expellers 142 ✓ ✓ ✓ No limit 0.594 

Wheat middlings 170 ✓ ✓ ✓ No limit 0.274 

Whey, dry 174 ✓ ✓  No limit 0.784 

Cottonseed, whole 56 ✓ ✓ ✓ No limit 0.444 
1 Entries from Table 19-1 of NASEM 2021. 
2 Available as an ingredient to the ration solution. 
3 In kg/kg of DM. 
4 In $/kg of DM. Feed prices from the Penn State University feed price list December 2023. 
5 In $/kg of DM. Feed prices from personal communication. 
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Table III-3. Model diagnostics of the Dry Matter Intake prediction of both the distribution shape model (DSM) and the NASEM 

equation model (iNSM) when compared to TRU. 

Model:          

 

MSEP 

% 

bias 

% Slope 

not 1 

% Random 

Variation R-squared RSR CCC r Cb 

DSM          

Fresh pen 0.86 1 69 30 0.98 0.28 0.99 0.98 0.98 

High pen 0.83 57 19 24 0.99 0.24 0.98 0.99 0.98 

Low pen 1.4 1 62 37 0.96 0.34 0.93 0.98 0.95 

          

iNSM          

Fresh pen 35 71 2 27 0.15 1.8 0.14 0.38 0.36 

High pen 17 24 8 68 0.25 1.1 0.42 0.49 0.84 

Low pen 11 6 3 91 0.22 0.94 0.42 0.47 0.88 
DSM = Distribution shape DMI model 

iNSM = Individual NASEM equation model 

MSEP = mean square error of prediction  

RSR = ratio of RMSEP/Standard deviation 

CCC = Concordance correlation coefficient. CCC = r*Cb 

r = Correlation coefficient. 

Cb = Bias correction factor.  
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Table III-4. Values of DMI, ME and ration cost for the Welch’s ANOVA and pairwise 

comparison between the TRU, DSM, and iNSM. 

 Comparison of ration model solutions  

 TRU DSM iNSM 

Pen:    

Fresh    

DMI (kg) 17.8a 18.2a 22.7b 

ME (Mcal) 47.3a 48.4a 60.6b 

Cost ($) 4.3a 4.5a 5.6b 

    

High    

DMI (kg) 23.3a 23.4a 24.7b 

ME (Mcal) 62.2a 62.5a 66.4b 

Cost ($) 5.7a 5.8a 6.3b 

    

Low    

DMI (kg) 19.9a 19.9a 20.9b 

ME (Mcal) 54.4a 54.7a 57.3b 

Cost ($)  5.3a 5.4a 5.7b 

a-b Different superscript letters were significantly different by Games-Howell pairwise comparison.  

DMI = Dry Matter Intake.  

ME = Metabolizable Energy. 

TRU = Observed DMI model 

DSM = Distribution shape DMI model 

iNSM = Individual NASEM equation model 
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Table III-5. Fresh pen ration solutions. 

n = 50 TRU DSM1 iNSM2 aNSM3 fNSM4 

Cost, $5 217 215 276 262 295 

DMI, kg6 890 884 1135 1077 1209 

ME, Mcal7 2366 2352 3019 2863 3218 

CP, % 17.4 17.4 17.3 17.3 17.5 

RUP, % 7.36 7.37 7.33 7.31 7.5 

RDP, % 10 10 10 10 10 

NDF, % 35 35 35 35 35 

NDF % forage 19 19 19 19 19 

Starch, % 25 25 25 25 25 

Corn silage, typical, kg 413 411 527 500 561 

Wheat silage, kg 77 77 97 92 109 

Corn grain dry, kg 70 69 90 86 94 

Corn gluten feed, kg 129 128 167 159 165 

DDGS, kg 89 88 113 108 121 

Molasses, kg 26 26 34 32 36 

Urea, kg 0.45 0.44 0.57 0.54 0.60 

Soybean meal, kg 84 84 106 99 122 

Ration total, kg 890 884 1136 1077 1209 
DMI = Dry Matter Intake 

TRU = Observed DMI model 

DSM = Distribution shape DMI model 

iNSM = Individual NASEM equation model 

aNSM = Average cow NASEM equation model 

fNSM = 75th percentile cow NASEM equation model 

ME = Metabolizable Energy 

CP = Crude Protein 

RUP = Rumen Undegradable Protein 

RDP = Rumen Degradable Protein 

NDF = Neutral Detergent Fiber 

DDGS = Dried Distillers Grains with Solubles 
1 Ration constraint inputs from the Distribution Shape Model (DSM). 
2 Ration constraint inputs from the iNSM equation model. 
3 Ration constraint inputs from the aNSM equation model that used the pen means. 
4 Ration constraint inputs from the fNSM equation model that used the pen 75th percentile. 
5 RMSE of 1.27, 59, 45, and 78 for the DSM, iNSM, aNSM and fNSM when compared to TRU Cost.  
6 RMSE of 5.39, 245, 187, and 319 for the DSM, iNSM, aNSM and fNSM when compared to TRU DMI. 
7 RMSE of 14, 652, 497, and 851 for the DSM, iNSM, aNSM and fNSM when compared to TRU ME.  
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Table III-6. High pen ration solutions.  

n = 150 TRU DSM1 iNSM2 aNSM3 fNSM4 

Cost, $5 858 858 891 924 1027 

DMI, kg6 3498 3498 3632 3771 4186 

ME, Mcal7 9324 9324 9683 10052 11161 

CP, % 17.4 17.4 17.4 17.3 17.5 

RUP, % 7.36 7.37 7.33 7.31 7.5 

RDP, % 10 10 10 10 10 

NDF, % 35 35 35 35 35 

NDF % forage 19 19 19 19 19 

Starch, % 25 25 25 25 25 

Corn silage, typical, kg 1,624 1,623 1,686 1,751 1,943 

Wheat silage, kg 264 264 274 283 319 

Corn grain dry, kg 262 262 273 283 312 

Corn gluten feed, kg 573 573 595 619 677 

DDGS, kg 350 350 363 377 419 

Molasses, kg 105 105 109 113 126 

Soybean meal, kg 321 321 333 345 391 

Ration total, kg 3,499 3,498 3,633 3,771 4,177 
DMI = Dry Matter Intake 

TRU = Observed DMI model 

DSM = Distribution shape DMI model 

iNSM = Individual NASEM equation model 

aNSM = Average cow NASEM equation model 

fNSM = 75th percentile cow NASEM equation model 

ME = Metabolizable Energy 

CP = Crude Protein 

RUP = Rumen Undegradable Protein 

RDP = Rumen Degradable Protein 

NDF = Neutral Detergent Fiber 

DDGS = Dried Distillers Grains with Solubles 
1 Ration constraint inputs from the Distribution Shape Model (DSM). 
2 Ration constraint inputs from the iNSM equation model. 
3 Ration constraint inputs from the aNSM equation model that used the pen means. 
4 Ration constraint inputs from the fNSM equation model that used the pen 75th percentile. 
5 RMSE of 0.01, 33, 67, and 170 for the DSM, iNSM, aNSM and fNSM when compared to TRU Cost.  
6 RMSE of 0.02, 135, 273, and 688 for the DSM, iNSM, aNSM and fNSM when compared to TRU DMI. 
7 RMSE of 0, 360, 728, and 1837 for the DSM, iNSM, aNSM and fNSM when compared to TRU ME.  
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Table III-7. Low pen ration solutions.  

n = 100 TRU DSM1 iNSM2 aNSM3 fNSM4 

Cost, $5 535 538 556 558 593 

DMI, kg6 1988 1997 2067 2071 2203 

ME, Mcal7 5545 5472 5663 5674 6036 

CP, % 18.7 18.7 18.7 18.7 18.7 

RUP, % 7.7 7.7 7.7 7.7 7.7 

RDP, % 11 11 11 11 11 

NDF, % 35 35 35 35 35 

NDF % forage 19 19 19 19 19 

Starch, % 21 21 21 21 21 

Corn silage, typical, kg 923 927 959 962 1,023 

Wheat silage, kg 0 0 0 0 0 

Corn grain dry, kg 0 0 0 0 0 

Corn gluten feed, kg 750 754 780 781 832 

DDGS, kg 0 0 0 0 0 

Molasses, kg 60 60 62 62 66 

Soybean meal, kg 255 256 265 265 283 

Ration total, kg 1,988 1,997 2,066 2,070 2,204 
DMI = Dry Matter Intake 

TRU = Observed DMI model 

DSM = Distribution shape DMI model 

iNSM = Individual NASEM equation model 

aNSM = Average cow NASEM equation model 

fNSM = 75th percentile cow NASEM equation model 

ME = Metabolizable Energy 

CP = Crude Protein 

RUP = Rumen Undegradable Protein 

RDP = Rumen Degradable Protein 

NDF = Neutral Detergent Fiber 

DDGS = Dried Distillers Grains with Solubles 
1 Ration constraint inputs from the Distribution Shape Model (DSM). 
2 Ration constraint inputs from the iNSM equation model. 
3 Ration constraint inputs from the aNSM equation model that used the pen means. 
4 Ration constraint inputs from the fNSM equation model that used the pen 75th percentile. 
5 RMSE of 2.61, 21.4, 22.5, and 58.1 for the DSM, iNSM, aNSM and fNSM when compared to TRU Cost.  
6 RMSE of 9.71, 79.5, 83.4, and 215 for the DSM, iNSM, aNSM and fNSM when compared to TRU DMI. 
7 RMSE of 26.6, 217, 228, and 590 for the DSM, iNSM, aNSM and fNSM when compared to TRU ME. 
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FIGURES 

Figure III-1. Kernel density plots of the observed (TRU), Distribution Shape Model (DSM), and 

NASEM Equation Model (iNSM) dry matter intake values for the a) Fresh pen, b) High pen, and 

c) Low pen.  

Figure III-1a. 
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Figure III-1b. 
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Figure III-1c. 

 

  



 

100 
 

 

Figure III-2. Regression plots of the mean squared error of prediction of observed versus 

predicted dry matter intake values for the Distribution Shape Model (DSM) and the NASEM 

Equation Model (iNSM) for a) the Fresh pen, b) the High pen, and c) the Low pen. 

Figure III-2a. 
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Figure III-2b. 
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Figure III-2c. 
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Figure III-3. Violin plots of the ration solution DMI, ME and cost for the observed and 

predicted DMI constraint inputs of a) the Fresh pen, b) the High pen, and c) the Low pen.  

Figure III-3a. 

 

Figure III-3b. 

 

Figure III-3c. 
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CHAPTER IV. 

CONCLUSIONS 

 

Precision nutrition cannot be approached on dairies when the unit of feeding management 

is a pen, but the unit of ration formulation is a cow. This work approached the knowledge gap 

between these two levels. We described the distribution of pen DMI and the factors that 

influence its shape by examining DMI by week, and by pen type. Machine learning algorithms 

provided a prediction solution for this population descriptor. Previous empirical equations have 

used individual cow variables to plot a regression line that predicts DMI, but population level 

variables, such as the parity grouping, or size of a cow pen, do not have biologic relationships 

with the distribution shape that best fits a pen’s DMI. This limits empirical deduction on the 

level of pen. A labelled dataset for the outcome of DMI distribution shape was able to train an 

appropriate machine learning model for the prediction of DMI by pen. When this was used for a 

precision nutrition ration formulation, the distribution information solved a ration that was not 

different in composition and cost to the ideal ration. Other evaluated approaches were inaccurate 

and imprecise and did not tolerate within pen variation of DMI. This demonstrated that a pen 

level approach is the appropriate form of precision nutrition for pen managed dairy cows.  

 




