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Two Brownian Particles with Rank-Based Characteristics and
Skew-Elastic Collisions

E. Robert Fernholza, Tomoyuki Ichibab,∗, Ioannis Karatzasa,c

a INTECH Investment Management LLC, One Palmer Square, Suite 441, Princeton, NJ 08542
b Department of Statistics and Applied Probability, South Hall, University of California, Santa Barbara, CA 93106

c Department of Mathematics, Columbia University, MailCode 4438, New York, NY 10027

Abstract

We construct a two-dimensional diffusion process with rank-dependent local drift and dispersion coëffi-
cients, and with a full range of patterns of behavior upon collision that range from totally frictionless inter-
action, to elastic collision, to perfect reflection of one particle on the other. These interactions are governed
by the left- and right-local times at the origin for the distance between the two particles. We realize this dif-
fusion in terms of appropriate, apparently novel systems of stochastic differential equations involving local
times, which we show are well posed. Questions of pathwise uniqueness and strength are also discussed for
these systems.

The analysis depends crucially on properties of a skew Brownian motion with two-valued drift of the
bang-bang type, which we also study in some detail. These properties allow us to compute the transition
probabilities of the original planar diffusion, and to study its behavior under time reversal.

Keywords: Diffusion, Local Time, Skew Brownian Motion, Time Reversal, Brownian Motion
reflected on Brownian motion.
AMS 2000 Subject Classifications : Primary 60H10 · 60G44; secondary 60J55 · 60J60

1. Introduction

We construct a planar diffusion (X1(·), X2(·)) according to the following recipe: each of its com-
ponent particles X1(·) and X2(·) behaves locally like Brownian motion. The characteristics of
these random motions are assigned not by name, but by rank: the leader is assigned drift −h ≤ 0
and dispersion ρ ≥ 0 , whereas the laggard is assigned drift g ≥ 0 and dispersion σ ≥ 0 . One
of the dispersions is allowed to vanish, but not both; similarly for the drifts. In the interest of
concreteness and simplicity, we shall set

λ := g + h > 0 , ρ2 + σ2 = 1 . (1.1)

A bit more precisely, we shall construct a complete probability space (Ω,F,P) endowed with a
filtration F = {F(t)}0≤t<∞ that satisfies the “usual conditions” of right continuity and of augmen-
tation by P−negligible sets, and on it two pairs (B1(·), B2(·)) and (X1(·), X2(·)) of continuous,
F−adapted processes, such that (B1(·), B2(·)) is planar Brownian motion and (X1(·), X2(·)) a
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continuous planar semimartingale that starts at some given site (X1(0), X2(0)) = (x1, x2) ∈ R2

on the plane and satisfies the dynamics

dX1(t) =
(
g 1{X1(t)≤X2(t)} − h1{X1(t)>X2(t)}

)
dt +

(
ρ1{X1(t)>X2(t)} + σ 1{X1(t)≤X2(t)}

)
dB1(t)

+
1− ζ1

2
dLX1−X2(t) +

1− η1

2
dLX2−X1(t) , (1.2)

dX2(t) =
(
g 1{X1(t)>X2(t)}− h1{X1(t)≤X2(t)}

)
dt +

(
ρ1{X1(t)≤X2(t)} + σ 1{X1(t)>X2(t)}

)
dB2(t)

+
1− ζ2

2
dLX1−X2(t) +

1− η2

2
dLX2−X1(t) . (1.3)

Here and in the sequel we denote by LX(·) ≡ LX(· ; 0) the right-continuous local time accu-
mulated at the origin by a generic continuous semimartingale X(·) , by LX− (·) ≡ L−X(· ; 0) its
left-continuous version, and by L̂X(·) = (LX(·) + LX− (·))/2 its symmetric version; we collect in
section 2 the necessary reminders from the theory of semimartingale local time.

Each time the particles collide, their trajectories are “dragged” by amounts proportional to the
right local times, LX1−X2(t) and LX2−X1(t) , respectively, that have been accumulated up to that
instant t at the origin by the differences X1(·)−X2(·) and X2(·)−X1(·) ; this is the significance
of the last two terms in each of (1.2), (1.3). With the notation

ζ := 1 +
ζ1 − ζ2

2
, η := 1− η1 − η2

2
, (1.4)

the proportionality constants of these interactions, ζi and ηi for Xi(·) (i = 1, 2), will be assumed
to satisfy the conditions

ζ + η 6= 0 , 0 ≤ α :=
η

η + ζ
≤ 1 . (1.5)

We shall discuss in detail the significance of these conditions for the system of equations (1.2),
(1.3); in particular, the fact that they are not only sufficient but also necessary for the well-poseness
of the above system of stochastic equations. For the time being, let us note that in the special case
ζ1 = η1 = 1 , the trajectory X1(·) of the first particle crosses the trajectory X2(·) of the second
particle without “feeling” it, that is, without being subjected to any local time drag; as we shall see
in subsection 5.2, we obtain this same effect under the more general condition (5.5). Likewise, the
second particle does not “feel” the first, when ζ2 = η2 = 1 or, more generally, under the condition
(5.6). When ζi = ηi = 1 (i = 1, 2), the local times vanish completely from (1.2), (1.3) and we
are in the situation studied in detail by FERNHOLZ ET AL. [7]. In this case, the collisions of the
particles are totaly frictionless.

At the other extreme ζ = 0 6= η (respectively, η = 0 6= ζ ) the trajectory X1(·) of the first
particle bounces off the trajectory X2(·) of the second particle (resp., the other way round), as if
the latter trajectory were a perfectly reflecting boundary; cf. subsection 5.1. Think of the second
(resp., the first) particle as being “heavy”, so that in collisions with the “light” first (resp., second)
particle its motion is unaffected, while the light particle undergoes perfect reflection.

In between, for other values of the parameters, we have collisions that are neither totally fric-
tionless (without local time drag), nor perfectly reflecting, but “elastic”: The particles are subjected
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in general to local time drag, and this kind of friction manifests itself in an asymmetric fashion –
due to the presence of both right- and left- local times at the origin LY (·) ≡ LY (· ; 0+) and
LY−(·) ≡ LY (· ; 0−) in (1.2), (1.3) for the difference Y (·) = X1(·) − X2(·) . We call such colli-
sions “skew-elastic”.

1.1. Preview
Under the conditions of (1.5), the system of equations (1.2), (1.3) will be shown in section 4 to
admit a weak solution, which is unique in the sense of the probability distribution; cf. Theorem
4.1. Using a common terminology: under the conditions of (1.5), the system of equations (1.2),
(1.3) is well posed.

A crucial rôle in establishing this result will be played by the properties of the difference
Y (·) = X1(·)−X2(·) , for which we show that

W (t) := Y (t)− (x1 − x2) + λ

∫ t

0

sgn
(
Y (s)

)
ds− 2

(
2α− 1

)
L̂Y (t) , 0 ≤ t <∞

is standard Brownian motion W (·) in the notation of (1.1), (1.5). To put a little differently: we
identify this difference Y (·) = X1(·) − X2(·) as a so-called Skew Brownian Motion with Bang-
Bang drift, a process that we study in detail in Section 6.

Similarly, recalling the notation of (1.4) and setting

β :=
η (ζ1 + ζ2) + ζ(η1 + η2)

2 (η + ζ)
,

we identify the process

V (t) := X1(t) +X2(t)− (x1 + x2)− (g − h) t− 2 (1− β) L̂Y (t) , 0 ≤ t <∞

as another standard Brownian motion, whose cross-variation with the Brownian motion W (·) is

〈V,W 〉(·) = 〈V, Y 〉(·) = γ

∫ ·

0

sgn
(
Y (t)

)
dt , γ := ρ2 − σ2 .

These identifications allow us then to represent the motions X1(·) , X2(·) of the individual parti-
cles in the form

X1(t) = x1 + µ t+ ρ2
(
Y +(t)− y+

)
− σ2

(
Y −(t)− y−

)
+
(
1− β − γ

)
L̂Y (t) + ρ σ Q(t) ,

X2(t) = x2 + µ t− σ2
(
Y +(t)− y+

)
+ ρ2

(
Y −(t)− y−

)
+
(
1− β − γ

)
L̂Y (t) + ρ σ Q(t) ;

here Q(·) is yet another standard Brownian motion, independent of the difference Y (·) = X1(·)−
X2(·) , and

µ = g ρ2 − hσ2 .

This way we construct a weak solution to the system of equations (1.2), (1.3), and also show that
uniqueness in distribution holds for it.

Always under the conditions of (1.5), the system of equations (1.2), (1.3) is shown in section 4
actually to admit a pathwise unique, strong solution; cf. Theorem 4.2. Here we refine the LE GALL

3



[15] [16] methodology, that we used in the recent work FERNHOLZ ET AL. [7] to establish path-
wise uniqueness for a generalization of the perturbed TANAKA equation of PROKAJ [26].

In fact, the conditions in (1.5) turn out to be not just sufficient but also necessary for the well-
posedness of the system (1.2), (1.3); cf. Proposition 6.1. As we shall see in Remarks 3.1 and 3.2,
this system admits no solution in the case η = −ζ 6= 0 ; whereas it has lots of solutions, i.e.,
uniqueness in distribution fails for the system of equations (1.2) and (1.3), when η = ζ = 0 .
Finally, if we do have η + ζ 6= 0 yet (1.5) fails because α /∈ [0, 1] , it is seen in Remark 6.1 that
the system (1.2), (1.3) once again fails to admit a solution.

Section 5 discusses some special configurations of the parameters ηi, ζi (i = 1, 2) in (1.2),
(1.3) that give rise to some rather interesting structure. We see, in particular in the non-degenerate
case ρ σ > 0 , that when β = 0 (respectively, β = 2 ), the trajectory X1(·) ∨ X2(·) of the
“leader” (respectively, X1(·)∧X2(·) of the “laggard”) is Brownian motion with drift, with perfect
reflection on the trajectory X1(·) ∧ X2(·) of the “laggard” (respectively, X1(·) ∨ X2(·) of the
“leader”), which is then another, independent Brownian motion with drift.

Section 6 develops the theory and properties of the Skew Brownian Motion with Bang-Bang
drift. Finally, Section 7 uses these properties to compute the transition probabilities and the time-
reversal of the planar diffusion (X1(·), X2(·)) .

1.2. Extant Work and Open Questions
The study of multidimensional stochastic differential equations that involve a local time supported
on a smooth hypersurface starts with the work of ANULOVA [1] and PORTENKO [22] [23] [24]
[25]. To the best of our knowledge, systems of stochastic equations of the type

Xi(·) = xi +Bi(·) +
∑
j 6=i

qij L̂
Xi−Xj(·) , i = 1, · · · , n (1.6)

for a suitable array of real constants (qij)1≤i,j≤n , with B1(·), · · · , Bn(·) independent standard
Brownian motions, were studied first by SZNITMAN & VARADHAN [29]. In fact, these authors
consider the more general model

X(t) = x+B(t) +
N∑
k=1

qk L̂
nk·X(t) , 0 ≤ t <∞ , (1.7)

where X(·) := (X1(·), . . . , Xn(·))′ , B(·) := (B1(·), · · · , Bn(·))′ is Brownian motion in Rn ,
x ∈ Rn , the unit column vectors nk generate pairwise distinct hyperplanes, and the column
vectors qk satisfy the orthogonality conditions qk · nk = 0 for k = 1, . . . , N . When g =
h = 0 and σ = ρ , it can be verified – using the relationships (3.16) between the symmetric
local time and the right local time – that the system (1.2)-(1.3) is equivalent to the model (1.7) with
parameters n = 2 , N = 1 ,

n1 := (1,−1)′ /
√

2 , and q1 :=
(
α(1−ζ1)+(1−η1)(1−α) , α(1−ζ2)+(1−η2)(1−α)

)′
.

The orthogonality conditions amount then to η = ζ . Thus, we can apply the results of SZNITMAN

& VARADHAN [29], if g = h = 0 , σ = ρ , η = ζ in our system (1.2)-(1.3).
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There are rather obvious similarities, as well as differences, between the system (1.6) and that
of (1.2), (1.3). In particular, it would be very interesting to extend the results of this paper to
systems of stochastic differential equations of the type

Xi(·) = xi +
n∑
k=1

∫ ·

0

δk 1{Xi(t)=X(k)(t)} dt +
n∑
k=1

∫ ·

0

σk 1{Xi(t)=X(k)(t)} dBi(t)

+
∑
j 6=i

(
q+
ij L

Xi−Xj(·) + q−ij L
Xj−Xi(·)

)
, i = 1, · · · , n (1.8)

for an arbitrary number n ∈ N of particles, with x1, · · · , xn and δ1, · · · , δn given real constants,
with σ1, · · · , σn given positive constants, with suitable arrays (q±ij )1≤i,j≤n of real constants, the
“descending order statistics” notation

max
1≤j≤n

Xj(t) =: X(1)(t) ≥ X(2)(t) ≥ · · · ≥ X(n−1)(t) ≥ X(n)(t) := min
1≤j≤n

Xj(t) ,

and lexicographic breaking of ties. This system (1.8) exhibits both features of rank-dependent
characteristics and skew-elastic collisions that are manifest in (1.2), (1.3), but involves several
particles rather than just two.

2. On Semimartingale Local Time

Let us recall the notion of a continuous, real-valued semimartingale

X(·) = X(0) +M(·) + C(·) , (2.1)

where M(·) is a continuous local martingale and C(·) a continuous process of finite first variation
such that M(0) = C(0) = 0 . The local time LX(t; ξ) accumulated at a given “site” ξ ∈ R over
the time-interval [0, t] by this process, is

LX(t; ξ) := lim
ε↓0

1

2 ε

∫ t

0

1{ξ≤X(s)<ξ+ε} d〈X〉(s)

=
(
X(t)− ξ

)+ −
(
X(0)− ξ

)+ −
∫ t

0

1{X(s)>ξ} dX(s) , (2.2)

where 〈X〉(·) ≡ 〈M〉(·) . For every fixed ξ ∈ R this defines a nondecreasing, continuous and
adapted process LX(· ; ξ) which is flat off the set {t ≥ 0 : X(t) = ξ} , namely∫ ∞

0

1{X(t)6=ξ} dLX(t; ξ) = 0 ; and we have also the property
∫ ∞

0

1{X(t)=ξ} d〈X〉(t) = 0 .

(2.3)
On the other hand, for each fixed T ∈ (0,∞) the mapping ξ 7→ LX(T ; ξ ) is almost surely
RCLL (Right-Continuous on [0,∞), with Limits from the Left on (0,∞)) paths, and has jumps of
size

LX(T ; ξ)− LX(T ; ξ−) =

∫ T

0

1{X(t)=ξ} dX(t) =

∫ T

0

1{X(t)=ξ} dC(t) . (2.4)
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We shall employ also the notation

L̂X(T ; ξ) :=
1

2

(
LX(T ; ξ) + LX(T ; ξ−)

)
(2.5)

for the so-called “symmetric local time" accumulated at the site ξ over the time interval [0, T ] .
For these local times we prefer to use the simpler notation

LX(·) ≡ LX(· ; 0) , LX− (·) ≡ LX(· ; 0−) , L̂X(·) ≡ L̂X(· ; 0) (2.6)

when we evaluate them at the origin ξ = 0 , and note

LX− (·) = L−X(·) = lim
ε↓0

1

2 ε

∫ ·

0

1{0≥X(t)>−ε} d〈X〉(t) . (2.7)

Finally, we recall the occupation time density formulae∫ ·

0

h(X(t)) d〈X〉(t) = 2

∫
R
LX(· ; ξ)h(ξ) dξ = 2

∫
R
L̂X(· ; ξ)h(ξ) dξ , (2.8)

valid for every Borel measurable function h : R→ [0,∞) , as well as the ITÔ-TANAKA formulae

f(X(·)) = f(X(0)) +

∫ ·

0

D−f(X(t)) dX(t) +

∫
R
LX(· ; ξ) f ′′(dξ) , (2.9)

f(X(·)) = f(X(0))+
1

2

∫ ·

0

(
D+f(X(t))+D−f(X(t))

)
dX(t)+

∫
R
L̂X(· ; ξ) f ′′(dξ) . (2.10)

Here f : R → R is the difference of two convex functions, D±f(·) denote its derivatives from
left and right, and f ′′(·) denotes its second derivative measure.

2.1. Tanaka Formulae
For a continuous, real-valued semimartingale X(·) as in (2.1), and with the conventions

sgn (x) := 1(0,∞)(x)− 1(−∞,0)(x) , sgn (x) := 1(0,∞)(x)− 1(−∞,0](x) , x ∈ R (2.11)

for the symmetric and the left-continuous versions of the signum function, we obtain from (2.9),
(2.10) the TANAKA formulae

|X(·)− ξ| = |X(0)− ξ|+
∫ ·

0

sgn
(
X(t)− ξ

)
dX(t) + 2LX(· ; ξ) (2.12)

= |X(0)− ξ|+
∫ ·

0

sgn
(
X(t)− ξ

)
dX(t) + 2 L̂X(· ; ξ) . (2.13)

Applying (2.12) with ξ = 0 to the continuous, nonnegative semimartingale |X(·)| , then compar-
ing with the expression of (2.12) itself, we obtain the companion

2LX(·)− L|X|(·) =

∫ ·
0

1{X(t)=0} dX(t) =

∫ ·
0

1{X(t)=0} dC(t) (2.14)

of the property (2.4). For the theory that undergirds these results we refer, for instance, to KARATZAS

& SHREVE [13], section 3.7.
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3. Analysis

Let us suppose that such a probability space as stipulated in section 1 has been constructed, and
on it a pair B1(·) , B2(·) of independent standard Brownian motions, as well as two continuous,
nonnegative semimartingales X1(·), X2(·) such that the dynamics (1.2)-(1.3) are satisfied. We
import the notation of FERNHOLZ ET AL. [7] : in addition to (1.1), we set

ν = g − h , y = x1 − x2 , z := x1 + x2 > 0 , r1 = x1 ∨ x2 , r2 = x1 ∧ x2 , (3.1)

and introduce the difference and the sum of the two component processes, namely

Y (·) := X1(·)−X2(·) , Z(·) := X1(·) +X2(·) . (3.2)

3.1. Auxiliary Brownian Motions
We introduce also the two planar Brownian motions

(
W1(·),W2(·)

)
and

(
V1(·), V2(·)

)
, given

respectively by

W1(·) :=

∫ ·
0

1{Y (t)>0} dB1(t)−
∫ ·

0

1{Y (t)≤0} dB2(t) , (3.3)

W2(·) :=

∫ ·
0

1{Y (t)≤0} dB1(t)−
∫ ·

0

1{Y (t)>0} dB2(t) (3.4)

and

V1(·) :=

∫ ·
0

1{Y (t)>0} dB1(t) +

∫ ·
0

1{Y (t)≤0} dB2(t) , (3.5)

V2(·) :=

∫ ·
0

1{Y (t)≤0} dB1(t) +

∫ ·
0

1{Y (t)>0} dB2(t) . (3.6)

Finally, we construct the Brownian motions W (·), V (·) , Q(·) and W [(·) , V [(·) , U [(·) as

W (·) := ρW1(·) + σW2(·) , V (·) := ρ V1(·) + σ V2(·) , Q(·) := σ V1(·) + ρ V2(·) , (3.7)

W [(·) := ρW1(·)−σW2(·) , V [(·) := ρ V1(·)−σ V2(·) , U [(·) := σW1(·)−ρW2(·) ; (3.8)

we note the independence of Q(·) and W (·) , the independence of Q(·) and V [(·) , and observe
the intertwinements

Vj(·) = (−1)j+1

∫ ·

0

sgn
(
Y (t)

)
dWj(t) (j = 1, 2) , V [(·) =

∫ ·

0

sgn
(
Y (t)

)
dW (t) (3.9)

and
V (·) =

∫ ·

0

sgn
(
Y (t)

)
dW [(t) , Q(·) =

∫ ·

0

sgn
(
Y (t)

)
dU [(t) . (3.10)
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3.2. The Difference and the Sum
After this preparation, we observe that the difference Y (·) and the sum Z(·) from (3.2) satisfy,
respectively, the stochastic integral equation

Y (·) = y − λ
∫ ·

0

sgn
(
Y (t)

)
dt+ (1− ζ)LY (·)− (1− η)LY−(·) +W (·) (3.11)

which involves both the right- and the left- local time at the origin of its solution process Y (·) ,
and the identity

Z(t) = z + ν t+ V (t) +
(
1− ζ

)
LY (t) +

(
1− η

)
LY−(t) , 0 ≤ t <∞ . (3.12)

We have used here the notation of (1.1), (3.1), (1.4), as well as

ζ :=
ζ1 + ζ2

2
, η :=

η1 + η2

2
. (3.13)

We note from (2.3) and (3.11) that Y (·) is a continuous semimartingale with∫ ∞
0

1{Y (t)=0} dt =

∫ ∞
0

1{Y (t)=0} d〈Y 〉(t) = 0 , a.s., (3.14)

and that on the strength of (2.4), (2.3) we have

LY (· ; 0)− LY (· ; 0−) =

∫ ·

0

1{Y (t)=0}
(
(1− ζ) dLY (t; 0)− (1− η) dLY (t; 0−)

)
= (1− ζ)LY (· ; 0)− (1− η)LY (· ; 0−)

or equivalently
ζ LY (·) = η LY−(· ) . (3.15)

From this relationship and (2.3)-(2.5), (2.14) we obtain

2 L̂Y (·) = L|Y |(·) and LY (·) = αL|Y |(·) , LY−(·) = (1− α)L|Y |(·) , (3.16)

where we introduce as in (1.5) the “skewness parameter"

α :=
η

η + ζ
. (3.17)

• With this notation, and recalling (3.14) and (3.16), the equation (3.11) takes the form

Y (·) = y − λ
∫ ·

0

sgn
(
Y (t)

)
dt + 2

(
2α− 1

)
L̂Y (·) +W (·) (3.18)

of the equation for a Skew Brownian Motion with Bang-Bang drift (Skew Bang-Bang Brownian
Motion, or SBBBM for short). This is a very close relative of the Skew Brownian motion, that was
introduced by ITÔ & MCKEAN [10], [11] and was furhter studied by WALSH [30], HARRISON &
SHEPP [9] ; see LEJAY [17] for a comprehensive survey.
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The diffusion process Y (·) of (3.18) is studied in detail in section 6. It is a strong MARKOV

and FELLER process, whose transition probabilities can be computed explicitly; see (6.13)-(6.15)
below. In particular, it is shown in section 6 that, for 0 ≤ α ≤ 1 , the stochastic equation (3.18)
has a pathwise unique, strong solution and that the filtration identities

FY (t) = FW (t) , ∀ t ∈ [0,∞) (3.19)

hold. Here and in what follows, given a process Ξ : [0,∞) × Ω → Rd with values in some
Euclidean space and RCLL paths, we shall use the convention

FΞ = {FΞ(t)}0≤t<∞

for the smallest filtration to which Ξ(·) is adapted that satisfies the “usual conditions” of right
continuity and augmentation by sets of measure zero.

• Similarly, and with the notation of (3.17), the expression (3.12) takes the form

X1(t) +X2(t) = Z(t) = z + ν t+ V (t) + 2
(
1− β

)
L̂Y (t) , 0 ≤ t <∞ (3.20)

where, as in subsection 1.1, we set

β :=
η ζ + ζ η

η + ζ
. (3.21)

Remark 3.1. It is clear from (3.15) that the equation (3.11) can be written as

Y (·) = y − λ
∫ ·

0

sgn
(
Y (t)

)
dt+ LY (·)− LY−(·) +W (·) . (3.22)

To wit: skew Brownian motion with bang-bang drift solves the equation (3.22), for any value
α ∈ [0, 1] of its skewness parameter. We conclude that uniqueness in distribution fails for this
equation (3.22), thus also for the equation (3.11) that governs the difference Y (·) = X1(·)−X2(·)
when η = ζ = 0 .

In particular, uniqueness in distribution cannot possibly hold for the system (1.2), (1.3) in this
case η = ζ = 0 .
Remark 3.2. When η = −ζ 6= 0 we get LY (·) + LY−(·) ≡ 0 from (3.15), thus

LY (·) ≡ LY−(·) ≡ 0 , (3.23)

and the equation (3.11) takes the form of Brownian motion with bang-bang drift

Y (·) = y − λ
∫ ·

0

sgn
(
Y (t)

)
dt+ W (·) . (3.24)

This diffusion process was studied in detail by KARATZAS & SHREVE [12], who computed its
transition probabilities and the joint distribution of the triple

(
Y (t), LY (t),

∫ t
0
1{Y (s)>0} ds

)
. This

diffusion does accumulate local time at the origin: indeed, on the strength of (2.4), (2.3), we have

LY (·)− LY−(·) =

∫ ·

0

1{Y (t)=0} dY (t) = λ

∫ ·

0

1{Y (t)=0} dt = λ

∫ ·

0

1{Y (t)=0} d〈W 〉(t) = 0

almost surely, but also P(LY (t) = LY−(t) > 0) > 0 for every t ∈ (0,∞) ; this contradicts (3.23).
In fact, we have P(LY (t) = LY−(t) > 0) = 1 for y = 0 .

We conclude that the equation (3.11) for the difference Y (·) = X1(·)−X2(·) has no solution
in the case η = −ζ 6= 0 . Thus, the system (1.2), (1.3) cannot possibly have a solution in this case.
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3.3. Auxiliary Systems
From the equations of (3.11), (3.12) and using the notation in (3.2)-(3.7), we obtain a system of
stochastic differential equations

dX1(t) =
(
g 1{X1(t)≤X2(t)} − h1{X1(t)>X2(t)}

)
dt + ρ1{X1(t)>X2(t)} dW1(t)

+ σ 1{X1(t)≤X2(t)} dW2(t) +
1− ζ1

2
dLX1−X2(t) +

1− η1

2
dLX2−X1(t) , (3.25)

dX2(t) =
(
g 1{X1(t)>X2(t)} − h1{X1(t)≤X2(t)}

)
dt − ρ1{X1(t)≤X2(t)} dW1(t)

− σ 1{X1(t)>X2(t)} dW2(t) +
1− ζ2

2
dLX1−X2(t) +

1− η2

2
dLX2−X1(t) , (3.26)

quite similar to that of (1.2), (1.3), but now driven by the planar Brownian motion (W1(·),W2(·)) .
In a totally analogous manner, we obtain also the system

dX1(t) =
(
g 1{X1(t)≤X2(t)} − h1{X1(t)>X2(t)}

)
dt + ρ1{X1(t)>X2(t)} dV1(t)

+ σ 1{X1(t)≤X2(t)} dV2(t) +
1− ζ1

2
dLX1−X2(t) +

1− η1

2
dLX2−X1(t) , (3.27)

dX2(t) =
(
g 1{X1(t)>X2(t)} − h1{X1(t)≤X2(t)}

)
dt + ρ1{X1(t)≤X2(t)} dV1(t)

+ σ 1{X1(t)>X2(t)} dV2(t) +
1− ζ2

2
dLX1−X2(t) +

1− η2

2
dLX2−X1(t) , (3.28)

now driven by the planar Brownian motion (V1(·), V2(·)) .

3.4. Skew Representations
In light of the TANAKA formula (2.13), of the equation (3.18) for the semimartingale Y (·) , and of
the last intertwinement in (3.9), we represent now the size of the “gap” between X1(t) and X2(t)
as ∣∣Y (t)

∣∣ = |y| − λ t+ V [(t) + 2 L̂Y (t) (3.29)

= |y| − λ t+ V [(t) + L̂ |Y |(t) , 0 ≤ t <∞ .

With the help of (3.9), (3.16), let us write the first Brownian motion in (3.8) as

W [(·) = γ W (·) + δ U [(·) , where γ := ρ2 − σ2 , δ :=
√

1− γ2 = 2 ρ σ .

With this notation, and with the help of (3.10), the Brownian motion V (·) in (3.7) takes the form

V (t) = γ V [(t) + δ Q(t) = γ
(
|Y (t)| − |y|+ λ t− 2 L̂Y (t)

)
+ δ Q(t) , 0 ≤ t <∞ .

We recall here from (3.10) the standard Brownian motion Q(·) which, being independent of W (·) ,
is also independent of the process Y (·) in light of (3.19).

10



In conjunction with X1(t) − X2(t) = Y (t) and the representation (3.20) for X1(t) + X2(t),
and with the notation

µ :=
1

2

(
ν + λ γ

)
= g ρ2 − hσ2 ,

we obtain from this expression the skew representations for the component processes themselves

X1(t) = x1 + µ t+ ρ2
(
Y +(t)− y+

)
− σ2

(
Y −(t)− y−

)
+
(
1− β − γ

)
L̂Y (t) + ρσQ(t) (3.30)

X2(t) = x2 + µ t− σ2
(
Y +(t)− y+

)
+ ρ2

(
Y −(t)− y−

)
+
(
1− β − γ

)
L̂Y (t) + ρσQ(t) (3.31)

in terms of the paths of the skew Brownian motion process Y (·) with bang-bang drift, and of the
independent Brownian motion Q(·) . In particular, this shows that uniqueness in distribution holds
for the system of stochastic differential equations (1.2), (1.3).

Similar reasoning shows that uniqueness in distribution holds also for each of the systems
(3.25), (3.26) and (3.27), (3.28).

Remark 3.3. It is clear from (3.29) that the absolute value of the skew Brownian motion with
bang-bang drift in (3.18), for any value α ∈ [0, 1] of the skewness parameter, is Brownian motion
with drift −λ and reflection at the origin. Arguing as in WALSH [30] , Proposition 1, one can
conclude that every diffusion process Y (·) , for which |Y (·)| is Brownian motion with drift −λ
and reflected at the origin, is a skew Brownian motion with bang-bang drift.

4. Synthesis

We reverse now the steps of the analysis in section 3. Let us start with a filtered probability space
(Ω,F,P) , F = {F(t)}0≤t<∞ and with two independent, standard Brownian motion W1(·) , W2(·)
on it; we shall assume F ≡ F (W1,W2) , i.e., that the F is the smallest filtration satisfying the usual
conditions, to which the planar Brownian motion (W1(·), W2(·)) is adapted.

With given real constants ζ1 , ζ2 , η1 , η2 and nonnegative constants g , h , ρ , σ that satisfy
(1.1) and (1.5), with a given vector (x1, x2) ∈ R2 , and with the notation of (3.1), we construct the
pairs of independent Brownian motions

W (·) : = ρW1(·) + σW2(·) , U [(·) : = σW1(·) − ρW2(·) (4.1)

and

U(·) : = σW1(·) + ρW2(·) , W [(·) : = ρW1(·) − σW2(·) (4.2)

as in (3.8), (3.7). Clearly, F (W1,W2) ≡ F (W,U[) ≡ F (U,W [) .
We construct also the pathwise unique, strong solution Y (·) of the stochastic equation (3.18)

driven by the Brownian motion W (·) introduced in (4.1). With the process Y (·) thus in place,
we introduce by analogy with (3.9) the independent Brownian motions

V1(·) =

∫ ·

0

sgn
(
Y (t)

)
dW1(t) , V2(t) = −

∫ ·

0

sgn
(
Y (t)

)
dW2(t) , (4.3)
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and by analogy with (3.7), (3.8) the two additional pairs of independent Brownian motions

V (·) : = ρ V1(·) + σ V2(·) , Q [(·) : = σ V1(·) − ρ V2(·) (4.4)

and

Q(·) : = σ V1(·) + ρ V2(·) , V [(·) : = ρ V1(·) − σ V2(·) . (4.5)

• We introduce also the continuous martingales

M1(·) :=

∫ ·

0

(
ρ1{Y (t)>0} dW1(t) + σ 1{Y (t)≤0} dW2(t)

)
(4.6)

=

∫ ·

0

(
ρ1{Y (t)>0} dV1(t) + σ 1{Y (t)≤0} dV2(t)

)
,

M2(·) := −
∫ ·

0

(
ρ1{Y (t)≤0} dW1(t) + σ 1{Y (t)>0} dW2(t)

)
(4.7)

=

∫ ·

0

(
ρ1{Y (t)≤0} dV1(t) + σ 1{Y (t)>0} dV2(t)

)
,

with 〈M1,M2〉 (·) ≡ 0 and quadratic variations

〈M1〉(·) =

∫ ·

0

(
ρ2 1{Y (t)>0}+σ

2 1{Y (t)≤0}
)
dt , 〈M2〉(·) =

∫ ·

0

(
ρ2 1{Y (t)≤0}+σ

2 1{Y (t)>0}
)
dt .

There exist then independent Brownian motions B1(·) , B2(·) on our filtered probability space
(Ω,F,P) , F = {F(t)}0≤t<∞ , so the continuous martingales of (4.6), (4.7) are cast in their DOOB

representations as

M1(·) =

∫ ·

0

(
ρ1{Y (t)>0}+σ 1{Y (t)≤0}

)
dB1(t) , M2(·) =

∫ ·

0

(
ρ1{Y (t)≤0}+σ 1{Y (t)>0}

)
dB2(t)

(4.8)
in terms of independent Brownian motions B1(·) , B2(·) ; for instance, by taking

B1(·) =

∫ ·

0

(
1{Y (t)>0} dW1(t) + 1{Y (t)≤0} dW2(t)

)
, (4.9)

B2(·) = −
∫ ·

0

(
1{Y (s)≤0} dW1(t) + 1{Y (t)>0} dW2(t)

)
. (4.10)

• Finally, we introduce the continuous, F−adapted processes

X1(·) := x1 +

∫ ·

0

(
g 1{Y (t)≤0} − h1{Y (t)>0}

)
dt + M1(·) +

1− ζ1

2
LY (·) +

1− η1

2
LY−(·)

(4.11)
and

X2(·) := x2 +

∫ ·

0

(
g 1{Y (t)>0} − h1{Y (t)≤0}

)
dt + M2(·) +

1− ζ2

2
LY (·) +

1− η2

2
LY−(·) .

(4.12)
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It is now easy to check X1(·)−X2(·) = Y (·) ; and from this, that the vector process (X1(·), X2(·))
solves the system (1.2)-(1.3), as well as the systems (3.25)-(3.26), (3.27)-(3.28), and

dX1(t) = 1{X1(t)≤X2(t)}
(
g dt+σ dB1(t)

)
+ 1{X1(t)>X2(t)}

(
−h dt+ ρ dB1(t)

)
+κ1 dL|X1−X2|(t)

(4.13)
dX2(t) = 1{X1(t)>X2(t)}

(
g dt+σ dB2(t)

)
+ 1{X1(t)≤X2(t)}

(
−h dt+ ρ dB2(t)

)
+κ2 dL|X1−X2|(t)

(4.14)
where 2κj := α (1− ζj) + (1−α) (1−ηj) , j = 1, 2 . It is also straightforward to verify the skew
representations of (3.30), (3.31).

4.1. Ranks
Let us introduce explicitly the ranked versions (leader and laggard, respectively)

R1(·) := X1(·) ∨X2(·) , R2(·) := X1(·) ∧X2(·) (4.15)

of the components of the vector process (X1(·), X2(·)) constructed in (4.11), (4.12). From (3.12)
and (3.29), it is rather clear that we have

R1(t) +R2(t) = X1(t) +X2(t) = r1 + r2 + ν t+ V (t) +
(
1− β

)
L |Y |(t) , 0 ≤ t <∞

R1(t)−R2(t) =
∣∣X1(t)−X2(t)

∣∣ =
∣∣Y (t)

∣∣ = |y| − λ t+ V [(t) + L |Y |(t) , (4.16)

and these representations lead to the expressions

R1(t) = r1 − h t+ ρ V1(t) +
(
1− (β/2)

)
LR1−R2(t) , 0 ≤ t <∞ (4.17)

R2(t) = r2 + g t+ σ V2(t)− (β/2)LR1−R2(t) , 0 ≤ t <∞ . (4.18)

A few remarks are in order. The equations (4.17), (4.18) identify the processes V1(·) and
V2(·) of (3.5), (3.6) as the independent Brownian motions associated with the diffusive motion
of the ranked particles, the “leader” R1(·) and the “laggard” R2(·) , respectively; whereas the
independent Brownian motions B1(·) in (1.2) and B2(·) in (1.3) are associated with the specific
“names” (indices, or identities) of the individual particles. On the other hand, with the help of the
theory of the SKOROKHOD reflection problem (e.g., KARATZAS & SHREVE [13] , page 210), we
obtain from (4.16), (2.3) the identification of the “collision local time”

LR1−R2(t) = L |Y |(t) = max
0≤s≤t

(
− |y|+ λ s− V [(s)

)+

, 0 ≤ t <∞ . (4.19)

Let us also observe that, in the non-degenerate case ρ σ > 0 , the equations (4.16)-(4.19) and the
second equation in (4.5) give the filtration comparisons

F (V1,V2)(t) = F (R1,R2)(t) , 0 ≤ t <∞ , (4.20)

FV [(t) = F |Y |(t) $ FY (t) , 0 < t <∞ , (4.21)

where the inclusion is strict, due to the fact that the process Y (·) changes its sign with positive
probability during any time-interval [0, t] with t > 0 .
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4.2. Filtration Comparisons, Weak and Strong Solutions
We have the following straightforward analogues of Propositions 4.1, 4.2 and of Theorems 4.1, 4.2
in FERNHOLZ ET AL. [7].

Proposition 4.1. In the degenerate case σ = 0 , thus ρ = 1 in light of (1.1), we have the relations

F (R1,R2)(t) = FV (t) = F |X1−X2|(t) $ FX1−X2(t) = FW (t) = F (X1,X2)(t) (4.22)

for every 0 < t <∞ , where the inclusion is strict.
In the special case β = 1 of (5.2) we have in addition σ(V (t)) = σ(X1(t) + X2(t)) , thus

also FV (t) = FX1+X2(t) , for every 0 ≤ t <∞ .

Proposition 4.2. In the non-degenerate case ρ σ > 0 , we have for every 0 < t <∞ the filtration
relations

F (V1,V2)(t) = F (R1,R2)(t) = F (|Y |,V )(t) = F (|Y |,Q)(t) (4.23)

$ F (Y,Q)(t) = F (Y,V )(t) = F (W1,W2)(t) = F (X1,X2)(t) ,

where the inclusion is strict.

Theorem 4.1. The system of stochastic differential equations (1.2), (1.3) is well-posed, that is, has
a weak solution which is unique in the sense of the probability distribution. The same is true for
each of the systems of equations (3.25), (3.26) and (3.27), (3.28).

On the other hand, the system of stochastic differential equations (3.25), (3.26) admits a strong
solution, which is therefore pathwise unique; whereas the system (3.27), (3.28) admits no strong
solution.

Theorem 4.2. The system of stochastic differential equations (1.2), (1.3) admits a pathwise unique,
strong solution; in particular, the filtration identity F (B1,B2)(t) = F (X1,X2)(t) holds for all 0 ≤
t <∞ .

Proof. Repeating almost verbatim the arguments in the proof of Theorem 5.1 in FERNHOLZ ET

AL. [7], the question boils down to whether the filtration comparison

FY (t) ⊆ F (B1,B2)(t) , ∀ 0 ≤ t <∞ (4.24)

holds. To decide this issue, we write the equation (3.18) as driven by the pair (B1(·), B2(·)) ; in
other words, we use (3.7) and (3.3), (3.4) to express the skew Brownian motion Y (·) with bang-
bang drift as solution of a stochastic differential equation driven by the planar Brownian motion
(B1(·), B2(·)) . Since this equation does admit a weak solution which is unique in distribution, the
issue is whether this solution is also strong, that is, whether (4.24) holds.

This question is easy to settle in the isotropic case ρ = σ = 1/
√

2 ; then W (·) = (B1(·) −
B2(·))/

√
2 , and the comparison (4.24) follows from the strong solvability of the equation (3.18)

proved in section 6: FY (t) = FW (t) ⊆ F (B1,B2)(t) holds for all 0 ≤ t <∞ , by virtue of (3.19).
In the non-isotropic case ρ 6= σ , we write (3.18) as the extended skew Tanaka equation

Y (t) = y +
ρ− σ√

2

∫ t

0

sgn
(
Y (s)

)
dβ(s)− ρ+ σ√

2
ϑ(t) + 2

(
2α− 1

)
L̂Y (t) , 0 ≤ t ≤ T

(4.25)
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with T ∈ (0,∞) arbitrary but fixed. Here

β(·) :=
β1(·) + β2(·)√

2
, ϑ(·) :=

β1(·)− β2(·)√
2

are given standard, independent Brownian motions after an equivalent change of probability mea-
sure, and

βi(t) := Bi(t)−
λ t

ρ− σ
, 0 ≤ t ≤ T (i = 1, 2) .

• Let us suppose that Y1(·) and Y2(·) are two solutions of the equation (4.25), defined on the
same probability space and with respect to the same, independent standard Brownian motions
B1(·), B2(·) . Following LE GALL (1983), we shall show LY1−Y2(·) ≡ 0 ; we shall then argue that
this implies also Y1(·) ≡ Y2(·) , a.s.

To this end, we consider the difference D(·) := Y1(·)− Y2(·) , as well as the linear combina-
tions

Z(u)(·) := (1− u)Y1(·) + uY2(·) for 0 ≤ u ≤ 1 ;

we introduce also a sequence {fk}k∈N ⊂ C1(R) of continuous and continuously differentiable
functions that converge to f∞(·) := sgn(·) pointwise, and satisfy supk∈N ‖fk‖TV < ∞. Since
lim supk ‖fk‖TV ≤ ‖f∞‖TV obviously holds, this is only possible if f∞(·) is of bounded variation,
and in this case an approximating sequence is easily obtained, e.g., by mollifiers. As in the proof
of Theorem 8.1 of FERNHOLZ ET AL. [7], for every δ > 0 , T > 0 , k ≥ 1 , we establish then

E
[ ∫ T

0

|fk(Y1(s))− fk(Y2(s))|
Y1(s)− Y2(s)

1{Y1(s)−Y2(s)>δ} dt
]
≤ c1 ‖fk‖TV · sup

ξ,u
E
(
2L̂(u)(T, ξ)

)
;

here L̂(u)(T, ξ) is the symmetric local time of Z(u)(·) accumulated at the site ξ ∈ R over the
time interval [0, T ] , and c1 is a constant chosen independently of k, u, δ . Letting k ↑ ∞ and
δ ↓ 0 , we obtain

E
[ ∫ T

0

1

D(t)
1{D(t)>0} d〈D〉(t)

]
≤ 2E

[ ∫ T

0

|f∞(Y1(t))− f∞(Y2(t))|
Y1(t)− Y2(t)

1{D(t)>0} dt
]

≤ 2 c1 ‖f∞‖TV · sup
ξ,u

E
(

2L̂(u)(T, ξ)
)
.

Now the CAUCHY-SCHWARTZ inequality, the ITÔ isometry, and the TANAKA formula (2.13) ap-
plied to Z(u)(·) , allow us to estimate

E
(
2L̂(u)(T ; ξ)

)
≤ E|Z(u)(T )− Z(u)(0)|+

[
E(〈Z(u)〉(T ))

]1/2
+ 2 (2α− 1)

(
uE
(
L̂Y1(T )

)
+ (1− u)E

(
L̂Y2(T )

))
≤ 2

[[
E(〈Z(u)〉(T ))

]1/2
+ 2 (2α− 1)

(
uE
(
L̂Y1(T )

)
+ (1− u)E

(
L̂Y2(T )

))]
.

The last term is bounded uniformly in (ξ, u) , since 〈Z(u)〉(t) ≤ c2 t and E
(
L̂Yi(T )

)
≤ c3 , for

i = 1, 2 and for some constants c2 , c3 that do not depend on (ξ, u) . Thus, we obtain

E
[ ∫ T

0

1

D(t)
1{D(t)>0} d〈D〉(t)

]
<∞ , 0 < T <∞ . (4.26)
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Using Lemma 1.0 of LE GALL [15] (see also Exercise 3.7.12, pages 225-226 in KARATZAS

& SHREVE [13]), we verify that (4.26) gives LD(·) ≡ 0 . By exchanging the rôles of Y1(·) and
Y2(·) , we obtain also L−D(·) = LY2−Y1(·) ≡ 0 , as well as L̂D(·) ≡ 0 . Furthermore, we note that
on the strength of Corollary 2.6 of OUKNINE & RUTKOWSKI [19] this implies that the symmetric
local time L̂M(·) of the maximum

M(·) := Y1(·) ∨ Y2(·) = Y1(·) +
(
Y2(·)− Y1(·)

)+

is given as

L̂M(·) := L̂Y1∨Y2(·) =

∫ ·

0

1{Y2(t)≤0} dL̂Y1(t) +

∫ ·

0

1{Y1(t)<0} dL̂Y2(t) .

We combine now these results with the TANAKA formula, to obtain the dynamics of the maximum

M(·) = y +

∫ ·

0

1{Y1(t)≥Y2(t)} dY1(t) +

∫ ·

0

1{Y1(t)<Y2(t)} dY2(t) + LY2−Y1(·)

= y +
ρ− σ√

2

∫ ·

0

sgn(M(t)) dβ(t)− ρ+ σ

2
ϑ(·) + 2

(
2α− 1

)
L̂M(·) ,

and observe that these are the same as those of (4.25). But uniqueness in distribution holds for the
equation (4.25), so the distribution of the process M(·) is the same as that of Y1(·) ; and of course
we have M(·) ≥ Y1(·) a.s. This implies M(·) ≡ Y1(·) , thus Y1(·) ≡ Y2(·) a.s.

Therefore, the solution to (4.25) is pathwise unique, hence also strong by the theory of YA-
MADA & WATANABE (e.g., KARATZAS & SHREVE [13], pages 308-311).

5. Some Special Cases

When α = 1/2 , that is, η = ζ 6= 0 or equivalently

η1 − η2 = ζ2 − ζ1 6= 2 , (5.1)

the equation (3.18) for the difference Y (·) = X1(·) − X2(·) becomes that of Brownian motion
with bang-bang drift

Y (t) = y − λ
∫ t

0

sgn
(
Y (s)

)
ds+W (t) , 0 ≤ t <∞

as in (3.24). In this special case η = ζ 6= 0 and with σ = ρ , the existence and uniqueness of
(1.2)-(1.3) can be shown also by direct application of Theorem 3.5 of SZNITMAN & VARADHAN

[29] and a GIRSANOV’s change-of-measure, with the aid of the local time relationships (3.16).
On the other hand, when β = 1 or equivalently

η
(
1− ζ

)
= ζ

(
1− η

)
, (5.2)

we observe from (3.20) that the sum X1(·) + X2(·) is just standard Brownian motion with drift
ν = g − h .

Let us single out now, and study, some more interesting special cases.
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5.1. Perfect Reflection for Individual Particles Upon Collision
Suppose α = 1 , or equivalently ζ = 0 and η 6= 0 from (1.5), that is

ζ2 − ζ1 = 2 6= η1 − η2 , (5.3)

and that x1 ≥ x2 . We see then from (3.16) that we have LY−(·) ≡ LX2−X1(·) ≡ 0 , and that the
equation (3.18) becomes

Y (t) = y − λ t+W (t) + LY (t) , 0 ≤ t <∞ .

From the theory of the SKOROKHOD problem (e.g., KARATZAS & SHREVE [13], pages 209-210)
we conclude

LY (t) = max
0≤s≤t

(
− y + λ s−W (s)

)+
, 0 ≤ t <∞

thus Y (·) ≥ 0 , and that strength and pathwise uniqueness hold; for more general results along
these lines see CHITASHVILI & LAZRIEVA [5]. It is also clear from the last two displayed equa-
tions, that the filtration identity FY (t) = FW (t) , 0 ≤ t <∞ in (3.19) also holds.

In this case, then, when the particles collide, the trajectory X1(·) of the first particle bounces
off the trajectory X2(·) of the second particle as if this latter were a perfectly reflecting lower
boundary. We can visualize the situation by saying that, under the conditions of (1.5) and (5.3),
the second particle is “heavy” (unaffected by collisions), whereas the first particle is “light” in that
it bounces off (reflects perfectly) when colliding with the heavy particle.

• The “symmetric” situation obtains for α = 0 , that is ζ 6= 0 and η = 0 or equivalently

ζ2 − ζ1 6= 2 = η1 − η2 ; (5.4)

in this case and again with x1 ≥ x2 , when the two particles collide, the second particle bounces
off the first as if this latter were a perfectly reflecting upper boundary; it is the first particle that is
now “heavy”, and the second that is “light”.

5.2. Frictionless Collision
It follows also from (3.16) that the local times disappear entirely in (1.2) when we have the con-
figuration of parameters (1− ζ1)α + (1− η1)(1− α) = 0 , or equivalently

(1− ζ1) η + (1− η1) ζ = 0 ; (5.5)

in this case the trajectory of the first particle crosses that of the second without “feeling it”, that is,
without being subjected to any local time drag.

Similarly, the second particle crosses the first in the same frictionless manner, that is, the local
times disappear entirely in (1.3), if

(1− ζ2) η + (1− η2) ζ = 0 . (5.6)

• If both (5.5) and (5.6) hold, then all such crossings are completely frictionless. We note that
(5.5) and (5.6) are both satisfied, if and only if

η1 + ζ1 = η2 + ζ2 = 2 (5.7)
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holds. This condition implies η = ζ (so when this common value is nonzero we are in the case
α = 1/2 mentioned at the start of the section), and is obviously satisfied in the special case
η1 = ζ1 = η2 = ζ2 = 1 studied by FERNHOZ ET AL. [7]. However, (5.7) holds also for other
configurations of parameters, for instance ζ1 = η2 = 1/2 , η1 = ζ2 = 3/2 .

The condition (5.7) gives the value β = 1 for the parameter of (3.21); back in (4.17), (4.18),
this implies that the collision local time LR1−R2(·) “gets apportioned equally to the ranks”.

5.3. Elastic Collisions
Beyond these two extremes of perfect reflection and frictionless collision – that is, for all other
configurations of parameters – we have collisions that are “elastic”: neither completely frictionless,
nor perfectly reflecting.

5.4. Brownian motion reflected on an independent Brownian motion
Finally, let us consider the case β = 0 or equivalently η ζ + ζ η = 0 , that is

2
(
ζ1 + ζ2 + η1 + η2

)
=
(
ζ1 + ζ2

) (
η1 − η2

)
−
(
η1 + η2

) (
ζ1 − ζ2

)
(5.8)

in light of (3.21) and (1.4), (3.13). This happens, for instance, when ζ1 = 3/4 , ζ2 = 9/4 ,
η1 = −4/3 , η2 = −8/3 ; in this case we have α = 4/7 and of course β = 0 .

Under the condition (5.8), the laggard in (4.18) feels no pressure (local time drag) from the
leader; it just evolves like Brownian motion with variance σ2 and nonnegative drift. On the other
hand, the leader in (4.17) evolves like an independent Brownian motion with variance ρ2 and
nonpositive drift, reflected off the trajectory of the laggard. Such a process has been studied by
BURDZY & NUALART [4] (see also SOUCALIUC ET AL. [27], SOUCALIUC & WERNER [28]);
here it arises as a special case of the ranked system (4.17), (4.18) for the particles whose motions
are governed by the equations (1.2), (1.3).

We have in this case β = 0 an interesting fusion: the “perfect reflection” we saw in subsection
5.1, and the “frictionless motion” of subsection 5.2, are occurring here simultaneously – not for the
motions of the individual particles, however, but rather for the motions of their ranked versions,
the leader R1(·) and the laggard R2(·) , respectively. To put it a little differently: starting with two
particles that undergo skew-elastic collisions one is able, under the conditions of (1.5) and (5.8),
to “simulate a heavy particle” (the laggard) and a “light” particle (the leader).

• The “reverse” situation obtains when β = 2 or equivalently η ζ + ζ η = 2 (η + ζ) , that is

2
(
ζ1 +ζ2 +η1 +η2

)
= 4

(
4+ζ1−ζ2−η1 +η2

)
+
(
ζ1 +ζ2

)(
η1−η2

)
−
(
η1 +η2

)(
ζ1−ζ2

)
; (5.9)

then it is the trajectory of the laggard (now the “light” particle) that gets reflected off that of the
leader (now the “heavy” particle). This happens, for instance, when ζ1 = 3/2 , ζ2 = 3 , η1 = 7/3 ,
η2 = 1 ; in this case we have α = 4/7 and β = 2 .

5.5. Some Simulations
The pictures (Figures 1-4) that follow present simulations of the processes X1(t) (in black) and
X2(t) (in red) for t ∈ [0, 1] , in black and red, respectively, with drifts g = h = 1 in the
degenerate case ρ = 0 .
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Figure 1: ζ1 = ζ2 = η1 = η2 = 1 ; α = 1/2 , β = 1 .
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Figure 2: ζ1 = 0 , ζ2 = η1 = η2 = 1 ; α = 2/3 , β = 2/3 .
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Figure 3: ζ2 = 2 , ζ1 = η1 = η2 = 1 ; α = 2/3 , β = 4/3 .
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Figure 4: ζ1 = 0 , ζ2 = 2 , η1 = η2 = 1 ; α = 1 , β = 1 .
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6. Skew Brownian Motion with Bang-Bang Drift

We study here the stochastic differential equation (3.18) for the skew Brownian motion with bang-
bang drift

b(y) = −λ sgn(y) , y ∈ R (6.1)

for some given constant λ > 0 , with the notation of (2.11), and with skewness parameter α ∈
[0, 1] . The cases α = 0 and α = 1 have been discussed already in subsection 5.1, so we focus
here on the range 0 < α < 1 .

For this range of values of the skewness parameter, we choose to write the equation (3.18) in
terms of the right-continuous local time of the unknown process at the origin, namely

Y (·) = y0 − λ
∫ ·

0

sgn
(
Y (t)

)
dt+W (·) +

2α− 1

α
LY (·) . (6.2)

This equation is of the more general form

Y (·) = y0 +

∫ ·
0

τ (Y (t)) dW (t) +

∫
R
LY (· , ξ)ν(dξ) , (6.3)

with dispersion τ (y) ≡ 1 and measure

ν(dy) = 2 b(y) dy +
2α− 1

α
δ0(dy)

with b(y) = −λ sgn(y) , y ∈ R as in (6.1) above, and with δ0(·) the Dirac mass at the origin.
We shall deal with the equation (6.2) using a direct methodology that removes the parts of finite

variation, that is, both the drift and the local time, and “reduces” (6.2) to a stochastic differential
equation in natural scale

Z(·) = p(y0) +

∫ ·

0

s
(
Z(t)

)
dW (t) (6.4)

for appropriate functions p(·) and s(·) . This approach was pioneered for the skew Brownian
motion itself (i.e., with λ = 0 ) by HARRISON & SHEPP [9] , and for more general equations of
the form (6.3) for suitable measurable functions τ (·) and measures ν on B(R) , by LE GALL

[15] [16] and ENGELBERT & SCHMIDT [6]. The results in these works do not seem to cover the
equation (6.2), but those in BASS & CHEN [3] do; we have preferred to detail a direct construction
which is, in our opinion at least, quite simpler.

In this spirit, let us introduce the scale function

p(y) =
1− α

2λ

(
e 2λy − 1

)
, y > 0 ; p(0) = 0 ; p(y) =

α

2λ

(
1− e−2λy

)
, y < 0 .

This has left-continuous derivative

p′(y) = (1− α) e 2λy 1(0,∞)(y) + α e−2λy 1(−∞,0](y) , y ∈ R

which is bounded away from zero, and second derivative measure

p′′(dy) = −2 b(y) p′(y) dy +
(
1− 2α

)
δ0(dy) .
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Likewise, we introduce the inverse

q(z) =
1

2λ
log

(
1 +

2λ z

1− α

)
, z > 0 ; q(0) = 0 ; q(z) =

−1

2λ
log

(
1− 2λ z

α

)
, z < 0

of the function p(·) , as well as its left-continuous derivative and its second-derivative measure

q′(z) =
(
1− α + 2λ z

)−1
1(0,∞)(z) +

(
α− 2λ z

)−1
1(−∞,0](z) ,

q′′(dz) = 2 b(z)
(
q′(z)

)2
dz +

2α− 1

α (1− α)
δ0(dz) .

Analysis: Assume that a solution to (6.2) has been constructed; in particular, the process Y (·)
is then a continuous semimartingale for which (3.14) holds a.s. We look at the process Z(·) :=
p(Y (·)) and apply the ITÔ-TANAKA rule

dZ(t) = p′(Y (t)) dY (t) + d

∫
R
LY (t, y) p′′(dy)

of (2.9), to obtain

dZ(t) = p′(Y (t))
[
b(Y (t)) dt+ dW (t) +

2α− 1

α
dLY (t)

]
− d

∫
R

2 b(y) p′(y)LY (t, y) dy + (1− 2α) dLY (t) = p′
(
q(Y (t))

)
dW (t) .

We have used here the occupation-time-density formula (2.8), and the property p′(0) = α . Now
the piecewise-linear function

s(z) := p′
(
q(z)

)
=

1

q′(z)
=
(
1−α+2λ z

)
1(0,∞)(z)+

(
α−2λ z

)
1(−∞,0](z) , z ∈ R (6.5)

is bounded away from the origin, so the process Z(·) is the pathwise unique, strong solution of the
stochastic differential equation (6.4) for this new dispersion function (NAKAO [18]); and because
Y (·) and Z(·) are bijections of each other, we have again the filtration identities

FZ(t) = FY (t) = FW (t) , 0 ≤ t <∞ . (6.6)

Synthesis: Consider the strong solution Z(·) of the stochastic differential equation (6.4) with
the new dispersion function of (6.5), and define the process Y (·) := q(Z(·)) . Since dZ(t) =
s(Z(t)) dW (t) and d〈Z〉(t) = s2(Z(t)) dt , this process satisfies almost surely∫ ∞

0

1{Z(t)=0} dt =

∫ ∞
0

1{Z(t)=0}
d〈Z〉(t)
s2(Z(t))

≤
(

min(α, 1−α)
)−2

∫ ∞
0

1{Z(t)=0} d〈Z〉(t) = 0 ,

and we apply the ITÔ-TANAKA rule to obtain

dY (t) = q′(Z(t)) dZ(t) + d

∫
R
LZ(t, z) q′′(dz) .
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On the strength of the occupation-time-density formula and s(·) q′(·) ≡ 1 , this gives

dY (t) = dW (t) + d

∫
R

2 b(y)
(
q′(y)

)2
LY (t, y) dy +

2α− 1

α (1− α)
dLZ(t)

= dW (t) + b(Y (t))
(
q′(Y (t))

)2
s2(Y (t)) dt +

2α− 1

α (1− α)
dLZ(t)

= dW (t) + b(Y (t)) dt +
2α− 1

α
dLY (t) ,

that is, the equation (6.2) of the skew Brownian motion with bang-bang drift for the process Y (·) .
We have used here the comparison of the local times at the origin for these two processes:

LZ(· ) = (1− α)LY (·) . (6.7)

This last identity (6.7) can be justified as follows: We start by noting

LZ(·) = lim
ε↓0

1

2 ε

∫ ·
0

1{0<Z(t)<ε} d〈Z〉(t) = lim
ε↓0

1

2 ε

∫ ·
0

1{0<Y (t)<q(ε)}
(
p′(Y (t))

)2
dt

= (1− α) · lim
ε↓0

1− α
2 ε

∫ ·
0

1{0<Y (t)<q(ε)}

(
p′(Y (t))

1− α

)2

dt .

On the event {0 < Y (t) < q(ε)} we have

1 ≤ p′(Y (t))

1− α
≤ e 2λ q(ε) ; and since lim

ε↓0

(
q(ε)

ε

)
=

1

1− α
,

we deduce the claimed identity of (6.7), namely

LZ(·) = (1− α) · lim
ε↓0

1

2 q(ε)

∫ ·
0

1{0<Y (t)<q(ε)} dt = (1− α)LY (·) .

• Taken together, the Analysis and Synthesis parts of this argument establish the following result.

Theorem 6.1. The equation (3.18) admits a pathwise unique, strong solution for all values of its
“skewness parameter” α ∈ [0, 1] , and we have the filtration identity FY (t) = FW (t) , 0 ≤ t <∞
in (3.19).

Remark 6.1. As shown towards the end of section 3 in HARRISON & SHEPP [9] , the stochastic
equation (3.18) admits no solution for α /∈ [0, 1] . Consequently, when η + ζ 6= 0 holds but the
condition (1.5) fails because α = η/(η + ζ) /∈ [0, 1] , the system of equations (1.2), (1.3) admits
no solution.
Remark 6.2. We compute in the next subsection the transition probabilities of the diffusion Y (·) .
It follows from these computations, and in conjunction with the theory developed in PORTENKO

[23] [24] [25] , that this process has the strong MARKOV and FELLER properties.
From the Remarks 3.1, 3.2, 6.1 and in conjunction with Theorem 4.1, we obtain now the

following result.

Proposition 6.1. The conditions of (1.5) are not just sufficient but also necessary for the well-
posedness of the system of equations (1.2), (1.3).
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6.1. Joint Distribution of SBBBM and its Local Time

Let us recall a construction of the skew Brownian motion (ITÔ & MC KEAN [10], [11], WALSH

[30]). We take a Brownian motion starting from y0 ≥ 0 , reflect it at the origin, and consider its
excursions away from the origin. Then we change the sign of each excursion independently with
probability 1 − α ∈ (0, 1) . The resulting process is positive with probability α , negative with
probability 1 − α . This implies a non-symmetric reflection principle around the origin. We shall
see that even in the presence of the bang-bang drifts

b(y) = −λ sgn(y) , y ∈ R

as in (6.1), this principle continues to hold for the skew Brownian motion. Thus, the joint distribu-
tion of SBBBM and its local time are derived here.

By GIRSANOV’s theorem (e.g., KARATZAS & SHREVE [13] , section 3.5), we consider the
“reference probability measure” P? , under which the process

∫ ·
0
b(Y (t)) dt + W (·) becomes

standard Brownian motion. For every given t ∈ [0,∞) the RADON-NIKODÝM derivative on
FY (t) of the original measure with respect to the reference measure, is

dP
dP?

∣∣∣∣
FY (t)

= exp
{∫ t

0

b(Y (s))dW (s) +
1

2

∫ t

0

b2(Y (s))ds
}

= exp
{
λ
(
|y0| − |Y (t)|+ 2L̂Y (t)

)
− λ2

2
t
}

;

we have used in this last equation the relationships (3.29), (3.9).
Under the reference probability measure P? , the process Y (·) is skew Brownian motion which

starting at y0 . As shown in WALSH [30] (see also LANG [14]), the transition probability density
function p?(t; y0, ξ) = P?(Y (t) ∈ dξ) / dξ for this process is given by

p?(t; y0, ξ) =
1√
2πt

exp
{
− (y0 − ξ)2

2t

}
+ (2α− 1) · sgn(ξ) · 1√

2πt
exp

{
− (|y0|+ |ξ|)2

2t

}
for (ξ, y) ∈ R2 , t > 0 . Moreover, by the method of elastic Brownian motion (e.g., KARATZAS &
SHREVE [12], APPUHAMILLAGE ET AL. [2]) the joint distribution of the skew Brownian motion
and its symmetric local time is computed as

P?(Y (t) ∈ dξ , 2L̂Y (t) ∈ db) =

=
{

1 + (2α− 1) sgn(ξ)
}
· |ξ|+ b+ |y0|√

2πt3
exp

{
− (|ξ|+ b+ |y0|)2

2 t

}
dξ db ; b > 0

and

P?
(
Y (t) ∈ dξ , 2L̂Y (t) = 0

)
=

1√
2πt

[
exp

{
− (|y0| − |ξ|)2

2t

}
− exp

{
− (|y0|+ |ξ|)2

2t

}]
dξ

for ξ ∈ R . Note that we have

1 + (2α− 1) sgn(ξ) = 2α if ξ > 0 , and 1 + (2α− 1) sgn(ξ) = 2(1− α) if ξ ≤ 0 .
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Thus, the non-symmetric reflection principle around the origin works intuitively even for the joint
distribution. As expected, when there is no accumulation of local time at the origin, the skewness
parameter α does not affect the transition probabilities.

• We bring the above formulae from the reference measure P? back to the original measure P ,
by means of

P
(
Y ±(t) ∈ A , Y ∓(t) = 0 , 2L̂Y (t) ∈ B

)
= (6.8)

= exp
{
λ|y0| − λ2 t/2

}
· EP?

[
exp

{
2 L̂Y (t)− Y ±(t)

}
· 1{Y ±(t)∈A ,Y ∓(t) = 0 , 2L̂Y (t)∈B}

]
for (A,B) ∈ B(R) × B(R) , t > 0 . With (ξ, b) ∈ [0,∞) × (0,∞) , the joint density functions
are

P(Y +(t) ∈ dξ , Y −(t) = 0 , 2L̂Y (t) ∈ db) = (6.9)

= 2α · e−2λξ · ξ + b+ |y0|√
2πt3

exp
{
− (ξ + b+ |y0| − λt)2

2 t

}
dξ db ,

as well as

P(Y −(t) ∈ dξ , Y +(t) = 0 , 2L̂Y (t) ∈ db) = (6.10)

= 2(1− α) · e−2λξ · ξ + b+ |y0|√
2πt3

exp
{
− (ξ + b+ |y0| − λt)2

2 t

}
dξ db .

Whereas, when there is no accumulation of local time, we have

P
(
Y ±(t) ∈ dξ , Y ∓(t) = 0 , 2L̂Y (t) = 0

)
= (6.11)

=
1√
2πt

(
exp

{
− (ξ − |y0|+ λt)2

2t

}
− e−2λ ξ · exp

{
− (ξ + |y0|+ λt)2

2t

})
dξ , ξ > 0 .

• The marginal density p(t; y0, ξ) dξ = P(Y (t) ∈ dξ) of Y (t) under the original probability
measure P is obtained from

P(Y (t) ∈ dξ) = P(Y (t) ∈ dξ , 2L̂Y (t) > 0) + P(Y (t) ∈ dξ , 2L̂Y (t) = 0) · 1{ξ y0>0} , (6.12)

where the second term takes care of the case when the local time is absent. If ξ > 0 and y0 > 0 ,
the marginal density becomes

p(t; y0, ξ) = (2α− 1) e−2λξ · 1√
2πt

exp
{
− (ξ + y0 − λt)2

2t

}
(6.13)

+
1√
2πt

exp
{
− (ξ − y0 + λt)2

2t

}
+ (2α) · λ e

−2λξ

√
2πt

∫ ∞
ξ+y0

e−
(u−λt)2

2t du ;

whereas, if ξ < 0 and y0 < 0 , this expression becomes

p(t; y0, ξ) = (1− 2α)e2λξ · 1√
2πt

exp
{
− (−ξ − y0 − λt)2

2t

}
(6.14)
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+
1√
2πt

exp
{
− (−ξ + y0 + λt)2

2t

}
+ 2 (1−α) · λ e

2λξ

√
2πt

∫ ∞
−ξ−y0

e−
(u−λt)2

2t du .

If ξ y0 ≤ 0 , then this expression becomes

p(t; y0, ξ) =
{

1 + (2α− 1) sgn(ξ)
}
· e
−2λ|ξ|
√

2πt
·

·
[

exp
{
− (|ξ|+ |y0| − λt)2

2 t

}
+ λ

∫ ∞
|ξ|+|y0|

e−
(u−λt)2

2t du
]
, (6.15)

where the term P(Y (t) ∈ dξ , 2L̂Y (t) = 0) in (6.12) is now equal to zero.

Remark 6.3. Letting t → ∞ in (6.13)-(6.15), we derive for the process Y (·) the stationary
measure m(·) =

∫
· p∞(ξ) dξ with the double-exponential probability density function

p∞(ξ) := lim
t→∞

p(t; y0, ξ) = α · (2λ) e−2λ ξ · 1{ξ>0} + (1− α) · (2λ) e 2λ ξ · 1{ξ≤0} . (6.16)

It can be verified that (6.16) is the invariant distribution. Furthermore, it follows from the transition
density (6.13)-(6.15) and the stationary distribution (6.16) that the following duality holds:∫

R
g(y)

(∫
R
f(ξ)p(t; y, ξ)dξ

)
p∞(y)dy =

∫
R
f(ξ)

(∫
R
g(y)p(t; ξ, y)dy

)
p∞(ξ)dξ,

for arbitrary bounded, measurable functions f, g , or equivalently∫
R
g(y)Ey

[
f(Y (t))] p∞(y) dy =

∫
R
f(ξ)Eξ

[
g(Y (t))] p∞(ξ) dξ ; t > 0 . (6.17)

Here Ey stands for the expectation under the measure Py induced by Y (·) which starts from
y ∈ R . Thus, under the probability measure

P∞(·) :=

∫
R
Py(·)m(dy) ,

the process Y (·) is stationary; and moreover, given a fixed time T ∈ (0,∞) , the time reversal

Ŷ (t) := Y (T − t) , 0 ≤ t ≤ T (6.18)

satisfies
EP∞

[
f0(Y (t0)) · · · fn(Y (tn))

]
= EP∞

[
f0(Ŷ (tn)) · · · fn(Ŷ (t0))

]
(6.19)

for every integer n ∈ N , collection of time points 0 = t0 < t1 < · · · < tn = T , and bounded,
measurable functions f0, . . . , fn .

Remark 6.4. The infinitesimal generator of the process Y (·) may be defined formally by

[Lf ](ξ) :=
1

2
f ′′(ξ)− λ sgn(ξ)f ′(ξ) + 2 (2α− 1)f ′(ξ) δ0(ξ) , ξ ∈ R (6.20)
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for f ∈ D := C∞0 (R) , where δ0(·) is the “Dirac delta function” at the origin. Here we use the
parametrization for the symmetric local time L̂Y (·) . Let us denote formally the symmetric version
of the density of m by

p̂∞(ξ) = (2α)λ e−λξ · 1{ξ>0} + 2(1− α)λ eλξ · 1{ξ<0} + λ · 1{ξ= 0} .

Then by direct calculation∫
R
f(ξ) [Lg](ξ)m(dξ) =

∫
R
g(ξ) [Lf ](ξ)m(dξ) ,

∫
R
[Lf ]m(dξ) = 0 ; f, g ∈ D . (6.21)

Applying Theorem 2.3 of FUKUSHIMA & STROOCK [8] , we arrive at the same conclusion (6.19).

Remark 6.5. Let us define the time reversal of Y (·) as in (6.18). Following PARDOUX [20] and
PETIT [21] , we may show that the time reversal is a solution of the stochastic equation

Ŷ (t) = Ŷ (0) +W ](t) + 2 (1− 2α) L̂ Ŷ (t) +

+

∫ t

0

(
λ sgn

(
Ŷ (s)

)
+

∂

∂ξ
log p

(
T − s; y0, Ŷ (s)

))
ds (6.22)

for 0 ≤ t ≤ T , where W ](·) is a standard Brownian motion with respect to the backwards
filtration F Ŷ (·) generated by the time-reversed process Ŷ (·) of (6.18), and

L̂ Ŷ (t) := L̂Y (T )− L̂Y (T − t ) , 0 ≤ t ≤ T . (6.23)

In the special case y0 = 0 = Ŷ (T ) , the logarithmic derivative of the transition probability density
function is

∂

∂ξ
log p

(
t; 0, ξ

)
= − 2λ sgn(ξ)− ξ

t
· C1(t, ξ)

C1(t, ξ) + C2(t, ξ)
,

where

C1(t, ξ) := exp
(
− (|ξ|+ λt)2

2t

)
, C2(t, ξ) := λ e−2λ|ξ|

∫ ∞
|ξ|

exp
(
− (u− λt)2

2t

)
du .

Thus, the time reversal is a skew Brownian bridge with bang-bang drift

Ŷ (·) = Ŷ (0) +W ](·) + 2
(
1− 2α

)
L̂ Ŷ (·)−

−
∫ ·

0

[
λ sgn

(
Ŷ (t)

)
+

Ŷ (t)

T − t
·
(

C1

C1 + C2

)(
T − t, Ŷ (t)

)]
dt .

This result suggests that the time reversal of SBBBM in general looks like a skew Brownian bridge
drifted towards the target point Ŷ (T ) = y0 .

7. Applications of the Skew Representations (3.30)-(3.31)

With the skew representations in section 3.4 and the joint distribution of (Y (·), L̂Y (·)) in section
6.1 it is now straightforward to compute the transition density of the system (1.2)-(1.3) as well as
its time reversal.
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7.1. Transition Density
Let us discuss only some special cases, since the other cases are quite similar. For example, in

the degenerate case with σ = 0 , thus ρ = 1 , γ = 1 and with x1 ≥ x2 , (3.30)-(3.31) become

X1(t) = x1 + g t+ (Y +(t)− y+
0 )− β L̂Y (t) , X2(t) = x2 + g t+ (Y −(t)− y−0 )− β L̂Y (t) ,

for 0 ≤ t <∞ , where y0 = x1 − x2 ≥ 0 , and hence the transition density of (X1(·), X2(·)) is

P
(
X1(t) ∈ dξ1 , X2(t) ∈ dξ2

)
= (2α) · 2

β
· e−2λ(ξ1−ξ2) · c1√

2 π t3
exp

{
− (c1 − λ t)2

2t

}
dξ1dξ2 ,

where c1 := ξ1 −
( 2 + β

β

)
ξ2 + x1 +

( 2− β
β

)
x2 +

2

β
g t ,

if β > 0 , ξ1 ≥ ξ2 and ξ2 < x2 + g t . Similarly, by (skew) symmetry:

P
(
X1(t) ∈ dξ1 , X2(t) ∈ dξ2

)
= 2(1−α) · 2

β
·e−2λ(ξ2−ξ1) · c2√

2 π t3
exp

{
− (c2 − λ t)2

2t

}
dξ1dξ2 ,

where c2 := ξ2 −
( 2 + β

β

)
ξ1 + x1 +

( 2− β
β

)
x2 +

2

β
g t ,

if β > 0 , ξ2 ≥ ξ1 and ξ1 < x2 + g t . If β > 0 , ξ1 > ξ2 = x2 + g t , then the local time L̂Y (·)
is absent, and the transition density is easily obtained from (6.11):

P
(
X1(t) ∈ dξ1 , X2(t) = x2 + g t

)
=

=
1√
2πt

(
exp

{
− (a− x1 + x2 + λt)2

2t

}
−e−2λa·exp

{
− (a+ x1 − x2 + λt)2

2t

})∣∣∣
a= ξ1−x2−g t

dξ1 .

• For another extreme example, in the degenerate case with σ = 1 , thus ρ = 0 , γ = −1 and
with x1 ≥ x2 , (3.30)-(3.31) become

X1(t) = x1−h t−(Y −(t)−y−0 )+(2−β) L̂Y (t) , X2(t) = x2−h t−(Y +(t)−y+
0 )+(2−β) L̂Y (t) ,

for 0 ≤ t <∞ . If β < 2 , ξ1 ≥ ξ2 and ξ1 > x1 − h t , then

P
(
X1(t) ∈ dξ1 , X2(t) ∈ dξ2

)
= (2α)· 2

2− β
·e−2λ(ξ1−ξ2)· c3√

2π t3
exp

{
− (c3 − λ t)2

2t

}
dξ1dξ2 ,

where c3 :=
( 4− β

2− β

)
ξ1 − ξ2 −

( β

2− β

)
x1 − x2 +

( 4− β
2− β

)
h t

If β < 2 , ξ2 ≥ ξ1 and ξ2 > x1 − h t , then

P
(
X1(t) ∈ dξ1 , X2(t) ∈ dξ2

)
= 2(1−α) · 2 e−2λ(ξ2−ξ1)

2− β
· c4√

2π t3
exp

{
− (c4 − λ t)2

2t

}
dξ1dξ2 ,

where c4 :=
( 4− β

2− β

)
ξ2 − ξ1 −

( β

2− β

)
x1 − x2 +

( 4− β
2− β

)
h t .
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If β < 2 , ξ1 = x1 − h t > ξ2 , then the local time L̂Y (·) does not accumulate, that is, the
transitions density is obtained from (6.11) :

P(X1(t) = x1 − h t , X2(t) ∈ dξ2) =

=
1√
2πt

(
exp

{
− (a− x1 + x2 + λt)2

2t

}
− e−2λa exp

{
− (a+ x1 − x2 + λt)2

2t

})∣∣∣
a=x1−ξ2−h t

dξ1 .

• For the isotropic variance case with ρ = σ = 1 /
√

2 , γ = 0 and x1 ≥ x2 the difference and
the sum of X1(·) and X2(·) are

X1(·)−X2(·) = Y (·) , X1(·) +X2(·) = x1 + x2 + ν t+ 2(2α− 1)L̂Y (·) +Q(·) ,

where (Y (·), L̂Y (·)) and Q(·) are independent. Thus the joint distribution of (X1(·), X2(·)) are
obtained by integrating out the local time.

If α ∈ (0, 1) \ {1 / 2} , then the above transition densities are discontinuous on the diagonal
line due to the skewness. If α = 1 / 2 and β = 1 , then these formulae are the same as those of
the degenerate system studied in FERNHOLZ ET AL. [7]. The transition densities for all the other
cases as well as the joint distribution of (X1(·), X2(·), LX1−X2(·)) are computable from the skew
representations (3.30)-(3.31) and the joint distribution (6.9)-(6.11) in a similar manner.

7.2. Time Reversal
We consider now the time-reversal

X̂i(t) := Xi(T − t) , X̃i(t) := Xi(T − t)−Xi(T ) , 0 ≤ t ≤ T , i = 1, 2 (7.1)

of the solution to the system (1.2)-(1.3) with the backwards filtration F̃ = {F̃(t)}0≤t≤T generated
by the random variable Y (T ) and by the time-reversal(

W̃ (t) := W (T − t)−W (T ) , Q̃(t) := Q(T − t)−Q(T )
)
, 0 ≤ t ≤ T

of the planar Brownian motion :

F̃(t) := σ(Y (T )) ∨ F (Q̃,W̃ )(t) , F (Q̃,W̃ )(t) := σ
(
Q̃(θ), W̃ (θ) ; 0 ≤ θ ≤ t

)
, 0 ≤ t ≤ T .

With some extra work in addition to the discussion of Remark 6.5 we may show that Ŷ (·) is
a diffusion (6.22) driven by the F̂ -Brownian motion Ŵ ](·) (c.f. PARDOUX [20] and section 3
of PETIT [21]). Combining the skew representations (3.30)-(3.31) with the time-reversals (6.22)-
(6.23), we derive the time-reversed skew representation form

X̃1(t) = −µ t+ ρ2
(
Ŷ +(t)− Ŷ +(0)

)
− σ2

(
Ŷ −(t)− Ŷ −(0)

)
− (1− β − γ)L̂Y (t) + ρ σQ̂(t)

= −µ t+

∫ t

0

(
ρ21{Ŷ (s)>0} + σ21{Ŷ (s)≤0}

)
dŶ (s)− (1− β − 2γ)L̂Y (t) + ρ σQ̂(t) (7.2)

for 0 ≤ t ≤ T , and

X̃2(t) = −µ t− σ2
(
Ŷ +(t)− Ŷ +(0)

)
+ ρ2

(
Ŷ −(t)− Ŷ −(0)

)
− (1− β − γ)L̂Y (t) + ρ σQ̂(t)

= −µ t−
∫ t

0

(
ρ21{Ŷ (s)≤0} + σ21{Ŷ (s)>0}

)
dŶ (s)− (1− β − 2γ)L̂Y (t) + ρ σQ̂(t) . (7.3)
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Remark 7.1. By analogy with (7.1) we denote the time-reversal of ranks by R̂i(t) := Ri(T − t)
for 0 ≤ t ≤ T , i = 1, 2 . Applying the TANAKA formula to (7.2)-(7.3), we may derive the
time-reversed dynamics of (R1(·), R2(·)) .

Remark 7.2. As we saw in Remarks 6.3-6.4, the process Y (·) is strictly time-reversible when
started at its invariant distribution (6.16). Under this invariant distribution, the dynamics of the
time-reversal of (R1(·), R2(·)) can be derived through the skew representations of (3.30)-(3.31).
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