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Abstract

Both linkage and association studies have been successfully applied to identify disease susceptibility genes with genetic
markers such as microsatellites and Single Nucleotide Polymorphisms (SNPs). As one of the traditional family-based studies,
the Transmission/Disequilibrium Test (TDT) measures the over-transmission of an allele in a trio from its heterozygous
parents to the affected offspring and can be potentially useful to identify genetic determinants for complex disorders.
However, there is reduced information when complete trio information is unavailable. In this study, we developed a novel
approach to ‘‘infer’’ the transmission of SNPs by combining both the linkage and association data, which uses microsatellite
markers from families informative for linkage together with SNP markers from the offspring who are genotyped for both
linkage and a Genome-Wide Association Study (GWAS). We generalized the traditional TDT to process these inferred dosage
probabilities, which we name as the dosage-TDT (dTDT). For evaluation purpose, we developed a simulation procedure to
assess its operating characteristics. We applied the dTDT to the simulated data and documented the power of the dTDT
under a number of different realistic scenarios. Finally, we applied our methods to a family study of alcohol dependence
(COGA) and performed individual genotyping on complete families for the top signals. One SNP (rs4903712 on chromosome
14) remained significant after correcting for multiple testing Methods developed in this study can be adapted to other
platforms and will have widespread applicability in genomic research when case-control GWAS data are collected in families
with existing linkage data.
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Introduction

Linkage studies have been successfully used to identify many

disease genes such as hyper-cholesterolaemia [1–3], Huntington’s

disease [4] and cystic fibrosis [5]. Linkage studies allow direct

observation of recombination events in a family pedigree with a

limited number of generations, as well as simultaneous analysis of

multiple genetic markers. The LOD score (logarithm of odds),

developed by Newton E. Morton [6], is a statistical test often used

for linkage analysis in human. The LOD score compares the

likelihood of obtaining the test data if the two loci are indeed

linked, to the likelihood of observing the same data by chance.

However, this setup requires tailor-made likelihood statistics.

When it comes to a multi-loci model, the situation can be even

more cumbersome [7]. On the other hand, because of the

requirement of a large number of families with several affected

generations, linkage analysis can be less helpful when dealing with

diseases of late-onset with a high mortality. Alternatively,

association studies are used to identify disease susceptibility genes

by comparing genetic variants between individuals with and

without the disease of interest. High-throughput genotyping has

allowed large-scale association studies over the entire human

genome. In 2005, the first Genome-Wide Association Study

(GWAS) was successfully applied on human age-related macular

degeneration [8]. Since then, GWAS has been widely used to

identify the association between genetic variants, typically single-

nucleotide polymorphisms (SNPs), and heritable traits or diseases.

In general, there are two major types of designs that are

commonly used in association research: population-based and

family-based studies. As the most common population-based

approach, the case-control setup compares an unrelated healthy

control group and affected case group. The genotyped SNPs are

investigated to identify the allele frequency differences between

these two groups. The study then determines whether the SNPs

are associated with the genetic trait or disease based on the

statistical significance of the differences. The independent samples

are typically easier to obtain in a case-control study than family

samples. However, many case-control samples select independent

cases from existing family data that were originally used in linkage

analysis. Because cases can be over-sampled from groups with
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higher disease prevalence, the differences of allele frequencies in

an admixture of ethnic groups may produce spurious associations.

Therefore, although case-control studies have shown advantages

in identifying association between the disease susceptibility and

markers in a candidate gene, the results may reflect type I errors

(false-positive) due to unaccounted confounding factors [9–11]

such as population stratification [12–16].

Unlike the population-based studies, family-based studies are

resistant to type I errors arising from population stratification. The

family-based Transmission/Disequilibrium Test (TDT) measures

the over-transmission of an allele from heterozygous parents to

their affected offspring, in which the non-transmitted parental

alleles serve, in effect, as a control group. Therefore the TDT is a

robust test of association in the presence of geographical or

ethnical impact from the population [17]. In the original TDT

[18], a parent-proband trio is considered as a basic unit, in which a

proband is the first affected family member who seeks medical

attention for a genetic disorder. Assuming complete genotype

information for a two allele marker locus in each trio, the TDT

compares the number of heterozygous parents who transmit either

allele to the affected offspring. The TDT can be constructed

through a 2 by 2 table (Table 1). Under the null hypothesis of no

associaton, the proportions b=(bzc) & c=(bzc)are tested against

(0.5, 0.5) using a binomial (asymptotically chi-square) test with one

degree of freedom:

x2~
½b{(bzc)=2�2

(bzc)=2
z
½c{(bzc)=2�2

(bzc)=2
~

(b{c)2

bzc
ð1Þ

Because neither genotypes nor allele frequencies are required,

the TDT is considered robust to the population stratification as

mentioned above.

A variety of TDT-like tests have been suggested starting with

Rubinstein et al [19]. Curtis and Sham studied a multi-allelic

TDT with incorporation of missing parents [20,21]. This was

extended by Spielman et al and Horvath et al [22,23] with the

TDT applied to different family structures in their sib-ship tests.

For an allele of interest at a marker locus, the sib-ship test

essentially compares the frequency of that allele among affected

individuals with the frequency of the allele among unaffected

individuals, which allows the TDT to be applied to diseases with

late age of onset, such as non-insulin-dependent diabetes,

cardiovascular diseases, Alzheimer’s disease, and other diseases

related to aging. Several studies also discussed the application of

the TDT for mapping quantitative trait loci [24–30]. Gordon

et al.’s TDTae allows for genotyping errors in the analysis and

accommodates various error models [31]. As discussed above,

multiple affected and unaffected siblings are often collected and

used for both linkage and association analysis. The family-based

association test (FBAT) generalized the TDT model on various

phenotypic traits and multiple markers [32–36]. Instead of using

data from only the heterozygous parents as in the TDT, the

affected-family based controls (AFBAC) method [37] is developed

to take advantage of all the parental information. But the trade-off

of this setup is its vulnerability to population stratification as

genotype frequencies are not irrelevant in this test [37,38].

Another extension of the TDT, the pedigree disequilibrium test

(PDT), is specifically designed for analyzing the Linkage Disequi-

librium (LD, the non-random association of alleles at two or more

loci) in general pedigrees, which has been successfully applied on a

number of complex traits such as diabetes [38,39]. Further, as a

more powerful development to the PDT, the presence of linkage

(APL) is used to handle diseases of late-onset [38,40]. However, in

spite of the divergences as well as the great promise of these TDT-

type analyses [9,24,41], one primary limitation that most of these

extensions encounter is the dependence on completeness of the

genotype information for all trio members in a single test and lack

of scalability on utilizing both the linkage and association data in a

study.

Disorders can often have genotype information from only one

parent of the affected individuals. As a common practice, these

trios are simply discarded [42] though this can result in

considerable loss of information and bias to the association study

[20,38]. Several studies have been proposed to allow TDT to

handle missing parental genotypic information [20,22,43–50].

Within these studies, the missing parental genotypes are mostly

reconstructed based on the assumption that they are missing

completely at random and do not depend on the genotypes

themselves [51]. However, this assumption may not hold true and

the probability that a genotype is missing may rely on the

unobserved alleles [38,52,53]. Furthermore, these approaches are

not designed for pedigrees with missing genotypes on the proband

when both linkage and association data are available.

Against this background, we note this is a two step procedure. In

the first step, the SNP data is used with both parents missing, so

that the analysis depends on external allele frequency estimates

and is sensitive to population stratification. In the second step,

individual genotyping is performed on the parents for the top

SNPs from step one, so this step is a traditional TDT and

insensitive to the potential biases in step one. Accordingly, having

available family DNA is needed to avoid false positive results.

Methods

As stated above, the traditional TDT requires complete

genotypic information from all members of the nuclear families.

However, obtaining all genotypes cannot always be feasible for

some diseases or families. Therefore the traditional TDT-type

studies may not be useful to identify the presence of genetic

determinants in data with relatively small amounts of complete trio

information. One way to solve this type of issue is to reconstruct

the missing parental genotypes under the assumption that they

follow the probability distribution of the fully observed cases.

However, most studies designed for this purpose do not

incorporate the impact from LD and thus may introduce bias to

the results. On the other hand, there are data available that have

genotype information on both microsatellite and SNP markers for

diseases; one example is alcoholism [54]. With both the linkage

and association data, usually the microsatellite genotypic infor-

mation from families for linkage analysis together with SNP data

from the offspring who are genotyped for both linkage and

Table 1. Summary of the original TDT design in a 262 table.

Non-transmitted allele

Transmitted
allele M1 M2 Total

M1 a b a+b

M2 c d c+d

Total a+c b+d 2n

The letters (a, b, c, d) represent the counts of over-transmissions of an allele
from the parents to affected offsprings. The number n denotes total number of
affected offsprings and 2n represents the total number of parents.
doi:10.1371/journal.pone.0063526.t001

TDT Using Linkage and Association Detection
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GWAS, we can ‘‘infer’’ the transmission of SNPs for the rest of the

family members who have not been genotyped on SNPs. We call

these family members the ‘‘missing individuals’’. In detail, first we

generate the combined pedigrees in which each individual has

both the linkage and GWAS genotype data filled in. Genotypes

that those individuals do not have will be taken as missing data in

the combined pedigrees. Then we use the program MERLIN [55]

to read these combined pedigrees as input and infer the dosage

probabilities of dense SNP genotypes for these missing individuals

(see section Genotype Inference of Familial Individuals for more details).

All the trio combinations from the inferred pedigrees are extracted

on the condition that the children were affected and at least one

parent in the trio was genotyped on microsatellite markers. The

dosage-TDT that we have developed in this study is applied on

these trio pedigrees using their inferred dosage probabilities. By

incorporating the family linkage information into the GWAS data,

we can potentially have higher power to detect association

between our genotypic markers and the disease susceptibility

alleles.

Dosage Transmission Disequilibrium Test (dTDT)
Common map of both linkage & GWAS data. The

common map of both linkage and GWAS data is designed in the

following way. With the genetic position of the linkage markers

(microsatellite as in here) and physical position of both linkage and

GWAS markers (microsatellite and SNPs), the genetic positions of

all the GWAS markers (SNPs) are calculated based on equation (2):

gmSNPi
~

gmMS1
{

pmMS1
{pmSNP1

106
(pmSNPi

vpmMS1
)

gmMSjz1
{(gmMSjz1

{gmMSj
):

pmMSjz1
{pmSNPi

pmMSjz1
{pmMSj

(pmMSj
vpmSNPi

vpmMSjz1
,1ƒjƒlast{1)

gmMSlast
z

pmSNPi
{pmMSlast
106 (pmSNPi

wpmMSlast
)

8>>>>>>>>><
>>>>>>>>>:

ð2Þ

where gm denotes the genetic position of a marker, in centi-Morgan

(cM) unit; pm denotes the physical position of a marker, in base pair

units; MSlast is the last microsatellite marker on a chromosome,

pmMSjz1
ƒpmMSlast

. Because at both ends of a chromosome when

the physical position of a SNP is either smaller than the 1st

microsatellite marker or larger than the last microsatellite marker,

there is only one microsatellite marker that can be referred to

compute the genetic position for the SNP. We simply use the

convention that 1cM < 106 base pairs to convert a SNP’s physical

map to its genetic map. While a SNP is in between two

microsatellite markers, we use the ratio
pmMSjz1

{pmSNPi

pmMSjz1
{pmMSj

and

multiply this ratio with the genetic distance between these two

microsatellite markers (gmMSjz1
{gmMSj): In this way we compute

the relative genetic position of a SNP marker to the microsatellite

marker that’s next to it.

Genotype inference of familial individuals. Initially, many

approaches implicitly imputed missing genotypes based on the

potential genotype distribution in a family [56–58]. In practice, the

genetic linkage implied that family members share a certain degree of

similarity through their ‘‘identical-by-descent’’ (IBD) regions on the

chromosomes. In this way, genotypes of the non-typed markers for

these family members can be inferred according to their shared IBD

with the other relatives. Figure 1 illustrates the procedure of this

genotype inference. As shown in the figure, a subset of microsatellite

markers has been typed for all the family members except the founders

(red), whereas both microsatellite and SNP markers have been typed in

only a few selected common individuals (black). Genotypes of the dense

SNPs for missing individuals can be inferred by comparing the

haplotypes that are IBD with the other individuals in the family.

Several studies have been published on the genotype imputation

procedures described above [59,60]. These procedures are imple-

mented in programs such as MERLIN [55,61] and MENDEL

[62,63], using one of the pedigree analysis algorithms such as the

Lander-Green [64] or Elston-Stewart [65] algorithms, or Monte Carlo

sampling [66,67]. Merlin uses sparse trees to represent gene flow in

pedigrees and is considered as one of the fastest packages among

packages implementing the same algorithms such as Allegro [68] and

Genehunter [69]. In this study, we use MERLIN to infer the dosage

probabilities. The output of this program includes the most likely

genotypes, the expected number of copies for the tested alleles (0, 1, or

2 with genotype observed), and the posterior probabilities (dosage

probabilities) of the three alternative genotypes [70]. Because a large

number of related individuals are included, this family-based genotype

inference is expected to improve the power of association tests [59].

Furthermore, when a GWA scan follows a linkage study, only a

proportion of individuals may need to be genotyped and the inferred

genotypes can be useful for the next step in the association analysis.

Dosage-TDT. Because the traditional TDT is a simple

representation of the x2 statistics, it requires single counts of the

transmitted/non-transmitted alleles from the heterozygous parents

to the affected offspring. Thus the inferred dosage probabilities

cannot be processed through this setup. In this study, we

generalize the original TDT by taking all possible allele

transmissions in a pedigree into account. Table 2 shows the

dosage probabilities of three alternative genotypes (1/1, 1/2 and

2/2) in a trio (named a trio-dosage set in this work) from the inferred

results. Table 3 lists all 11 TDT-informative allele transmissions

in a trio where at least one of the parents is heterozygous. The

values of bi and ci used in the x2 calculation of the TDT in each

trio i are calculated by summing up the probabilities across all

these 11 types of transmissions. Let t denote the probability that

allele 1 is transmitted by a heterozygote parent of an affected child.

We can then write the dosage probabilities of a child in terms of

the dosage probabilities of its parents and t as follows:

pc11~P(c11D f11,m12):P(f11,m12)zP(c11D f12,m11):P(f12,m11)

zP(c11D f12,m12):P(f12,m12)zP(c11D f11,m11):P(f11,m11)

~pf 11pm12
:tzpf 12pm11

:tzpf 12pm12
:t2zpf 11pm11

ð3Þ

pc12~P(c12D f11,m12):P(f11,m12)zP(c12D f12,m11):P(f12,m11)z

P(c12D f12,m12):P(f12,m12)zP(c12D f12,m22):P(f12,m22)z

P(c12D f22,m12):P(f22,m12)zP(c12D f11,m22):P(f11,m22)z

P(c12D f22,m11):P(f22,m11)

~pf 11pm12
:(1{t)zpf 12pm11

:(1{t)z2pf 12pm12
:t(1{t)z

pf 12pm22
:tzpf 22pm12

:tzpf 11pm22zpf 22pm11

ð4Þ

TDT Using Linkage and Association Detection
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pc22~P(c22D f12,m12):P(f12,m12)zP(c22D f12,m22):P(f12,m22)

zP(c22D f22,m12):P(f22,m12)zP(c22D f22,m22):P(f22,m22)

~pf 12pm12
:(1{t)2zpf 12pm22

:(1{t)zpf 22pm12
:(1{t)zpf 22pm22

ð5Þ

Thus, the frequencies of allele 1 and 2 of a child appearing in a

trio are as follows:

pc1~pc11z
1

2
pc12

~pf 11pm12
: 1zt

2
zpf 12pm11

: 1zt

2
zpf 12pm12

:tzpf 11pm11

zpf 12pm22
: t

2
zpf 22pm12

: t

2
z

1

2
pf 11pm22z

1

2
pf 22pm11

ð6Þ

pc2~
1

2
pc12zpc22

~pf 11pm12
: 1{t

2
zpf 12pm11

: 1{t

2
zpf 12pm12

:(1{t)z
1

2
pf 11pm22

z
1

2
pf 22pm11zpf 12pm22

:(1{
t

2
)zpf 22pm12

:(1{
t

2
)zpf 22pm22

ð7Þ

Additionally, pc11zpc12zpc22~1 ð8Þ

Based on equations (3) to (8), we can derive that:

t~
(2pc11zpc12){(pf 11zpm11)

pf 12zpm12
ð9Þ

Figure 1. Demonstration of genotype inference within a family. (a) The observed data, which consist of genotypes at a series of microsatellite
and SNP markers. A subset of microsatellite markers has been typed in all individuals except for founders (red), whereas both microsatellite and SNP
markers have been typed in only a few selected common individuals (black). (b) Genotypes of dense SNPs for missing individuals are inferred by
comparing the haplotypes they share with the common individuals.
doi:10.1371/journal.pone.0063526.g001

TDT Using Linkage and Association Detection
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In summary, the sum of all 11 informative transmissions for bi

and ci can be written as:

bi~(pf 12zpm12):t ð10Þ

ci~(pf 12zpm12):(1{t) ð11Þ

where i represents the ith trio. By substituting t from equation (9)

into (10) and (11) and summing up bi and ci for all trios, we can

compute the x2 values for each SNP:

x2~
(
P

bi{
P

ci)
2

P
biz

P
ci

ð12Þ

which follows a one degree freedom x2 distribution under the null

hypothesis of no association. We name this generalized TDT the

dosage TDT (dTDT). The original TDT proposed by Spielman

et al [18] can then be considered as a special case when t and the

dosage probabilities in a trio-dosage set is 0 or 1.

The beauty of the above equations is the denominator from t

can be canceled out with the one in bi and ci thus equation (12) can

be further written as:

x2~
½
P

di{
P

(zi{di)�2P
diz

P
(zi{di)

ð13Þ

in which we denote

di~½(2pc11zpc12){(pf 11zpm11)�i ð14Þ

zi~(pf 12zpm12)i ð15Þ

for each trio i. Using form (13) can be computationally efficient.

Simulation
The dTDT makes it possible to process the inferred dosage

probabilities of the un-genotyped SNPs for those missing

individuals in a nuclear family. As a follow-up study of this

generalized TDT approach, we develop a simulation to investigate

how the power changes for association detection with different

inputs. In this simulation, we generate multiple sets of trios under

various settings. Each set has 1,000 trios. Each trio has one

affected child. Because we focus on the interaction between SNP

and microsatellite markers, only one SNP marker and one

microsatellite marker are simulated. In each trio, the microsatellite

markers are assigned to both the parents and the child. SNPs are

only assigned to the child. The parents who do not have such SNP

markers are considered as the missing individuals and their SNP

genotypes are inferred by MERLIN. The dTDT is then used to

process the inferred dosage probabilities and p-values are reported

from the x2 statistics.

Generating SNPs. Denote the low and high risk alleles at a

disease locus D as D1 and D2, with population frequencies p1 and

p2. Assuming Hardy-Weinberg equilibrium, the population

prevalence (K) of the disease is

K~p2
1f11z2p1p2f12zp2

2f22 ð16Þ

where f11, f12 and f22 are the penetrances of the three genotypes

D1D1, D1D2 and D2D2.

We have considered three disease models: dominant, recessive

and co-dominant. The combinations of the penetrances in these

three models are designed as follows: dominant (f11,f12 = f22),

recessive (f11 = f12,f22) and co-dominant (f11,f12 = K f22).

With K and f predefined, we can compute p1 and p2 using the

following equations:

p1~
(f22{f12){

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
12{f11f22zK:(f11{2f12zf22)

q

f11{2f12zf22
ð17Þ

p2~1{p1 ð18Þ

Denote the haplotype frequencies of disease locus D and SNP

locus S as h11, h12, h21 and h22. On condition of the child being

Table 2. Dosage probabilities in a trio (denoted as a trio-
dosage set).

Genotype

1/1 1/2 2/2

Father pf11 pf12 pf22

Mother pm11 pm12 pm22

Child pc11 pc12 pc22

doi:10.1371/journal.pone.0063526.t002

Table 3. Calculation of bi and ci in terms of dosage probabilities and t for the ith trio with all 11 TDT-informative transmissions.

1/1–1/2
|

1/1

1/1–1/2
|

1/2

1/2–1/1
|

1/1

1/2–1/1
|

1/2

1/2–1/2
|

1/1

1/2–1/2
|

1/2

1/2–1/2
|

2/2

1/2–2/2
|

1/2

1/2–2/2
|

2/2

2/2–1/2
|

1/2

2/2–1/2
|

2/2 Sum

bi pf11pm12Nt pf12pm11Nt 2pf12pm12N
t2

2pf12pm12N
t(1-t)

pf12pm22Nt pf22pm12Nt (pf12+pm12) Nt

ci pf11pm12N
(1-t)

pf12pm11N
(1-t)

2pf12pm12N
(1-t)

2pf12pm12N
(1-t)2

pf12pm22N
(1-t)

pf22pm12N
(1-t)

(pf12+pm12) N
(1-t)

t denotes the possibility that allele 1 is transmitted by a heterozygote; and (1-t) is the possibility that allele 2 is transmitted.
doi:10.1371/journal.pone.0063526.t003

TDT Using Linkage and Association Detection
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affected, the probabilities of different haplotypes in a child can be

calculated through:

p(H11H11jA)~
f11h2

11
K

p(H11H12jA)~
2f11h11h12

K

p(H12H12jA)~
f11h2

12
K

9>>>>=
>>>>;

p(H11H21jA)~
2f12h11h21

K

p(H11H22jA)~
2f12h11h22

K

p(H12H21jA)~
2f12h12h21

K

p(H12H22jA)~
2f12h12h22

K

9>>>>>=
>>>>>;

ð19Þ

p(H21H21jA)~
f22h2

21
K

p(H21H22jA)~
2f22h21h22

K

p(H22H22jA)~
f22h2

22
K

9>>>>=
>>>>;

With a predefined correlation coefficient (R) of linkage

disequilibrium (LD) between D and S, we can derive the haplotype

frequencies as follows:

h11~p1q1zR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2q1q2
p

h12~p1q2{R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2q1q2
p

h21~p2q1{R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2q1q2
p

h22~p2q2zR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2q1q2
p

9>>>=
>>>;

ð20Þ

where q1 and q2 are the population frequencies of the SNP alleles

S1 and S2. To simplify our model, we will assume pi = qi, where

i = 1 or 2. The rationale behind this is that if the SNP marker and

disease allele have very different frequencies, then R2 is small and

there is little power. Keeping both frequencies equal allow R to

vary the full range from 21 to +1.

By substituting (20) into (19), we can assign the genotypes (S1S1,

S1S2, or S2S2) at locus S to the affected children based on these

derived frequencies:

p(S1S1jA)~
f11h11

2z2f12h11h21zf22h21
2

K

p(S1S2jA)~
2(f11h11h12zf12h11h22zf12h12h21zf22h21h22)

K

p(S2S2jA)~
f11h12

2z2f12h12h22zf22h22
2

K

9>>>=
>>>;

ð21Þ

Generating microsatellites. Denote Mi as the microsatellite

marker from the parents. Because of a large number of

polymorphisms (alleles) for a microsatellite marker, we assume

that our microsatellite marker is completely informative (i.e., each

parent is heterozygous at the microsatellite locus M) and assign

alleles M1 & M2 to the father and M3 & M4 to the mother. Then

we randomly select M1 & M3, M2 & M4, M1 & M4 or M2 & M3

equally with 0.25 probabilities as the microsatellite genotype for

the child.

Parameter settings. Without losing biological meaning, i.e.

with valid pi M(0, 1.0] (i = 1 or 2 and p1+ p2 = 1), but also with a

good coverage of possible natural phenomena, we predefine the

following values for the parameters to generate each set of trios:

N: the number of trios = 1,000;

K: prevalence = 0.01, 0.1, or 0.2;

R: correlation coefficient of LD between D and S = 0.5, 0.7, 0.9,

or 1.0 (as negative value of R does not produce informative

divergence from the result using positive value of R, we are only

considering positive value of R herewith);

f or g: penetrance of disease genotype DiDi or DiDj, where i or

j = 1 or 2 and i ? j. To simplify the notation, here we use f to

denote f11 and g to denote f12 or f22. As noted, we separate the

disease models as dominant (f, g, g), recessive (f, f, g), and co-

dominant (f, 0.5g, g) where f = 0.0, 0.1K, 0.3K, 0.5K, 0.7K, or 0.9K

and g = 1.1K, 0.5, 0.7, 0.9, or 1.0.

These values are first permuted to generate all their possible

combinations then any combination that produces invalid p,

i.e.p 6 [ (0,1:0�, is excluded. Under each setting, we produce 1,000

trios based on equation (15) for SNPs in the affected offsprings.

Parental SNPs are inferred by MERLIN and dTDT is used to

process the inferred dosage probabilities.

Application to Alcohol Dependence
Alcohol dependence is a serious psychiatric disorder in which an

individual is characterized as having harmful consequences of

repeated or compulsive alcohol use, and (sometimes) physiological

dependence on alcohol (i.e., tolerance and/or symptoms of

withdrawal) [71,72]. During 2001–2005, excessive alcohol use

contributed to about 79,000 deaths and 2.3 million years of

potential life lost in the United States [73]. Excessive alcohol

Table 4. Number of total and genotyped individuals, and corresponding number of families that these individuals are selected
from.

Total Individuals
(indtotal)

Number of Genotyped Individuals on
microsatellite markers (indMS) Number of Families

Map03MS EA 2,037 1,926 (94.55%) 219

Map03MS AA 335 283 (84.48%) 35

Map03MS Mixed 87 74 (85.06%) 8

MarshfieldMS EA 1,530 1,090 (71.24%) 234

MarshfieldMS AA 570 347 (60.88%) 77

MarshfieldMS Mixed 6 5 (83.33%) 1

doi:10.1371/journal.pone.0063526.t004
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consumption, the third leading cause of preventable death in the

United States, can cause damage to the central and peripheral

nervous system, and to nearly every organ system in the body

[74,75]. It is reported that alcohol dependence affects about 12%

of American adults across their lifetime [76]. As a complex disease,

alcohol dependence can be influenced by various factors such as

genetic susceptibility, environmental influences and interactions

among genes or between genes and environment.

The nine-site national Collaborative study On the Genetics of

Alcoholism (COGA) funded by National Institute of Alcohol and

Alcoholism (NIAAA) aims to identify and characterize genes that

affect the susceptibility to develop alcohol dependence and related

phenotypes. COGA is applying multiple strategies for genetic

research. The most densely affected, multiplex alcoholic families

were used in a multi-wave family-based linkage study. 2,283 out of

2,459 individuals from 262 families were genotyped using

microsatellite markers in Wave I and Wave II (data denoted as

Map03MS) (Table 4) [54]. At Wave III, another 1,442 out of

2,106 individuals from 312 families were selected for microsatellite

genotyping by the Mammalian Genotyping Service (MGS) from

Marshfield Clinic (data denoted as MarshfieldMS) (Table 4).

Combined data from all three waves are denoted as LinkageMS in

this study. COGA also has high throughput GWAS data with over

1 million SNP markers from 1,884 independent individuals,

generated by the Center for Inherited Disease Research (CIDR)

(data denoted as CIDRSNP) (Edenberg et al., 2010). The GWAS

data include 566 mutual individuals chosen from the LinkageMS

families.

All participants agreed to share their DNA and phenotypic

information for research purposes and provided written informed

consent following instructions from institutional review boards at

all data collection sites. The study was approved by the

institutional review board at each COGA site, with the OHRP

Assurance Numbers being: FWA00003624 (SUNY Research

Foundation), FWA00007125 (University of Connecticut),

FWA00003544 (Indiana University), FWA00003007 (University

of Iowa), FWA00004069 (Veterans Medical Research Founda-

tion/UCSD), FWA00002284 (Washington University),

FWA00003518 (Southwest Foundation for Biomedical Research),

FWA00003913 (Rutgers, The State University of New Jersey) and

FWA00005287 (Virginia Commonwealth University).

As described above, the dTDT uses the inferred dosage

probabilities of dense SNPs for association detection. The COGA

family data provides us such an opportunity to integrate the

information from both linkage and association studies.

In this study, we first generate the combined pedigrees with

both the LinkageMS and CIDRSNP genotype data from COGA.

Figure 2 demonstrates the structure of the combined pedigrees.

Most individuals in the combined pedigrees were genotyped on

microsatellite markers. A subset of individuals in the pedigrees was

genotyped for dense SNPs. These individuals include one affected

child in each of the families and other unrelated members chosen

as a control group. All other individuals who have not been

genotyped on SNPs are considered as the missing individuals. We

use the program MERLIN [55] to read these combined pedigrees

as input and infer the dosage probabilities of dense SNP genotypes

for these missing individuals (described in detail below). All the trio

combinations from the inferred pedigrees are extracted on the

condition that the children were affected and at least one parent in

the trio was genotyped on microsatellite markers. The dTDT is

applied on these trio pedigrees using their inferred dosage

probabilities. In addition, PLINK 77 is used to conduct a standard

case-control study on the CIDRSNP data. With the idea that

making use of all the available sample data would increase the

power for association detection, we further combine the results

from both dTDT and case-control study through the MH test

[78].

Data sets. The Map03MS data have 219 European Amer-

ican (EA), 35 African American (AA) and eight mixed families.

2,283 individuals from these 262 families were genotyped on 328

microsatellite markers. The MarshfieldMS data contain 234 EA,

77 AA and one mixed families, with a total of 1,442 individuals

genotyped on 394 microsatellite markers. 1,041,304 SNPs were

genotyped for 1,399 EA and 485 AA individuals in the CIDRSNP

GWAS. (Tables 4, 5 and 6).

With AA and mixed families excluded, we have 3,016 out of

3,567 EA individuals from 453 families genotyped on microsat-

ellite markers in the LinkageMS data. 471 of these individuals in

398 linkage families were selected for SNP genotyping (known as

the mutual individuals) (Table 6), including 41 individuals

without microsatellite genotyping data. For GWAS, from each

of these 398 families, one affected child (normally the proband)

was selected as the case and other biologically unrelated family

Figure 2. Combined pedigree structure used in inference. The pedigree has indtotal individuals and (mrkMS+mrkSNP) markers. Most individuals
have been genotyped on microsatellite markers. indcommon out of indtotal individuals are selected for SNP genotyping. Microsatellite and SNP markers
are mapped based on their genetic positions. Missing SNPs of (indtotal - indcommon) will be inferred by MERLIN –infer.
doi:10.1371/journal.pone.0063526.g002
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member(s) were used as the control. In total, 1,399 EA CIDRSNP

individuals consist of 847 cases and 552 controls. Figure 3 shows

the pedigree of one of the LinkageMS EA families (FAM_ID

20059). This family has four mutual individuals. Except for

proband #1, all the other three (#2, 9, and 13) selected for

GWAS are relatives by affinity to this family.

Marker cleaning & mapping. In order to match up the

genetic positions of all microsatellite and SNP markers, 38

microsatellite markers in Map03 and 58 microsatellite markers

in Marshfield were excluded because of their missing physical

positions. ,200,000 SNPs with low minor allele frequency (#5%)

were excluded. In consideration of any possible impact from

linkage disequilibrium (LD), we exclude ,1,500 SNPs that are

within 1,000 base pairs flanking each microsatellite marker. We

use equation (2) to create the common map for these microsatellite

and SNP markers. A comparison of the numbers of microsatellite

and SNP markers before and after cleaning is given in Table 6.

Figure 4 shows the distribution of these cleaned markers in EA

families. With these cleaned and mapped markers, we create new

pedigrees with the LinkageMS and CIDRSNP data combined

together. One combined pedigree has indtotal individuals (in rows)

with (mrkMS+mrkSNP) markers (in columns). Missing SNPs of (indtotal -

indcommon) individuals were inferred by MERLIN. (Figure 1).

dTDT and mantel-Haenszel test. In this study, we apply

both the dTDT and Mantel-Haenszel (MH) tests to the COGA

data. The MH test was first proposed by Mantel and Haenszel in

1959 [78]. The method has been widely applied to analysis of

contingency tables (normally 2 6 2) and comparison of results

from different treatments. In case-control studies, a 2 6 2 table is

typically used. The discrepancy between observed and expected

values in each cell from the table is evaluated by x2 test with one

degree of freedom. Comparatively, because the dTDT only takes

account of values of b and c, the test can be constructed by a 162

table instead. To maximally benefit from all sample data and

multiple studies, we extend the MH test to pool results on each

SNP from these two contingency tables in both case-control study

and dTDT. Calculation of each term in the MH test is shown in

Table 7. Having the Observed & Expected values and Variances

from case-control study and dTDT, terms in MH test can be

written as the sums of corresponding values these two tests. The

null hypothesis assumes no association between markers and

disease.

Results

Simulation
We separate the simulation results into nine groups that are

combinations of three disease models and three K values (0.01, 0.1

and 0.2). In each group there are 100,120 settings with different

R and f values. With each setting we generate 1,000 trios and

replicate the inference and dTDT procedures. Because of the large

number of these settings (1,320 in total), we attach the results as in

supplement tables. A plot of the log10 p�valueð Þfor these models is

shown in Figure 5. In the figure, graphs from the top row to the

bottom row represent the dominant, recessive and codominant

models respectively, and from left to right represent the results

with three different K values (0.01, 0.1 and 0.2). Each blue dot

corresponds to a/under that specific setting.

Because there are many factors interacting with each other, we

will start with a general comparison of different models then look

at the impact from one or two factors while constraining the others

constant.

In general, reading the values of log10 p�valueð Þfrom each

model, we find that a rare (K = 0.01) recessive disease model
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produces higher power compared to common (K = 0.1 or 0.2), co-

dominant or dominant disease models. Meanwhile, high R value

(0.9 or 1.0) also helps increase dTDT’s ability to detect signals.

This is because in a rare recessive case, markers with high LD to

the disease allele both parents are heterozygous and both transmit

the recessive risk allele to their offspring. Our findings from the

simulation validate what we already observed in the biological

phenomenon.

In the figure, each graph is broken down into four bins having

R = 0.5, 0.7, 0.9 and 1.0. Interestingly, within each bin, when

log10 p�valuesð Þ are ordered by descending f11 (from 0.9K to 0.0)

and increasing f12 & f22 (from 1.1K to 1.0), it shows a noticeable

increasing trend as shown on the graphs. Meanwhile, when f22 is

small ( = 1.1K), the blue dots are close to the bottom line on each

graph. We note that in order to have enough power to detect the

signals, we need to have relatively distinguishable penetrances (i.e.

f cannot be too close to g) in the model. Indeed, there is no

information when all three penetrances are equal to K.

When we generate the trios, we use a roulette wheel algorithm

to assign SNPs to the children. This randomness is reflected on the

graphs as the dots spread in some irregular patterns. Reading the

graphs from left to right, we can see that with low prevalence

(K = 0.01) the dots appear in clear clusters. Each cluster

corresponds to a specific f11 value. Taking the top left graph

(dominant with K = 0.01) as an example, f11 changes in the order of

0.9K, 0.7K, 0.5K, 0.3K, 0.1K and 0.0. Within each cluster, f12 & f22

increase in the order of 1.1K, 0.5, 0.9 and 1.0. This clustering

holds true in the other two disease models (recessive and co-

dominant) when K is small (K = 0.01) except some f11 valued

clusters are missing because combinations with invalid p were

excluded. In summary, the above observation indicates that f11 has

a higher impact to the power than f12 & f22 do in a rare disease

model. As the prevalence increases (K = 0.1 and 0.2), the clustering

effect gradually disappears. In each R valued bin when K is large

(0.1 or 0.2), though the penetrances are sorted in the same order as

mentioned above, the dots represent certain continuity instead of

clustering. This shows that, in a common disease model, f11 is not

the only or the most effective factor as it is in a rare disease model.

Other factors start to interact with each other. Especially when

K = 0.2 and R = 1.0 (the fourth bin in the three graphs on the

right), the dots appear in clear fan-shaped sectors. This irregularity

can be partially explained by the sensitivity to randomness of the

model under such setting, i.e., small changes of the parameters can

have high impact on the results.

We can further see how the penetrances differ by looking at the

slope of the trend in each bin. Apparently as the value of R

increases across the bins, the slope of the trend also increases. This

is because when R is high (such as 0.9 and 1.0), the same degree of

lift in the penetrances will add more power and move/more

quickly to its next level compared to the situation when R is low

(such as 0.5). From another point of view, we can imagine these

slopes as the (first) derivatives of a convex function in terms of R.

On this convex curve, as R moves along to its rightmost end

(increases), the derivative of the function increases and the function

value (power) improves faster.

Application to Alcohol Dependence
In a recent work in a case-control study using GWAS data on

the COGA sample, Edenberg et al [79] identified the most

significant SNP rs10511260 on chromosome 3 with p-value

(P) = 3.461026. A cluster of SNPs was found in a region of

chromosome 11 with p-values ranging from 4.861025 to

6.961024. No single SNP showed genome-wide significance

(561028). In the following sections, we will compare our results

from dTDT on COGA data with these findings from Edenberg et

al’s work.

dTDT on COGA data. To apply the dTDT on each SNP

from COGA, we re-build the inferred pedigrees by extracting all

trio combinations in which every child in a trio must be affected

and at least one parent was genotyped on microsatellite markers.

Table 6. Summary of microsatellite and SNP markers in EA group before and after cleaning.

Total Number of Raw
microsatellite markers

Number of microsatellite markers after
cleaning (mrkMS)

Number of CIDR SNPs after cleaning
(mrkSNP)*

Map03MS EA 328 290 801,273

MarshfieldMS EA 394 336 801,286

*compared to 1,041,304 SNPs before cleaning.
doi:10.1371/journal.pone.0063526.t006

Figure 3. Pedigree of one Map03 family (FAM_ID 20059). Common individuals (#1, 2, 9 and 13, from left to right) are genotyped on both
microsatellite and SNP markers (circled in red). Box shadowed in upper left: AB, alcohol abuse; shadowed in upper left & right: AD, alcohol
dependence (DSM III-R Diagnosis). Box shadowed in lower left: PROB, probable; shadowed in lower left & right: DEF, definite (Feighner Diagnosis).
doi:10.1371/journal.pone.0063526.g003
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Because one family can have more than one affected child, the

parents can be found in more than one trio. For instance, the

family (FAM_ID 20059) as shown in Figure 3 has four affected

children (#18, 1, 5 and 12, from left to right). Mother (#30) was

genotyped on microsatellite markers. Therefore we have four trios

from this family. In total, 893 trios from 323 families with 1,654

individuals in the LinkageMS EA group were extracted and used to

build the trio-dosage pedigrees. 166 SNPs are found with p-values

,1024. This is compared to 93 SNPs at the same level in

Edenberg et al’s paper [79]. Several clusters of SNPs on

chromosome 7, 8 and 22 have p-values #1025. However, further

analysis with MH statistics does not yield consistent results with

dTDT. This may be primarily due to the relatively small sample

size used in dTDT and accuracy of the ‘‘–infer’’ program.

Combining case-Control study and dTDT. With dTDT

and case-control analysis applied to the LinkageMS and CIDRSNP

data respectively, we compute the p-values of MH test based on

calculations in Table 7. Figure 6 shows the Manhattan plots of –

log10P across all 23 chromosomes from the MH test. The most

significant SNP (rs11583322) on chromosome 1 gives a p-

value = 1.1061028 that meets the GWAS significance level. This

SNP lies in the gene Serine/Threonine Kinase 40 (STK40) that

connects pluripotency factor Oct4 to the Erk/MAPK pathway

controls extraembryonic endoderm differentiation [80]. Table 8

Figure 4. Distribution of cleaned microsatellite and SNP markers on 23 chromosomes in EA families. These markers are used in the
combined pedigrees for genotype inference. (a) distribution of microsatellite markers on 23 chromosomes in Map03 (blue) and Marshfield (red)
(overlapped); (b) distribution of SNPs on 23 chromosomes in Map03 and Marshfield. Because the difference of SNPs numbers in these two datasets is
trivial, we only display the distribution of SNPs in Map03.
doi:10.1371/journal.pone.0063526.g004
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Figure 5. –log10(P) distribution of nine disease models from the simulation results. Graphs from the top row to the bottom row represent
the dominant, recessive and codominant models respectively, and from left to right represent the results with three different K values (0.01, 0.1 and
0.2). Each blue dot corresponds to a –log10(p-value) under that specific setting. Every graph is broken down into four bins with R = 0.5, 0.7, 0.9 and 1.0.
Within each bin, the –log10(p-values) are ordered by descending f11 and increasing f12 & f22.
doi:10.1371/journal.pone.0063526.g005

Figure 6. Manhattan plot of –log10P from MH test across all 23 chromosomes for LinkageMS EA data. The dashed red line shows the
genome-wide significant level –log10(5 6 1028) < 7.3. SNP rs11583322 has given –log10P < 8.1 above this level that lies in gene STK40.
doi:10.1371/journal.pone.0063526.g006
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lists the top SNPs with MH test p-values ,1025 and their

corresponding case-control study and dTDT p-values. From the

table we can see that the p-value of each SNP in the MH test is

approximately the product of p-values in the other two tests.

However, SNPs with high rankings by p-values in the MH test do

not systematically correspond to high rankings in the individual

tests. The p-values in the dTDT share the highest variance

(2.0161023) among the three tests because of the randomness

introduced by the inference procedure as well as the difference in

sample sizes across the tests. A larger sample size will likely

increase the power and generate more robust test results. In total,

we have 257 SNPs in 75 genes with p-values ,1024. 14 SNPs at

the same level of p-values are found in replication of Edenberg et

al’s study [79]. Four of these 14 SNPs have associated genes:

CSMD2 on chromosome 1, LZTS2 & PDZD7 on chromosome 10,

and Gcom1 on chromosome 15. There are 34 vs. 11 SNPs that

have p-values ,1025. Five SNPs across chromosome 1, 3, 9, 12

and 14 show p-values ,5.161027 which is more statistically

significant than the case-control analysis by Edenberg et al [79].

Our results also show clusters of SNPs by distance with p-values

,1025 (more than five such markers in one cluster) in genes

EXOC6B, FTO, NCAM2 and PPEF1 on chromosome 2, 5, 21 and

X, respectively.

Experimental Validation
Based on results from the MH test (5th column on Table 8), 19

out of the top 30 SNP markers were genotyped for 1,586

individuals from 220 Wave I & II families. We used the Sequenom

MassArray technology for SNP genotyping [81]. PCR primers,

extension primers, and multiplexing capabilities were determined

with Sequenom MassARRAY Assay Designer software v3.1.2.2.

Standard procedures were used to amplify PCR products;

unincorporated nucleotides were deactivated with shrimp alkaline

phosphatase. A single base pair extension step was completed with

the mass extension primer and the terminator (iPLEX). The

primer extension products were cleaned with resin and spotted

onto a silicon SpectroChip. The chip was scanned with a mass

spectrometry workstation (Bruker). The resulting genotype spectra

were analyzed with Sequenom SpectroTYPER software v3.4.

Because variant rs11583322 did not work well with the

Sequenom genotyping platform, we used the PrimerPicker

software [82] to design the assay and followed the protocol

described in KASPar SNP Genotyping System manual to run

PCR reaction with an ABI GeneAmp PCR System 9700 [83].

Genotypes were accessed using an ABI 7900 HT Fast Real-Time

PCR system. Because the genotypes are from linkage families, we

used the program UNPHASED [84] to perform a genetic

association analysis. Our colleagues in Allison Goate’s lab

implemented the above genotyping process. The author did the

final analyses of the genotypes. Results are shown in Table 8.

Discussion

Simulation
As shown above, we can see that simulation can be a powerful

tool to investigate many interactions between various factors and

help discover potential rules underlying these factors.

With slight modification of the above technique, we can use our

simulation to investigate how the dTDT is affected by population

stratification. Simulating different populations to have different

prevalences, we can choose two sets of trios using different allele

frequencies. Applying the dTDT to this combined set of trios, we

can test whether the power is lowered or heightened because of the

prevalence difference within the populations. Since there is no

information on phase of two markers in a trio, we have not

introduced the recombination frequency (h) in the simulation.

Tradeoff
When applying the dTDT to the alcohol dependence data from

COGA, nearly twice the number of SNPs (166 vs. 93) were found

having p-values ,1024
. Further, to maximally make use of the

available sample data, we combine case-control study and dTDT

with the MH test. This potentially increases our sample size and

makes the method more robust to uncontrolled factors. As a result,

we have one signal in gene STK40 with p-value that attains a

genome-wide significance level. A large number of SNPs are found

having p-values ,1024. Several clusters of SNPs by distance with

p-values ,1025 are found in various genes across the genome.

Table 7. Calculations of Observed & Expected values, Variance, x2 test in Case-Control study, dTDT and MH test.

Case-Control study dTDT MH test

Structure Case Control NT

allele 1 allele 2 –

# allele
1 a1~2|#cs|fcs b1~2|#cn|fcn T

allele
1 – b2

# allele
2 c1~2|#cs{a1 d1~2|#cn{b1 allele 2 c2 –

Total (N) a1zb1zc1zd1 – a1zb1zc1zd1

Observed (O) a1(orc1) b2(orc2) (a1zb2)or(a1zc2)*

Expected (E) (a1zb1 )|(a1zc1 )
N

(b2zc2)
2

(a1zb1)|(a1zc1)
N

z (b2zc2)
2

Variance (a1zb1 )|(a1zc1 )|(c1zd1 )|(b1zd1 )
N2 (N{1)

(b2zc2)
4

(a1zb1)|(a1zc1)|(c1zd1)|(b1zd1 )
N2(N{1)

z (b2zc2 )
4

x2 test (O{E)2

V
(b2{c2)2

(b2zc2)
(O{E)2

V

Number of Cases (#cs) = 847; Number of Controls (#cn) = 552; fcs: allele frequency in cases; fcn: allele frequency in controls; T is short for Transmitted; NT is short for Non-
Transmitted. b2 = Sbi and c2 = Sci. Using either a1 or c1 in Case-Control study will give the same results.
*equivalent to (c1zb2)or(c1zc2).
doi:10.1371/journal.pone.0063526.t007
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The Quantile-Quantile (Q-Q) plots are used in GWAS to assess

the inflation of FPRs by comparing the distribution of observed p-

values against the theoretical model distribution of expected p-

values [85]. In theory, without type I error arising from population

stratification or other artifacts, the Q-Q plot shall align with the

diagonal line. This is true if we use completely randomized data.

By comparing the distortion of the Q-Q plot of the test results

from this diagonal line, we can tell whether there are false positives

or other errors due to genotyping or imputation. Before we draw

any conclusion, we provide the Q-Q plots for results from all three

Case-Control, dTDT and MH tests on the COGA data (Figure
7). From the figure we can see that most of the observed p-values

from Case-Control and dTDT are along the diagonal line. We do

not observe significant distortion, i.e., type I error, in both tests.

On the other hand, the Q-Q plot of MH test lies above the

diagonal line. As stated earlier, both Case-Control and the dTDT

are not robust to the population stratification because of the

dependence of allele frequencies in the populations. MH test is

basically a combined statistic of these two tests. Though we have

increased the sample size in the combined test, we have reason to

believe that such sensitivity to population stratification has been

inflated in the MH test. This is a tradeoff that we need to pay

attention to in the future studies. However, this issue can be

partially addressed by restricting accurate genotypes based on the

imputation quality score (IQS) [86] (discussed below in Dealing with

errors).

Having the observed -log10 (p-value) along the diagonal line in

the Q-Q plots doesn’t mean these tests agree with each other. To

investigate the concordance among these three tests, we rank the

-log10 (p-value) from the dTDT (or MH test) and pick the top 100

Table 8. Top SNPs with p-values ,1025 from MH test, and corresponding genes and p-values from Case-Control study, dTDT,
Unphased association analysis, and IQS with threshold on dosage probabilities above 0.0 or 0.8.

SNP CHR Position
Associated
Gene

MH test p-
value

Case-Control
p-value

dTDT p-
value MAF

Unphased
Wave I&II

IQS
(.0) IQS (..8)

rs12116935 1 36,562,133 FAM176B 6.98E-06 6.56E-04 1.04E-03 0.38 6.77E-01 0.21 0.91 (395)

rs11583322 1 36,594,899 STK40 1.10E-08 7.39E-06 1.04E-04 0.38 8.54E-01 0.20 0.85 (345)

rs1932933 1 160,384,670 NOS1AP 5.82E-06 1.99E-04 4.24E-03 0.37 6.85E-01 0.22 0.95 (478)

rs10801629 1 196,110,990 4.13E-06 1.18E-04 9.62E-03 0.40 (482)

rs10922323 1 196,128,944 6.46E-06 1.52E-04 1.23E-02 0.40 9.54E-01 0.31 0.91 (550)

rs1850344 3 108,667,763 8.16E-06 1.33E-04 2.08E-02 0.38 1.13E-01 0.21 0.92 (350)

rs4384980 3 183,941,763 5.78E-07 9.17E-05 6.93E-04 0.42 4.46E-01 0.21 0.90 (405)

rs2857839 4 3,006,428 GRK4 6.60E-06 1.11E-03 5.56E-04 0.39 (471)

rs1801058 4 3,008,948 GRK4 6.48E-06 9.67E-04 6.57E-04 0.39 5.62E-01 0.22 0.89 (564)

rs2798303 4 3,010,385 GRK4 1.28E-06 2.17E-04 8.55E-04 0.42 8.24E-01 0.22 0.91 (615)

rs994029 9 88,565,134 1.98E-07 3.62E-04 1.18E-05 0.37 3.59E-01 0.21 0.89 (713)

rs2398236 10 5,321,159 9.07E-06 7.15E-04 1.96E-03 0.40 5.04E-01 0.22 0.90 (362)

rs9423593 10 5,322,349 8.32E-06 1.04E-03 5.20E-04 0.37 9.04E-01 0.22 0.89 (381)

rs7076488 10 5,323,008 2.13E-06 2.03E-04 1.49E-03 0.41 (562)

rs3781458 10 126,333,921 FAM53B 4.27E-06 2.70E-03 1.31E-05 0.37 (729)

rs3781452 10 126,345,119 FAM53B 6.86E-06 3.43E-03 1.81E-05 0.37 (449)

rs1503452 11 16,408,708 SOX6 3.21E-06 2.58E-04 1.80E-03 0.37 5.38E-02 0.22 0.89 (477)

rs3924047 11 70,507,506 SHANK2 8.77E-06 2.19E-04 1.04E-02 0.44 4.95E-01 0.21 0.87 (489)

rs4356270 12 90,843,346 8.42E-06 8.12E-06 1.91E-01 0.35 (370)

rs12427267 12 90,848,103 6.00E-07 6.04E-05 1.90E-03 0.38 2.15E-01 0.19 0.95 (403)

rs11106345 12 90,850,631 7.22E-06 8.83E-06 1.81E-01 0.35 (511)

rs10848190 12 129,767,988 5.43E-06 4.83E-04 2.36E-03 0.39 (327)

rs1035717 14 69,648,452 SLC8A3 6.36E-06 1.32E-03 2.19E-04 0.41 7.12E-01 0.23 0.95 (334)

rs4903712 14 77,685,346 1.67E-06 3.40E-05 1.79E-02 0.27 1.99E-03 0.29 0.92 (768)

rs17754467 14 77,692,276 5.54E-07 3.20E-06 4.50E-02 0.23 7.36E-02 0.20 0.87 (621)

rs1568447 17 70,348,607 4.08E-06 5.26E-04 1.13E-03 0.38 (623)

rs9901283 17 70,349,427 GRIN2C 9.31E-06 8.18E-04 1.67E-03 0.38 (397)

rs11652088 17 70,351,427 GRIN2C 3.50E-06 4.58E-04 1.00E-03 0.38 7.25E-01 0.16 0.82 (537)

rs8111589 19 50,726,398 OPA3 8.27E-06 7.50E-05 4.03E-02 0.44 6.08E-01 0.21 0.90 (443)

rs2830045 21 26,380,280 APP 6.31E-06 1.77E-03 2.22E-04 0.37 (396)

VARIANCE 9.09E-12 8.60E-07 2.01E-03

MEAN 5.04E-06 6.94E-04 1.71E-02

Markers without Unphased and IQS data were not genotyped through the experimental validation. Numbers in the brackets next to the IQS (.0.8) column are the
numbers of individuals who meet such restriction on that specific marker.
doi:10.1371/journal.pone.0063526.t008
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signals. Then we plot these values with their corresponding -log10

(p-value) from the other two tests (Figure 8. To dTDT the other

two are Case-Control and MH test; to MH test the other two are

Case-Control and dTDT). From the figure, we can see that the

concordance performs poorly among these tests. The top signals in

either dTDT or MH test do not appear in the top list from the rest

two tests as expected. There can be several reasons for this

discordance: (1) genotyping errors in both linkage and association

data; (2) inaccuracy of the imputation; (3) interference from

population stratification. The first two issues may be addressed

through experimental validation as discussed below. The last issue

requires additional design for the tests that we will discuss in

Conclusions.

Dealing with Errors
After correcting for multiple tests (p-value = 0.05/19 = 0.0026),

SNP rs4903712 on chromosome 14 remained significant. This was

the seventh most significant SNP from the MH test. As discussed

above, there are several issues affecting the dependability of our

test results. As we saw from the Q-Q plots, signals from MH test

have been inflated because of double counting of the population

stratification factor. On the other hand, the genotyping and

imputation accuracy may be taken into account as well. To

address these issues, we compute the IQS for the listed top SNP

markers on Table 8 with and without setting a 0.8 threshold on

the dosage probabilities. We report the number of individuals who

meet such 0.8 threshold (in the last column, the numbers in the

brackets next to IQS with dosage probabilities .0.8). According to

the IQS, when we exclude the dosage probabilities that are below

0.8, the inference program performs very well and provides above

,0.90 IQS on average. The reason is that for dosage probabilities

that are lower than 0.8, there is too much uncertainty for the

program to impute, which not only heavily distorts the results

(poor specificity) but also makes it difficult to filter out true

Figure 7. QQ-plots of Case-Control, dTDT and MH tests.
doi:10.1371/journal.pone.0063526.g007

Figure 8. Line chart of top 100 signals from Case-Control, dTDT and MH tests. (a) line chart ranked by -log10 (p-value) from dTDT and its
corresponding -log10 (p-value) from the other two tests: Case-Control & MH test; (b) line chart ranked by -log10 (p-value) from MH test and its
corresponding -log10 (p-value) from the other two tests: Case-Control and dTDT.
doi:10.1371/journal.pone.0063526.g008
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positives (low sensitivity). However, there is always a tradeoff when

we enhance the accuracy. If we set a 0.8 threshold on dosage

probabilities, the sample size dramatically reduces from 1,586 to

326 (intersection set across all markers). We further apply dTDT

and MH test onto these 326 individuals with either the inferred or

genotyped data but do not find significant markers at a 1025 level

due to a small sample size (data not shown).

As above, the experimental validation shows that the accuracy

of the inference program can heavily impact the results of the

dTDT and MH tests. The disagreement of results from these two

tests on the real data could be attributed to several sources. First,

the sample size of informative data is small. In total, we have 3,567

individuals from 453 EA families included for inference calcula-

tion. Within all these individuals, only 471 individuals were

selected for SNP validation genotyping. This requires genotypes of

more than 85% of individuals to be estimated. In addition,

compared to the total number of SNPs, the number of

microsatellite markers is also trivial (722 vs. 1 million).

According to Table 8, though the sample size may be reduced,

we still recommend limiting dosage probabilities before genotyp-

ing. In our experience, a threshold at 0.7 , 0.8 level can be a good

cut-off. A threshold lower than this level may contribute too much

noise and a threshold higher than this may reduce the sample size

significantly. Meanwhile, we suggest interpreting the dTDT

signals only after genotyping validation in order to lower the risk

of false positives.

Conclusions

Since the discovery of Mendel’s law, genetic research has been

challenged to identify genetic variants that contribute to human

diseases. Along with the development of genome sequencing

technologies, there have been impressive progresses within the

research community over the past decade. Numerous methodol-

ogies have been developed and many disease-associated genes

have been reported [87]. In this study, the work presented here

embraces the recent development and addresses some of the

research challenges in the field of genetic research. However, as we

have seen, despite the promises of the solution we provide, it also

prompts a great need to further investigate many of the issues we

have presented.

As discussed, traditional case-control studies on GWA often

include only unrelated individuals. By including family informa-

tion in the study, we can expect an increase in power for linkage

and association detection. On the other hand, because the

traditional TDT requires complete genotypic information from a

trio by measuring over-transmission of an allele from heterozygous

parents to the affected offspring, it may be less useful in trio data

like COGA where there are relatively few complete trios. To

overcome these limitations, in this project, we extend the original

TDT to the dTDT to accommodate dosage probabilities of a trio.

The trio-dosage sets can be inferred through programs like

MERLIN. Compared to a recent work from Edenberg et al, the

dTDT shows increased power to detect association.

Genotype inference allows us to evaluate the evidence for

association at the genetic markers that are not directly-genotyped.

It helps improve the power of individual scans and is of particular

usefulness for combining information from different studies such as

linkage and GWAS. However, the accuracy of genotype inference

may be impaired for the following reasons. First, because datasets

where subjects are genotyped on different platforms may have

different genotyping error rates, when we combine these datasets,

inference can be problematic. Second, genotype inference for large

datasets based on a small amount of shared information may

encounter too much uncertainty in the procedure. For a similar

reason, SNPs with low MAF may also have a higher chance of

being inferred inaccurately.

On the other hand, a major advantage of the TDT is that it is

not susceptible to population stratification. The dTDT is,

however, sensitive in that it depends on the marker allele

frequencies in the population. Because of this reason, when we

combine results from both Case-Control and dTDT, the MH test

potentially inflates errors due to population stratification. This can

be noticed in the Q-Q plot as we present in Figure 7.

In summary, as we inspect the reasons for having low

concordance among the tests as well as poor replication from

our test results to the experiment validation, we have the following

conclusions:

I. Because the linkage and GWAS data were genotyped on

different platforms, they may carry different genotyping

errors, which make it difficult to obtain genotype inference

accurately; inference across these platforms can generate

spurious associations;

II. Due to a great sparsity in the combined dataset, a large

number of the markers have to be inferred without sufficient

support from the common markers, which introduces too

much uncertainty in the inference;

III. Because of possible population stratification, combining

both the Case-Control and the dTDT to enhance the

sample size may introduce false positive signals.

As one solution, when we filter out poorly-inferred SNP markers

using IQS, we are able to removes thousands of false positives that

can be particularly useful for SNPs with low MAF and when

datasets are genotyped on different platforms. However, the

tradeoff is we have to exclude a good number of individuals from

our database in order to meet such restriction. But this can always

be an option when enough samples are available.

Despite this area for methodological development, our work

posits that the dTDT has considerable utility for linkage and

association testing. By exploiting family data with inference and

existing case-control information, the dTDT demonstrated here

has opened a new window to possible routes for the integration of

both population-based and family-based studies.

Future Direction
To address the sensitivity issue due to population stratification,

it is necessary to validate the SNP genotyping and perform a test

such as the PTDT to validate results and use a program such as

UNPHASED. This approach minimizes expense when the case/

control sample is derived from an existing family study in which

relatives have available DNA for typing. Moreover, we may

implement additional application to other populations such as

African Americans to compare findings with what we have from

the European Americans. This will require extending the

techniques described above.

We may explore using more of the family data instead of only

using SNPs. Other sources of information could be captured,

such as the copy number variants (CNVs) [88,89]. It is also

suggested that non-genetic risk factors tend to raise the attention

for complex traits and should also be incorporated into the

genetic studies. Meanwhile, it is likely that COGA will obtain

GWAS data in the relatives so that we can evaluate the efficiency

of inference versus having GWAS genotypes available. Power

calculation and sample size estimation of the new statistics are

needed for general use. Due to the uncertainty inherent to the
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inference procedure, we plan to develop better strategies for

generating dosage probabilities.

Finally, the dTDT should not be limited to dosage

probabilities from the inference programs only. As a perspec-

tive, the next-generation sequencing data will provide a

challenge using the method developed in this paper. Similar

methods can be used when pedigree members have a SNP

chip, and a subset has sequence data. Despite the discordance

and poor replication from our test results, we believe that

linkage can help identify regions of interest in conjunction with

association testing. Computational inference has helped us

reduce the experimental cost in that we may only need to do

sequencing on a limited number of family members. Keeping

this in mind, we need to implement appropriate selection of

the most informative families when we do genotyping. All these

future directions shall be promising and have potential to

inform the field.
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