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ABSTRACT OF THE DISSERTATION 

 

Developing Computational Optical Imaging  

Systems with Artificial Intelligence 

 

by 

 

Xiaoxi Du 

Doctor of Philosophy in Bioengineering 

University of California, Los Angeles, 2024 

Professor Liang Gao, Chair 

 

Alzheimer’s disease (AD) is a major risk for the aging population. The pathological hallmarks of 

AD—an abnormal deposition of amyloid β-protein (Aβ) and phosphorylated tau (pTau)—have 

been demonstrated in the retinas of AD patients, including in prodromal patients with mild 

cognitive impairment (MCI). Aβ pathology, especially the accumulation of the amyloidogenic 42-

residue long alloform (Aβ42), is considered an early and specific sign of AD, and together with 

tauopathy, confirms AD diagnosis. To visualize retinal Aβ and pTau, state-of-the-art methods use 

fluorescence. However, administering contrast agents complicates the imaging procedure. To 

address this problem from fundamentals, this dissertation performed ex vivo studies to develop a 
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label-free hyperspectral imaging method to detect the spectral signatures of Aβ42 and pS396-Tau. 

A deep learning framework was developed to predict their abundance in retinal cross-sections and 

transform a label-free HSI image to either a DAB or an immunofluorescent stained image in high 

accuracy. For the first time, we reported the spectral signature of pTau and provided a direct 

validation through immunostaining.  

For small incision in vivo imaging, optical endoscopes are mostly limited by two-dimensional 

views or very small number of three-dimensional (3D) views of pathological sites, and are 

intrinsically low in resolution caused by the limited fiber cores. The dissertation demonstrated a 

flexible light field endoscopy (Flex- LFE) imaging system capable of capturing depth information 

in a single shot. To address the resolution challenges inherent in endoscopic imaging, an AI-

powered super-resolution pipeline is developed to enhance the quality of reconstructed images.  

Additionally, this work explored the utilization of tunable image-mapping optical coherence 

tomography (TIM-OCT) to further advance in imaging of the retina. While most current OCT 

devices require extensive scanning, by combining phase-only spatial light modulators with spectral 

domain OCT, TIM-OCT achieves tailored imaging performance and enables “eye motion freeze” 

snapshot imaging. Computational spectroscopic analysis is discussed to extract spectral signatures. 

This dissertation demonstrates the potential of AI-driven optical imaging systems in addressing 

critical challenges in biomedical imaging, with a particular focus on the early detection of AD. The 

findings are expected to lay the groundwork for label-free detection of AD. 
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Chapter 1 Introduction 

Optical imaging offers several distinct advantages over other biomedical imaging techniques, 

making it a versatile and powerful tool in medical diagnostics and research. One of its foremost 

strengths lies in its high spatial and temporal resolution, enabling precise visualization of cellular 

and subcellular structures in real time. Compared to modalities such as X-ray computed 

tomography or magnetic resonance imaging (MRI), optical imaging uses non-ionizing radiation, 

is cost-effective in devices and excels in portability. Optical imaging techniques, like fluorescence 

imaging, provide remarkable molecular specificity, allowing for the non-invasive study of dynamic 

biological processes at the molecular and cellular levels in vivo. More important, optical imaging 

complements other imaging modalities, such as MRI or ultrasound, through multimodal 

approaches, providing a synergistic framework that enhances both functional and structural 

imaging. Therefore, optical imaging has a transformative role in advancing biomedical modalities 

and improving diagnostic accuracy.  

Despite its profound impact, traditional optical imaging systems have been limited by physical 

constraints such as resolution and depth of field. However, advancements in computational 

techniques and the integration of artificial intelligence (AI) have opened up new possibilities, 

allowing imaging systems to surpass these physical barriers and extract meaningful information 

from complex imaging data that is not directly observable. 

This dissertation focuses on the development of advanced computational optical imaging systems 

that leverage AI, with the goal of designing next-generation imaging platforms capable of 

delivering high-sensitivity and high-resolution images in real time. The research work aims to 
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contribute to the rapid evolving field of computational optical imaging, while laying the foundation 

for future research. 

1.1 Label-free imaging  

In many cases, disease markers exhibit a visual appearance that closely resembles that of normal 

tissue, rendering conventional two-dimensional (2D) imaging techniques insufficient due to 

limited contrast. Fluorescence imaging provides increased visibility and high molecular specificity 

through addressing exogenous contrast agents. However, the reliance on such agents raises 

concerns regarding toxicity and limited biocompatibility, thereby restricting their use in many 

clinical applications. In response to these limitations, we proposed a hyperspectral imaging (HSI) 

platform capable of conducting label-free, high-resolution imaging to visualize disease markers 

with enhanced specificity. This approach offers a safer alternative for clinical and research 

applications. 

Rather than measuring only light intensities at 2D spatial coordinates, HSI captures a wide range 

of wavelengths across spectrum, from visible light to the near infrared, for each pixel in an image. 

The acquired 3D hypercube (𝑥, 𝑦, λ) containing both spatial and spectral information. The enriched 

spatio-spectral data enables the detailed analysis and classification of the chemical constituents of 

tissues without the need for fluorescence labeling. Furthermore, HSI image by virtue mitigates the 

influence of tissue autofluorescence.  

In this dissertation, I focused on utilizing the hyperspectral imaging technique to identify and 

discover the unique spectral signatures of Aβ and pTau, the two primary hallmarks of Alzheimer's 

disease (AD). With the global population aging, AD is profoundly impacting millions of 

individuals and their families [1]. Previous studies have demonstrated that Aβ and pTau manifest 
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in retina at an early stage, preceding their accumulation in the brain[2], [3]. Noteworthily, this is 

the first report of the spectral signature of pTau. We expect our findings will lay the foundation for 

the label-free detection of AD at its the early stages through in vivo retina imaging by the 

characteristic spectral signatures associated with pathological changes.  

Building on the validation of spectral signatures of Aβ and pTau in human retina cross-sections, I 

proposed another advanced imaging modality in this dissertation, tunable image-mapping optical 

coherence tomography (TIM-OCT), as a step toward in vivo retinal imaging.  OCT, which utilizes 

low-coherence interferometry, generates high-resolution cross-sectional images of biological 

tissues in a non-invasive manner and is widely used in ophthalmology due to its depth-resolved 

imaging abilities. By integrating a phase-only spatial light modulator (SLM) with a full field 

spectral domain OCT system, TIM-OCT can provide tailored imaging performance for a given 

application. Its snapshot imaging modes make it particularly advantageous for dynamic 

assessments, enabling in vivo retinal imaging by effectively “freezing” eye motion. Moreover, by 

utilizing computational tools, the spectral signatures can be extracted through spectroscopic OCT 

analysis. 

 

1.2 Artificial intelligence 

The interpretation of optical imaging data is complicated by the nonlinear and heterogeneous 

nature of light-tissue interactions, requiring the use of sophisticated algorithms and computational 

models for accurate image reconstruction and quantitative analysis. Artificial intelligence has 

undergone a remarkable transformation over the past decade, revolutionizing numerous 

engineering processes through automation. This technological evolution has also catalyzed a surge 
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in its applications across various domains of scientific research, enabling advancements such as 

data analysis and predictive modeling. 

Machine learning algorithms, particularly deep learning, have demonstrated unparalleled 

effectiveness in enhancing image reconstruction, and extracting features from noisy or incomplete 

datasets. The concept of AI first emerged in the mid-20th century; however, progress was hindered 

during its early years due to limitations in computational power and data availability, leading to 

intermittent periods of stagnation [4]. The resurgence of AI in the late 1990s and early 2000s was 

fueled by the advent of machine learning techniques and the increased availability of digital data. 

This progress culminated in the development of deep learning, which harnesses neural networks 

and advanced algorithms to process vast datasets with unprecedented accuracy.  

In the field of medical imaging, traditional image processing algorithms exhibit very limited 

tolerance for image-to-image variations, usually requiring professionals to manually adjust 

parameters to achieve optimal results for different input images [5]. However, with the rapid 

advancements in AI, its application to medical image processing has become increasingly 

promising. Deep neural networks, in particular, offer the capability to learn complex imaging 

parameters directly from data, eliminating the need for manual tuning. Once successfully trained, 

a deep learning model can enable real-time enhancement of imaging results in optical imaging 

systems, a feature that is crucial for facilitating clinical examinations and supporting devices used 

in operating rooms.  

In this dissertation, I demonstrate the effectiveness of deep learning based AI approach under two 

advanced optical imaging schemes: hyperspectral imaging and light field imaging. For 

hyperspectral imaging, I proposed a DL framework that trained to learn the high-dimensional 

spectral information of the imaged retina samples. This framework classifies pixels based on the 



 

 5 

spectral signatures of Aβ and pTau, enabling the inference of the spatial distribution of AD 

hallmarks, resembling histopathological images in competitive level of detail and accuracy. 

On the other hand, dissertation presents the design of a flexible endoscope based on light field 

imaging, which enables the computation of depth information from a single shot, thereby providing 

a comprehensive three-dimensional view of tissue lesion structures. Endoscopic imaging 

inherently faces limitations due to the constraints of its small imaging diameter, which needs a 

trade-off between the resolution of individual views and the number of views required to compute 

depth information. To address this challenge, I propose an image super-resolution pipeline 

powered by deep learning, aimed at enhancing the quality of reconstructed images. By leveraging 

the capabilities of AI, this super-resolution model seeks to overcome the hardware limitations of 

endoscopic system design, enabling high-resolution imaging while maintaining the compact and 

flexible form for clinical applications. 
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Chapter 2 Hyperspectral Retinal Imaging 

We present a quantitative study on HSI of Aβ and pTau deposits in human retinal cross-sections 

from neuropathologically confirmed AD patients. For the first time, we identified the spectral 

signature of pTau and demonstrated an accurate prediction of amyloidogenic 42-residue long (Aβ42) 

alloform and pS396-Tau deposits in the retina by utilizing a deep-learning (DL) approach. The 

Aβ42 and pS396-Tau markers were selected due to their recognized role in AD pathogenesis. For 

validation, we compared HSI prediction results with peroxidase-based immunostaining (also 

referred to as DAB staining) and immunofluorescent staining on the same imaging sections, which 

are both gold standards in quantifying Aβ and pTau deposits in retinal tissues [6], [7], [8], [9]. By 

feeding the spatio-spectral features associated with Aβ42 and pS396-Tau into a generative 

adversarial network (GAN), our method can transform a label-free HSI image to either a DAB or 

an immunofluorescent stained image with high fidelity. The work presented here is expected to be 

the foundation for using HSI for noninvasive early AD diagnosis. 

 

2.1 Eye as the site for AD hallmark imaging 

Alzheimer’s disease (AD) and associated dementia are estimated to afflict 50 million people 

worldwide, a number projected to triple by 2050. This age-dependent epidemic is a major concern 

for the aging population, with an incidence that rises sharply after 65 years of age, affecting 

roughly 50% of individuals aged 85 and older [10]. While currently there is no cure, with early 

diagnosis, the progression of the disease may be slowed and the patient life style may be changed 

[11], [12]. 
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Although AD has been historically perceived as a brain disorder, recent studies indicate that AD 

also manifests in the eye with mounting evidence of abnormalities in the retina, a sensory extension 

of the brain [2], [6], [13]. Particularly, the hallmark pathological signs of AD, amyloid β-protein 

(Aβ), and neurofibrillary tangles (NFTs) comprised of hyperphosphorylated (p)Tau protein, which 

have long been described in the brain, have also been identified in the retina [2], [14]. There is a 

growing number of reports that Aβ deposits and pTau were discovered in the retinas of AD patients 

at various stages, in stark contrast to non-AD controls  [2], [6], [7], [8], [9], [15], [16], [17], [18], 

[19], [20]. As the only central nervous system (CNS) tissue not shielded by bone, the retina offers 

unique access to study pathological changes in the brain, noninvasively and with unprecedented 

high spatial resolution. The evidence of Aβ accumulation in the retina at early stages of AD [2], 

[9] and the accumulation of retinal NFT and pTau [6], [7], [8] lends credence to the notion of the 

eye as a site for presymptomatic stage imaging. Notably, Koronyo-Hamaoui group and other teams 

revealed that retinal Aβ plaques, Aβ oligomers, and pTau tangles in transgenic AD-model mice 

appear at the presymptomatic and early stage and prior to detection in the brain [2], [3], [21], [22]. 

Moreover, a correlation has been found between the severity of cerebral and retinal Aβ burden, in 

both in-vivo and ex-vivo examinations [6], [17], [23]. 

It has been reported that in about 30% of aged cognitively normal people there is accumulation of 

Aβ in the brain, as measured by positron emission tomography (PET)—amyloid imaging [6], [7], 

[23], [24]. These individuals are considered to be either resilient to disease process or in the 

preclinical stage of AD. Although some older individuals can show accumulation of Aβ, in mild 

cognitive impairment (MCI) and AD patients there are significantly higher accumulation, which 

means increased Aβ levels were specific to AD. Further, it is important to note that per the National 

Institute on Aging (NIA) and the Alzheimer’s Association guidelines [25], the presence of brain 
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Aβ is a prerequisite for definitive AD diagnosis, which were shown to occur decades before the 

clinical stage of the disease. 

Despite holding great promise for early diagnosis of AD, visualization of retinal Aβ and pTau 

deposits is nontrivial. Because Aβ and pTau deposits have a similar visual appearance to normal 

tissue, conventional fundus photography provides little contrast. To increase visibility, state-of-

the-art methods use exogenous fluorophores, and they have visualized retinal Aβ and pTau deposits 

with a high resolution [2], [6], [12], [14], [19], [23], [24], [26], [27], [28], [29], [30], [31]. However, 

administrating contrast agents in humans complicates the imaging procedure, hindering its 

scalability for population screening. To date, only curcumin, a natural fluorochrome, has been 

tested and used in clinical trials to label retinal Aβ [6], [12], [23], [24], [27], whereas fluorophores 

used to visualize retinal pTau in vivo are more limited. Therefore, there is an unmet need to develop 

label-free, high-resolution imaging techniques to visualize retinal Aβ and pTau deposits for early 

AD screening and disease management. 

 

2.2 Label-free hyperspectral imaging 

Over the past decade, hyperspectral imaging (HSI) has been increasingly used in various medical 

applications, and it has shown promising results for detecting various cancers [32], [33], [34], [35], 

[36], [37], [38], [39], [40], diagnosis of cardiac [41], [42] and retinal diseases [43], [44], [45], and 

assessment of brain functions and activities [46], [47], [48]. The overall rationale of using HSI for 

medical imaging is that the tissue’s endogenous optical properties, such as absorption and 

scattering, change during the progression of the disease, and the spectrum of light emitted from 

tissue carries quantitative diagnostic information about tissue pathology. Rather than measuring 
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only light intensities at a 2D grid, HSI captures a series of images at different wavelengths and 

forms a 3D datacube (𝑥, 𝑦, λ) (𝑥, 𝑦, spatial coordinates; λ, wavelength) also known as a hypercube. 

The rich spatio-spectral information obtained enables the classification of chemical constituents 

of the tissue without fluorescence labeling. 

Four distinct strategies exist for acquiring this datacube, as illustrated in Figure 1. The first 

approach, point-scanning HSI, employs a linear detector array to simultaneously record spectral 

information (λ) while sequentially scanning across all spatial coordinates (𝑥, 𝑦)  to assemble the 

complete datacube. The second approach, line-scanning HSI, utilizes a 2D detector array to acquire 

one slice of the datacube (𝑦, λ) at a time, requiring scanning in only one spatial axis (𝑥) to complete 

the data acquisition. Both point- and line-scanning HSI imagers involve extensive scanning to 

capture large datacubes, leading to prolonged acquisition times and increased susceptibility to 

motion artifacts, particularly when imaging dynamic scenes. 

 

Figure 1. Hyperspectral datacube acquisition strategies. 
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In contrast, wavelength-scanning HSI, the third approach, captures one slice of the datacube (x, y) 

and then scans across all wavelengths (λ). This simultaneous acquisition of spatial information 

results in significantly faster imaging speeds compared to point- or line-scanning methods. 

Examples of systems using this strategy include acousto-optic or liquid crystal tunable filter- based 

HSI systems [49]. The fourth strategy, snapshot HSI, captures the entire datacube in a single 

exposure, offering a means to completely eliminate motion artifacts, especially when combined 

with flash illumination.  

By virtue of its label-free imaging ability, several pioneer groups have explored HSI in examining 

the optical characteristics of Aβ in paired brain and retina tissues from both transgenic AD mouse 

models and human AD patients [20], [50], [51], [52], [53], [54], [55], [56]. It has been found that 

the effect of Aβ can be depicted by a characteristic light reflectance spectrum, and the magnitude 

of the spectrum varies with the AD development, in stark contrast to non-AD population where no 

evident differences are detected. However, the HSI experiments performed so far lack validation 

against fluorescence-staining ground truth images, and their methods are inadequate to reveal the 

precise locations and types of Aβ deposits on the retina. Moreover, despite being equally important 

in AD pathology, to our knowledge, the spectral signature of pTau and its label-free detection by 

HSI have not been reported. 

We built an HSI system based on an Olympus IX83 microscope, the optical setup is shown in 

Figure 2. The sample is illuminated by a broadband halogen lamp, and the transmitted light is 

collected by a 10x objective lens (Olympus, 0.25 NA). The output image is filtered by a liquid 

crystal tunable filter (KURIOS-VB1, Thorlabs) in narrow bandwidth setting (10 nm FWHM at λ 

= 550 nm). The imaged spectral range is from 420 to 720 nm, with a scanning step in wavelength 

of 2 nm. We collected the image data using a monochrome sCMOS camera (CS2100M, Thorlabs). 
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In total, 151 spectral images were captured for one FOV. The entire cross-section of the retina 

superior-temporal strip was scanned with a 1/3 overlap between adjacent FOVs for image stitching. 

A sample not in imaging was attached to a glass slide without a cover glass and kept in PBS 1× 

solution. When performing imaging, we placed a cover glass on top of the sample and replenished 

it with PBS 1× solution to keep the tissue moist. All retinal cross-section samples were kept in 

PBS 1× solution over 2 weeks and reimaged multiple times. Upon completion of scanning, we 

stitched all the FOVs at the selected wavelength to a whole strip view of the retina cross-section. 

 

Figure 2. HSI system setup.  

(a). Transmission imaging mode by a 10x objective. (b). The hyperspectral microscope sample stage and 

the control panel. (c). Side view of the outside optics.  
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Due to the sCMOS camera's varying spectral responses across different wavelengths, the acquired 

HSI data must be corrected to account for the system response. We used a benchmark fiber 

spectrometer (STS-VIS-L-25–400-SMA, Ocean Optics) to measure the lamp spectrum at the 

sample stage and imaged the slides with a blank FOV. The calibration coefficients for all the 

spectral components were obtained by dividing the average image intensities by measured spectral 

values. The calibration coefficients were fine-tuned by imaging a color checker (X-Rite Color 

Checker). The final calibration coefficients were saved and used in the following HSI data 

processing. 

 

2.3 Spectral signatures of Aβ42 and pS396-Tau 

Using a custom HSI microscope equipped with a liquid crystal tunable filter, we imaged unstained 

postmortem retinal cross-sections from neuropathologically confirmed AD patients. The retina 

cross-sections were prepared undergone tissue isolation, processing, and sectioning from superior-

temporal (ST) and inferior-temporal (IT) strips because previous studies show that both retinal Aβ 

and pTau are primarily distributed in peripheral superior and inferior retinal quadrants [2], [6], [8], 

[15]. 

The spectral signature of retinal tissue was examined in an average manner by area, consisting of 

a minimum of 3 pixels. Each set of raw HSI data contains 151 image slices. All the slices were 

read in and formed into a 3D datacube for efficient processing. The intensity at each spectral band 

was averaged over the selected area. Then the intensity values were calibrated using the measured 

calibration coefficients matrix. The overall intensity of the imaging spectral range was normalized. 
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To spot the deposit regions on the imaging slide, the most adjacent cross-section slide, (5 µm 

distance in z-direction) from the imaged one, was stained first as a guidance for HSI imaging. The 

corresponding marked areas were used for the spectral analysis to reveal the spectral signature of 

retinal Aβ42 and pTau. Control regions were selected as regions from the immunostaining images 

with neither Aβ42 nor pTau deposits and without cellular structures. We also randomly scanned 

across the retina tissue vertically and horizontally to locate characteristic areas and observed the 

distribution among all the spectra.  

 

 

Figure 3. HSI of (a) Aβ42 and (b) pS396-Tau deposits on postmortem retinal cross-sections of AD patients. 

(c). A tile image of a large portion of retinal cross-section strip. 
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From left to right, unstained hyperspectral intensity images, spectra at arrow-pointed locations (green for 

Aβ42, red for pS396-Tau, and black for control), and DAB labeled images. The purple arrow is indicating 

an NFT-like or cellular structure (b, right) in the OPL. Scale bar, 50 µm. 

 

The hypercubes obtained contain the spatio-spectral information of endogenous chromophores in 

the retinal tissues. To guide spectral profiling, we immunostained retinal cross-sections specifically 

against Aβ42 and pS396-Tau and labeled either with peroxidase-based DAB substrate (3,3’ 

diaminobenzidine; brown) or immunofluorescence and reimaged it under a brightfield or 

fluorescence microscope, respectively (Zeiss Axio Imager Z1). We further registered the unstained 

hyperspectral images with the immunolabeled DAB or fluorescently stained images and located 

the enriched areas of Aβ42 and pS396-Tau in the hyperspectral images. The spectral signatures of 

retinal Aβ42 and pS396-Tau were identified in those regions (Figures 3 and 4), where Aβ42 and 

pS396-Tau exhibit distinct spectral profiles. In Figure 3, the Braak stages for patients are both V. 

The AD patient in Figure 3a is a female aged 90 with an Alzheimer’s Disease Neuropathologic 

Change (ADNC) score of A2, B3, and C3 (A: Aβ plaque score, B: NFT stage, C: Neuritic plaque 

score). The AD patient in Figure 3b is a female aged 85 with an ADNC score of A3, B3, C3. 

Noteworthily, although the spectrum of Aβ42 has been previously reported, this is the first time the 

spectrum of pS396-Tau is identified. 

 



 

 15 

 

Figure 4. Hyperspectral imaging of Aβ42 and pS396-Tau deposits on postmortem retinal cross sections of 

AD patients guided by immunofluorescence staining.  
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(a). Merged fluorescence images of four channels. (b). Unstained hyperspectral intensity images. (c). 

Spectral signatures of Aβ42 and pS396-Tau in the human retina confirmed by combined fluorescence 

staining specific for 12F4+-Aβ42 and pS396-Tau. (d). Aβ42 channel. (e). pS396-Tau channel. (f). A tile 

image of a large portion of retinal cross-section strip from a confirmed AD patient (Female, Age: 90, 

Braak stage: V) immunolabeled with combination antibodies against Aβ42 (green), pS396-Tau (red), and 

GFAP-astrocytes (white), and nuclei counterstained with DAPI (blue). Scale bar, 50 µm. 

Consistent with previous studies [6], [14], the immunolabeling with DAB or immunofluorescence-

stained images indicate that pTau mostly aggregates in the retinal outer plexiform layer (OPL), 

inner plexiform layer (IPL), and ganglion cell layer (GCL), and in structures that resemble NFTs 

(Figure 3b and 3c). Figure 5 is an illustration of the retina layers and the hallmarks aggregations. 

We also found pS396-Tau in the innermost retinal layers, along the nerve fiber layer (NFL), though 

it is variable from patient to patient and generally to a lesser extent (Figure 6).  

 

Figure 5. Schematic illustration of Alzheimer’s pathology across retinal cell layers in AD patients.  

CTRL, control. Adapted from [57] 
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We examined these locations in the unstained HSI images. Figure 3c shows the distribution of 

pS396-Tau deposit from the central to peripheral retina. The pS396-Tau clusters exhibit a unique 

spectral profile that significantly differs from that of “normal” retinal tissues—they have a much 

higher and uniform transmittance for light in the 550∼650 nm range, resembling a “flat hat.” This 

dominating feature indicates that pTau-enriched tissues have a reduced optical density in this 

spectral range, likely due to a smaller absorption coefficient of constituent chromophores. This 

prompted us to further examine the HSI images at these wavelengths. We found that the pTau 

aggregated in the OPL—which appears dark brown with DAB substrate and red in the 

immunofluorescence-stained images—correlates with higher pixel intensities in the grey-level 

HSI images (Figure 3b and 4).  

 

Figure 6. Hyperspectral imaging of various pS396-Tau deposits locations.  

(a). pS396-Tau deposits at innermost retinal layers. (b). Diffusive pS396-Tau deposits in inner plexiform 

layer (IPL), forming three distinct bands. From left to right, DAB labeled pS396-Tau retinal cross-
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sections, unstained hyperspectral intensity images, spectra at arrow-pointed locations. Black arrows: 

Control regions. Red and orange arrows: targeting pS396-Tau regions. Scale bar, 50 µm. 

A similar correspondence has also been identified in the pS396-Tau aggregated region in the NFL 

(Figure 6a), corroborating our finding on the spectral transmission property of pTau. Notably, this 

is the first demonstration of pS396-Tau in human retina. Diffused pS396-Tau spectrum has the 

same characteristic with aggregated pS396-Tau but has reduced magnitude. 

 

Figure 7. Hyperspectral imaging of various retinal Aβ42 deposits and locations.  

(a). 12F4+-Aβ42 deposits at ganglion cell layer (GCL). (b). Aβ42 deposits in photoreceptors. c. Diffusive 

Aβ42 deposits in retinal OPL. From left to right, DAB-labeled Aβ42 retina cross-sections, unstained 
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hyperspectral intensity images, spectra at arrow-pointed locations. Black arrows: Control regions. Green 

and Blue arrows: targeting Aβ42 regions. Scale bar, 50 µm. 

 

Besides the spectrum of pTau reported above, we also observed the known spectrum of Aβ. The 

DAB- or immunofluorescent-stained images show that specifically 12F4+-Aβ 42 is most abundant 

in the retinal NFL, GCL, OPL, and the outer nuclear layer (ONL; Figures 3a and 4a to d). Moreover, 

Figure 4f indicates that the important vascular Aβ42 distribution is typical along the retinal cross-

section strip. The spectra extracted at these locations in HSI images (Figures 3a and 4b) show a 

lower transmission in the 450 to 600 nm range, which were hypothesized to be caused by an 

elevated level of Rayleigh scattering in Aβ42 enriched tissues [58]. We validated the consistency 

of the spectrum of Aβ42 in across all retinal layers including within blood vessel walls (Figure 7 

and 8). Noteworthily, although the spectral signature of retinal Aβ has been previously reported, 

this is the first time retinal Aβ42 has been reported and quantified at locations verified by both 

fluorescence and non-fluorescence ground truth. 
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Figure 8. Hyperspectral imaging of various retinal Aβ42 and pS396-Tau deposits and locations.  
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(a). Merged immunofluorescence-stained retinal cross-section image and corresponding HSI retinal 

image. A normal tissue region was selected as control for other 12F4+-Aβ42 and pS396-Tau deposits 

analysis. (b). Aβ42 channel, with arrow pointed at Aβ42 deposits in nerve fiber layer (NFL). (c). Aβ42 

deposits in the vascular wall. (d). Aβ42 deposits in photoreceptors. (e). pS396-Tau channel, with arrow 

pointed at pS396-Tau deposits in neurofibrillary tangle (NFT)-like structures in GCL. (f). pS396-Tau 

aggregated in the three distinct bands of IPL. From left to right, immunofluorescence-stained retinal 

cross-sections, unstained hyperspectral intensity images, spectra at arrow-pointed locations. Black arrows: 

control. Green and red arrows: targeting Aβ42 and pS396-Tau regions, respectively. Scale bar, 50 µm. 

The consistence of the HSI data was examined by reimaging the samples in an extended period of 

time (14 days). Analyzed regions were selected from mixed hypercubes captured on day 1 and day 

14, and the averaged data are shown in Figure 9. 

 

Figure 9. Spectra of (a) Aβ42 and (b) pS396-Tau of the same sample measured on day 1 and day 14. 

 

2.4 Image prediction by GAN 

Using the spatio-spectral information in hypercubes, we can classify the HSI images and generate 

abundance maps of constituent components. The images so obtained can be further rendered to 
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resemble DAB and immunofluorescence staining using a pseudo-colormap. Among the state-of-

the-art HSI classification approaches, deep learning is the most attractive option because it is 

robust against noise [59], [60]. Conventional deep learning methods classify HSI images pixel-

wise solely based on the pixel’s spectral information [61], [62]. However, this usually leads to 

unsatisfactory results due to the missing link to the spatial features. Later endeavors improve the 

model by classifying the images in patches, followed by mosaicking the resultant abundance maps 

[63], [64]. Nonetheless, the resultant classified images suffer from a low resolution, and it is 

challenging to form a histopathology-like image. 

 

Figure 10. The deep learning workflow of Ab42 and pS396-Tau deposits prediction.  

(a). 1. The process of retina cross-sections preparation. 2. The retina cross-sections are imaged by our HSI 

microscope before immunostaining. Raw data are normalized and go through PCA process to convert to 

RGB images. 3 and 4 are two different staining techniques used for comparison of the HSI analysis. (b). 

HSI images are registered with fluorescence and DAB staining images. Corresponding images form 

training pairs for the generative adversarial network. (c). The ROI patches are fed into the trained model 

to get the inference patches for Aβ42 and pS396-Tau with different immune contrasts. 
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To solve these problems, we adapted a generative adversarial network (GAN) for HSI 

classification of Aβ and pTau and image transformation. GAN is a competitive network consisting 

of a generator and a discriminator. The discriminator network is trained to classify the real inputs 

and the fake inputs generated by the generator network. This adversarial training increases the 

generalization capability of the discriminator, and it is particularly effective when the training 

dataset is limited. 

For HSI classification, it is important to combine the complex spectral information of every pixel 

with the neighboring pixels’ information in a considerably efficient way. Most spatio-spectral- 

based classification methods use only a small neighboring region to construct a spatio-spectral 

vector [65], [66], [67]. Although this can improve the classification accuracy than extracting only 

spectral information, the classification accuracy is limited by the size of the selected region. In 

contrast, the GAN network in our method considers the spatio-spectral features in the entire region 

imaged to assign a value for each pixel. 

We developed a workflow to transform unstained human retinal cross-sections into two types of 

standard histopathology images, which are immunofluorescence DAB contrast (Figure 10). We 

first convert an acquired hypercube (𝑥, 𝑦, λ) to a three-channel image by principal component 

analysis (PCA) to represent the significant spectral differences of the imaged pixels. This 

significantly reduces the data load for training while preserving most of the variability (>85%) in 

the original hypercube. We then pair this extracted three-channel HSI image patch with the 

corresponding histopathology image and pass this image pair to the adapted GAN network for 

training. After training, we have four models for Aβ42 and pS396-Tau with two staining contrasts. 
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The transformed histopathology-like images are output from the models and stitched to form a 

meaningful ROI. 

 

Figure 11. Immunofluorescence channels of stained whole retina cross-section.  

In immunofluorescent image transformation, we employed the green and red channels of the 

merged fluorescent images in Figure 11 as the ground truth for Aβ42 and pS396-Tau classification. 

In Aβ42 and pS396-Tau immunofluorescence stained (Cy5, green and Cy3, red pseudo colors, 

respectively) images, there were distinct signals for each marker and no autofluorescence signal 

in the lumen of blood vessels. Although, autofluorescence signals were occasionally found at the 

blood vessel lumen (Figure 4f). Such signals will mislead the network training and prevent the true 

Aβ42 and pS396-Tau signals from forming proper contrast in the analyzed region. To solve this 

issue, we removed the lumen signals by labeling them as negative and enhanced the contrast of 

true Aβ42 and pS396-Tau signals. The models were trained by feeding green and red fluorescence 

data separately. The transformed immunofluorescent image patches of Aβ42 and pS396-Tau were 

stitched to a larger field-of-view (FOV) and shown in Figure 12a and 12b, respectively. 
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Figure 12. Stitched ROIs of the trained GAN models output.  

(a). Aβ42 fluorescence model. (b). pS396-Tau fluorescence model. Scale bar, 50 µm for large FOV images, 

10 µm for bordered zoomed inserts. 

In the zoomed insets, the predicted distributions of two AD-hallmark proteins in the region of 

interest match well with the ground truth. The Figure 13 shows the vascular wall Aβ42 deposit 

prediction with a negatively labeled lumen, and the Figure 14 shows various pS396-Tau deposits. 

In general, using immunofluorescence-stained image as the ground truth yields an accurate 

prediction for Aβ42 and pS396-Tau deposit distribution. The specific signals in the actual 

histopathology image can also be identified in the transformed image. For instance, we found 

correspondence in the ground truth image for both the recovered Aβ42 signal pattern in Figure 12a 

and the transformed pS396-Tau in OPL image in Figure 12b. 
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Figure 13. Histopathology prediction of hyperspectral images with the immunofluorescence-Aβ42 model. 

Left and right columns: two different FOVs. Scale bar, 50 µm. 

 

Figure 14. HSI histopathology prediction with the immunofluorescence-pS396-Tau model.  
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Left and right columns: two different FOVs. Scale bar, 100 µm. 

Besides immunofluorescence staining, we also stained the retinal cross-sections with the same 

primary monoclonal antibodies and using a highly sensitive immunoperoxidase-based DAB 

substrate [6], [9]. The DAB-stained retinas have only one channel for the specific labeled protein, 

and we imaged them using a bright field microscope. The image so obtained has accurate single 

protein contrast and provides a better view of tissue structures. For DAB image transformation, 

the networks were trained to assign classification values to pixels and learn the color scheme that 

appeared in DAB images.  

 

Figure 15. Stitched ROIs of the trained GAN models output.  

(a). pS396-Tau DAB model, with a focus on a retinal NFT structure. (b). Aβ42  DAB model. Scale bar, 50 

µm for large FOV images, 10 µm for bordered zoomed inserts. 

The trained DAB models can map the extent of Aβ and pTau deposits in a broad range with the 

DAB brown-color scheme. In Figure 15a, the transformed DAB-pS396-Tau image clearly shows 

layers of pTau deposits from the innermost layers to the OPL. In the OPL region, the structure of 

NFTs can be identified and visualized by our model (zoomed insert). There is also a signature band 

in the transformed DAB-pTau image, highlighting the pS396-Tau aggregation in the OPL with 
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apparent deposit patterns. In some regions or patients, the inner retina has comparable pS396-Tau 

aggregates to that in the OPL, appearing in dark brown spots and most connected, as shown in 

Figure 15a and Figure 16.  

 

Figure 16. Histopathology prediction of hyperspectral images with the DAB-pS396-Tau model.  

(a). Unstained HSI. (b). Transformed DAB- pS396-Tau image. (c). Real DAB-stained pS396-Tau retinal 

images. Left, middle, and right columns: three different FOVs. Scale bar, 50 µm. 

On the other hand, the DAB-Aβ (12F4 mAbs clone) images show that Aβ42 deposits appear in 

most retinal cell layers of cross-sections, a distribution that differs from pTau. The zoomed insert 

image in Figure 15b shows the predicted NFL/perivascular Aβ42 accumulation, a location where 
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prominent Aβ42 signals have been found in our previous studies [6], [9]. Additionally, Aβ42 

distributes in NFL and GCL to a large extent, which can be seen in other FOVs as well (Figure 

17b and 17c, right). In this human cohort, Aβ42 deposits have also been found in the outer retina, 

especially in the ONL close to the outer limiting membrane, including the photoreceptor layer. 

Overall, Aβ42 in confirmed AD dementia patients usually presents in both the inner and outer layers 

of retinal cross-sections. 

 

Figure 17. Histopathology prediction of hyperspectral images with the DAB-Aβ42 model.  

(a). Unstained HSI. (b). Transformed DAB-Aβ42 labeled retinal image. (c). Real DAB-stained Aβ42 retinal 

images. Left, middle, and right columns: three different FOVs. Scale bar, 50 µm. 
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The GAN network is essential for learning the complex spectrum difference and distinguishing 

biomarkers in the microenvironment of retinal tissues, assessing their distributions, and potentially 

generating histopathology-like images to facilitate AD diagnosis. To build the model, we excluded 

the regions to be analyzed when preparing the training datasets. Also, to avoid inaccurate 

classification caused by the overlay of channels in immunofluorescence staining, we trained the 

network with the Aβ42 and pS396-Tau channels separately. We enlarged all datasets by data 

augmentation, mimicking the registration error between HSI and ground truth images, which, in 

turn, made the network more robust. The output prediction, a transformed histopathology-like 

image, correlates well with the ground truth. Compared with other spectral-based algorithms that 

take all spectral bands into training, our method requires less extensive computation, reduces 

network complexity, and makes training more efficient. 

 

2.5 Evaluation metrics 

The model output transformation images are compared to the corresponding ground truth using 

SSIM index and PSNR as similarity and quality measures. SSIM compares the transformed image 

with ground truth images in three measurements: luminance, contrast, and structure. PSNR is a 

common tool to assess the image reconstruction quality and it is used to assess the compression 

ratio of the transformed image. For each output image patch, an SSIM value and a PSNR value 

were calculated. The average and standard deviations values were calculated for each model group.  

SSIM 

We adopted a structural similarity index measure (SSIM) to assess the similarity between the 

transformed histopathology images by the GAN network and the actual stained images. SSIM is a 
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perception-based image quality metric [68], which has been widely used to evaluate the structural 

similarities between synthesized images in deep learning based methods. SSIM equals one means 

a perfect match, whereas close to zero indicates hardly similar images. The SSIM metric is 

calculated between the transformed image 𝑖	and the ground truth image 𝑗 as: 

 

𝑆𝑆𝐼𝑀(𝑖, 𝑗) = 	
(2𝜇!𝜇" + 𝑐#)(2𝜎!" + 𝑐$)

(𝜇!$ + 𝜇"$ + 𝑐#)(𝜎!$ + 𝜎"$ + 𝑐$)
 

 

where 𝜇! and 𝜇"  are the averages of 𝑖	and 𝑗; 𝜎!  and 𝜎" are the standard deviations of 𝑖	and 𝑗; 𝜎!"  

is the covariance of 𝑖	and 𝑗; and 𝑐# and 𝑐$ are regularization constants to avoid instability when the 

other variables are close to zero. 

 

Figure 18. Averaged structural similarity index plot of the four models with error bars (standard 

deviation).  
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Figure 18 shows the averaged SSIM values for the four trained models: DAB-pTau, DAB-Aβ, 

immunofluorescence-pTau, and immunofluorescence-Aβ. DAB-pTau has the highest SSIM value 

of 0.8714 (+/−0.0122), while immunofluorescence-Aβ has the lowest SSIM value of 0.8128 

(+/−0.0219).  

Overall, the DAB models have a higher transformation performance than immunofluorescence 

models in our study when predicting the same biomarker deposits, and Aβ42 histopathology images 

have lower transformation accuracies than pS396-Tau in both stains. This is possibly due to the 

fact that Aβ42 is more abundant in the retina of AD patients than pS396-Tau, and it is highly 

dependent on disease development and assembly types, while pS396-Tau is found to be more layer-

specific. Due to sample deformation during immunofluorescence staining, the HSI images could 

not be precisely registered to the immunofluorescence images, a fact that also lowers the SSIM 

values of immunofluorescence models. 

The quantitative evaluation implies that the deep learning framework can transform the HSI 

images to histopathology images in high accuracy with a minimum SSIM of 0.8128. For the DAB-

pTau model, we obtained an SSIM of 0.8714, which indicates the network can successfully recover 

the immunostaining color scheme and discriminate retinal pS396-Tau deposits. For comparison, a 

previous study that used a GAN network to transform quantitative phase images to H&E images 

achieved an SSIM value of only 0.80 [69]. 

 

PSNR 

In addition to SSIM, the peak signal-to-noise ratio (PSNR) was used as the second metric to 

evaluate the image quality of the transformed histopathology images (Figure 19). The images 
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generated by the immunofluorescence-pTau model have the highest PSNR of 32.9626 (+/−1.03) 

dB. The immunofluorescence-Aβ images have the second-highest PSNR of 26.3196 (+/−1.63) dB. 

The DAB-pTau and DAB-Aβ models have a PSNR value of 23.3136 (+/−1.27) dB and 21.1323 

(+/−1.29) dB, respectively.  

 

Figure 19. PSNR (in dB) of the four models with error bars (standard deviation). 

All four models provide a PSNR value greater than 20 dB, indicating a high image quality. The 

immunofluorescence models have better image transformation quality than DAB models regarding 

PSNR. This might be because immunofluorescence-stained images have a less complex color 

assignment and a black background compared with DAB staining. Notably, the two pTau 

transformation models still outperform Aβ models like that in the SSIM metric. All SSIM and 

PSNR values were summarized in Table 1. 
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Table 1. Evaluation statistics by structural similarity (SSIM) index and peak signal-to-noise ratio (PSNR). 

 

 

2.6 Data and sample processing techniques 

2.6.1 Image registration and data augmentation 

The retinal HSI cross-sectional images were co-registered with the immunofluorescence/DAB-

stained images of the same tissue section, for the purpose of analyzing the spectral signature and 

forming training pairs as the ground truth images for the transformation framework training. One 

spectral channel image with the most contrast was selected and registered with immunostained 

images using affine transformation. The intensity values of immunofluorescence images (8-bit) 

were subtracting 255 from each image pixel to get a complement image. First, apparent tissue 

features such as blood vessels and edges were used to crop the corresponding immunostained 

images to the same FOV of HSI images. Then rotation, translation, and scaling operations are 

applied on immunostained images to produce a nonreflective similarity transformation. In cases 

that the affine registration is not sufficient by visual inspection, an optional control-point 

registration is applied using control point pairs selected from the tissue, such as blood vessel edges. 

The control point registration is implemented by a local weighted mean of inferred second-degree 

polynomials from each neighboring control point pair to create a transformation mapping. Local 
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misalignment errors in registration due to the deformation during post-processing of imaged tissue 

are addressed in the training data preparation. 

 

Figure 20. Hyperspectral image processing pipeline.  

(a). Raw hyperspectral image. (b). Normalized hyperspectral image. (c). Corresponding ground truth 

image with pS396-Tau labeling. (d). Principal component analysis (PCA) processed image through 

normalized image b. (e). PCA-HSI retinal image after shifting and stretching the first three principal 

components. (f). Hyperspectral image with pS396-Tau labeling by image registration (b and c). Scale bar, 

50 µm. 

We implemented the traditional data augmentation techniques to enlarge our data size and make 

the network more robust to accommodate the offset that remained after the image registration. The 

operations include translation, rotation, flipping, scaling, and stretching, most of which were also 
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applied in the registration process. These similar transformations make the network adapt to the 

registration offset. By generating data under those conditions, we increased our dataset size by a 

factor of 12 and improved the spatial criteria confidence. 

The input format of our GAN network is an image pair consisting of one compressed HSI image 

and the corresponding ground truth image in 8-bit. The HSI image slices were cropped to only 

keep a small portion of the background next to the retinal tissue, to ensure most HSI training data 

contained tissue spectral information. The first three principal components representing the 

spectral information were fed. The HSI image was cropped out as 256-pixel × 256-pixel × 3 

patches, the corresponding ground-truth patches were cropped from the previous co-registered 

immunostained images. The selected analyzed regions of stained tissue were left and cropped as 

test image patches, with 1/3 to 1/2 overlap. This is to avoid the discontinuous intensities when 

stitching back the transformed patches. The other parts of image were cropped and separated into 

training and validation set. Validation data was randomly selected from training data. The numbers 

of image pairs used for the four models training are given in a Table in Appendix B. The patches 

containing damaged tissue regions and severely deformed staining tissue that led to an unreliable 

registration during the staining process were discarded 

We stitched the output images from the trained GAN models with a self-derived algorithm. The 

algorithm iterates to find the best connective coordinate by scanning the corresponding overlap 

region of the two adjacent image patches, then stitches the images at this position. For the several 

cases when images have connective artifacts, we averaged the intensities of neighboring columns 

of the connective coordinate. As for the raw HSI retina images, we chose one image slice at one 

well-contrasting wavelength and stitched all connected FOVs using the Image Composite Editor 

software. 
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2.6.2 GAN training parameters 

The GAN network used in our study is adapted from a conditional GAN [70]. The generator 

network is based on a U-net using Pytorch. We incorporated a structural similarity index (SSIM) 

component into the generator loss function as −𝜈 × log	[(1 + 𝑆𝑆𝐼𝑀(𝐺(𝑥), 𝑦))/2]. Mean absolute 

error (𝐿#) loss is used to regularize the generator to transform the input image accurately and in 

high resolution. SSIM is used to balance the 𝐿# loss of learning correct features rather than the 

pixel accuracies.  

The network utilizes both spatial and spectral information to classify Aβ/pTau. The transformed 

histopathology images output from the generator were evaluated by a three-layer discriminator. 

We trained the compressed HSI images of Aβ and pTau and the two corresponding 

immunostainings separately and obtained four trained models. The four models were used to 

transform the test HSI images to Aβ and pTau stained immunofluorescence and DAB images. The 

weights for the loss function components were set as 100 for 𝐿# loss and 100 for SSIM term. We 

achieved optimal results with learning rates of 5 × 10%& for the immunofluorescence models and 

1 × 10%' for the DAB models using the adaptive moment estimation (Adam) optimizer. The batch 

size was set to one under the instance normalization. The epoch number was in between 120 and 

150, with 50 epochs for decayed learning rate. Training time was approximately 47 h for 

immunofluorescence models and 82 h for DAB models. The network was implemented with one 

GTX TITAN graphical processing unit (GPU) using Pytorch 1.6.0, and Python version 3.6.8 on a 

desktop installed with Ubuntu 16.04 operating system. The desktop is equipped with CPU Intel 

Core i7-6900K@3.20 GHz and 64 GB RAM. 
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2.6.3 AD confirmed human retina cross-sections 

Postmortem human eyes were obtained from the Alzheimer’s Disease Research Center (ADRC) 

Neuropathology Core in the Department of Pathology (IRB protocol HS-042,071). Histological 

studies at Cedars-Sinai Medical Center were performed under IRB protocols Pro00053412 and 

Pro00019393. For the histological examination, 12 retinas were collected from deceased patient 

donors. The retinas from 10 donors with clinically and neuropathologically confirmed AD (n = 2), 

MCI (n = 3), and cognitively normal (CN; n = 5) were used in the early stage of the training phase 

of immunostaining (demographic data on human donors are given in the table in Appendix). 

Additionally, n = 3 neuropathologically confirmed AD dementia patients were used for histological 

and HSI analyses followed by network training; donors’ age, gender, ethnic background, 

premortem and final diagnosis, Braak stage, Clinical Dementia Rating (CDR) and/or Mini-Mental 

State Examination (MMSE) score, and postmortem interval (PMI) of tissue collection are detailed 

in Appendix A.  

Cognitive testing scores from evaluations made closest to the patient’s death were used for this 

analysis. Two global indicators of cognitive status were used for clinical assessment: the CDR 

scores (0 = normal; 0.5 = very mild dementia; 1 = mild dementia; 2 = moderate dementia; or 3 = 

severe dementia) [71] and the MMSE scores (normal cognition = 24–30; MCI = 20–23; moderate 

dementia = 10– 19; or severe dementia ≤ 9) [72]. In this study, the composition of the clinical 

diagnostic group (AD, MCI, or CN) was determined by source clinicians based on findings of a 

comprehensive battery of tests including neurological examinations, neuropsychological 

evaluations, and the aforementioned cognitive tests.  
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Fresh-frozen eyes and eyes preserved in Optisol-GS were dissected with anterior chambers 

removed to create eyecups. Vitreous humor was thoroughly removed manually. Retinas were 

dissected out, detached from the choroid, and flatmounts were prepared [9]. By identifying the 

macula, optic disc, and blood vessels, the geometrical regions of the four retinal quadrants were 

defined with regard to the left and the right eye. Flatmount strips (2 to 3 mm in width) were 

dissected along the retinal quadrant margins to create four retinal quadrants: superior-temporal 

(ST), inferior-temporal (TI), inferior-nasal—IN, and superior- nasal—NS, and were fixed in 2.5% 

PFA for cross-sectioning. Previous studies show that both retinal Aβ and pTau are primarily 

distributed in peripheral superior and inferior retinal quadrants [2], [6], [8], [15]. Therefore, the 

retina cross-sections were sectioning from ST and TI strips (Figure 21).   

 

Figure 21. Donor eye fixation, neurosensory retina isolation to flatmounts, creating four retinal quadrants 

(S: superior, T: temporal, I: inferior, N: nasal), and sectioning of superior-temporal (ST) and inferior-

temporal (IT) strips. 

Each strip was approximately 2 to 2.5 cm long from the optic disc to the ora serrata and included 

the central, mid, and far retinal areas. All the above stages were performed in cold phosphate-

buffered saline (PBS) with 1 × Protease Inhibitor cocktail set I. As described above, a set of 
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flatmount strips, Superior Temporal (ST), Inferior Temporal (IT), Inferior Nasal (IN) and Nasal 

Superior (NS), was dissected (2–3 mm in width), washed in 1x PBS, and processed for retinal 

cross-sectioning. 

 

2.6.4 Immunostaining validation  

Immunofluorescence-stained retinal cross-sections 

Retinal cross-sections were treated with primary antibody of the following combination: mouse 

anti-Aβ 1–42 antibody, 12F4 (1:500, BioLegend #805,502), and rabbit anti-pTau antibody, 

pSer396 (1:2500, AS-54,977). The 12F4 antibody is specific to the detection of amyloid beta x-42, 

without cross reacting with amyloid beta x-40 or amyloid beta x-43. Retinal sections were then 

incubated with secondary antibodies (1:200; Cy5 conjugated donkey anti mouse and Cy3 

conjugated donkey anti rabbit, Jackson ImmunoResearch Laboratories). After rinsing with 1× PBS, 

sections were mounted with Prolong Gold antifade reagent with DAPI (Thermo Fisher #P36935). 

Fluorescence images were repeatedly captured at the same focal planes with the same exposure 

time. Tiling mode and post-acquisition stitching were used to capture and analyze large areas. 

Multichannel image acquisition was used to create images with multiple channels. Images were 

captured at 20 x, 40 x, and 63 x objectives for different purposes. Routine controls were processed 

using identical protocols while omitting the primary antibody to assess nonspecific labeling. 

Peroxidase-based immunostained retinal cross-sections 

Retinal cross-sections after deparaffinization were treated with target retrieval solution and washed 

with 1× PBS. For a list primary antibodies and dilutions, see above Immunofluorescent staining. 

Following the treatment with formic acid, the tissues were washed with wash buffer 1× (Dako 
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S3006) and adding 0.2% Triton X-100 (Sigma, T8787), then were treated with 3% H2O2 washed. 

Each primary antibody was diluted with background reducing components (Dako S3022) and 

incubated separately with the tissues overnight in 4◦C. Tissues were rinsed with wash buffer on a 

shaker, then incubated separately at 37◦C with secondary Ab (anti-mouse ab HRP conjugated, 

DAKO Envision K4001 or anti-rabbit ab HRP conjugated, K4003). Liquid DAB+ Substrate 

Chromogen System (DAKO K3467) was used, then slides were immersed in dH2O and washed. 

Tissues were mounted with Faramount aqueous mounting medium (Dako, S3025). Routine 

controls were processed using an identical protocol while omitting the primary antibodies to assess 

nonspecific labeling. Brightfield images were repeatedly captured at the same focal planes with 

the same exposure time. Images were captured at 20 x, 40 x, and 63 x objectives for different 

purposes. Tiling mode and post-acquisition stitching were used to capture and analyze large areas. 

 

2.7 HSI Discussion 

We demonstrated a hyperspectral imaging platform that enables label-free, high-resolution 

structural, and molecular imaging of Aβ and pTau deposits in human retinas. The advantage of 

HSI is its label-free imaging ability by capturing tissue spectrum across a broad spectral range. 

Our system illuminates the sample using a simple broadband halogen lamp and scans the sample 

wavelength using a liquid crystal filter. The quantified intensity values from the spectral channels 

imply the optical characteristics of the AD biomarkers, Aβ and pTau. The discovered Aβ42 and 

pS396-Tau spectral signatures are highly consistent in various regions of retinal cross-sections and 

among the patients. We also examined the consistence of the HSI data by reimaging the samples 

in an extended period of time (14 d), and we found that the spectral signatures of both Aβ42 and 

pS396-Tau remain the same. More importantly, we are the first to report the pS396-Tau in the 
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human retina and its spectral signature. We further visualize pS396-Tau with a label-free imaging 

technique. Our method, which can probe pTau deposits, has the potential to advance AD 

quantification and diagnosis. Seeing its label-free imaging ability and system simplicity, we also 

anticipate the presented HSI method will become an alternative or complementary approach to 

histopathological analysis of Aβ and pTau in CNS organs and other tissues. 

We imaged the entire strips of the retinal cross-sections of AD patients, followed by 

immunofluorescence labeling. The AD characteristic deposits of Aβ42 and pTau were found to 

occur at specific locations of the strip. Selected regions without signals for Aβ42 or pS396-Tau, 

which we refer to as “lack of signal” regions, served as internal controls; this should be considered 

more rigor than using another subject’s tissue. The main goal of this feasibility study is not to 

differentiate between populations with or without AD, rather, it is to identify for the first time the 

spectral signatures of retinal Aβ42 and pS396-Tau and compare to previous signatures of retinal Aβ 

deposits. The strip portions with little deposits can be reasonably considered as normal Aβ42 and 

pTau deposits in the aging development like in a non-AD patient, as our previous results show that 

the amount of normal accumulation significantly differs from the AD characteristic deposits [9], 

[15]. In future studies, we aim to scan variety of strips in attempt to quantify and possibly 

distinguish between individuals with high and low AD pathology. 

In the current study, because the samples are optically thin and directly accessible to the 

microscope, we normalized the spectral intensities at each wavelength with respect to the value at 

the peak emission. For in vivo patient imaging, the normalization process is complex because 

spectral transmission of the ocular lens is generally unpredictable in the elderly population. 

Because previous studies show that both retinal Aβ and pTau are primarily distributed in peripheral 
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superior and inferior retinal quadrants [2], [6], [8], [15], a possible solution for in vivo spectral 

normalization is to use a control area in the nasal retinal quadrant of the same subject. 

Our findings on the spectral signature of Aβ echo many pioneer works in the field. For example, 

Xavier Hadoux et al. [20] discovered a significant difference in ocular reflectance among patients 

with and without moderate-to-high Aβ levels, and they confirmed their findings through imaging 

the paired brain samples. As another example, More’s group [50], [51], [52] reported the spectral 

signature of Aβ42 in both retina and brain tissues in human and transgenic mouse. Nonetheless, all 

these previous studies lack a direct validation through immunostaining. Moreover, because the 

measurements were performed in the widefield imaging mode, the distribution of Aβ in retinal 

cross-sections remains elusive. Our findings presented herein, therefore, provides the basis for the 

previous research. 

In addition, we developed a framework to facilitate the classification of the spectral signatures of 

retinal Aβ42 and pS396-Tau and transformed the unstained HSI images to histopathology-like 

images. Our GAN network is robust to local misalignments in registration and staining overflow 

because we created augmented training data to mimic those influences. This is especially useful 

for immunofluorescent image transformations because the staining process is more complex and 

less specific than the DAB-staining. The inaccuracies in the staining and image acquisition 

processes must be taken into consideration to avoid confusing the network. Another benefit of 

using the transformation framework is that it can be trained to generalize the variations of the 

histopathology stained tissues across different sections and patients with sufficient datasets. 

The Aβ42 and pS396-Tau in the two standard staining techniques, DAB and immunofluorescence, 

were trained separately as four models. Multichannel immunofluorescence transformed images of 

a single tissue region can be achieved by combining the generated Aβ42 and pS396-Tau images in 
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green and red channels. An advantage of training separately, especially for immunofluorescence 

stains, is avoiding overlapping between two channels. With a well-trained transformation model, 

the histopathology images can be generated instantaneously, without the need for tedious 

pathological processing. 

In conclusion, we developed a label-free HSI method as a tool to report Aβ42 and pS396-Tau 

spectral signatures and a deep learning based framework to transform the unstained HSI image to 

a histopathology-like image. Our method thus democratizes the immunofluorescence/DAB 

staining and makes them accessible to general labs. Also, our entire workflow (Figure 10) is time 

efficient. Scanning the sample and computing the transformed images take less than 30 min for 

the whole process, which is only a fraction of the time typically needed when the sample undergoes 

the conventional pathological processing (2 to 4 days). We expect our method will lay the 

foundation for future label-free AD screening and diagnosis using HSI approaches. 
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Chapter 3 Light Field Endoscopic Imaging 

Current optical endoscopes are mostly limited by two-dimensional views or very small number of 

three-dimensional (3D) views of pathological sites. We built a flexible light field endoscopy (Flex-

LFE) imaging system for high-resolution 3D imaging based on a fiber bundle. The intrinsically 

low resolution of the fiber-based light field imaging was significantly improved by training a deep 

neural network. The resulting sub-image resolution is close to the free-space light field setup. We 

demonstrate the depth imaging capability of Flex-LFE with fluorescence tissue paper. The 

calculated depth information helps in assessment of the 3D tissue lesions. Implementing the deep 

learning model with the light field system can achieve real-time and high-resolution visualization 

of the reconstructed scene. 

 

3.1 Fiber-based optical endoscopy 

Optical endoscopy has been extensively employed worldwide by physicians to diagnose or treat 

disease. These probes are inserted into the body through small incisions or natural body openings 

to provide high-resolution images of internal organs and tissue. Depending on whether the image 

is transmitted through lenses alone or optical fibers, optical endoscope are generally classified into 

two categories, rigid and flexible [73], [74], [75]. Compared with the rigid counterparts, flexible 

endoscopes feature a lower rate of complications, increased patient comfort, and a lack of 

requirement for general anesthesia [75]. Moreover, the flexible endoscopes allow the visualization 

of the entire gastrointestinal tract, such as esophagus, stomach, and duodenum, which are generally 

inaccessibly by rigid endoscopes. 
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Despite widespread use, conventional flexible optical endoscopes have crucially limited to two-

dimensional (2D) views of pathological sites. Because most tissue lesions manifest themselves as 

abnormal three-dimensional (3D) structural changes [76], the lack of depth information frequently 

jeopardizes the diagnostic usefulness. Depth imaging is critically needed in medical diagnostics 

and intervention. In particular, effective in situ endoscopic assessment relies precise 3D volume 

measurement and shape characterization of tissue lesion. For instance, the 3D volume of the tumor 

is an established metric for the diagnosis and choice of treatment for early-stage gastric tumors 

[77]. Currently, this is evaluated either by manipulation with forceps or by visual inspection alone, 

which is qualitative and prone to human errors. Another striking example impacts approximately 

20 million people in the US who undergo minimally invasive surgery (MIS) annually. As an 

enabling tool of MIS, laparoscopy provides high definition 2D images of the surgical site. However, 

the surgeons are unable to perceive depth, impairing their hand-eye coordination and therefore 

decreasing their abilities to tap into the benefits of this new technology space [78]. Astoundingly, 

it was reported that 97% of surgical accidents during laparoscopic intervention are attributed to 

the visual misperceptions [79].  

Except for the 2D imaging limitations, most flexible optical endoscopes also suffer from low 

resolution, causing by the intrinsic gap structures of the fiber cores in an imaging fiber bundle. 

Figure 22 illustrates the imaging surface of a fiber bundle and the fiber core arrangement. 

Moreover, because of limited core numbers, a trade-off must be made between the spatial 

resolution and the number of 3D views. This further limit the image quality when apply the flexible 

optical endoscopes in 3D scenario. We proposed a flexible optical imaging system combined a 

fiber bundle with light field imaging. A balanced number of views and sub-image pixel numbers 

were designed to build the reconstructed object image with depth information. In addition, the low 
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resolution of the raw light-field image caused by the limited number of fiber cores and artifacts 

introduced by the fiber bundle structure are handled by imaging post-processing based on deep 

learning. 

 

 

Figure 22. Illustration of fiber-based imaging.  

(a) Cross-section of an imaging fiber bundle. (b) The imaging surface of the fiber bundle in the proposed 

light-field mode. Adapted from [80]. 

 

3.2 Light-field imaging fundamentals 

The light field camera, or plenoptic camera, is a new generation of depth imaging technology that 

captures an incoming light ray’s spatial as well as angular information in one shot [81], [82], [83]. 

The data obtained by the light field camera enables computational reconstruction of a depth map 

of the imaging object and even allows for refocusing the image at different depths. Light field 

cameras are typically classified into two main categories: the unfocused light field (ULF) camera 
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and the focused light field (FLF) camera. Figures 23a–c give the schematics of a ULF camera and 

two types of FLF cameras, namely the Keplerian and Galilean configurations [84], respectively. 

The main difference between these three configurations is the distance between the microlens array 

(MLA) and the detector array. The detector in the ULF setup is to image the pupil by placing at 

the back focal plane of the MLA. In the FLF configurations, the detector captures a sharp image 

of the object by placing before or after the formed intermediate image plane.  

 

Figure 23. Schematics of (a) ULF and FLF light field cameras of (b) Keplerian (c) Galilean 

configurations [85].  
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We adopt the Galilean configuration for the flexible light-field endoscope design. The system is 

shown in Figure 24. We built a free-space FLF camera at first, then transformed it into a fiber-

based detection. The free-space FLF camera was also used for acquiring high-resolution light-field 

images as part of the training data in the later deep learning approach. 

 

Figure 24. Galilean configuration focused LF system. 

 

3.3 Flexible light-field endoscopy (Flex-LFE) 

To address the limitations of current optical endoscopes, we integrate the light field camera with a 

flexible optical imaging bundle, for 3D endoscopic imaging, which we term flexible light field 

endoscopy (Flex-LFE). The Flex-LFE system is flexible, compact, and fast, with the millimeter-

sized micro-lens array and fiber bundle. Design parameters are shown in Table 2 and 3. It provides 

approximately 70 views for accurate depth estimation, overcoming the common obstacles 

encountered by other depth imaging techniques. We believe that the Flex-LFE imaging technique 

will be versatilely useful in various clinical and surgical applications including the identification 

of a variety of tissue lesions, real-time monitoring of laparoscopic interventions, and accurate 

assessment of the 3D tissue structure.  

The Flex-LFE system was built based on a standard focused LF imaging system by utilizing a 

SCHOTT Leached Fiber Bundle. As given in Table 2, the imaging diameter of the fiber bundle is 
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900 μm, with an outer diameter of 1.05mm. The bundle comprises 18,000 fiber cores, each 

functioning as an individual imaging pixel.  

Table 2. Parameters of the fiber bundle. 

 

 

Table 3. Microlens array parameters. 

 

 

The Flex-LFE schematic is shown in Figure 25. In fiber imaging mode, each fiber core serves as 

an image pixel, and the pixel size is 7.6 μm in diameter. The sample end of the endoscope adopts 

a compact design by utilizing the micro-lens array (MLA) directly as the objective lens to collect 

the light from the sample. The MLA (RPC photonics, MLA-S100-f8) has a pitch of 100 μm and a 

f-number of 7.8. A broad-band halogen lamp was used for illumination. For better image sharpness, 

a bandpass filter (BPF) with central wavelength of 550 nm (FWHM=40nm) was applied to the 
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illumination light before the sample. Because the fiber bundle only transmits light intensity, we 

use the focused light field imaging scheme with the MLA focusing the collected light from sample 

onto the surface of the fiber bundle proximal end. The sub-category of the focused light field 

imaging mode which we applied in Flex-LFE is Galilean configuration [86], which means the 

distance between the MLA and the surface of the fiber bundle is smaller than the focal length of 

the MLA.  

 

Figure 25. System schematic of the Flex-LFE. BFP: band pass filter. MLA: microlens array. FB: fiber 

bundle. 

For the detection arm of the system, an 10X microscope objective lens (Olympus, 0.25 NA, 10.6 

mm WD) was used after the distal end of the fiber bundle to efficiently collect the light and magnify 

the transmitted light field image. A tube lens with 100 mm focal length was utilized to relay the 

magnified sample image onto the detector. Because of the flexibility of the fiber bundle, a rotation 

mount was used for the MLA to tune the orientation of the microlens matrix with respect to the 
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detector, which is to fit the arbitrary ‘twisting’ between the distal and proximal ends of the fiber 

bundle while imaging. A well aligned raw Flex-LFE image should contain an 8×7 sub-image array 

that can be fully used in the image processing.  

Unlike free-space image transmission in the air, Flex-LFE can lead the light in a directed manner 

through a large number of closely arranged optical fibers. However, the gaps among the fiber cores 

needed to be removed from the raw images before further processing. Gaussian filter achieved the 

best results in removing these uniform distributed ‘dark-space’ between the informative fiber cores. 

The kernel size needs elaborate choosing to avoid further blurring of the fiber-bundle image, or in 

other hands it can cause remained fiber-core patterns that will affect the subsequent reconstruction. 

Same object of USAF target was imaged in Figure 26.  It shows sub-images from a free-space LF 

camera in high resolution while the resolution of fiber-based LF is plagued by the limited imaging 

pixels and the pattern removal process. This resulting issue of image quality is solved by 

computational methods described in the next section.  

 

Figure 26. Sub-image of (a) Free-space LF camera and (b) Fiber bundle based LF (after gap-pattern 

removal). 
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3.4 Super resolution 

The fiber bundle intrinsically reduced the image resolution with very limited pixel numbers (~120) 

for each microlens image, or sub-image. The inherent gap structures between the fiber cores within 

the imaging fiber bundle also cause the flexible optical endoscope to suffer from low resolution. 

Moreover, the light field camera reconstruction process will further reduce the resolution. 

Therefore, we process the image after the fiber-pattern removal with a super-resolution technique 

powered by deep learning. We applied a pix2pix GAN network [70] by defining a new loss 

function specified for the study, which can be written as followed: 

 

Generator: 

𝐿(𝐺; 𝐷) = −𝑙𝑜𝑔𝐷F𝐺(𝑥)G + 𝜆 ×𝑀𝑆𝐸(𝐺(𝑥), 𝑦) − 𝜐 × log	[
1 + 𝑆𝑆𝐼𝑀(𝐺(𝑥), 𝑦)

2 ] 

Discriminator: 

𝐿(𝐷; 𝐺) = −𝑙𝑜𝑔𝐷(𝑦) − log	[(1 − 𝐷F𝐺(𝑥)G] 

 

where 𝑥  is the low-resolution image, 𝑦  is the high-resolution image (ground truth), and G/D 

denotes the forward pass of the generator/discriminator network, λ and υ are weights to govern the 

loss terms in training. To prepare the training dataset, we built a standard focused LF system with 

the same optics without the imaging fiber bundle. A 1.0X telecentric lens ((Edmund, 58430) is 

used to image the sample and relay the sample image onto the MLA. The field of view of the 

telecentric lens is 8.8 mm × 6.6 mm. This maximized the light throughput and its tunable f number 

(6~22) is set to match the NA of the MLA.  



 

 54 

A variety of objects with diverse feature types were imaged to train the network. Each normal light 

field shot has 260 sub-images. To crop out the sub-images, we first imaged a white scene and 

locate the central points of the sub-images by finding the brightest pixels. The cropped sub-images 

were undergone feature detection to select ones that have over 1/4 areas containing features to 

ensure the learning efficiency of the network. These captured real high-resolution light field (HR-

LF) images serve as the ground truths in the training. Also, the real HR-LF images help the network 

understand the natural blurring of the aperture shape in each sub-image. To prepare the low-

resolution (LR) images, we applied the same type of filter used in the pattern removal process for 

fiber-based LF, which is a Gaussian-type filter, to blur the raw images to a competitive level with 

the Flex-LFE images. The processed LR images and the real HR-LF images were resized to 256 

× 256 pixels and form into image pairs (256 × 512 pixels) to feed into the training networks. Based 

on training experiments, a U-net was chosen as the generator network, and a three-layer 

discriminator network outperforms a five-layer one in the test results. The results were not 

improved by applying more layers in the discriminator network, in turn it slowed down the 

convergence. The network was implemented based on Pytorch with one graphical processing unit 

(GPU) RTX 3090, on a desktop installed with Ubuntu 18.04 operating system. The desktop is 

equipped with CPU AMD Ryzen 9 5950X. For the model training, the weights for the loss function 

components were set as 50 for both MSE loss and SSIM term. We used the adaptive moment 

estimation (Adam) optimizer and achieved optimal results with learning rates of 2×10-5. Training 

time was approximately 5 h with batch size set to one. The network workflow is shown in Figure 

27.  
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Figure 27. Data processing and deep learning training workflow with SR-GAN. 

The optimal model identified during the training process was applied to the cropped Flex-LFE 

sub-images. Each LR sub-image was cropped out from the Flex-LFE raw image (Figure 27) after 

pattern removal process. They were cropped out around the central point matrix which was 

determined using a pre-imaged white scene. After cropping, the sub-images were resized to 

individual 256 × 256 pixels each and processed through the model to generate the synthesized HR-

LF images. Then, the synthesized HR-LF images were stitched back according to the saved 

coordinates of the central points (Figure 28c).  The HR Flex-LFE image will then be used to 

reconstruct the HR object image (Figure 29b).  

 

Figure 28. Data processing and SR-GAN Model inference results.  
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(a) Flex-LFE raw image. (b) Flex-LFE image after fiber pattern removal. (c) HR Flex-LFE image after 

stitching back the synthesized HR sub-images. Bottom right boxed images are the magnified sub-images 

of the box areas. Scale bar: 200 µm. 

A butterfly phantom was imaged with a letter object in one scene in Figure 28, and the imaging 

data followed the designed processing pipeline. The sub-images in Figure 28c were synthesized 

using the pre-trained SR-GAN model. From the bottom right sub-image, it can be seen that the 

outline of the object feature, wing tip, has a significant improvement compared to Figure 28b. 

Measurements on the resolution improvements are provided and discussed in the evaluation 

section. Figure 29a and 29b present the final reconstructed object image. The application of the 

SR-GAN model enables clear visualization of the corner and turning points of the feature. 
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Figure 29. Reconstructed Flex-LFE results.  

(a) LR reconstructed image of Flex-LFE. (b) Synthesized HR reconstructed result of Flex-LFE. Bottom 

left boxed images are two magnified subfields of the reconstructed images. Scale bar: 200 µm. 

 

 

  

((a)a ((b)a 
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3.5 Depth reconstruction 

Currently, only a few methods are available for 3D endoscopic imaging, such as stereoscopy [87], 

[88], [89], structured light [90], [91], and optical coherent tomography (OCT) [92], although given 

the vital importance. Stereo endoscopes simplicity, stereo endoscopes suffer from depth ambiguity 

due to a limited number of views. The structured-light endoscopes employ two sub-systems to 

project a pattern onto the tissue and image the back reflected light, respectively. The depth map is 

then computed by measuring the deformation of the illumination patterns. Although structured-

light endoscopes can recover depths with high fidelity, the requirement for specialized illumination 

usually leads to a bulky setup. Lastly, the OCT endoscope acquire high-resolution 3D images of 

tissue based on interferometry. However, because of the reliance on mechanical scanning, the OCT 

endoscopes face a fundamental trade-off between imaging speed and field-of-view, restricting their 

use in imaging dynamics in 3D.    

 

Figure 30. Fluorescence tissue fiber imaging using Flex-LFE. 

 

The Flex-LFE system can image the object scene at one single shot. To balance the resolution for 

object and depth reconstruction, we selected the MLA matched to the fiber bundle in order to 
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generate 79 field of views, shown in Figure 30a. We demonstrated the 3D imaging capability of 

the Flex-LFE system by imaging a tissue paper. The tissue fiber was stained with yellow 

fluorescence. When imaging the tissue fiber, the illumination was changed to a diode-pumped 

solid-state laser (MGL-III-532) at 532nm under reflection mode for excitation, then the emitted 

fluorescence beam passed through a 50 nm BPF at 590 nm (Chroma, ET590/50m) to filter out any 

excitation or ambient light. The tissue paper was positioned in a tilted manner to create a depth 

volume. The raw imaging data undergone the fiber pattern removal process (Figure 30b) and the 

SR-GAN model processing (Figure 30c). Then, the tissue image was reconstructed used the HR 

sub-images and is shown in Figure 31a. We calculated the depth map of the imaged tissue fiber by 

deriving the disparities between every two sub-images [93], [94] and labeled the object feature at 

different depths with pseudo colormap (Figure 31b). The 3D view of tissue paper with depth 

information is visualized in Figure 32. 

 

Figure 31. Fluorescent tissue fiber imaging and depth map.  

(a) Reconstructed tissue fiber image (cropped). (b) 2D Depth map. Scale bar: 200 µm. 

 



 

 60 

 

Figure 32. Depth map 3D visualization. 

 

3.6 Evaluation and summary 

The reconstruction process also reduces the resolution to a small extent. We measured the 

resolution of the LR and synthesized HR sub-images, the resolution before and after reconstruction, 

the resolution of reconstructed object images with and without the super resolution processing by 

the trained GAN model, and compared the resolution to the free-space light field system with the 

same paradigm. It is found that the resolution of Flex-LFE sub-image improved more than twice, 

from 45.11 µm to 20.36 µm by applying the SR model, close to the resolution of HR-LF sub-image 

which is 15.58 µm. 

Table 4. Resolution comparisons of free-space (normal), fiber-based LF (Flex-LFE) systems and fiber-

based LF combined with SR-GAN. 
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In terms of reconstructed object image, without applying SR model, the object imaged by the fiber 

bundle only has a resolution of 53.49 µm. This can be considered very low when compared to the 

reconstructed free-space LF image which has a resolution of 18.30 µm. With the well-trained SR-

GAN model, the big resolution gap (~35 µm) can be effectively reduced, in real time. The resulted 

Flex-LFE reconstruction image reduced the resolution difference to 9.44 µm, less than 1/3 of the 

initial gap.  

In summary, we developed the Flex-LFE imaging system with high resolution and 3D imaging 

capability for endoscopic imaging. The intrinsic limitation of fiber bundle which is low in imaging 

pixel numbers was solved by training a deep neural network, SR-GAN. Flex-LFE system can 

retrieve the depth information by acquiring 70 views of the imaged sample. These advantages 

make Flex-LFE versatilely useful in 3D assessment of tissue lesions in real time. Although the 

current system has been developed on a benchtop setup, the proposed method has the potential to 

be adapted for use in clinical endoscopic applications, such as gastroscopy and enteroscopy. 
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Chapter 4 Optical Coherence Tomography 

Optical coherence tomography (OCT), a noninvasive three-dimensional (3D) imaging tool, has 

been widely used in both basic and translational biomedical sciences [95], [96], [97], [98]. Despite 

significant advances, to acquire 3D images, most current OCT devices require extensive scanning, 

either in the spatial domain or the spectral domain [99], [100]. The scanning mechanism introduces 

a trade-off between the imaging speed and image signal-to-noise ratio (SNR), which is particularly 

problematic for dynamic imaging where the motion of the object can easily blur the image [101], 

[102], [103], [104], [105]. 

 

4.1 Spectral-domain OCT 

OCT generates cross-sectional images of a sample by measuring backscattered light using 

interferometry. The foundation of optical signal detection is low-coherence interferometry (LCI). 

Interferometry involves measuring the electric field of light backscattered from two paths that 

interfere with each other. Michelson interferometer is a classic type of interferometry, illustrated 

in Figure 33a. In this setup, a beam splitter divides the light source into two paths: the reference 

arm, which has a known time delay, and the sample arm, which contains the sample or tissue. 

Using low-coherent light (Figure 33b), interference occurs only when the optical path length 

difference between the reference and sample arms matches the coherence length of the light source. 

There are two main types of OCT: time-domain OCT (TD-OCT) and Fourier-domain OCT (FD-

OCT). 
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Figure 33. (a) Illustration of a Michelson interferometer. (b) Comparison of perfectly coherent light and 

low-coherent light. ∆𝑙c is coherence length of light. Adapted from [49]. 

Spectral-domain OCT is one category of FD-OCT that capable of collecting signals from all depth 

of the sample throughout the entire acquisition and inherently more sensitive than a time-domain 

OCT [106], [107], [108]. We previously demonstrated snapshot full-field spectral-domain OCT 

based on image mapping spectrometry (IMS) which enables high-speed 3D microscopic imaging 

[109], [110], [111]. By slicing a two-dimensional (𝑥-l) OCT interferogram in the spatial domain 

using a custom multifaceted micromirror array followed by dispersing the line images as a 

spectrum, our proof-of-concept device can capture a 200 µm× 200 µm × 10 µm volume at a rate 

up to 5 Hz. However, built on a fixed optical architecture, this device suffers from a low spectral 

resolution—given 480 spatial samplings, the number of spectral bins is limited to 40, leading to a 

∼ 5 nm spectral resolution and only a 10 µm depth range in the OCT image. The shallow imaging 

(a) 

(b) 
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depth restricts the system from imaging biological tissues. Moreover, the multifaceted micromirror 

array in the IMS is costly to fabricate, hindering its accessibility to general labs. 

 

4.2 Spatial light modulator (SLM) 

Rather than using an optically fabricated micromirror array [104], [105], [109], we used a phase-

only spatial light modulator (SLM) to modulate the incident wavefront in a programmed manner. 

For example, by displaying a 1D array of linear phase patterns, we can make the SLM act as flat 

mirrors with varied tilts (Figure 34a), resembling the micromirror array in the original IMS [112], 

[113], [114].  

 

Figure 34. Programmable light guidance using a spatial light modulator (SLM).  
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(a) SLM acts as a 1D flat mirror array with varied tilts, (b) SLM acts as a 1D concave mirror array with 

varied tilts. From left to right, phase pattern displayed on the SLM, equivalent mirror array configuration, 

resultant image slices on the camera. 

Alternatively, when displaying a 1D array of linear phase patterns superimposed with quadratic 

phase patterns, the SLM functions as an array of tilted concave mirrors, focusing the sliced images 

and redirecting them to varied directions (Figure 34b). Such a programmable ability allows the 

SLM to provide a balanced resolution along the spatial, spectral, and temporal dimensions. When 

combining with OCT, the resultant system can image a 3D volume with either a high lateral 

resolution or a high axial resolution in a snapshot. The system can also achieve a high resolution 

along all spatial dimensions through a multi-shot acquisition strategy.  

We developed a tunable image-mapping optical coherence tomography (TIM-OCT) by integrating 

the phase-only SLM with a full field spectral-domain OCT to address the current technical 

challenges, which can provide tailored imaging performance for a given application. The system 

design is presented in detail in the following section. 

 

4.3 Tunable image-mapping optical coherence tomography (TIM-OCT) 

The optical setup of TIM-OCT is shown in Figure 35. It consists of two sub-systems: a full-field 

spectral-domain OCT system and a tunable IMS based on SLM. In the OCT sub-system, we use a 

supercontinuum source (SuperK Fianium FIU-15, NKT Photonics) with a tunable wavelength 

selection unit as a light source. The illumination light is selected within the visible light range, for 

the later target ophthalmology imaging. We pass the light through a custom rotating diffuser and 

illuminate the sample to reduce the speckle noise from laser.  
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Figure 35. System configuration of TIM-OCT.  

SLS: supercontinuum laser source; AL: aspherical lens; cLSR: customized laser speckle reducer; BPF: 

bandpass filter; BC: beam combiner; NDF: neutral density filter; SLM: spatial light modulator; MLA: 

microlens array. 

 

The scattered light from the sample is collected by an achromatic doublet lens (focal length, 50 

mm) and interfered with the light reflected from the reference arm mirror.  The OCT interferogram 

is then passed to the tunable IMS sub-system. We first filter the light with a polarizer, and then 

project the image onto the phase-only SLM (HSP1920-488-800, Meadowlark Optics, USA), which 

has a resolution of 1920 × 1152 pixels and a sensor array size of 17.6 mm × 10.6 mm.  
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Figure 36. Optical setup of the grating, MLA, and camera. 

We display various phase patterns on the SLM to make it function as an image mapper, analogous 

to that in the original IMS system. The light reflected from the SLM is then spectrally dispersed 

by a diffraction grating (GT50-03, ThorLabs, USA; 300 grooves/mm) and imaged by a custom 

micro-lens array (MLA) (4×8 microlenses; pitch 3 mm; focal length 30 mm), as shown in Figure 

36. The final dispersed image slices (Figure 37) are captured by a CCD camera (hr455MCX, SVS-

VISTEK, Germany).   
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Figure 37. Dispersed image slices under monochromatic (top) and broadband illumination (bottom). 

 

Figure 38. Construction of a hyperspectral datacube. 

The raw data is a matrix of 2D image with 𝑥 and l dimensions on the detector screen. After the 

OCT data acquisition, we run a dimension rearrangement program based on the coordinates saved 

during the SLM calibration process to crop out all the MLA images and assemble them into a 

single 3D file, referred to as a datacube, as illustrated in Figure 38. 
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4.4 Tunable imaging capability 

In TIM-OCT, the SLM acts as a mirror facet array, slicing the image into lines and redirecting 

them towards different microlenses on the array. We operate the SLM in three primary working 

modes: 

Mode 1:  

Snapshot high-lateral-resolution mode, where the SLM is programed to work as a flat mirror array 

with varied tilts (Figure 39a). The encoding scheme results in anisotropy in spatial samplings. The 

x-directional resolution is varied by the slit width on the SLM whereas the y-directional resolution 

remains the same. We divide the SLM into 192 narrow rectangular regions, each having an area of 

92 µm (width) × 10.6 mm (length) and displaying a linear phase pattern along a specific direction. 

We group these SLM regions into six periodic blocks, each block having 32 linear phase patterns 

with varied orientations, as shown in Figure 39a and 39b.  

The light reflected from each SLM region is superimposed with the corresponding phase pattern, 

which essentially directs the light beam towards a microlens on the array. Because phase patterns 

are repeated across periodic blocks, each microlens on the array collects light from a total of six 

SLM regions. The spacing between two adjacent reimaged SLM regions is equal to 32 × the width 

of a SLM region, leading to an effective spectral sampling of 32 after spectral dispersion. Within 

a single snapshot, the system can capture a spectral datacube (𝑥, 𝑦, 𝜆) of dimensions 192 × 155 × 

32 (pixel × pixel × effective spectral sampling).  

To avoid the crosstalk between the adjacent dispersed SLM region images, we filter the 

illumination using a 10 nm bandwidth filter centered at 550 nm. Given a 270 μm × 170 μm field-
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of-view (FOV), the resultant OCT image has a lateral resolution of 2.8 μm and an axial resolution 

of 13.3 μm in air. The volumetric acquisition speed in the snapshot mode is solely dictated by the 

required exposure time and the camera frame rate (18 frames per second). 

 

Mode 2:  

Snapshot high-axial-resolution mode, where the SLM is programed to work as a concave mirror 

array with varied tilts Figure 39c. We divide the SLM into 32 wide rectangular regions, each having 

an area of 552 µm (width) × 10.6 mm (length) and displaying a linear phase pattern along a unique 

orientation and being superimposed with a quadratic phase. The light reflected from a SLM region 

is first focused into a narrow line (202 µm wide) and then redirected towards a microlens on the 

array. Because each microlens collects light from only one reimaged SLM region, the 

corresponding spectrum occupies the entire underlying space, leading to an effective spectral 

sampling of 160. This allows measurement of a spectral datacube (𝑥, 𝑦, 𝜆) of dimensions 32 × 155 

× 160 (pixel × pixel × effective spectral sampling) in Figure 39c and 39d. The resultant system can 

acquire a much broader spectral bandwidth (80 nm) with a 0.46 nm spectral resolution. This 

combination with the OCT subsystem yields a lateral resolution of 16.8 µm (y-direction) and an 

axial resolution of 3.4 µm. 
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Figure 39. SLM patterns and respective raw camera images in different imaging modes.  

(a)-(b) Mode 1: Snapshot high-lateral-resolution mode with 192 image slices and a 10 nm spectral 

bandwidth, (c)-(d) Mode 2: Snapshot high-axial-resolution mode with 32 image slices and a 80 nm 

spectral bandwidth, (e)-(f) Mode 3: Multi-shot acquisition mode with 96 image slices and a 25 nm 

spectral bandwidth, (g)-(h) Snapshot acquisition of 96 image slices with spectral crosstalk (arrow-pointed 

regions). 

Mode 3:  

Multi-shot acquisition mode. Mode 1 and 2 allow one to tune the spatial resolution along the lateral 

and axial directions for snapshot acquisition. In Mode 3, one can trade in the temporal resolution 
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for high spatial resolution through multi-shot acquisition. Rather than simultaneously 

functionalizing all SLM regions, we turn on a subset at a time and capture the resultant spectra in 

sequence. This increases the spacing between adjacent reimaged SLM regions per acquisition, 

thereby allowing measurement of a broader spectral range.  

Figure 39e and 39f illustrates an example of a three-shot acquisition sequence of 96 SLM regions, 

with each shot capturing 32 line-spectra. This mode allows measurement of a spectral datacube 

(𝑥, 𝑦, 𝜆) of dimensions 96 × 155 × 54 (pixel × pixel × effective spectral sampling), leading to a 3D 

resolution of 5.6 µm × 3.4 µm × 10.6 µm in the OCT image. The volumetric imaging speed is 6 

frames per second, one-third of the camera frame rate. The illuminating laser power varies by 

imaging targets from 160 µW (in-vivo mouse cornea) to 1.4 mW (ex-vivo standard target). The 

resolutions of the current system are limited by the pixel sampling of the SLM rather than the 

optical diffraction. The pixel sampling rate can be further improved by using high-resolution SLMs 

[115], [116], [117]. 

Table 5. Comparison of imaging parameters of TIM-OCT under three primary modes. 

 

Another mode for snapshot acquisition involves 96 image slices with a 25 nm bandpass filter 

(Figure 39g and 39h). The arrow-indicated regions highlight the crosstalk regions of spectral 

dispersion. In this case, the snapshot OCT imaging cannot utilize the whole 25 nm spectral range. 
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4.5 Imaging results 

To demonstrate the system’s performance in Mode 1 and 2, we imaged a 1951 negative USAF 

target (group 5, element 2-3) in air. The reconstruction of a spectral 𝐼(𝑥, 𝑦, 𝜆) datacube from the 

raw measurement utilized a re-mapping algorithm that is described elsewhere [118], [119], [120]. 

Once the 𝐼(𝑥, 𝑦, 𝜆) datacube is correctly assembled, we apply a non-uniform discrete Fourier 

transform (NUDFT) [109] to generate the desired image of 3D sample structure 𝐼(𝑥, 𝑦, 𝜆), as 

illustrated in Figure 38. In TIM-OCT, we use NUDFT to correct for the nonlinearity of the spectral 

dispersion with a limited number of spectral samplings and alleviate the sensitivity roll-off at 

depths [121], [122]. Each location on the sample surface is associated with a separate interferogram, 

𝐼(𝑥! , 𝑦" , 𝜆), with 𝑖 and 𝑗 corresponding to pixel indices in the 𝑥- and 𝑦-dimensions. Conversion of 

interferograms to A-lines will require re-sampling of raw data from the wavelength λ to the 

wavenumber 𝑘  domain (𝑘 = 2𝜋/𝜆 ) before Fourier transformation to 𝑧 -space. Repeating the 

procedure above at each transverse location yields a volumetric image 𝐼(𝑥, 𝑦, 𝜆). 

Figure 40a and 40b show the en-face and cross-sectional OCT images in the high-lateral-resolution 

imaging mode, where the en-face image presents a high quality while the cross-sectional image is 

pixelated due to a lack of spectral sampling. The lateral and axial resolutions are measured to be 

2.8 µm and 13.3 µm, respectively. In contrast, when the system is operated in the high-axial 

resolution mode, it yields a reduced-quality en-face image (Figure 40c) but a sharp cross-sectional 

image as can be seen in Figure 40d. The resultant lateral and axial resolutions are 16.8 µm and 3.4 

µm, respectively. It is worth noting that we can switch between the two snapshot working modes 

simply by changing the phase patterns on the SLM without moving parts. 
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Figure 40. TIM-OCT of a negative USAF target with tunable resolutions. (a) En-face image, and (b) 

cross-sectional image in the high-lateral-resolution mode. (c) En-face image, and (d) cross-sectional 

image in the high-axial-resolution mode. 

Figure 41a shows the depth-directional intensity profile along the vertical axis of Figure 40b, while 

Figure 41b depicts the depth-directional intensity profile along the vertical axis of Figure 40d. A 

comparison of these profiles reveals that TIM-OCT achieves a significantly higher axial resolution 

in the mode 2 snapshot imaging. 
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Figure 41. Depth-directional intensity profile in the high-lateral-resolution mode (a) and in the high-axial-

resolution mode (b). 

 

4.6 Mouse imaging 

We further evaluated TIM-OCT by performing in vivo imaging of mouse corneal structures in both 

snapshot and multi-shot modes. The mouse experiment in this study was conducted in accordance 

with the guidelines of the UCLA Institutional Animal Care and Use Committee (No. ARC-2021-

130) under an approved protocol. A Balb/c mouse (8 weeks old, female) was anesthetized using 

0.8% isoflurane delivered at 1 L/min via a snout covering nozzle, as posed in Figure 42b. The 

mouse was placed on an electronic heating pad to maintain body temperature (Figure 42a), and the 

mouse condition was constantly monitored during the experiment. A three-axis translational stage 

combined with two rotational stages is used to precisely control the positioning of the mouse eye. 
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Figure 42. TIM-OCT mouse cornea imaging setup.  

(a) Mouse during imaging. (b) Anesthesia using isoflurane via a snout covering nozzle. (c) Illustration of 

the degree of mouse eye position control. 

Figure 43 illustrates three different working modes of TIM-OCT in mouse cornea imaging. We 

first acquired a corneal image in the snapshot high-lateral-resolution mode, which allows only a 

10 nm spectral bandwidth. The snapshot acquisition freezes the motion, making it particularly 

useful for eye imaging. However, in the corresponding cross-sectional image (Figure 43a), the 

epithelium and stromal layers are hardly visible due to a low axial resolution.  

 

Figure 43. In vivo mouse cornea imaging using snapshot and multi-shot TIM-OCT acquisition. (a) 

Snapshot OCT cross-section image, (b) Three-shot OCT cross-section image, (c) Slit-scan OCT cross-

section image. 
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Next, we switched to the multi-shot acquisition mode by sequentially capturing the dispersed 

image slices in three periodic blocks. This increased the spectral bandwidth to 25 nm. The resultant 

cross-sectional intensity image is shown in Figure 43b, showing an increased visibility of the 

corneal layers. Finally, we sequentially scanned a “slit” region on the SLM across the FOV, 

mimicking the conventional push-broom imaging spectrometers. This led to more extensive 

scanning but allowed for capturing the full spectral range of 80 nm. The resultant cross-sectional 

image of the epithelium and stromal region is shown in Figure 43c. In the slit-scanning mode, it 

provides the most resolving power for imaging the corneal layers. Although the slit-scan mode 

takes more time for data collection compared to the snapshot mode, it still demonstrates superior 

efficiency over point-scanning OCTs. Figure 44 presents four en-face images captured at different 

depths in Figure 43c. The observed in vivo corneal structure is consistent with previous literatures 

[123], [124], [125]. 

 

Figure 44. En-face images at four depths of Figure 22c. Scale bar: 50 µm. 
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4.7 TIM-OCT discussion 

We present tunable image-mapping optical coherence tomography (TIM-OCT), which can provide 

optimized imaging performance for a given application by using a programmable phase-only 

spatial light modulator in a low-coherence full-field spectral-domain interferometer. The resultant 

system enables high lateral or a high axial resolution in a snapshot without requiring moving 

hardware components. Alternatively, the system can achieve high resolution across all dimensions 

through a multiple-shot acquisition. We evaluated TIM-OCT by imaging both standard USAF 

targets and mouse cornea in vivo.  

Compared to our previously developed full-field spectral-domain OCT based on IMS, the SLM 

can effectively display a variety of reflection patterns without altering the mapping mirrors. 

Therefore, the SLM-based TIM-OCT offers high versatility, enabling the optimization of spectral 

channels and spatial pixel numbers for high-speed 3D snapshot imaging across various 

applications. We did a translational study on applying the TIM-OCT system to the human retina 

imaging. By virtue of its depth imaging capability, the human retina wad prepared as flatmount 

slides rather than cross-sections in the hyperspectral imaging, as shown in Figure 45. The red circle 

indicates the imaging region near the optic disc (OD).  

 

Figure 45. The human retina flatmount slide in spectral OCT imaging. 
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Spectroscopic OCT (SOCT) analysis was conducted after imaging the retina flatmount with TIM-

OCT. By applying the short-time Fourier transform to the interferogram 𝐼(𝑥, 𝑦, 𝜆), the spectral 

content can be computed through software without the need to modify the OCT system. The cross-

sectional image of retina is reconstructed in Figure 46a. An NFT structure was identified at a depth 

of approximately 50 µm under the tissue surface. The computed spectrogram is shown in Figure 

46b. The red plot in Figure 46d represents the corresponding NFT spectra. A control region was 

plotted by averaging the spectra information at the black arrow pointed area. The spectral 

difference of the plot is consistent with our findings in hyperspectral imaging.  

 

Figure 46. Human retina imaging using TIM-OCT and spectroscopic OCT analysis. 

 

In conclusion, TIM-OCT represents a novel category of OCT devices that can be operated in 

multiple imaging modes, offering tailored imaging performance for specific objects. The snapshot 

acquisition modes effectively freeze motion, making it particularly advantageous for eye imaging. 
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The resolution of the current system is limited by the pixel sampling of the SLM rather than optical 

diffraction. This limitation can be addressed by utilizing high-resolution SLMs to enhance the pixel 

sampling rate.  
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Chapter 5 Summary 

 

Although optical imaging technologies have witnessed remarkable advancements over the past 

decades, there remains significant potential for AI-driven approaches to further enhance their 

performance and broaden their applicability. By integrating artificial intelligence with state-of-the-

art imaging systems, it is possible to overcome many of the inherent limitations of conventional 

optical designs. This dissertation explores the synergy between computational methods and optical 

imaging modalities, demonstrating how AI can serve as a transformative tool to elevate high-

dimensional imaging data analysis, imaging resolution, and diagnostic utility.  

One of primary objectives of this work is to develop a deep learning based imaging platform 

capable of addressing critical challenges in the detection and classification of Alzheimer’s disease 

(AD) biomarkers, specifically amyloidogenic 42-residue long (Aβ42) alloform and phosphorylated 

tau (pTau). Hyperspectral imaging (HSI) is employed as a label-free imaging modality to identify 

and characterize the spectral signatures of Aβ42 and pTau in human retinal tissues. The scattering 

spectral signature of Aβ was first identified ex vivo by More and Vince in 2015 [52], [126]. This 

work, to our knowledge, is the first report of the spectral signature of pTau in the human retina.  

Our findings echo many pioneer works in the field. For instance, Xavier Hadoux et al. [20] 

discovered a significant difference in ocular reflectance among patients with and without 

moderate-to-high Aβ levels, and they confirmed their findings through imaging the paired brain 

samples.  
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However, all these previous studies lack a direct validation through immunostaining. Moreover, 

the distribution of Aβ42 and pTau remains elusive in current imaging approaches. This research  

leverages generative adversarial networks (GANs) to transform the unstained hyperspectral data 

into histopathology-contrast images, offering an innovative approach and lay the groundwork to 

non-invasive, early-stage AD diagnosis [127].  

The HSI prediction results are compared with two gold-standard methods, peroxidase-based 

immunostaining (DAB) and immunofluorescent staining, in quantifying Aβ and pTau deposits in 

retinal tissues. It demonstrates the feasibility of predicting their spatial distribution with high 

accuracy using deep learning. We anticipate that the proposed deep learning platform will serve as 

an alternative or complimentary approach, offering the significant advantage of substantially 

reducing the processing time required for histological analysis.  

The second optical system presented in this dissertation is tunable image-mapping optical 

coherence tomography (TIM-OCT). OCT is a noninvasive three-dimensional imaging modality 

that has been widely used in translational biomedical sciences [94]. However, most OCT devices 

rely on extensive scanning in spatial or spectral domain to achieve depth-resolved visualization. 

The proposed TIM-OCT system integrates a phase-only SLM with spectral-domain OCT[128] to 

enable tailored imaging performance of several snapshot and multi-shot modes. Its snapshot 

imaging capability effectively mitigates the challenges associated with rapid eye motion, making 

it suitable for dynamic assessments. Consequently, TIM-OCT represents a step closer to the goal 

of translating our findings in AD by facilitating in vivo retinal imaging. 

Additionally, a flexible light field endoscope (Flex-LFE) is introduced for depth-resolved 

endoscopic imaging. By leveraging deep learning based super-resolution techniques[129], the 
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system addresses the inherent hardware limitations of fiber imaging, enabling high-resolution 

image reconstruction within a compact and adaptable framework. 

This work highlights the transformative potential of AI-driven imaging systems in addressing the 

data complexities of optical imaging. The integration of computational techniques and advanced 

imaging modalities lays the groundwork for innovations in precision diagnostics, particularly in 

the early detection and management of neurodegenerative diseases like Alzheimer’s. Future work 

will focus on further optimization of the imaging systems, including the scanning of diverse retinal 

strips to quantify and potentially differentiate individuals with high and low levels of AD pathology. 

Additional efforts will involve imaging fresh brain tissues and developing spectroscopic OCT 

techniques for in vivo imaging of transgenic AD-model mice, with the aim of advancing our 

understanding of AD pathology and enhancing diagnostic capabilities. 
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Appendix A 

The neuropathologically confirmed AD patients used for spectral signature analysis and 

transformation network training. Retina cross-sections stained for Amyloid beta 42 (Ab 12F4) and 

pS396-Tau (Ab PS396). Postmortem interval (PMI) values of tissue collection were also recorded. 

Donor information Patient #1 Patient #4 Patient #5 

Age (year) 90 81 85 

Gender Female Female Female 

Race White Hispanic White 

Premortem diagnosis AD AD Dementia 

MMSE score 9 None None 

CDR score 2 3 3 

PMI (hour) 9 7.5 8.5 

Final diagnosis AD AD AD 

Braak stage V VI V 

ADNC: Aβ plaque (A) 

score, NFT (B) stage and 

neuritic plaque (C) score 

A2, B3, C3 A3, B3, C3 A3, B3, C3 

HSI imaged slide # #05 #12 #04 

Fluorescent stained slide # 
12F4 & PS396: 

#06 

12F4 & PS396: 

#13, #12 

12F4 & PS396: 

#03 

DAB stained slide # 
12F4: #05, #08 

PS396: #04 

12F4: #11 

PS396: #14 

12F4: #05 

PS396: #04, #01 

Transformation model DAB-Aβ42 

Fluo-Aβ42 

Fluo-pS396-Tau 
DAB-pS396-Tau 
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The neuropathologically confirmed patients used for validation of immunofluorescence and DAB 

imaging: 
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Appendix B 

The number of image patches used in training for the four transformation models. 

 

 

 

  

Transformation model DAB-pS396-Tau DAB-Aβ42 Fluo-pS396-Tau Fluo-Aβ42 

# of training patches 16528 29630 13501 13706 

# of validation patches 360 650 300 300 

# of test patches 398 713 324 330 
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