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ON THE DESCRIPTION OF FERMION SYSTEMS IN BOSON
REPRESENTATIONS. (IIT).' NORMAL MODE CONSTRUCTION AND
'THE DERIVATION OF KINETIC AND, POTENTIAL ENERGY EXPANSION

Bent Sérensentj.

Lawrence Radiatioanaberatory
University of California
Berkeley, California 94720

’Januafy_l969 -

Absﬁfaét

Truncatlon of fhe boson- expans1ons earller suggested foL the descrlptlon
Jof collective exc1tatlons 1n doubly—even nuclei make 1t 1mportant to start
from the best pos31b1e boson representatlon. It is shown that the Tamm—
Dankoff boson generally offers a better startlng p01nt than do the Randonm
Phase ‘boson. :This is 1nvpart1cular true if the RPA boson is 1mag1nery, which
is shown in coﬁtrast to earlier assumptions to be the casevforla majprity of
quadrupole~-vibrating nuclei. Ip’order_to_follow'the quadrﬁpole phese
transition in the boson»model the Hamiltonian is carried from the beson

fdrmvinto an expansion in terms of Hermittean variables specifying the mass

quadrupole moment and its conjugate momentum.

IWork_'performed under the auspices ofuthe U. S{ Atomic Energy Commission.

't . . . i :
TOn leave from the Niels Bohr Instipute, University of Copenh%gen,

e

Copenhagen, Denmark .
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1. Introduction | - | ‘

192) (to be referred to

The boson eipansion-method déscribed.in refs.
o . . : )

as I and IT) and’ 3) will in the following paper h) (iv)'be applied to the

branch of collective quadrupole eicitations in doubly-even nuclei. ,The

steps'involved in such an épplication to a single branch of excitations
are sketched here. The commutation relations valid among pairs of feimion

L + ' o . . : :
operators « , & define the coefficients of expansions in terms of pure boson

operators b , b

+ + 4 L o R TV SORC R =
A = (o, a,) = . xMa ...a3a)b ...b b ... D
8 : la Ja JaMa K’ ' ‘ 1 ﬁx 8 ,Qx-u_'ax-u+1* a

A a ... a oo , :
10 - |
'p=(x-1)/2 , -
. - (1.1)

+ e AK + - =
B =(a Q. ) ~ y "(a, ... a38)b ...b . 1 ... D

: a Ja ala A .a a ' > 1 i TR WTEN T N

l ooo. )\ ‘ .
| (1.2)

where 8 1is a shorthand for the quantum numbers characterizing an angular'

momentum coupled pair of Iérmioné}and the bars denote time-reversal. By a

canonical transformation in the boson space we define normal mode operators

b et o Rt e e
ce, = £ ({b, D) o o (1.3)
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vwifh‘the in&erSe reiation
b; = fé({c;, En}) . o R (1.4)
+ o ! : P _ v
Wheresas (ba’ ba) correspond to a system without correlations, the idea is to
conStruct the operators vé; in'sﬁéh a waj, tha£ the varioﬁs branches of cbrrelatéd-
excitations become as well sepératéd as possible.  Thi$ means thaf thé.Hamiltoniah,‘
which always can be written as a fﬁnction of the operators '(Aa; Ba); thfough
) fhevexpansions (1.1) and (1.2) and the relation (l}h) is suppoéed to:behwell
‘aﬁproximated,by | : | . | ' : |
'.;. . 25252 hi(éf, E') ";' E ' RN v' _ i (1.5
X , n'n’ m’ i S o -
L i.e. vihevébuplingvtefms between different nofmél mbdé‘branchés ’E'_aré K
' neglected{ In section 2 We:aispuss various-éhéices of thé transformépién
(1.3). . Bach branch n cah now Be treated to as»high an.order of ac;uraCy »
as deéired, e.g. inélﬁding anharmonié (o:nonquadrafic) terms oniy for the
collective branch. The diagonélization inside each branch is carried’out',
separately (or oﬁly that of the interesting branchés, viz. only the collective),
-makiné use of the parentage'pfoperfies of'a chosen’basis_for the branch. con-
sidéred. Expansiéns similar fo.(l;5) can be written'down for.any“other
interesting operator, and matrix eiements‘of such opéraﬁors.can Be eValuated
_ among the éigenétates (tﬁosebéf a singie hn if the absence of coupling térms

holds also for the:operator in question).
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Although angular mdmentum ié striétly‘conserved, the inclusion,of
enough anharmOnic‘terms makes it poésibie to deséribe transitional and de-
1formed;nuclei. Apért from caléulating matrix élemeﬁts 6f the mass quadrupoie
-operatorbone can gain?insight into the mechanism.offphase.transition by ex-
panaing-bgth the mass quadrupole bperatér Qy ard its conjugate momentum
Pyy in the bosdn basis-and néglecting1ndh;coliecfivé-contriEdtiéns (thus
' assuﬁing_that it is;thé”coilectivé‘Qﬁddrtpolé'branChﬂalone ﬁhich»is résponsiblé
for the onset of deformation) o

wew® e

. Nenn

- 2M 21 A R

ﬁhére we have characterized the cclléctive bqson“operators by absence of
subscript. Inverting the expressions (1.6) and (1.7) and inserting into
(1.5) one gets -

.

“fion.coll.

\ H = v(Q) + T(P, Q) +H o . o (1.8)

- where the potential energy V -is defined as any collective part of H 'which
" does not contain P2M' As discussed in sectionYB, one may obtain a fair

‘estimate of V and T Jjust by a first order inversion of (1.6) and (1.7).
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2. Normal Mode Construction
The simplest way of defining the normal mode operators of egs. (1.3) and

(1.4) is by a linear transformation

n : t

REEDY (r(a)ct+s (2)o) o (2.1)

n

made unitary by the requirements

1]
[e)
-

Z (r (a) r_,(a) - gn(a) s (a) (2.2)

it
o
A
n
w
o

In order to establish the desired physical intérpretation‘bf»the new boson
operators <, it appears natural to define the transformation coefficients

in such a way that (2.1) diagonalizes the Hamiltonian to second order,

, aa' a
aa' » 1 aa' » 4
) z s
.o e ) Ui _
| .

‘ A o<mr<N v . o | :

\ 21 +— + e = ‘ -
ann °n “n Z Z veemy n, 7" % ny G

n S AF2 nl Siemy ! A TA-pd
" O<p.<h
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P
However, this requires the.éolution of a set of highly non-linear equation,
| . . o
- |

=0 - 21 L .
=0, W San' Yo - - (2.5)

whiéh'only have Beeﬁ attempted iﬁ:ovef-simplified cases (see section é.l).

‘Wg wiil ﬁention avfew ap§roximafe treatments of thé syétem of:eguationé (2.5).
Oﬁe is to neglécf all non;quadfatic (iﬁ rn(a)f and én(a) ) contributions
to WEO. énd w21, which is idenfigal tbvthe-eiact diagonalization df the

second order part of the Hamiltonian (2.4)

- “aa’ a a a a'’ .
aa" L ' ‘ aa'

: + _+ - ‘ ; = '
g(2) Z 220 Tt + 5 B, + Z 2o, b, . (2.6)
This approximation is usuéiiy-denoted Random Phase Approximation (RPA). An
improvéd solution can be obtained 3) by an iteraﬁive proceduré, starting with

fhe.R?A céefficientsv (rio)(a), sio)(a)) and thén’é&ding_correctiqhs
Wy =Wy w6l @), e

(1), = (i-1) (i) o
- + .
- ®n (a) = 5,777 (a) + 6775 (a)
~ Where the corrections are determined from the insertion of (2.7) into (2:5)
and ‘the assumption that thé.pgrrections are smali, so that only ferms linear
in 8(1%' and 6(1)s -may be kept.v Unitarity further restricts the form of
(2.7) to that of infinitesimal rotations in the vector space indexed by n.

2u

If further the non-quadratic terms in‘lw -are considered negligible for all’

branéhes 'n  except a single one (the collective root of RPA), we have simply
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= e‘j%l) s(ifl)ta)."a | :  ' o | - (2.8)

o -
—~
[wH
S
]

—~
o

S
.

Théfipfinitesimal rotation is_purély imaginary (no minus sign‘in one of the
éqs}i(2.8)),’since "r and s are éssoéiated wiﬁh operatofs Which‘are:
Hefmitféan‘conjugatei The ﬁormal'mdde represehtatipn obtained after i
‘iteréﬁions we will denote NMi. |

* The normal mode-définitibh (2.5) and hénce»all of the approximations
NMO = RPA; “es o NMi,’..;. suffers from a fﬁndamental’deficiency. Namely,
valthougﬁ'é nucieﬁSvis stable, i.e. stable when governed by the total Hamiltonian
H, ié may notvbg stable under the sole action of ﬁhé'Second order part
(H(gj in case of RPA). If this is not so, the équétions (255) have at least“
one'imaginary solution, which in the‘case of‘multipolé ﬁarficie—holé‘modesn
is interpreted l3) by saying that fhe e@uilibfiﬁm shépé of the sysﬁem is no
loﬁger spherical,.but has a multiﬁble deformation. The.quadratic paft of the
Hamiltonian can onlyvdescribe the system near a stable eqﬁilibfium, and the
failure of”éuch a description does describe é lack of stability, although
we shall see_in seétibns 2.2 and 3 that the relation to the concept of deformation
requires a further‘in#estigation. |

It is.thusiessential to find a boson'basis which is applipable for any

"shape of the system and which at the séme time fulfills the reéﬁireﬁent of‘
approximaﬁely separating the- é'ollective braﬁch of exc‘ita.tions from the remaining
statés. The only possible choices, if‘the relatio@ship to the bésié Boson

representation (2.1) shall. still beilinear, are bosons characterized by
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- sn(d) =0 forall a . S | : | (2.9)

If tme-boson conserving‘part 6f H(?). is simultaheousiy diagonslized, this’
defines the Tamm-Dankoff (TD) boson. - We hope to prove thet if‘measonablyh

many ‘terms are kept in the Hamlltonlan (2.4) then i) the resultsuare independent
of whether TD or NMi (RPA) is used, WhenevervNMi is not close'te inStability,
ii).the'collectivity approxtmation (that the collectlve branch may be treated
1ndependently) is falrly well Justlfled when TD is used to define the normal

mode, even. in cases where the system no longer has the same equlllbrlum

symmetry (spher101ty)>as the basis.
5.1. SIMPLIFIED MODEL
In this subsection we are considering'a system described by a HamiltdnisnyA

= 220 v e Byt 4 hl o o'y + 2“2 b5™b + h.oe. - (2.10)

jas
|

fin‘terms‘of e'single, spinless boson b+.rvThis Hemiltenian coﬁtaiﬁs typical
anharmomic terms and the correspondiﬁgtnofmal.mede cnnditions (2.5) ean'Be ‘

: .solved exactly ). The following dlagonallzatlon of the anharmonlc Hamlltonlan
in the normal ‘mode representation is compared to that obtalned by using the
NMl method and by’TD. In table 1 we show the results for different magnltudes

of Vz29, the remaining parameters being fixed at z21 = 1.0, zhl'= 0.1 and

—_— : - _ _
IThe'code for_this solution makes use of & Lawrence Radiation Laboratory

library pfogram written by G. Litton.
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ha -
Z

= 0.2. Thesevfairly.tjﬁical magnitudes COrrespond to a situation in

~ which theicasic boson'expaﬂsionfof H (in terms of ‘b+, b) is converging.
Varying 'z20 we caﬁ induce second order instability, the critical magnitude
being z20 =1.0. The reasoﬁ for onij carrying the iterative method NMi a few
steps is that the assumptlon of llnearlty (2.8)'often is rather bad ana that

accuracy is lost at each step because of the loss of normallzatlon (2. 2)

Actually the normallzatlon Was secured to second order after each 1teratlon,

by putting |
L) (r(i';l),ye'(‘i*l) (RN L L G (21)
(1) o ((1-1) ;(i—l) rQifl))/(l + 8(i-l))e)l/z ,
But eince elt) tekes velues‘eround 0.4 as sooh‘ee we approach the region

of,instability,_the results do get unreliablevafter a few steps. The iteration
quoted in table 1 is the one giving the smallest value of w20.
The table givee the value of s (which fully specifies the transformation

(2.1)) and the coefficients w>\u of the transformed Hamiltonian

H = j{: M (l+akﬂ)_l (MY ()* 4 noe. ' (2.12)
A . v
1
Sz A |

The only way to .compare the different Hamiltcnians is to diagonalize them,

‘which”is done in fhe form

|E ) }E: ¢ ;)(c+)n|0) PR - | ': (2.13)
 n < 25. | |
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sy

Table'l giveé thé six lowest roots and tyﬁical-part;‘of_thé wave fﬁhction.

of thé "two-phonon"'é£éte, in érder that one may‘estimate the nﬁmber of.cog-r

- pohéﬁts ﬁéce5sary to describe this_éﬁate (whidh is_bf interést for the quad-
fupSi;vcalculation of paper_iV, which truncates:at n =_7). _For‘ ZEO. well
below 1.0 (tabie la) all normal mode representatibnsbgivé equally good results,
although the convergence of (2.12) is poorer for RPA ‘than for NML and both
poorer than TD._lfet TD.requirés'a'siigﬁtly large basis (2.15) becéuée'of the

large w0 (only non-diagonal ‘WXH' terms causes admixture). For 220

approaching the éritical value Wheré the second orderlhamiltoniaﬁ ﬁﬁ2) bécomes
‘unstable (téble 1b), the RPA'Haﬁiltonian is hardly-¢on§§rgihg, yet thé‘éigen-
yalﬁes are réasdnable when the diégohaliiatidn'baSis'is large. NMEFhés better
,cOnvérgencé despite the large e(i) and does not requife'as large a basisvas
be,;When 250 is just below 1.0 (fablé'lc); neither RPA nor NMi work,
wheféas TD>is:exaét and does not require largér'diagonalizatibn.ﬁasis than
béfore. Above z29~= 1.0 the NMi approximafion stgrting ffom RPA caﬁ né
'longervwork,_since tﬁe second order.Hamilﬁoqign correspondsvto_instability.
Yet the tqtal H cbrrespénds to. stability, since'the'signs of the fourth
”order térms are chosen to'correSpond to bindiﬁg{ ‘In both cases‘shOWn

(£abl¢ 1d) the TD proviaes Very accuréte approximgtibns to the exéét M
solﬁtion, but whefeas_a'truncation in the diagonalization afv n="7T is
'aliowed at ‘229-= 1.2, it will lead to considerable ihaccuracy'at z20 = 2.0,

One,might'hoté that the exact normal mode condifion WEO = 0 does not lead

to a converging Hamiltonian for large 220 in contrast to TD. We thus
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conclude that for a systematic survey of transitional nucléi(TD brovides the
absolutely best normal mode representation among- the approximaté ones con~
sidered, but that the dimension n = 7 fixed for practical reasons in IV pre-

sumably will cause increasing inaCéuracy for increasing deformation. The further

. expectation that in thisfregion more terms will be impértant in the expansion

of H has not been considered in this subsection'which has assumed a -

Hamiltonian with no terms higher than fourth order. Still the relative

magnitudes. of second and fourth order terms do give. some indication concerning

the convergence of a more general H.

‘We have in table 1 shown examples where no stable RPA Hamiltonian

could be formed, but where ﬁgo =0 still,had a'solutioh. In cdnclUding this

subsection we show in table 2 a few more unusual examples, keeping the H( )

stable bﬁt varying the other inétability-inducing parametér, whl; around its
42 ' '

critical value w'° = 0.2. Passing this value the exact NM has become unstéble,

‘whereas TD passes the critical value smoothly. Hdwevef, we also show these

examples because the parameter choice' Wh1'= .199 leads to a 'coincidental
cancellation in RPA, so that the RPA bﬁson Hémiltonian becomes_extiemely well
converging. For.this'reason the fourth order RPA diagonalization and the NMi's
based‘hgre upon yields very good results, whefeas the actual lafgeness'of
anharmonicitiesvcauses D to. be rather inaccurate. Our experience with exact
solutions’7) disfavours any abrﬁpt change in the spectrum when whl is chahged

0.211 are

from 0.199 to O.éll, which means-thatvthe RPAIresultsbfor Whl
comﬁietely wrong. We_thué again conclude that although special cases do occur,
whefe a NMi fepreééntation is the‘best.startiﬁg point'fdr the boson expansion,
D ié'much more broédly applicable and much séfer,_sinée it doesvnofilead‘tb

sudden divergences by slight changes of parameters.
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2.2. QUADRUPOLE STABILITY

In the exampies‘studiéd in tablé 1 fhe'eiaéf NM was alwéys a stablé'
Solution; even when RPA was nbt. .Wé can1thus ﬂardly talk about a‘phasé
transitién;‘defined as the point éf'second'order iﬁstability evaluatéd'affer‘
théhtransfofmation t§ the normal_mode representatiOn.’ Thé'phasé transition
-associaﬁedeith onéet of;quadfupole deféfmaﬁioh ﬁight be definéd ES'corresponding
to héving the nﬁclegs in a étate with & nonfzerqfexpectation‘valué-qf‘the_quad—
'rupole‘moment, or it might be defihedf&s*the péigt where the defivative of thé
expeéﬁation value of the ﬁamiltonian‘with respect fo-the.quadrupolevgoﬁentlof"the”
‘nhucleus, taken at zZero moment,chghges sign. Sihée asymmetry of the energy Vith
~ respect tb'proigté énd oblate deformation ﬁakes>a;hucl¢ﬁs deféfﬁed_under;the
| firsf'definition'even-if the minimum is at zeroldefofmafion, we shali mostly use
_the second definifi¢n, which'more closély follows thé'intuitivé.céncebt 6f phése
transition. 'Howgver, with tHis definition a'ﬂucléusvmaj have zeré quadfupole
moment although having experienced the pﬁése transition; namgly if the
' defi&étive of Hi.fs negatiﬁe at'the.prigih but. H as functiqn'ofv.Q is completely
:symﬁetfic between oblate and-prolafe shépe, which it might be in the'middle'of
a shell. vNow, since the quadrupole moment is a Hermittean combination of ¢+
and c's, ‘the truncation‘of the boson Hamiltonian to seqond order:in any of the .
.bosqn representations doeé in general not give a stability criferion equi-
vélentrtq that based on the,dependence én the quadrupb;e'moment operatdr.v

. The étability in terms of theiquadrupole moment operator will be
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- ‘discussed in section 3, but the étability of various normal mode representations
as consideredvin subsection 2.l.is of course'importént~for the course of thé
boson calculations. |

We now tﬁfh tq thesproblém-éf céllectiVe quadrupole excitations of a
system of both héutrons and protons, to whiéh a large number of single- -
‘particle levels'aré,available. As in the caiculations to be presented in-
IV. we have heﬁe assﬁmed"a ééiring plus quadrupélé;inﬁe¥;étioh in all cases
where numerical resuits afé quoted. The form of the boson expansion in this
case’is giﬁen in T, andvthe collective parf of the foﬁfth order Hamiltonian

= w0 4 w0 c+c+)ov+ W c+ c) + w50(0+c+ * O

_.+_ wjl(c'i'c_*.' 'E)o + WuO(C+C+)vO(.C+C.+)Ov_ v

T+ Z {V.r?l(c+c+)j-(c+ E)J)O + wg_l'e((c'*'c'*')J(-c- E)J)O}’} h.c. (2.1k4)
J _ . i .

where the boson ¢ carries angular momentum J = 2. If we want to study the

choice of normal'mode;representatioﬁ in analogy to What was done ‘in subsection
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2.1 for the one-level model, & reasonable way of proceeding is the following.

|

We choose a nucleus for which the anharmonicities'ere amal1.' For such a
nucleus, e.g.;ll6Sn,ﬂwe perform Qoson’calculstions in TD? RPA and in NMi.

The resulting boson Hamiltonians;arevgiven.in tahle 3,”end fig. 1 we shoﬁ

the energy spectra for expansions truncated at second and fourth‘order. The
results of NMO and NMl seems to converge toward that of TD, but following the'
' NMi-to_the lowest z20, which is achieved at 1-3, the spectrum is now completely
\changed. It is tempting to ascribe this to increa51ng 1naccuracy in the NMi,
but as no‘exact solution of eq. (2.5) is tossible, the conclusion is not sure. -
In connection with the one level model the questlon was raised whether the
_normalization of the boson was lost during the 1terat1ve.procedure Invthe
many—level model the further questlon arises, whether the orthogonelity |

between the collectlve and non—collectlve branches is. preserved

_ Th1s questlon is completely neglected by the NMl, whlch only changes the

+This'could be a doubly closed shell nucleus? but here no really collective
branch‘exists and the lowest quadrupole branch may not be well setarated from
other ones. In addition, the lack of collectivity makes the spectrum more
sensitive to details of the interaction, which may not be contained in our
model interaction. Instead the singly closed shell nuclei.are charectericed
by a fairly W?llVQ?Veloped collectiVe_hranchfocexcitations, at'the‘sameltimeri

as the deviations“from harmonicity are smaller than for non-closed shell nuclei.
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7

collectlve boson and leaves the non—collectlve ones. untouched. Orthogonality
is only preserved during this procedure if each new boson ( ) is a

linear combination-of ‘e(i7l) and c+(i-l). That would on the other hand make
the iterative‘psoceduie supeffluous,vsince Such'transforﬁatlons afe iﬁduced by
the diagoﬂalizatioﬁ, and siﬁce the successive transformations in the llGSn

case far from possess this structure, one suspeets that each step -further de-
stroys the separation of the Hamiltonian, so that NMlvin faot is more reliable

© than NM3. Ih the 116Sn caléulaﬁioﬁ theNMi do‘preserve normalization accﬁrately.
—Another considerafion also leads to the_conclusion thatiNMB is . less reliable

" than NML. .Looking at the boson Hamiltonians listed in table %, one observes

that the.most*dangerous terms (for convergence and reliable diagonalization) .

in the'Hamiltohian (2.1k) are wgl{(c ) (c + h.c., which change

‘ _ )J 0
- boson number by;two; Asvshoﬁn in ref. ) by comparing diagonalizations of

- Varibus boson Hamiltonians in spaces of up to 6vand T bosons, the eigenstates
qulckly become unreliable, when the ratlo wgl W21 exceeds'0.35. This
ratio is around 0.5 for NML but wQ /w reaches 0.65 for NM5. For TD the

ratio is O;lS.T) For this reason we believe to have proveh, that, although

TIt is interesting to note that this problem is hardlj revealed by looking at
the wavé-fanction of the second 2+ 'state, gi?en in taole 3. Howevef, in
conﬁrast to the rapidly coﬁverging.TD wave.function, the NM3 wave-function has
one oonspicuous‘6 phonon.component, which in'cohjuhcture with the fact that

only even boson numbers “have large components might 1nd1cate that also 8

. phonon and hlgher even-n parts could have been 1mportant
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formally attractive, RPA and the iterative ndrmal-mode method is‘dangerqus_to
use in practical calcula%iohé, where the diagonalization space has to be truncated,
and where the separafion of the collective branch is easily lost. In contrast

the TD representation appears to be very attractive, offering well converging

i
) .

boson Hamiltonians and being insensitive fo the possible instability of the
second order Hamiltonian, which bars thé use of RPA as a startiné representafion.
The negativé side of the TD is the somewhat poorer separation of the coilective

,brénch, but little is‘lésélby?pot‘kéeping the'soécalledibackward;going graphs
(those associated with ZQO-COéfficients in (2.4)), sinée they are tréafed to-
gefhéf witﬁ.and on the same footing as‘the anharmoﬁic terms;

. We have now seen that even in the case of a single.closed shell
nugleus the anharmonicitieé play an‘important.¥§le. What happéhs when we go
away from the closed.shell. |

By siudying ll6Sn we have found valués of the pairing.and quadrupole
‘fofq;‘st;engths,'which roughly reproduces the lowlying part of fhe expefimental
energy sﬁectrum. Aséumiﬁg nov a sm&oth‘A;deﬁéndence_of the force strengths
(efr. IV), the nuélei'in fhe neighbourhood of the closed shell can bevin—
vestigated without introducing neﬁ parameters. Doing tﬂis we find that RPA
breaks down already.a.few‘steps from the closed shell. Thus n§ RPA solution

(2)

exist for “2°Te and lthd is just about unstable under H'<’. 1In the region

lsOSm.*)v The set-on of

- of Sm, we find RPA stability for luBSm, but not for
RPA instability occurs sooner than in the calculations Qf'Kisslingervand
Soreﬁsené) which is evident from the fact that our quadrupole strength X
1.Still all of the ﬁuclei mentioned here are deformed using the criterion of

evaluating the sign of the potential energy derivative at Q=0 (cf. IV). For

the nuclei having RPA solutions, however, the magnitude of the zero point

frequency exceédsvtha% of the énergy gained by deformation.

i
H
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is always‘larger.than theirs srnce ours has lo giVe correct magnitudes . of
energies with the anharmonicities included, Thereas they try to reproduce the
energy of the first 2+ state w1th the second order RPA itself. As fig. 1
shows,‘the second order RPA energy is too lo?j asquite general feature.
Although the considerations in this section has 1ead-as to using TD as starting
‘representation in the caiculations presented in IV,vone'should mention, that
there is a way to circumvent the H(g) einstability and use RPA'or NMi. This
cons1sts in varying the parameters ‘jg of the basic hoson expansion
(eventually dropplng the state dependence of yo in order to get only one
parameter). As shown in IT the variation of yo corresponds to canonical
transformations in the boson‘space and hence does not change the Spectrum of an
untruncated Hamlltonlan, but 1t can very weli change the relative 1mportance of
: ( ) "and the remaining part of H, so that the second order RPA is real for

- a glven non-zero value of yo.v Fig. 2 -shows some coeff1c1ents of the lggTe
Hamlltonlan, u51ng the iterative ‘procedure NMi startlng from RPA, as function
of yo. Not only the coefficients of the boson Hamiltonian change rapldly with
yo, but also the spectrum does. This is due to the fourthvorder truncation of
H, 'ﬁhich gets poorer and poorer for increasing yo,' since'the H(e)' part
contains less and 1ess correlations as yo increases, and the actualncorrelations
then are pushed to still higher and hlgher terms in H. 'This is also clear.from.
the physical 1nterpretat}on of yo given 1n.II. The 31ngle parameter 'y

can only compensate for the wrong counting of particle number implied by using

a bad representation and truncating H at low boson number} The detailed

physical effects lost by the truncation would require a large number of parameters
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-7‘yg, whlch is. equlvalent to retalnlng the correlatlon by shlftlng the truncatlon
v‘:p01nt upwards, but even less attract1ve*w1th respect to the computatlonal
- work pequlred Wlth the TD representatlon the best ch01ce 1n most cases ,-‘

is 590 = 0;. We can check thls by calculatlng the average partlcle number in’

“'the flnal elgenstate, and for TD thlS came closest to the actual partlcle
122 -
'jnumber for yo O 1n all cosec cons1dered except Te, where ‘the best value a

- ';O ' : '
was _y = 0. 05 The advantage of working W1th small Values of yo, once,more

-favours the TD boson representatlon.l ;5.

.
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3. »§eparation‘of Kinetic andbPotentiél Energy
In order to.relate:our treatment of a phase tranSition’bj the boson

method to the conventional,waysiof estimating the equilibrium shapes of
nuclei by evaluating the potential‘energy as function.of defornation‘we shall
express our boeon Hamiltonien in terms of the»actual shape of the system.
_Thie offers a new way of finding the eigenstates,'once the boson expansions
are hnown (u51ng the method of Kumar and Barangerlh)),‘or it allows from
the solution in terms of the boson basis a construction of the kinetic and "
potential energy | |

- In exact analogy to the treatment in I of the electric: quadrupole-:
operator the_mass quadrupole-operator is carried through the successive

F)y

set of transformetions, from the real'pérticle space
Q.. = '1/2 Z( i Ilj )(a a. ) PO .’ ' -~ (3.1)
2M 24 . :

to the quasiparticle.representation (corresponding to the pairing interaction

. _ . —
alone), then to the basic boson variables (ba’ ba) and finally to the normal

, o + : . e e s s s
mode bosons .(cn,rcn), where again a division is made between terms containing

oo . . . ' . .
'In;pépers III and IV we consistently measure all lengths in units of the
oscillator psrameter b = (j%;‘)l/z-
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only the collective branch,T)

o =%t +2),

om ™ o * Qel(cfc E:: Q3l((c ¢ ) c +c ( ) )2M +'{,,

(3.2)°

: ; ‘ . :
and terms involving non-collective operators _(cn, cn),lwhich are dropped. Q
is a Hermittean operator, and in order to invert the relation (3.2) we need

its conjugate momenfum P, which is easily fouhd in the boson space

+ +

| i+ = i ==
P, === (¢ =¢)lag t 7 (c'c = cClno, +
M quo M hq20 ‘ oM
E: ((cc ) c—c+GE)) ... ‘ ' (3.3)
J q31 | |
. using the time reversal properties
=1 2+M
: -1 o+ . . I '
TPy T s o()2 Poy - | (3.
and the'conjugateness
[Q2M’ PQM] =i ) . . C (3.5)

For simplicity we have only written terms down which are non-zero when the
' ) . . . + + + + +
TD representation is-employed. With RPA or NMi also cc,cc 3 ees

~will appear.
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which relates the coefficients of (3.3) to those of (3.2),'qlO = Qlog ete.
However, we are going to justify the use of a first order inversion

of the equations. (3.2) and (3.3),

-iquM 3 (3.6)
‘ . RS K : , ‘ L

where q. would equal Q if higher order terms are completely_neglected,

but where a slightly different g may-repreSent the influence of the higher

.ordér]termé in an averdge fashion. In this way certain”higher order terms
o +

in thi . .

in the exp§n51on of c2M.

e.g. Q'Q and P-P, whereas.terms like (P.P)§ and (Q:Q)qQ are replaced

in terms of P and gf are inevitably neglectéd,

by (E:E_Xg and - (Q-Q)Q . We allOW‘Qprselveé this_simplified but very
convenient form of the inverted relation (3.6) only because of the existence
of the results'offthe boson diagonalizations which allows us to:check the

-Validity of theuapproximatibn, é.gﬁ‘by'calculating the'ratio
+ - ’ o : ' | o
(QEX,K(C + C)ZX D _ : (3.7)

by taking expectation values in the known eigenstates after the cbefficients

. of (3;2) have been calculsated alqng With'the_boson calculation.“ If'thevratio

(3.7) equals a constant q independent of which state is used, the relation

(3.6) follows immediately. Table 4 gives the value of the expression (3.7) for several
| 116, | | |

elgenstates 1nv'5 Sm and Sn. It is in fact rather constant at least for

the lower eigenstates, and a second check is obtained by looking'at(the actual

coefficients -of the expansion (3.2), which reveals a remarkable concentration

on the leading or&er term as can be seen in table 5. This feature we found
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ally, namely that the boson expanéion of the quadrupole moment

converges much more rapidlyvthan that of the Hamiltonian.

The

relation (3.6) can be inserted into (2.14) whereby we obtain

1= 0%+ 0% (pr) + 07%qa), + 072(PRQ), + 07%(a80), + o (PP)(PP),

where again

) e UERaR),)y + (@), (PR),)0) + 0" @R g(ar)y G

"

00 - 0y _ /5721 __27_Wl+o v 2 wge s Z Ewie ,
| J
p22=q2(-2w20+221+\/—5_'gl-g- Z Swgl___g Z 3wl;2),
s : \/5 - J
20 L 1 (520, p21 o wgl +,g. Z gwgl_ i Z J'Wgz) ,
4 V55 V5
0*% = o370 + WY |
0 1 |
0?0 = = 0 + P, (3.9)
Wk, o Z T,k o by,
b =29 (w 4+ L, 3 (Wj vy ))‘:
J
ke 3 ko, Z TP L TR PO
bp =-sv * R DA
, = _
In p H # indicates the power of P's and X is p plus the powerrof Q's..
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ko1, 1o Tk

3. = (;2J+.]_.)l/ 2 .

The principal axes of the quadrupole moment tensor define an intrinsic

coordinate system rotated by the angles & from the laboratory frame

M " Zﬂ'v@(w) &y . | o '_ (3.10)

In the intrinsic frame we use the conventional parametrization)

Qg =QcosY , Q=@ = = Qsiny, . . (3.11)
©1=%, =0

By ﬁhese.definitions, the potential energy part of the Hamiltonian (3.8)#

It

¥

defined as all terms which do not depend on the momentum P, can be.expressed
| 00 1 20 2 [“' .1 ko k | |
V=p" + 5 Q cos 3 vy +. 5P Q. (3.12)

The remaining kineﬁic energy comprises terms in‘(3.8).characterized by coefficients
22 2 Ll L

p , 05 s P and pJgﬁ It depends on P as- well as on Q and is in

general hlghly anharmonlc, 1nvolv1ng even the fourth power P, which is always

neglected in the adiabatic approach 9510, 15) aiming at‘the low-lylng ex-

citations of well-deformed nuelei.
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In table 6 we give .the coefficients of (3.8) fof,llésn and 22

Sm, two
nuclei believed to be of different equilibriuﬁ shape. In order to estimate
the,rélaﬁive'importancé of eaéh term in C3.8) we havevomittéd'thé écaie
factors involved in the definition of E_ and Q, thus quoting,apbrokimately‘
'ﬁhezéxpeCtation value:of each iﬁdividual’tefmiin (3.8). Thevééale factor

Q ;arising from (3.6) is in the figures'shéwn here (and in IV) fixed at tﬁéA
Valﬁe of the ratio (3.7) taken'for'theffirsﬁ excited 2+ state. It is seen
.that 'phh/qh is extremely sméll, meaniﬁg thaf the adisbatic approach pre-
Asumably,would be allowe& in'these cases;' Thé negati#e’sigh‘of p20 means
that. the éystem ié'not‘stablé at zero défdrmation.T) A;ldeforﬁation increaseé,A
the.fourth ofder ferms‘soon faisé in magnitude and assures stabiiity; We refér

152

“to figs..16.and 5 of IV for the 116Sn and ~7 " Sm equipotential surfaces of the

potentigl. V calculated from (3.12). Despite an oblate.minimum 1168n is seen

to be rather spherical, as its spectrum also reveals (cfr. IV). 1528m on the

. other‘hand is strongly deformed,>of prolate shape. .It_should be mehtionéd that
 the7fourth‘order.boson expansions can not.desbribé'systems with aéyﬁmetricv
equilibria;gfor which up to sixth order terms are required. The radial

séalg Q defined by'(3.li) is a unit of intriﬁsic quadrupole mément. In
~addition another écale, aenoted B, is iﬁdicafed on the figures in IV, gifing
thehmoré conventional deformatiqn_parametér defined by Bohr and Mottelsonll).

This and that. of Nilssonlg) are related to ours by the approximate reiations
o~ [ (3)1/3 ,4/3 (SGN 15 (3y1/3 W3, T
T (2) At % _(2) A | B . | (3.13)

(2)

F ' : e
However H is ‘stable, so this example illustrates the discussion in
séction 2.2 concerning definitions of phase transition.

'
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A widely used method of determinihg equilibrium deformations (see

9

e;g; refs. —10)) uses.the requirement of sélf—consisténcy, that the deformatién
of the system must equal that of d propérty détermined avéragé of thé'interv
action assumed. Using ﬁhe quadrupole force .there will be s singlé valué 6f thé
quadrupole force strength X> for which the déformation éf the avérage field
equa;sbthat of the wavé—function.With which it was caléulated; ‘When the kinétic
eneréy gontaihs anharﬁonicities as we'héfe ;eén'it'generally does; there is;
howeVer, no reason to.expect suéh selfcdnsistency. This means that'the system
may ﬁot prefer t6 be close'to the shape of the potential enefgy minimum, because
of details.in thé kinetic énergy.' Our model in principle mékés it possible to
investigaté‘how'close the‘system-is_to sélfépﬁéiStency.' From.the'calculatedv
expéctgtion}values of the mass Quadrupole operatdr{in low lying,states;

e.g.tin the fifst 2+ stéte,.§ne:mayyeXtréct a value'ofvthe.intrinsicvqpadrupole

moment by the. relation

(21M=QIVQ20|21M=2 ) (3.14)

2, o
- T(Qéo_>intr. >

valid if the wave-function has the product form |22 )= Y o(w)[intr. > . The

2
116 152

masé quadrupole moments: of the first 2+ state for Sn and *” Sm are 1592

and -9.k4, and thefintrinsic ones thus -6.72 and 3é.9, compared tovthe minimima,
of the potential energy functiéns shown in IV which are ~17.0 and 57.0,
respectiveiy. It should be remarked;4that the rafio ofvﬁave;function and
‘potential deformations is independehf of thé effecfive mass used, since it
enters as é.scalé factor both ohv Q26 aﬁd on the unit g used in thé

expansion (3.8) of H. On the other hand the relation (3.14) is noﬁ
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likely to be even approximately fulfilled for 116

152

Sn, but maybe for a rather
well-deformed nucleus as Sm. One might have anticipated‘that self-
consistency is not fulfilled for 116Sn, alréédy bY looking at the aétual

152

. . . : | . )
potential and kinetic energies. TFor Sm a large part of the deviation from

'selfconsistehcy is probably caused by inaccuracy in the boson calculation.
This is éstimaﬁed from the fact that both the energy of the first 2+ state
and,fhe transition from this state to:the ground state are wronglby roughly
a facﬁor of two (Cfr..IV). FWe blame this on the structure of the collective
boson; which. i) is.th;t of a spherical TD qalCulation which méy ﬁot‘represent
the_cbllecfive effects necessary at lérge deformation and ii) is built from
only;one major érotbn and one major ﬁéutron shell, presumebly being again
not a fair repfeéentation 6f the collective branch. The éniargement of
the'§onfiéuration space is no serious problem, but for thefobjéctioh. i),
Awhiéh means that the non-collective TD branchgs_wiil admix strongly with thé
:coliéctive,one for a well;déformed nucleus, we see no pfa&fical way forth’

' except starting from a deformed basis.
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.h._ Conclusion

'.‘We have tried in this papér to»exhibit somé of the impprtant"fgatures:v
of‘fhe boson method, emphasiziﬁg in'particular its relation to other méthods‘
and, to conventiohal conéepts, pointiﬁg éut the posgibility of‘obtainihg
independent clarification on- the conceéts of phase transition:and spherical
stability, ahdvfiﬁally to cheékAassumptions like édiabaticity‘and seiff
cbnsiétency; which.of coﬁrée could not be discussed within the methods using.
fhese approximations. Doing S0 one_éhould of coﬁfsé nét forget the épﬁroxi—
vmatioﬁs and liﬁitations'pfesent in the boson method, in pafticular the.question
of the validity of thé so~called collectivity apprbximation, which | |
is the‘fundamentél'point barring.thévmethod from brovidiné
accurgtekéuanfitativerresuits'When treafing nuélei with ah.equilibrium shape
veryfdiffereﬁt from fhat of the.rebresentafion in which the‘structure 6f fhe
collective boson is deterﬁined. | .

>'Most of the-numeriqal calculations wére pefformed at the GIER combuter
bcentég of the Niels‘BohrvInsﬁitute and on the NEUdC fahiliﬁies in Copenhégen,
Nﬁmefbﬁé diécussions-with Professors A. Bohf, B. Mottelson and Drs. K. Kumar'

anq T. Udagawa are highly_appreciated.
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_Table‘Captioné ,
Table 1. Diagonalization of a model boson Hamiltonian with one parameter,

: 220, starting from variéusfrepqesenfations. Besides the”coefficients

N

of the boSon:éxpanded Hamiltonian-and the 6 lowest eigenﬁalues some

characteristic components of the Wavé¥functibn of the second excited

* level are given. o
: |

‘Table 2. Diagonalization of the model Hamiltonian (2.10) with (z°0, z°%,

" : ' . : - 1 S
“2') = (0.95, 1.0, 0.2) for two values of 'whl._ For v = 0.211 the

|
'exact_NM equations do not have a solution and NMi's are divergent. A
look at theiTD wave-function for the staté E2 seems to,indicate more.

l o
hl ﬁ-0.199, a very peculiar

accuraéy than theﬂcofrespondinngne'fof W
value for which RPA'happens to be extremely good and at the same time
Tb pooper_than 6fdinarily. | |
Table 37 Jli6Sn Wifh paifing plus quadrupoie erce;. 6nly;5 ﬁeUtrén levels
4 . were ihéluded; The coiresﬁonaing épectréiére shéwnvin fig.‘i.' Here
‘coefficients of the boson Hamiltonian are given and éomponeﬁts of the
ngejfunction of the second 2+ state from the 4th order calculation.v
' The indices on ¢ give‘boson number aﬁq ah élphabetic iabel if there are
more thgn one basis state of a giveﬁ boson number.
vTable L.  Test of state independence of the upit q of quadrupoie mqment
defined by eq; (3.7). ' The parameters fdr this and the following
fiéures are‘identiéal tévthose used for the céléuiatidn in IV_(ﬁable.2
of réf. 4), and in the ééée of ll6Sn thus different from those of table

-3 and fig. 1, where only neutrons were considered.



:Table 5. Coefficients 6f the TD. boson éxpanéion of the mass qqadrupole

operator, eq (3 2) THe'éffectiVe mass ‘m enterlng 1nto (3 1) ié"
l 5 for Sn and 2. 12 for Sm All coeff1c1ents are in unlts of b

Table 6 Magnltudes of the dlfferent terms 1n an expan51on of the Hamlltonlanf

_fd? 116Sn and-lszsm 1n terms of P and Q_ (bfr. eq (3 8))
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Téﬁle la
2%% = 0.8
NMO(REA) o CNMi exact S D

el o | 0.11

s -0.577h -0.4568 - -0.4161 0

Woo‘ ~0.27 . -0.31 -0.32 0
w2 -0.37 -0.08 0 0.8

21 ‘ - : ”

LA 1.87 1.55 1.b9 2.0 -
w0 007 10.03 0.02 o
W ~0.43 0.27 -0.22 0.1
W2 0.80 0.58 0.52 0.k
By ~0.3174 ~0.317Y -0.317h -0.317h
E, 1.1257 “1.1257 11257 - 1.1257
E, 3.b175 3.175 3.0175 3.1175
kN AR C6.ML4T 6. 44T 6.4L4T
B, 10.1982 10.1982 10.1982 10.1982
Eg 1h.6742 | 1L.6740 1k.67h0 1L.67k0
¢6(E2) -0.0913 -0.0205 0.0052 0.2787
¢, o 0.9006 0.9659 0.9806 © 0.8418
o £ 0.1379 0.0507 - 0.0286 1 0.1659
kpié 0,0034 0.0001 0.0000 ~;o,0061
18 £0.0000 10.0000 ~ 0.0000 '~ 0.0002
(9N 0. - -0.0000 - 0

.0000 .
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Table 1b

229 = 0,95

MMO(RPA) © © MMi N D
: _ . . exact

) g o T o

s ' ~1.0bgk _ -0.3032 s '-0.5238"' ’,' 0

w20  : v'.o.éb" o | -0.39' - . ‘-b.hf o o0
-2.18 o039 o f; 1 0.95 -
W'l - ' “5.0L4 - v'.' o 1.2k -‘1;35,‘ o 2.0
o 0.k 0.00. 0.05 0
-1.95 . -0 ~ -0.35 : 0.1

vt 303 S o2 069 0.2

B, -odaTh o -odTrh oqTe o -0.TTh
B | 0.7650 Co.76k9  0.Th9 . 0.76k
B, o '2.§6§dv * 2.§688 o 2:9688‘ s | '2,9688
B, 5923 . s.0d o s.0M . 5.908
..Eh o . 9.7151 o 9.570k . 9.5704 ” ‘f" 9.570k
E | o 14.9623 ;vf‘ | i3.966h 7 13.9608 - 13.960k

o (E,) 70;2}55, o ~ 0.1602 o 0.0183 - -_ ~0.3503
¢, - ol589%.' . 0.98%0° . 0.9623 - 0.7Tk0
"¢6‘ ”f‘;‘ - o.ﬁléz | —o.oosﬁ" | ,0,0501' ) . 0.2131 ;
K " o.09m 0.0000 -0.0007 = =0.0108
0.0148 0.0000  ©  0.0000 - 0.000k

¢y 0.0009 ~ 0.0000 0.0000 0.0000
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“Table lc
20 = 0.999

NMO(RPA) « NMi M TD

- ~exact
e, im 0.40
s -3.2685 -2.5612 -0.5611 0
w0 68.66 25.59 ~0.53 -0
Wl ~14k.34 -56.12 o 0.999
‘we; ) 288.95 112.54 11.30 2.0
w0 k.ol 19.89 0.06 0
Wt -99.95 -39.77 —0.h1 0.1
e 150.03 59.76 0.76 0.2
B, -0.1613 -0.4906 -0.5412 -0.5412
B 6.063k 2.0337" 0.6288 - 0.6288
E, 126.2355 _ 1o.0h1;, 2.8083 2.8083
E, 83.0105 32.3100 - 5.713k4 5.7134
B, 177.7791  69.817h 9.3506 9.3506
E5 1383.9658 151.2519 13.7125 13.7125.
¢ (E,) -0.5020 . ~0.47h9 £ 0.0258 0.3761
%, 0.0676 0.0959 0.9548 0.THTT
¥ 10.3759 0.3900 0.0590 0.2291
15 0.3172 0.3143 ~0.0012 -0.0129 -
®18. 0.1348 ~0.1306 .-0.0001_,V,;ﬂ 0.0005
$ o, 0.01k5 0.0139 10.0000
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 Table 1d

20 = 1.2 L 220 = 2.0
exact:‘ ™ o ‘ MM xact : ™

5 ~0.7200 ' o 19200 0

w0 0.8k 0 -3.2 0
w0 0 1.2 . 0 2.0
vt 1.13 | - 2.0 0.78 - = 2.0
w0 0.13 o . o8T o
St -0.72 | 01 -3.66 0.1
W2 121 o2 5.60. o
E, -0,8850  * ~0.8850 © -~ -5.3498 . . -5.3505
E : -O'.039l o ~-0.0391 - ‘_..'5,31"(.9 : ..5',3_238'
E, 2.0857 . 2.0857 -0.9556 -0.9590
B, h.8sST 48557 C0.3778 . 0.3386
E, -8.37131 83737 3.5439 . B 3.h763
E,  12.6196  12.6195 7.2779 7.1631
¢ o(E,) 0.0839 - 0.4980 0.597T 0.8322
¢, '_Of9i85 . 0.6121 ' 0.7070 o -0.2822
<p6 -0.0991 C 0.2032 ©0.03TT . 0.2637
¢ -0.0062" 0.0249  -0.1031 . -0.1400
¢.g ~0.0006 5~_ | 0.0013  ~ -0.0235 £ 0.0228
¢, 0.0000 .~ 0.0000 -0.0007 -0.0018

-
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 Table 2a
2" = 0.199
o) w ™
) i3 ~0.30
s . -1.0k9k | 2.7607  -2.87h5 0
woo -0.7921 C-1.1713 . -1.1739 0
wel . 0.2394 - 0.0653 0 ©0.95
wor 0.1526 . 0.1477 0.2724 2.0
w“? -0.0438 - 0.0817 . 0.1034" 0.
it . -0.01kk - -0.5265  -0.6131 0.199
W ; 0.1369  0.8003 . . 1.0202 0.4
E, -1.2905  -1.2903 . -1.2902 -0.881k
| E, -1.2577 o - ;}.2578 | V.-1;2577 | -0.5986
E, -0.5225 . -0.5200 =-0.5191 ~0.2100
Ey . 0.063% 0.1116 . 0.1259 1.5023
'Eu‘ 0.997 1.1436 : 1,2019 . 3.1309
ES 1.9908 | C2.1820 2.9600 5.5710
¢6(E2) _0;7980 , 1 0.3758 , 0.3550 0.6688
¢, 0.4h28 | 0.7693 '   0.7510  : 0.1045
dg 0.2230 - of2286 R Q,eshg' " 0.3376
15 - -0.0k27 | . 0.0487 | 0.0560 ~0.2463
$1g 0.0075 © o.o1h . 0.0163 ©0.1297
S ~+ =0.0011 - b,ooeo ~ 0.0022 -0.02kh
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Table 2b
2 = 0211
NMO(RPA) - TD
s _l.okok J
400 ~0.9128 o
W 0-5330 | 0.95
Wt -0.4394 . 2.00
who —5.1023 ' ' HO
W 0,2i98 | _o.éll
P -0.2138 B 0.k
B -331.3 .. -2.79k1
'El -301.8 | _ -2.L484k9
E, -182.0  -0.5675
.E3 -162.k - . 0.3h22
.Eh -99.2 f }'i.6h5§ |
Es -86.2 3.9748
¢o(E,) 0.0000 ~ 0.8805 =
%, 0.0001 - ~0.3719. .
P © 0.0058 . | ~0.0529
¢, ~0.2138 ~0.0977
¢ 0.4833 0.0920
b, 0.k280 -0.0237
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rI;abl'e 3 »
NMO(RPA) IVNer }f M3 TD
e(i? - o . -0.27 -0,27;-0,1,-Q.b6
- , - _ . !  ) |
/.j{:{s(ij)}g 0.k27 0.233 | 0.334 o
1. | ; .

20" 1.67 ~0.39 -0.03 ~0.75
vl 2.80 | 1.50 |  1.13 fi.17
.w30v 0.13. ;o,oﬁ | o;oh b
W 0.38. 0.08 L 0.06 -0.06
0 "  1.20 - '0.16 , -0.13 0
wg? R " 0.62 -0.12 | : 6.ho‘
wgli 1% - 0.69 0.7k 0.02
'wtivi‘ | 1.82 0.77 0.41 0.22
wgz o : 1.73 0.8k 0.27 . 0.29

i wgg o 0.89 - 0.30 -0.03 0.2

w? 1.29 0.50 0.06 0.31
¢sK2§)‘ 3 - 0.073 0.028. -0.017  - 'V%O.Oél"
¢:A-_. . o0.887 0.975 —0;896 | =Qo.99§'
¢4 | -0.036 ' 0.008 - 0.016 0.008
Yhe 0. k2 ~0.226 - 0.382 ' 0.036
Dpp o - -o.oozl-' ~0.001 ~0.001 " 0.000

b, "‘ " 0.007 0.000 ~0.008 ' QQQOO |
di55 . ~0.019 ~0.022 10{0717 | 110.001

(continued)
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. Table 3 Continued .

- NMO(RPA)

M3

.Tbm

: }6,%Q2_“
- 000 -
':"-o:ooé'
1?}61?:;

0.000 "

. 0.031
.0.000
’ 301001'2i 

. 0.009

- 0.000

vﬁ'-éieliléﬁ
f;p,ééil
: ;0;695 :  

0.000

; ffo.ddﬁ;"
- 1¢“o;ooo :

o0
f‘o?09Q1” 

7 0:000
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Table 6

116, o 152

Sn Sm

a | . 5.306 | o ‘_8’§7ff

o 'o.gyz"‘ |  -0.163
0%2/q% o6 |  ae80
12 020 Co3ase -2.389
2032/q. _" | ~0.578 : 1.368
8> 0 - -0.580 ,” o 1.367
pHhygt o  o.os2 | 0.042

hpgz o | 1.3k2 0.6l
hph2'  S o820 - 0.380
upﬂgf‘ | 1612 0.780
16q§spho _’ - 0.128 D - 0.608
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 Fig;jl. »COmpéfiSonloffspectra'for-; ’Sn obtained by diagon&liZingjbOSOn

- Heamiltonians, trurcated at second or fourth order, for various choices

- - .of normal mode representation. ‘The original fermion Hamiltonian was

‘thé-séme.in ail casés,f Oﬁly_Siheufron shéils were inéluded coffeSponding'

© exactly to table 3. : =
- e 100

- Figafé;f;Seléctedvédefficientsvof‘bosén ﬁami1£0niaﬁﬂfor Té;  Thé RRAY
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report.

As used in the above, "person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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