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ARTICLE

Prognostic neuroimaging biomarkers of trauma-related
psychopathology: resting-state fMRI shortly after trauma
predicts future PTSD and depression symptoms in the
AURORA study
Nathaniel G. Harnett 1,2, Sanne J. H. van Rooij 3, Timothy D. Ely3, Lauren A. M. Lebois 1,2, Vishnu P. Murty4, Tanja Jovanovic 5,
Sarah B. Hill1, Nathalie M. Dumornay1, Julia B. Merker1, Steve E. Bruce6, Stacey L. House7, Francesca L. Beaudoin8, Xinming An9,
Donglin Zeng10, Thomas C. Neylan11, Gari D. Clifford12,13, Sarah D. Linnstaedt 9, Laura T. Germine14, Kenneth A. Bollen15,
Scott L. Rauch16, Christopher Lewandowski 17, Phyllis L. Hendry18, Sophia Sheikh 18, Alan B. Storrow19, Paul I. Musey Jr.20,
John P. Haran21, Christopher W. Jones22, Brittany E. Punches 23, Robert A. Swor24, Meghan E. McGrath25, Jose L. Pascual26,27,
Mark J. Seamon28, Kamran Mohiuddin29, Anna M. Chang30, Claire Pearson31, David A. Peak32, Robert M. Domeier33, Niels K. Rathlev34,
Leon D. Sanchez35,36, Robert H. Pietrzak37,38, Jutta Joormann39, Deanna M. Barch 40, Diego A. Pizzagalli 1,2, John F. Sheridan 41,42,
Steven E. Harte43,44, James M. Elliott45,46,47, Ronald C. Kessler 48, Karestan C. Koenen49, Samuel Mclean 9,50, Kerry J. Ressler1,2 and
Jennifer S. Stevens 3

Neurobiological markers of future susceptibility to posttraumatic stress disorder (PTSD) may facilitate identification of vulnerable
individuals in the early aftermath of trauma. Variability in resting-state networks (RSNs), patterns of intrinsic functional connectivity
across the brain, has previously been linked to PTSD, and may thus be informative of PTSD susceptibility. The present data are part
of an initial analysis from the AURORA study, a longitudinal, multisite study of adverse neuropsychiatric sequalae. Magnetic
resonance imaging (MRI) data from 109 recently (i.e., ~2 weeks) traumatized individuals were collected and PTSD and depression
symptoms were assessed at 3 months post trauma. We assessed commonly reported RSNs including the default mode network
(DMN), central executive network (CEN), and salience network (SN). We also identified a proposed arousal network (AN) composed
of a priori brain regions important for PTSD: the amygdala, hippocampus, mamillary bodies, midbrain, and pons. Primary analyses
assessed whether variability in functional connectivity at the 2-week imaging timepoint predicted 3-month PTSD symptom severity.
Left dorsolateral prefrontal cortex (DLPFC) to AN connectivity at 2 weeks post trauma was negatively related to 3-month PTSD
symptoms. Further, right inferior temporal gyrus (ITG) to DMN connectivity was positively related to 3-month PTSD symptoms. Both
DLPFC-AN and ITG-DMN connectivity also predicted depression symptoms at 3 months. Our results suggest that, following trauma
exposure, acutely assessed variability in RSN connectivity was associated with PTSD symptom severity approximately two and a half
months later. However, these patterns may reflect general susceptibility to posttraumatic dysfunction as the imaging patterns were
not linked to specific disorder symptoms, at least in the subacute/early chronic phase. The present data suggest that assessment of
RSNs in the early aftermath of trauma may be informative of susceptibility to posttraumatic dysfunction, with future work needed
to understand neural markers of long-term (e.g., 12 months post trauma) dysfunction. Furthermore, these findings are consistent
with neural models suggesting that decreased top-down cortico-limbic regulation and increased network-mediated fear
generalization may contribute to ongoing dysfunction in the aftermath of trauma.

Neuropsychopharmacology (2021) 46:1263–1271; https://doi.org/10.1038/s41386-020-00946-8

INTRODUCTION
Traumatic experiences are unfortunately common within the
United States with lifetime prevalence estimates ranging from ~60
to 90% [1, 2]. Trauma exposure can lead to acute and potentially
chronic dysfunction in the form of posttraumatic stress disorder
(PTSD) [3]. However, there is significant individual variability in
susceptibility to PTSD, such that not all trauma exposed
individuals will develop PTSD [4, 5]. Given the significant social,
emotional, and financial burdens endured by individuals with

PTSD, there is a pressing need for early biosignatures of PTSD
vulnerability. Such markers may both advance our understanding
of PTSD biology as well as guide predictive tools for identifying
susceptible individuals. Further, these findings may impact early
interventions and treatments to ultimately attenuate the risk and
debilitating consequences of the disorder.
Neuroimaging-based markers of PTSD susceptibility have begun

to emerge as a potential avenue for the expedited development
of novel early identification and intervention tools. Although many
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individuals self-report heightened stress symptoms in the acute
aftermath of trauma, a substantial proportion of traumatized
individuals do not go on to develop PTSD, such that self-reports in
the acute phase are not always predictive of future PTSD [6, 7].
Although neuroimaging cannot currently replace traditional
subjective markers of stress, quantifiable neural markers, such as
those identified with neuroimaging, may provide relevant
alternative information for identifying future PTSD risk when
assessed during the peritraumatic period. Furthermore, under-
standing neural markers of individual variation may provide
biological targets for stratification of heterogeneous symptom
variation, advancing both research and clinical approaches to the
clinical heterogeneity seen with PTSD [8].
Prior task-based functional magnetic resonance imaging (fMRI)

studies have observed that activity within the amygdala,
hippocampus, and prefrontal cortex (PFC)—when assessed
acutely following trauma—can be predictive of future PTSD.
These previous findings are consistent with the view that the
development of PTSD reflects disruptions in fear processing and
fear inhibition, which is supported by PFC—hippocampal—
amygdala circuitry [9–13]. Although task-based fMRI has been
used to probe cognitive processes potentially related to PTSD
susceptibility, resting-state (i.e., task independent) fMRI provides
another avenue towards quantifying neural markers of PTSD
susceptibility. Specifically, resting-state fMRI (rs-fMRI) allows for
the identification of resting-state networks (RSNs) which represent
spatial distributions of synchronized fluctuations in blood oxygen
level dependent fMRI responses over time. RSNs reflect spatial
patterns of temporal coherence in brain activity and can be
identified using standardized and well-validated procedures
[14, 15]. In contrast to task-based fMRI, rs-fMRI has several
advantages for clinical use given that it does not require external
stimuli or presentation equipment and does not have any task
demands on patients [16]. Given that trauma exposure may have
acute effects on cognitive and neural function during tasks [13], rs-
fMRI may have important benefits over task-based fMRI for
imaging PTSD susceptibility acutely after trauma. Therefore,
imaging of RSNs through rs-fMRI may be a useful tool for
generating neural signatures of PTSD susceptibility.
Growing research demonstrates that chronic PTSD is associated

with alterations in RSNs such as the default mode network (DMN),
salience network (SN), and central executive network (CEN, also
referred to as the frontoparietal control network) [17, 18]. The DMN
spans the ventromedial PFC, the inferior parietal lobe, the posterior
cingulate cortex, and the precuneus and is thought to reflect self-
referential or mind-wandering aspects of cognition [19–21]. The SN
spans the dorsal anterior cingulate cortex and the anterior insula,
and supports attentional processes toward biologically relevant
stimuli [22, 23]. Finally the CEN consists predominately of the
dorsolateral PFC (DLPFC) with notable extension to inferior parietal
lobule, and is thought to support high-level cognitive and
executive function [24]. PTSD is associated with disruptions across
all three of these functional networks (for review see [18]). For
example, individuals with PTSD show greater within-network
connectivity of the SN and treatment appears to reverse this
increase [25–27]. Notably, it is not entirely clear whether
associations between PTSD and the DMN, SN, and CEN are specific
to PTSD or reflect broader stress-related psychopathology.
Depression emerges equally often as PTSD after trauma, and the
two disorders are highly comorbid [28]. Similar to PTSD, depression
has been associated with alterations in functional connectivity of
important RSNs such as the DMN and SN [29], as well as alterations
in subcortical connectivity [30]. This raises the possibility that
neural correlates of PTSD susceptibility post-trauma may overlap
with correlates of depression susceptibility. Characterizing
disorder-specific or psychopathology-general circuits is critical for
a more complete understanding of the neurobiology of psychiatric
disorders. However, limited research to date has investigated how

these RSNs may be related to or predict susceptibility to either
PTSD or depression following trauma.
Notably, limited prior work has investigated RSNs in the early

aftermath (~2 weeks) of trauma to determine their subsequent
relationship with future PTSD symptoms. Previous research in
individuals scanned within 2–84 days after trauma has found that
variation in region-of-interest-based DMN connectivity with brain
regions such as the amygdala and medial PFC is predictive of later
PTSD [31–33]. The findings have been mixed such that some have
observed greater DMN and amygdala/mPFC coupling associated
with greater PTSD [31] while others have observed positive
coupling is associated with reduced PTSD [32, 33]. These previous
investigations utilized region of interest seeds and thus did not
model the entire spatial extent of the DMN or other RSNs which
may contribute to the mixed results. The lack of such investiga-
tions is a critical gap in our understanding of the neurobiology of
PTSD development and more work is needed to better under-
stand how variations in cognitive brain networks may play a role
in susceptibility to the disorder. Specifically, although initial
relevant evidence suggests that altered within-network connec-
tivity of the DMN, SN, and CEN is associated with early PTSD,
investigations assessing network-based susceptibility in the early
acute posttrauma period, and among a well-powered and
representative participant cohort, are needed.
It is therefore still an open question as to whether RSN

alterations occurring early after trauma exposure are predictive of
future PTSD development. Therefore, in the present study, we
investigated rs-fMRI markers of posttraumatic stress symptom
development. We hypothesized that RSN connectivity assessed
acutely (~2 weeks) post trauma would predict subsequent PTSD
symptom severity assessed at 3 months post trauma. Based on
prior findings in chronic PTSD, we predicted greater PTSD
symptom severity (at 3 months post trauma) would be associated
with decreased connectivity between top-down regulatory
regions (e.g., CEN and DMN). In addition to the cortical RSNs that
have predominated prior work, we predicted that functional
connectivity of subcortical regions, such as the amygdala and
hippocampus, may be important to PTSD susceptibility. The
amygdala and hippocampus are critical for fear learning and
expression processes and show dysfunctional activity [34–36] and
disrupted functional connectivity with regulatory regions in
individuals with PTSD [37–39]. We therefore predicted greater
connectivity among regions supporting threat-related attention
and responses (e.g., SN and subcortical regions), and less
connectivity between subcortical regions and CEN. Finally, we
anticipated that these relationships would be specific to PTSD
symptoms and the same relationship would not be observed with
depressive symptoms.

METHODS AND MATERIALS
Participants
Participants were recruited from emergency departments (EDs)
across the United States as part of the AURORA study, an ongoing
multisite longitudinal study of adverse neuropsychiatric sequalae
(U01 MH110925, [40]). For study inclusion, participants were
required to have experienced a traumatic event that brought
them to the ED. Participants were automatically qualified for study
enrollment if exposed to: motor vehicle collision, physical assault,
sexual assault, fall >10 feet, or mass casualty incidents. Other
trauma exposures were also qualifying if: (a) the individual
responded endorsed the exposure as involving actual or
threatened serious injury, sexual violence, or death, either by
direct exposure, witnessing, or learning about it and (b) the
assessing research assistant agreed that the exposure was a
plausible qualifying event. Participants with a moderate or severe
traumatic brain injury were not included in the present study. rs-
fMRI data from 161 participants were available. Eleven participants
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were excluded for MRI issues (one excluded for incomplete data,
one excluded due to falx calcification, and nine excluded due to
motion criteria described in the Supplementary Information). The
analysis focused on acute rs-fMRI data as predictive of future PTSD
symptoms. Thus, of the remaining 150 participants, a total of 109
participants who had complete 3-month PTSD assessments (the
furthest available timepoint) were retained. Participants were
recruited from twenty-two EDs within the Northeast, Southern,
mid-Atlantic, or Midwest region of the United States. Participants
completed MRI within ~2 weeks of recruitment (M= 17.91 days,
SD= 5.82 days) at Emory University, McLean Hospital, Temple
University, or Wayne State University. General exclusion criteria for
the study are detailed in a prior report [40]. Additional MRI
exclusion criteria included metal or ferromagnetic implants,
unwillingness to complete MRI, history of seizures or epilepsy,
history of Parkinson’s disease, dementia, or Alzheimer’s disease,
and/or current pregnancy. Participant demographic information is
presented in Table 1. Participants were largely admitted to the ED
for a motor vehicle collision (78%) and additional information is
available in the Supplementary Materials (Tables S1, S2). All
participants gave written informed consent as approved by each
study site’s Institutional Review Board.

Psychometric assessment
PTSD symptoms were assessed using the PTSD Symptom Checklist
for DSM-V (PCL-5). The PCL-5 is a 20 item self-report questionnaire
that assesses the presence and severity of various posttraumatic
stress symptoms [41]. Participants rated symptoms on a scale of 0
(not at all) to 4 (extremely) for the severity of each symptom.
Depression symptoms were assessed using the Patient-Reported
Outcomes Measurement Information System (PROMIS) Depression
instrument [42]. The PROMIS questionnaire (short form 8b) has
eight-items evaluating depressive symptom frequency scored
from 1 (never) to 5 (always). A raw total score was computed from
summing the individual items and then converted to a T-score.
Both the PCL-5 and the PROMIS were administered at ~2 weeks
(i.e., about the time of the MRI) and 3 months post trauma to
assess symptoms over the past 2 weeks and past 30 days
respectively. Further, although not the focus of the present report,
participants also provided medication usage at ~2 weeks post
trauma, as well as completed assessments of substance use
frequency in the past 2 weeks through the PhenX toolkit [43]
(Table S3).

Magnetic resonance imaging
Full details on image acquisition and processing are available in
the Supplementary Material. Briefly, rs-fMRI data (TR= 2.36 s, 230
volumes, 9:05 min scan time, eyes open) were acquired on four
separate Siemens 3-Tesla MRI systems using largely harmonized
scan sequences (Table S4) and were preprocessed using a
standardized pipeline via the FMRIPREP software package
(detailed in the Supplementary Material, sitewise quality control
metric comparisons detailed in Fig. S1). The processed rs-fMRI
data were included in a group-level independent components
analysis using FSL’s Multivariate Exploratory Linear Optimized
Decomposition into Independent Components (MELODIC) frame-
work to identify RSNs [44]. A total of 28 RSNs were automatically
estimated through MELODIC. Five RSNs including the DMN, SN,
both left (l) and right (r) CEN, and a network comprising a priori
subcortical regions of interest that spanned the amygdala,
hippocampus, mamillary bodies, midbrain, and pons—regions
thought to be critical to the pathology of PTSD—that we refer to
here as the “arousal network (AN)” were included in our analyses
(Fig. 1). Participant-specific RSN timeseries and associated RSN
spatial maps were obtained using dual regression [45, 46]. Briefly,
each group-level RSN spatial map was regressed into each
participant’s 4D dataset to obtain participant-specific RSN time-
series. The timeseries were then used as regressors in a general
linear model for each participants 4D dataset to derive
participant-specific spatial maps for each RSN. The participant-
level spatial maps describe the connectivity strength (as a
parameter estimate) between each voxel and the participant
RSN timeseries. The resultant voxelwise maps can be used to
investigate “network-to-node” connectivity patterns [46].
Between-network connectivity was indexed using z-transformed
Pearson correlation coefficients between each of the five a priori
networks (ten total pairs).

Statistical analyses
Statistical analyses were completed using IBM SPSS version 24
and the Analysis of Functional NeuroImages (AFNI) software
package [47]. Network-to-node connectivity analyses were con-
ducted using multiple linear regressions in AFNI’s 3dttest++ to
assess voxelwise functional connectivity for each a priori RSN as a
function of PCL-5 scores at 3 months post trauma (five models
total). Initial analyses focused on parsimonious models and only
included dummy-coded covariates to model site/scanner effects.
A gray matter mask that included subcortical areas was applied to
the data. Cluster-based thresholding implemented in 3dttest++
was used to correct for multiple comparisons. Specifically, we
completed permutation testing (10,000 permutations) from the

Table 1. Demographic information.

Variable Count (%)/mean (SD)

Sex

Male 33 (30%)

Female 76 (70%)

Age

Years 35.31 (12.97)

Race/ethnicity

Hispanic/Latin American 17 (16%)

White-American 34 (31%)

Black-American 53 (49%)

“Other” American 5 (4%)

Employment

Employed 69 (63%)

Retired 3 (3%)

Homemaker 3 (3%)

Student 5 (4%)

Unemployed/disabled/other 23 (21%)

No response 6 (6%)

Income

<$19,001 28 (25%)

$19,001–$35,000 29 (27%)

$35,001–$50,000 16 (15%)

$50,001–$75,000 11 (10%)

$75,001–$100,000 6 (6%)

>$100,000 11 (10%)

No response 8 (7%)

PCL-5 total scores

2 Weeks (n= 100) 28.71 (17.10)

3 Months (n= 109) 23.30 (16.83)

PROMIS depression scores

2 Weeks (n= 104) 54.18 (9.81)

3 Months (n= 109) 53.19 (10.88)

PCL-5 PTSD Symptom Checklist for DSM-V, PROMIS Patient-Reported
Outcomes Measurement Information System.
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residuals of each multiple linear regression to derive autocorrela-
tion function parameters and define the minimum cluster extent
at a cluster forming threshold of p= 0.001 (p= 0.005/5 compar-
isons) to maintain α= 0.05. Between-network connectivity was
included in multiple linear regressions with dummy-coded
covariates for scanner within SPSS (one model per connection).
Sensitivity analyses for significant associations were completed to
determine if these effects held after controlling for 2-week PCL-
5 scores, or 3-month PROMIS depression scores respectively using
both cluster-restricted and whole-brain analyses. Additional
analyses were completed to assess the sensitivity of the effects
and to examine if the observed effects also differed by subject
characteristics and are detailed in the Supplementary
Information.

RESULTS
Participant demographics and psychological characteristics
PCL-5 scores at 3 months were correlated with PCL-5 scores at
2 weeks (r= 0.62, p < 0.001), PROMIS depression scores at 2 weeks
(r= 0.80, p < 0.001), and PROMIS depression scores at 3 months
(r= 0.79, p < 0.001). These results suggest that posttraumatic
outcomes were highly comorbid in the relatively early post-
trauma stages.

Network-to-node connectivity and posttraumatic dysfunction
The AN and the DMN showed significant network-to-node
connectivity relationships with 3-month PCL-5 scores (Table 2).
Greater dorsolateral PFC (DLPFC) to AN connectivity was
associated with reduced PCL-5 scores (Fig. 2A). Further, inferior
temporal gyrus (ITG) to DMN connectivity was associated with

higher PCL-5 scores (Fig. 2B). We further assessed if the present
relationships were specific to PTSD symptoms or were also
predictive of later depression using the functional connectivity
values extracted from the significant clusters in the whole-brain
analysis. Both DLPFC-AN connectivity [t (104)=−3.99, β=−0.37,
p < 0.001] and ITG-DMN connectivity [t (104)= 3.75, β= 0.35, p <
0.001] significantly predicted PROMIS depression scores at
3 months post trauma.
Sensitivity analyses were completed to assess if the observed

relationships between RSN connectivity and 3-month PCL-5 scores
persisted when controlling for PCL-5 scores at 2 weeks or PROMIS
depression scores at 3 months (described in the Supplementary
Material). The cluster-restricted analyses (from the prior whole-
brain analyses) revealed that DLPFC-AN connectivity was asso-
ciated with 3-month PCL-5 scores when controlling for 2-week
symptoms, whereas ITG-DMN connectivity was not. Additionally,
ITG-DMN connectivity was associated with 3-month PCL-5 scores
when controlling for 3-month depression symptoms, but DLPFC-
AN connectivity was not. Exploratory whole-brain analyses that
controlled for 2-week PCL-5 symptoms revealed positive associa-
tions between AN connectivity to the postcentral and visual gyri
and 3-month PCL-5 symptoms (Table S5).

Between-network connectivity and posttraumatic stress
Multiple regression analyses were completed to assess the
relationship among between-network connectivity strengths (i.e.,
network to network connectivity) and PCL-5 scores. No significant
associations were observed. These results suggest that connectiv-
ity strengths between full networks are not reflective of
susceptibility to heightened PTSD symptoms at 3 months
posttrauma.

Fig. 1 Resting-state networks. Group-level independent components (IC) analysis was completed to identify resting-state networks (RSNs) of
interest. We identified components that reflect the default mode network (DMN), salience network (SN), left (l) and right (r) central executive
networks (CEN), and an arousal network (AN). The spatial maps for each IC/RSN are shown in the left panel (A) and resampled to 1mm3

resolution for visualization. The right panel (B) shows a 3D visualization of each IC/RSN.

Table 2. Network-to-node connectivity associated with 3-month posttraumatic stress severity.

Structure (Network) Hemisphere Z-statistic Volume Coordinates (MNI)

X Y Z

Inferior temporal gyrus
(Default mode network)

Right 4.69 k= 39 (312mm3) 47 −63 −9

Dorsolateral prefrontal cortex
(Arousal network)

Left −4.79 k= 30 (240mm3) −47 11 27

Location, Z-statistic, cluster extent (k) (23 mm grid spacing), volume, and Montreal Neurological Institute (MNI) coordinates of the peak voxel for clusters that
showed a significant (α= 0.05; corrected) relationship with 3-month PCL-5 (PTSD CheckList for DSM-V) scores.
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Participant-specific factors, connectivity, and posttraumatic stress
Consistent with recent calls to consider demographic differences
in the neural substrates of psychiatric disorders [48, 49], we
completed exploratory analyses to investigate if the observed
relationships varied between sex/gender, race/ethnicity, and site
(described in the Supplementary Information). However, we note
limited samples were available for some of the stratified analyses
and the sample was unbalanced with regards to gender (70%
women) and race/ethnicity (49% Black-American, 31% White-
American) which may impact these exploratory analyses (see
Table 1). We observed potential sex differences such that,
although ITG-DMN connectivity predicted PCL-5 scores in men
and women separately, DLPFC-AN connectivity did not predict
PTSD symptoms in men. Further, both DLPFC-AN and ITG-DMN
connectivity were generally predictive of PTSD symptoms across
racial groups (i.e., Hispanic-American, White-American, and Black-
American) assessed. Additionally, despite ~50% of participants
having reported hitting their head during the trauma, the DLPFC-
AN and ITG-DMN with 3-month PTSD associations were observed
in both potentially concussed versus non-concussed individuals.

DISCUSSION
Individual variability in PTSD susceptibility is a significant barrier to
enacting early treatment approaches for the disorder. Specifically,
it is difficult to predict which individuals are most likely to show
long-term dysfunction following trauma. Several clinical studies of
early interventions have proved unfruitful, partially due to such
variability [50–53]. Identification of neural markers associated with
variability in PTSD susceptibility may facilitate development of
predictive analytics to quickly identify at-risk individuals who
might benefit from intervention. Given the relative ease of data
acquisition and standardization in data processing, RSNs may be

well-suited to yield potential neural signatures of risk for PTSD. In
the current investigation of RSNs in recently traumatized
individuals, greater positive coupling of the right ITG to the
DMN, and of the left DLPFC to the AN, were predictive of later
PTSD symptom severity at 3 months post trauma. Contrary to our
hypotheses, these connectivity patterns were not specific to PTSD
and were also tied to posttraumatic depression symptom severity
which suggests that disruptions in functional connectivity may be
related to general posttraumatic dysfunction. The present findings
shed important new light on the neural basis of the development
of posttraumatic pathology and provide critical insight into the
utility RSNs for early assessment of PTSD susceptibility.
Our analyses revealed that positive coupling of the left DLPFC

to AN connectivity was associated with reduced PTSD/depression
symptoms at 3 months post trauma. These findings are consistent
with a recent prospective investigation showing DLPFC-amygdala
connectivity in the acute phase following trauma was tied to PTSD
symptoms [54]. The DLPFC is also a part of the CEN, and thus these
connectivity patterns may potentially reflect some variation in
between-network connectivity or communication. In the present
study, the AN was comprised of the amygdala, hippocampus, and
mamillary bodies, midbrain, and pons, which are regions
necessary for the acquisition, behavioral expression, and extinc-
tion of fear [55–58]. Importantly, the DLPFC is thought to support
cognitive-affective processes to aide in the top-down regulation of
the emotional response through functional connections with
regions of the AN [59, 60]. In fact, recent neuromodulation studies
have noted increased DLPFC activation and connectivity with the
amygdala following neurofeedback in individuals with PTSD [61].
Further, the DLPFC is a common site for neurostimulation studies
(i.e., transcranial magnetic stimulation) of depression [62] and may
be a promising candidate for anxiety and trauma-related disorder
treatment due to concurrent attenuation of amygdala activity

Fig. 2 Network-to-node connectivity of the default mode and arousal networks vary with 3-month posttraumatic stress severity.
A Multiple regression analyses revealed connectivity between the left dorsolateral prefrontal cortex (DLPFC; blue) and the arousal network
(AN; pink) varied inversely with 3-month PCL-5 scores. B Conversely, connectivity between the right inferior temporal gyrus (ITG; red) and the
default mode network (DMN; yellow) was positively related to PCL-5 scores assessed 3 months post trauma. Scatterplots are not inferential but
are included to illustrate the relationship between network-to-node connectivity and PCL-5 scores. Dots represent individual participant
scores for connectivity (average of the cluster) and PCL-5 total score. Solid red lines represent the linear line of best fit.
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following DLPFC stimulation [63–65]. Taken together with the
prior literature, the inverse relationship between DLPFC-AN
connectivity and PTSD severity may suggest that reductions in
PTSD symptoms after trauma are partially driven by top-down
regulation of the amygdala and arousal-related networks by the
DLPFC. Future translational work may be able to test whether
neuromodulation of left DLPFC—given its connections with
arousal-related regions—in the early aftermath of trauma may
promote resilience to outcomes such as PTSD or depression.
Importantly, our data show that lowered DLPFC-AN connectivity is
not associated with 2-week posttraumatic stress symptoms and
thus selecting “high risk” individuals for neuromodulatory inter-
ventions may benefit from concurrent assessments of neural
circuit features. Future work assessing the generalizability of these
connections across multiple samples and trauma types would be
beneficial for determining optimal targets for neuromodulation.
Our initial analyses revealed that right ITG to DMN connectivity

at 2 weeks post trauma was predictive of PTSD severity at
3 months post trauma, and the same connectivity pattern was also
predictive of 2-week PTSD severity (described in the supplement).
These data suggest that high ITG-DMN connectivity is predictive
of a persistent aspect of PTSD symptoms such that individuals
who have relatively high PTSD symptoms in the early phase after
trauma are likely to show high symptoms in the later stages of
trauma [6, 66]. The DMN is a highly replicable spatial pattern of
intrinsic functional connectivity between the ventromedial PFC,
posterior cingulate cortex, and inferior parietal lobule [15, 67, 68].
Each of these regions are implicated in important affective
processes such as fear learning [69], and the DMN itself is thought
to play a significant role in emotional memory and regulation
processes [70, 71]. Further, the ITG lays along the ventral visual
processing stream and may play a role in visual recognition and
memory processes (for review, see [72]). Some data suggests the
ITG may also be involved in envisioning future emotional events
[73]. One interpretation of the present findings is that greater ITG-
DMN connectivity in the early weeks after trauma exposure
supports formation, consolidation, and retrieval of emotional,
traumatic memories. The facilitation of trauma memory retrieval
may then contribute to the pattern of persistently high PTSD
symptoms, consistent with “overconsolidation” theories [74]. An
alternative possibility is that these patterns are contributing to
overgeneralization processes that are observed in individuals with
PTSD [75–77]. Prior work suggests ITG activity, as part of the
ventral visual stream, may reflect broad, high-level representations
of stimuli (e.g., “objects” or “scenes”) [78]. Recent findings indicate
fear overgeneralization may occur acutely following trauma
exposure [13] and greater neural activity within regions of the
DMN, AN, and ventral visual stream have been associated with
fear generalization in individuals with chronic PTSD [76, 79].
Future work is needed to further assess whether ITG to DMN
connectivity may be related to overconsolidation, overgeneraliza-
tion, or another disrupted cognitive process relevant to trauma.
Several limitations to the current study should be noted. We

note that the current results do not suggest neuroimaging
markers can replace typical assessments of psychiatric symptoms,
but instead that the findings illustrate that key brain networks
partially underlie variability in future expression of posttraumatic
symptoms. Relatedly, we further note that it is difficult to infer the
specific functions of the observed RSNs. Importantly, it remains
somewhat unclear whether the RSN patterns observed in the
present study develop early after the trauma or may be true pre-
trauma vulnerability factors. Without collection of pre-trauma
brain imaging data, although often difficult or infeasible, we
cannot state definitively if the present results could be used to
identify susceptibility to posttraumatic dysfunction in non-
traumatized groups. However, the potential of the present
findings to be a trait-like marker of PTSD susceptibility warrants

further investigation. Future work should seek to determine if
these RSN patterns may be trait markers for posttraumatic
dysfunction that may represent a signature of risk for develop-
ment of PTSD following trauma exposure. In addition, although
our results demonstrate the utility of RSNs for susceptibility, the
observed patterns are not specific to any one type of posttrau-
matic outcome (e.g., PTSD or depression). This may be due in part
to the high comorbidity of symptoms or shared neural substrates
of symptoms in the early aftermath of trauma (~3 months).
Further, identifying individuals with high comorbid symptoms
may be of great benefit as these individuals may be at the most
risk for long-term, chronic posttraumatic dysfunction. Never-
theless, the observed results cannot be said to be specific to a
disorder in and of itself, and instead represent general cognitive-
affective posttraumatic dysfunction. Finally, limited data for the
present analysis was available on RSN associations with later
chronic presentations (i.e., 12 months) of posttraumatic symp-
toms. It remains unclear if the observed associations between rs-
fMRI patterns and posttraumatic symptoms is constant in the
chronic phase, or if perhaps these findings diverge along different
types of posttraumatic symptoms. For example, ITG-DMN con-
nectivity may be associated with posttraumatic dysfunction in
general at 12 months while DLPFC-AN connectivity may only be
predictive of PTSD at 12 months. Future analyses of the growing
AURORA dataset will utilize data collected at later timepoints in
the chronic period to investigate these potential outcomes.
Further, future research may also consider utilizing longer rs-
fMRI sequences. Although ~10min of rs-fMRI data may be
sufficient to reliably measure functional connectivity [80, 81],
emerging research suggests longer scans (~60min) allow for more
reliable estimates of individual brain networks [82].
In conclusion, the present study investigated the relationship

between resting-state connectivity in the acute aftermath of
trauma and future PTSD symptoms. We found that DLPFC-AN and
ITG-DMN connectivity was related to future (i.e., 3-month) PTSD
symptom severity. Notably, these connectivity patterns were also
tied to 3-month depression symptoms. The present findings
suggest that resting-state connectivity, assessed in the early
aftermath of trauma, is related to later posttraumatic dysfunction.
Further, these data suggest rs-fMRI and assessment of RSNs may
provide for useful neural signatures of trauma and stress-related
dysfunction.
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