
UC Irvine
ICS Technical Reports

Title
Strategies for microarchitecture and logic optimization

Permalink
https://escholarship.org/uc/item/8w63q1f4

Authors
Zanden, Nels Vander
Gajski, Daniel

Publication Date
1988-01-29

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8w63q1f4
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Strategies For Microarchitecture and Logic Optimization

by

Nels Vander Zand en
D~niel Gajski

Information and Computer Science Department
University of California, Irvine

Irvine, CA. 92717

TR No. 88-04

January 29, 1988

Abstract: This report describes different strategies for
area, power, and time optimization for designs
on microarchitectural and logic levels as im
plemented in MILO system.

\',

TABLE OF CONTENTS

1. Optimization Strategies .. 1

1.1. Optimization Strategies for Time 2

1.1.1. Strategies for Interval Selection .. 3

1.1.2. Applying Techniques to Intervals ... 5

1.1.3. Rule Selection .. 6

1.2. Strategies for Area 7

1.2.1. Strategies for Interval Selection .. 8

1.2.2. Rule Selection .. 9

1.3. An Algorithm for Constraint Optimization 10

February 29, 1988 Page i

1. Optimization Strategies

Strategies apply intelligence to the optimization process, deciding which

techniques to use and when. A strategy is a plan that selects different

techniques to be applied depending upon the current state of optimization. One

can view the state of optimization through a graph, sur:h as that in Figure la.

On the x axis are paths that have been given time constraints. The y axis shows

time. A horizontal line drawn through the y-axis represents the "critical" point.

The distance a path is from this line is its slack (difference between actual and

required times). In constraint driven optimization we would ideally like to

produce the circuit represented in Figure lb. In this figure critical paths A and

B have had their delays brought down to the critical point (possibly at the

expense of area) and non-critical paths C, D, and E have been raised to the

critical point by trading off time for area and power. In this manner, timing

constraints are met by reducing critical paths and area/power constraints are

met by manipulating non-critical paths.

Time represents a local constraint while both area and power are global

constraints. Time constraints may be entered for each path while those for area

and power are entered for the entire design. Thus timing optimizations make

local improvements, only to selected paths. Area and power optimizations

improve the constraint for the entire design, having a global effect. Generally

February 29, 1988 Page 1

techniques that decrease area also decrease power and vise versa.

In the next two sections we examine strategies for time and area

optimization. Strategies are required to select: 1) what subsection of the design

to optimize, 2) what order to use the various optimization techniques, and 3)

what rule in a rule set to apply.

1.1. Optimization Strategies for Tirre

When time 1s the most important constraint to solve, all critical paths

should be made non-critical -- even if it means exceeding the area constraint.

One plan to do this is shown in Figure 2. A timing analyzer determines which

paths in the design are critical. The optimizer can then proceed to optimize on a

path by path basis. For example, one could choose the worst critical path -- the

one furthest from its constraints -- then select the next worst path, etc.

Alternatively, the optimizer can operate on multiple paths at the same time.

This can be done by finding a cover for all critical paths -- that is, finding a set

of intervals that cover all of the critical paths. This idea is illustrated in Figure

3. It shows one possible covering for four critical paths.

Once a path is chosen, the optimizer must decide where to optimize the

critical path. One can apply techniques over the entire path or choose a

subsection of the critical path to optimize.

February 29, 1988 Page 2

1.1.1. Strategies for Interval Selection

Optimizing along the entire critical path is the simplest strategy. It can

also be time consuming as rules/algorithms can be applied to any components

along the path. If the critical path is long, many different rules must be

examined to determine which to apply.

More complex strategies examine the topology of the critical path and

divide it into intervals. They look for sections of the critical path that offer

better optimization opportunities than others. For example, interval boundaries

can be drawn where one or more critical paths join or leave the path being

optimized as shown in Figure 4(a). In this manner, optimizations in different

intervals have effects on different critical paths. Thus the optimizer has greater

control as it can select various goals, then choose the interval that can best meet

them.

Four strategies for selecting an interval are shown in Figure 4. The first

strategy chooses the interval containing the most critical paths. By optimizing

along this interval, the most critical paths are reduced with a single

transformation. This is especially important when trading off area for time

improvements. The increase in area will usually be less from a single

transformation than from multiple ones.

February 29, 1988 Page 3

The second strategy, shown in Figure 4c, selects the interval closest to the

external inputs. This strategy hopes to reduce the most paths overall (both

critical and non-critical). Generally improvements made closer to an input

result in reductions for more paths than those made on points closer to external

outputs. Reductions in the delay of non-critical paths moves them even further

below the "critical" point shown in Figure 1. This allows more time-for-area

tradeoffs along these paths, producing a design with less area.

The third strategy, depicted in Figure 4d, selects the interval with the most

components. Such an interval will most likely contain more possible

transformations as well as a larger variety of possible transformations. Thus it

may be possible to use more techniques that either increase area only slightly for

time improvements or result in major time improvements.

The final strategy, displayed in Figure 4e, chooses the interval having the

longest delay. Since this interval represents the bottleneck of the critical path,

it is an ideal spot to use techniques that can result in significant improvements.

Such intervals may have been poorly designed and can be greatly improved.

Alternatively, a well-designed interval may be able to be speeded up through

logic duplication techniques.

The four strategies can be used m some combination. For example if

strategy 1 selects two intervals (both containing the same number of critical

February 29, 1988 Page 4

paths), strategy 2 can be used to break the deadlock.

Another method for interval selection is shown m Figure 5. With this

method, interval boundaries are set only when the path being optimized is split

or reconverges. Figure 5 shows two paths from IO to Fout. Both of them fail to

meet the timing constraint of 12ns. Intervals o, and d are the best intervals for

optimization. Any improvements along these subsections improve both IO

> Fout paths. However, only a time improvement of 1 can be made on interval b

without also improving interval c. For example, even if b is reduced to delay 2

the worst case delay from IO to Fout has been improved by only 1 unit. Interval

c is now the bottleneck. Hence a reduction in time between interval a and d

may require optimization on two paths.

1.1.2. Applying Techniques to Intervals

The optimization strategy must also decide how to apply its techniques to

intervals. This strategy may choose to operate in three different fashions. The

first would be to apply a technique to an interval, then select another interval

and apply the same technique. After all intervals have been examined, a new

technique can be selected. In this manner, a technique that trades off only a

small amount of area for time can be used throughout the critical path before a

technique with a .greater area cost is applied.

February 29, 1988 Page 5

An alternative method is to select an interval, then apply all techniques to

it before choosing a new interval. This method takes full ad vantage of those

intervals that provide "better" optimization opportunities. For example,

consider a single application of a large area-for-time tradeoff technique along an

interval containing many critical paths. It may result in less of an area increase

than a number of small area-for-time tradeoffs along other intervals.

The final method uses a combination of the the first two approaches. A

number of technique subsets can be created. With this arrangement, an interval

can be chosen and a subset of techniques applied. After all techniques in the

subset are exhausted, a new interval can be chosen. Finally, after all intervals

are examined, a new subset can be selected.

1.1.3. Rule Selection

For rule-based techniques a strategy must be selected to choose a single rule

from the set of rules that can be applied along an interval. While lookahead is

quite useful, it is also extremely time consuming. The use of effective rule

selection strategies can greatly reduce the need for lookahead. Four such

strategies are to select the rule: 1) with the most complex components, 2) with

the most components, 3) that replaces the pattern having longest delay, or 4)

with the highest gain.

February 29, 1988 Page 6

As there are fewer rules incorporating complex components, rules containing

such components should be applied first. Often improvements made with these

rules produce superior improvements than those rules involving less complex

components. The second rule selection strategy is of a similar philosophy. A

rule with the most components is seen as a special case of other rules and is

given preference. Rule selection strategy three chooses the rule whose pattern

has t_he longest delay. This pattern can be replaced by a design with a much

shorter delay. The fourth strategy uses a greedy method. The rule resulting in

the highest gain is chosen. Strictly following this strategy typically produces

sub-optimal results. However, it can be combined effectively with the above

strategies. For example, if strategy 1 selects more than one rule, strategy 2

could be applied. Finally, if strategy 2 produces more than one rule, the greedy

method can be used.

1.2. Strategies for Area

When the area constraint is most important the optimizer attempts to

achieve it, possibly at the cost of leaving some paths critical. One plan for area

optimization is shown in Figure 6. In order to reduce critical paths, the

optimizer must first know how much area can be traded off for delay reduction.

Thus the first step is to decrease area along non-critical paths, bringing their

delay up to the "critical" point. Figure 7(a) shows the results of applying this

February 29, 1988 Page 7

strategy to the circuit of Figure 1 (a). If after this step the area falls below the

constraint, the optimizer will reduce critical paths and can tradeoff area for time

until the area constraint is reached. At that time only strategies that do not

increase area will be considered.

If the first step fails t.0 meet the area constraint, the optimizer must

continue making time-for-area tradeoffs -- thereby pulling these paths above the

"critical" point as in Figure 7(b). This increase in delay can be applied to a

single path or spread over multiple paths.

1.2.1. Strategies for Interval Selection

As in the optimization of timing constraints, one can optimize over an

entire non-critical path or break it up into intervals. The same methods can be

be used to create intervals. For example, the interval creation method of Figure

4 can be used to eliminate intervals containing part of the critical path. Figure

8 shows three intervals created using this method. Interval b can be eliminated

since it is part of a critical path.

Similarly, the interval creation method of Figure 5 can be used to find

intervals where a time for area tradeo:ff does not increase the worst case delay of

a non-critical path. For example in Figure 9 the interval c is reduced in area at

a cost in time. However, the worst case delay from IO-> Fout did not increase.

February 29, 1988 Page 8

Interval selection tends to be in verse of that for timing optimization. An

interval closest to an external output is preferred in area optimization as fewer

paths will have their delay increased. Also, intervals with short delays are of

particular interest since they can often be factored to save area. As in timing

optimization, those intervals containing the the most components provide more

opportunities for improvement. This strategy can be combined with the shortest

delay strategy to select the interval having the most components and the

shortest delay.

1.2.2. Rule Selection

Rule selection strategies used for timing optimization are similar to those for

area. In general, rules that reduce delay look for patterns showing long depth

with a long delay. Transformations are used that decrease the depth and hence

the delay. Rules that reduce area look for patterns having wide breadth and a

short delay. They make transformations that increase depth. Thus rules having

complex and/or many components are preferred in both cases. However, rules

matching patterns with the smallest delays are preferred for area reduction and

rules matching patterns with the largest delays are preferred for delay reduction.

February 29, 1988 Page 9

1.3. An Algorithm for O:mstraint Optimization

Having examined a number of strategies for time and area optimization, we

present an algorithm for incorporating these strategies.

February 29, 1988 Page 10

0 pt i mi z e_ Constraints:

If Time Constraint is Most Important

Red uce_Delay

Else

Red uce_Area

Red uce_Area

Reduce_Delay

Red uce_Delay: (Version I)

-- This version applies multiple techniques over the same interval

-- before selecting a new interval.

Use Time Analyzer to find Critical Paths

While More Critical Paths [AND Below Area Constraint (if area is most important)]

Choose Path Selection Strategy

Select a Path not Yet Optimized

Select Interval Creation Strategy

Break Up Path into Intervals

For Each Interval on Selected Path

Choose Rule Selection Strategy

Apply Logic Critic Rules

End For

While Path is Still Critical [AND Below Area Constraint (if area is most important)]

Choose Time Interval Selection Strategy

Select Interval not yet optimized

Choose Rule Selection Strategy

Apply Time Critic Rules

If Path is Still Critical

Use Boolean minimization & refactorization strategy

Mark interval as optimized

End While

Mark Critical Path as optimized

End While

February 29, 1988 Page 11

Reduce Area:

Use Time Analyzer to find Critical Paths

While More Non-Critical Paths

Choose Path Selection Strategy

Select a Path not Yet Optimized

Break Up Selected Path into Intervals

For Each Interval on Selected Path

Choose Rule Selection Strategy

Apply Logic Critic Rules

End For

While Path is Still Non-Critical AND Rule Set Not Exhausted

Choose Area Interval Selection Strategy

Select Interval not yet optimized

Choose Rule Selection Strategy

Apply Area Critic Rules

Mark interval as optimized

End While

Mark Non-Critical Path as optimized

End While

Path Selection Strategies For Time:

1. Worst Critical Path

2. Select Cover

Path Selection Strategies For Area:

1. Most Non-Critical Path

2. Select Cover

February 29, 1988 Page 12

Rule Selection Strategies For Time:

1. r-..1ost Complex Component

wfost Components

Highest Gain

2. Longest Delay

Most Components

Highest Gain

3. Highest Gain

Rule Selection Strategies For Area:

1. Most Complex Component

Most Components

Highest Gain

2. Most Components

Shortest Delay

Highest Gain

3. Highest Gain

Time Interval Selection Strategies:

1. Most Critical Paths

Closest to External Input

2. Longest Delay

Most Critical Paths

Closest to External Input

3. Most Components

Closest to External Input

Area Interval Selection Strategies

1. Interval Closest to External Output

2. Most Components

Shortest Delay

Interval Closest to External Output

February 29, 1988 Page 13

Reduce_Delay: (Version II)

-- This version applies the same technique over multiple intervals

-- before selecting a new technique.

Use Time Analyzer to find Critical Paths

While More Critical Paths

Choose Path Selection Strategy

Select a Path not Yet Optimized

Break Up Path into Intervals

For Each Interval on Selected Path

Choose Rule Selection Strategy

Apply Logic Critic

While Path is Still Critical AND More Optimization Techniques

[AND Below Area Constraint (if area is most important)]

Choose Time Interval Selection Strategy

Select Interval not yet optimized

Choose Time Technique

Select an Optimization Technique that has not been used yet

Apply Technique on Interval

Mark Technique as used

End While

Mark Critical Path as optimized

End While

Time Technique Selection

1. Swap Pins

2. Time Critic

3. Boolean Minimization & Refactorization

February 29, 1988 Page 14

Time

Time

.... l ... l

A B C D E

Critical Paths

A)

A B C D E

Critical Paths

B)

Critical

Critical

Figure 1: Critical Path Analysis

Blackboard

Nellis!

Critical Path
Set

Selected Critical
Path

Subcircuit to

be Optimized

User
Constraints

Applicable Rules

+ Gain/Cost

Applicable Lookahead

Rules + Gain/Cost

Control

Time
Analyzer

Critical Path
Selector

Interval
Selector

Technique

Selector

Applicable Rule

Selector

Figure 2: Time Optimizer

Knowledge Base

Logic
Critic

Time
Critic

Electric
Critic

Technology
Mapper

Boolean

Minimizer

Factorizer

{{'' .~·~

10 :.~::: --

Strategy I:
Optimize All Paths

10->FI
II-> Fl
II-> F2
12->F2

F2

Strategy 2:
Optimize Using Covers

11-> Fl
12-> F2

g
h

Figure 3: Selection of Covers for Critical Paths

B)

10

11

12

10

11

12

- Most-Critical Path
-- Critical Path

Non-Critical Path

Fout

F1

Critical Paths: 10->Fout, 11->F1, 12->F1

A)

Fout

F1

Number of critical paths shown in parentheses

Interval Selected: c

Creation of intervals

10

11

12

Distance from external input 10 shown in parentheses

Interval Selected: a

Choose interval containing the most critical paths C) Choose interval closest to external input

10

11

12

Number of components shown in parentheses

Interval Selected: d

D) Choose interval with most components

10

11

12

Interval delay shown in parentheses

Interval Selected:

E) Choose interval with longest delay

Figure 4: Strategies for Interval Selection

b(S)

10
_____ a_(6_) __ ~c: ::::J~--d_(_4) __ _

~-------~
c(4)

Worst Case Delay from 10->Fout: 1 Sns
Required Delay: 12ns

Figure 5: Diverging Critical Path

Fout

Blackboard

Netlist

Non-Critical Path
Set

Selected Non-Critical
Path

Subcircuit to

be Optimized

User
Constraints

Applicable Rules

+ Gain/Cost

Applicable Lookahead

Rules + Gain/Cost

Control

Time

Analyzer

Non-Critical Path
Selector

Interval
Selector

Technique

Selector

Applicable Rule

Selector

Figure 6: Area Optimizer

Knowledge Base

Logic
Critic

Time
Critic

Electric
Critic

Technology
Mapper

Boolean
Minimizer

Factorizer

Time

Time

A B C D E

Critical Paths

A)

A B C D E
Critical Paths

B)

Critical

Critical

Figure 7: Critical Path Analysis After First Step of Area Optimization

10

11

Critical Path: 10->F2
Non-Critical Paths: 11->F1, 11->F2

Intervals: a, b, c
Intervals to be Optimized: a, c

F1

F2

Figure 8: Interval Selection Strategy for Area Optimization

b(5)

10 _____ a_(6_) __ ~c:: ::>~----d-(-4) __ _

------~
c(4)

Worst Case Delay from I 0->Fout: 15ns
Required Delay: 1 Bns

Area: 1 2 cells

b(5)

10
_____ a_(6_) __ ~c:: ::>~--d-(-4) __ _

------~
c(5)

Worst Case Delay from I 0->Fout: 15ns
Required Delay: 1 Bns

Area: 1 O cells

Figure 9: Optimization of a Diverging Non-Critical Path

Fout

Fout

