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1. Optimization Strategies 

Strategies apply intelligence to the optimization process, deciding which 

techniques to use and when. A strategy is a plan that selects different 

techniques to be applied depending upon the current state of optimization. One 

can view the state of optimization through a graph, sur:h as that in Figure la. 

On the x axis are paths that have been given time constraints. The y axis shows 

time. A horizontal line drawn through the y-axis represents the "critical" point. 

The distance a path is from this line is its slack (difference between actual and 

required times). In constraint driven optimization we would ideally like to 

produce the circuit represented in Figure lb. In this figure critical paths A and 

B have had their delays brought down to the critical point (possibly at the 

expense of area) and non-critical paths C, D, and E have been raised to the 

critical point by trading off time for area and power. In this manner, timing 

constraints are met by reducing critical paths and area/power constraints are 

met by manipulating non-critical paths. 

Time represents a local constraint while both area and power are global 

constraints. Time constraints may be entered for each path while those for area 

and power are entered for the entire design. Thus timing optimizations make 

local improvements, only to selected paths. Area and power optimizations 

improve the constraint for the entire design, having a global effect. Generally 
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techniques that decrease area also decrease power and vise versa. 

In the next two sections we examine strategies for time and area 

optimization. Strategies are required to select: 1) what subsection of the design 

to optimize, 2) what order to use the various optimization techniques, and 3) 

what rule in a rule set to apply. 

1.1. Optimization Strategies for Tirre 

When time 1s the most important constraint to solve, all critical paths 

should be made non-critical -- even if it means exceeding the area constraint. 

One plan to do this is shown in Figure 2. A timing analyzer determines which 

paths in the design are critical. The optimizer can then proceed to optimize on a 

path by path basis. For example, one could choose the worst critical path -- the 

one furthest from its constraints -- then select the next worst path, etc. 

Alternatively, the optimizer can operate on multiple paths at the same time. 

This can be done by finding a cover for all critical paths -- that is, finding a set 

of intervals that cover all of the critical paths. This idea is illustrated in Figure 

3. It shows one possible covering for four critical paths. 

Once a path is chosen, the optimizer must decide where to optimize the 

critical path. One can apply techniques over the entire path or choose a 

subsection of the critical path to optimize. 
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1.1.1. Strategies for Interval Selection 

Optimizing along the entire critical path is the simplest strategy. It can 

also be time consuming as rules/algorithms can be applied to any components 

along the path. If the critical path is long, many different rules must be 

examined to determine which to apply. 

More complex strategies examine the topology of the critical path and 

divide it into intervals. They look for sections of the critical path that offer 

better optimization opportunities than others. For example, interval boundaries 

can be drawn where one or more critical paths join or leave the path being 

optimized as shown in Figure 4( a). In this manner, optimizations in different 

intervals have effects on different critical paths. Thus the optimizer has greater 

control as it can select various goals, then choose the interval that can best meet 

them. 

Four strategies for selecting an interval are shown in Figure 4. The first 

strategy chooses the interval containing the most critical paths. By optimizing 

along this interval, the most critical paths are reduced with a single 

transformation. This is especially important when trading off area for time 

improvements. The increase in area will usually be less from a single 

transformation than from multiple ones. 
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The second strategy, shown in Figure 4c, selects the interval closest to the 

external inputs. This strategy hopes to reduce the most paths overall (both 

critical and non-critical). Generally improvements made closer to an input 

result in reductions for more paths than those made on points closer to external 

outputs. Reductions in the delay of non-critical paths moves them even further 

below the "critical" point shown in Figure 1. This allows more time-for-area 

tradeoffs along these paths, producing a design with less area. 

The third strategy, depicted in Figure 4d, selects the interval with the most 

components. Such an interval will most likely contain more possible 

transformations as well as a larger variety of possible transformations. Thus it 

may be possible to use more techniques that either increase area only slightly for 

time improvements or result in major time improvements. 

The final strategy, displayed in Figure 4e, chooses the interval having the 

longest delay. Since this interval represents the bottleneck of the critical path, 

it is an ideal spot to use techniques that can result in significant improvements. 

Such intervals may have been poorly designed and can be greatly improved. 

Alternatively, a well-designed interval may be able to be speeded up through 

logic duplication techniques. 

The four strategies can be used m some combination. For example if 

strategy 1 selects two intervals (both containing the same number of critical 
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paths), strategy 2 can be used to break the deadlock. 

Another method for interval selection is shown m Figure 5. With this 

method, interval boundaries are set only when the path being optimized is split 

or reconverges. Figure 5 shows two paths from IO to Fout. Both of them fail to 

meet the timing constraint of 12ns. Intervals o, and d are the best intervals for 

optimization. Any improvements along these subsections improve both IO

> Fout paths. However, only a time improvement of 1 can be made on interval b 

without also improving interval c. For example, even if b is reduced to delay 2 

the worst case delay from IO to Fout has been improved by only 1 unit. Interval 

c is now the bottleneck. Hence a reduction in time between interval a and d 

may require optimization on two paths. 

1.1.2. Applying Techniques to Intervals 

The optimization strategy must also decide how to apply its techniques to 

intervals. This strategy may choose to operate in three different fashions. The 

first would be to apply a technique to an interval, then select another interval 

and apply the same technique. After all intervals have been examined, a new 

technique can be selected. In this manner, a technique that trades off only a 

small amount of area for time can be used throughout the critical path before a 

technique with a .greater area cost is applied. 
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An alternative method is to select an interval, then apply all techniques to 

it before choosing a new interval. This method takes full ad vantage of those 

intervals that provide "better" optimization opportunities. For example, 

consider a single application of a large area-for-time tradeoff technique along an 

interval containing many critical paths. It may result in less of an area increase 

than a number of small area-for-time tradeoffs along other intervals. 

The final method uses a combination of the the first two approaches. A 

number of technique subsets can be created. With this arrangement, an interval 

can be chosen and a subset of techniques applied. After all techniques in the 

subset are exhausted, a new interval can be chosen. Finally, after all intervals 

are examined, a new subset can be selected. 

1.1.3. Rule Selection 

For rule-based techniques a strategy must be selected to choose a single rule 

from the set of rules that can be applied along an interval. While lookahead is 

quite useful, it is also extremely time consuming. The use of effective rule

selection strategies can greatly reduce the need for lookahead. Four such 

strategies are to select the rule: 1) with the most complex components, 2) with 

the most components, 3) that replaces the pattern having longest delay, or 4) 

with the highest gain. 
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As there are fewer rules incorporating complex components, rules containing 

such components should be applied first. Often improvements made with these 

rules produce superior improvements than those rules involving less complex 

components. The second rule selection strategy is of a similar philosophy. A 

rule with the most components is seen as a special case of other rules and is 

given preference. Rule selection strategy three chooses the rule whose pattern 

has t_he longest delay. This pattern can be replaced by a design with a much 

shorter delay. The fourth strategy uses a greedy method. The rule resulting in 

the highest gain is chosen. Strictly following this strategy typically produces 

sub-optimal results. However, it can be combined effectively with the above 

strategies. For example, if strategy 1 selects more than one rule, strategy 2 

could be applied. Finally, if strategy 2 produces more than one rule, the greedy 

method can be used. 

1.2. Strategies for Area 

When the area constraint is most important the optimizer attempts to 

achieve it, possibly at the cost of leaving some paths critical. One plan for area 

optimization is shown in Figure 6. In order to reduce critical paths, the 

optimizer must first know how much area can be traded off for delay reduction. 

Thus the first step is to decrease area along non-critical paths, bringing their 

delay up to the "critical" point. Figure 7( a) shows the results of applying this 
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strategy to the circuit of Figure 1 (a). If after this step the area falls below the 

constraint, the optimizer will reduce critical paths and can tradeoff area for time 

until the area constraint is reached. At that time only strategies that do not 

increase area will be considered. 

If the first step fails t.0 meet the area constraint, the optimizer must 

continue making time-for-area tradeoffs -- thereby pulling these paths above the 

"critical" point as in Figure 7(b ). This increase in delay can be applied to a 

single path or spread over multiple paths. 

1.2.1. Strategies for Interval Selection 

As in the optimization of timing constraints, one can optimize over an 

entire non-critical path or break it up into intervals. The same methods can be 

be used to create intervals. For example, the interval creation method of Figure 

4 can be used to eliminate intervals containing part of the critical path. Figure 

8 shows three intervals created using this method. Interval b can be eliminated 

since it is part of a critical path. 

Similarly, the interval creation method of Figure 5 can be used to find 

intervals where a time for area tradeo:ff does not increase the worst case delay of 

a non-critical path. For example in Figure 9 the interval c is reduced in area at 

a cost in time. However, the worst case delay from IO-> Fout did not increase. 
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Interval selection tends to be in verse of that for timing optimization. An 

interval closest to an external output is preferred in area optimization as fewer 

paths will have their delay increased. Also, intervals with short delays are of 

particular interest since they can often be factored to save area. As in timing 

optimization, those intervals containing the the most components provide more 

opportunities for improvement. This strategy can be combined with the shortest 

delay strategy to select the interval having the most components and the 

shortest delay. 

1.2.2. Rule Selection 

Rule selection strategies used for timing optimization are similar to those for 

area. In general, rules that reduce delay look for patterns showing long depth 

with a long delay. Transformations are used that decrease the depth and hence 

the delay. Rules that reduce area look for patterns having wide breadth and a 

short delay. They make transformations that increase depth. Thus rules having 

complex and/or many components are preferred in both cases. However, rules 

matching patterns with the smallest delays are preferred for area reduction and 

rules matching patterns with the largest delays are preferred for delay reduction. 
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1.3. An Algorithm for O:mstraint Optimization 

Having examined a number of strategies for time and area optimization, we 

present an algorithm for incorporating these strategies. 
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0 pt i mi z e_ Constraints: 

If Time Constraint is Most Important 

Red uce_Delay 

Else 

Red uce_Area 

Red uce_Area 

Reduce_Delay 

Red uce_Delay: (Version I) 

-- This version applies multiple techniques over the same interval 

-- before selecting a new interval. 

Use Time Analyzer to find Critical Paths 

While More Critical Paths [AND Below Area Constraint (if area is most important) ] 

Choose Path Selection Strategy 

Select a Path not Yet Optimized 

Select Interval Creation Strategy 

Break Up Path into Intervals 

For Each Interval on Selected Path 

Choose Rule Selection Strategy 

Apply Logic Critic Rules 

End For 

While Path is Still Critical [AND Below Area Constraint (if area is most important)] 

Choose Time Interval Selection Strategy 

Select Interval not yet optimized 

Choose Rule Selection Strategy 

Apply Time Critic Rules 

If Path is Still Critical 

Use Boolean minimization & refactorization strategy 

Mark interval as optimized 

End While 

Mark Critical Path as optimized 

End While 

February 29, 1988 Page 11 



Reduce Area: 

Use Time Analyzer to find Critical Paths 

While More Non-Critical Paths 

Choose Path Selection Strategy 

Select a Path not Yet Optimized 

Break Up Selected Path into Intervals 

For Each Interval on Selected Path 

Choose Rule Selection Strategy 

Apply Logic Critic Rules 

End For 

While Path is Still Non-Critical AND Rule Set Not Exhausted 

Choose Area Interval Selection Strategy 

Select Interval not yet optimized 

Choose Rule Selection Strategy 

Apply Area Critic Rules 

Mark interval as optimized 

End While 

Mark Non-Critical Path as optimized 

End While 

Path Selection Strategies For Time: 

1. Worst Critical Path 

2. Select Cover 

Path Selection Strategies For Area: 

1. Most Non-Critical Path 

2. Select Cover 
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Rule Selection Strategies For Time: 

1. r-..1ost Complex Component 

wfost Components 

Highest Gain 

2. Longest Delay 

Most Components 

Highest Gain 

3. Highest Gain 

Rule Selection Strategies For Area: 

1. Most Complex Component 

Most Components 

Highest Gain 

2. Most Components 

Shortest Delay 

Highest Gain 

3. Highest Gain 

Time Interval Selection Strategies: 

1. Most Critical Paths 

Closest to External Input 

2. Longest Delay 

Most Critical Paths 

Closest to External Input 

3. Most Components 

Closest to External Input 

Area Interval Selection Strategies 

1. Interval Closest to External Output 

2. Most Components 

Shortest Delay 

Interval Closest to External Output 
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Reduce_Delay: (Version II) 

-- This version applies the same technique over multiple intervals 

-- before selecting a new technique. 

Use Time Analyzer to find Critical Paths 

While More Critical Paths 

Choose Path Selection Strategy 

Select a Path not Yet Optimized 

Break Up Path into Intervals 

For Each Interval on Selected Path 

Choose Rule Selection Strategy 

Apply Logic Critic 

While Path is Still Critical AND More Optimization Techniques 

[ AND Below Area Constraint (if area is most important) ] 

Choose Time Interval Selection Strategy 

Select Interval not yet optimized 

Choose Time Technique 

Select an Optimization Technique that has not been used yet 

Apply Technique on Interval 

Mark Technique as used 

End While 

Mark Critical Path as optimized 

End While 

Time Technique Selection 

1. Swap Pins 

2. Time Critic 

3. Boolean Minimization & Refactorization 
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Time 

Time 
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A B C D E 

Critical Paths 
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A B C D E 

Critical Paths 

B) 

Critical 

Critical 

Figure 1: Critical Path Analysis 
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Figure 7: Critical Path Analysis After First Step of Area Optimization 
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Critical Path: 10->F2 
Non-Critical Paths: 11->F1, 11->F2 

Intervals: a, b, c 
Intervals to be Optimized: a, c 

F1 

F2 

Figure 8: Interval Selection Strategy for Area Optimization 
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