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Abstract As bladder reconstruction strategies evolve, a
feasible and safe source of transplantable urothelium
becomes a major consideration for patients with ad-
vanced bladder disease, particularly cancer. Pluripotent
stem cells, such as embryonic stem cells (ESCs) and
induced pluripotent stem cells (iPSCs), are attractive
candidates from which to derive urothelium as they
renew and proliferate indefinitely in vitro and fulfill
the non-autologous and/or non-urologic criteria, respec-
tively, that is required for many patients. This review
presents the latest advancements in differentiating
urothelium from pluripotent stem cells in vitro in the
context of current bladder tissue engineering strategies.

Keywords Bladder . Urothelium . Differentiation . Human
embryonic stem cells . Induced pluripotent stem cells . Grafts

Introduction

The urinary bladder is a reservoir that stores and voids
urine from the body by means of complex biological
function and coordination. The bladder is made up of
three tissue layers, the luminal urothelium, the lamina

propria, and the muscle, which are dispersed with com-
plex nerve and vascular networks.

The urothelium is the specialized and essential epithelial
lining of the bladder, which provides the impenetrable barrier
that keeps urine and pathogens from being reabsorbed into the
bloodstream. From the basement membrane to the lumen, the
urothelium is made up of three cell types: basal, intermediate,
and superficial (umbrella) cells [1]. Basal cells are the most
progenitor of the urothelial layers and are proposed to harbor
the bladder stem cells that provide lifelong renewal of the
urothelial layer. Intermediate cells are highly proliferative and
responsible for rapid regeneration of the urothelium in times
of injury or infection. The umbrella cells are the fully differ-
entiated luminal cells that are responsible for maintaining the
high-resistance barrier function of the urothelium. Specialized
tight junctions between the umbrella cells, as well as the
assembly of urothelial cell-specific uroplakin proteins into
plaques, create this necessary, near impermeable barrier [2, 3].

Patients with neuropathic bladder disorders, trauma, or blad-
der cancer often require augmentation or reconstruction of the
urinary bladder. The current protocol for bladder tissue replace-
ment calls for the use of gastrointestinal tissue. While this
approach does suffice for improved bladder function, the dia-
metrically opposed functions of bladder and intestinal tissues
often lead to significant complications including electrolyte
imbalances, urinary stones, chronic infections, and increased
cancer risk [4]. Thus, tissue engineering has become a field of
intense focus for many urology clinicians and researchers, as a
need for improved replacement bladder tissue prevails.

Current Tissue Engineering Strategies

To improve upon the current use of gastrointestinal tissue for
cystoplasty, strategies to bioengineer bladder grafts have taken
center stage. However, the complex functions of the bladder
pose significant challenges to the engineering of tissue.
Neobladder tissue is being bioengineered using scaffolds,

This article is part of the Topical Collection on Regenerative Medicine

S. L. Osborn : E. A. Kurzrock (*)
Department of Urology, University of California, Davis School of
Medicine, 4860 Y Street, Suite 3500, Sacramento, CA 95817, USA
e-mail: Eric.kurzrock@ucdmc.ucdavis.edu

S. L. Osborn
e-mail: Stephanie.osborn@ucdmc.ucdavis.edu

S. L. Osborn : E. A. Kurzrock
Stem Cell Program, Institute for Regenerative Cures, University of
California, Davis Medical Center, 2921 Stockton Blvd, Suite 1630,
Sacramento, CA 95817, USA

Curr Urol Rep (2015) 16:466
DOI 10.1007/s11934-014-0466-6



synthetic or natural, reconstituted with or without the various
tissue layers of the bladder wall [5].

While natural scaffolds are considered the best choice with
regard to biocompatibility, they also succumb to graft contrac-
tion upon transplant. Synthetic scaffolds are of great interest
due to their defined and reproducible characteristics but are
hard-pressed to exhibit the mechanical qualities that are im-
perative for proper bladder filling and voiding.

Regardless of the material, acellular scaffolds that have
been transplanted with cells function better post-transplant
than do scaffolds that have not been seeded [6–9, 10, 11].
Non-seeded scaffolds rely on native cell in-growth for tissue
regeneration and thus are limited to use in small reconstruc-
tions. In-growth of muscle, nerve, and vasculature is a rate-
limiting event to the use of acellular scaffolds for larger
bladder reconstructions. Furthermore, it was recently reported
that bladder grafts, prepared from synthetic scaffolds of PGA
reconstituted with smooth muscle and urothelial cell layers,
were unsuccessful in providing functional augments to pedi-
atric patients in a clinical trial [12]. This clinical trial high-
lights the challenge of replicating functional bladder tissue,
specifically with regard to blood supply.

The co-transplantation of stem cells to aid in bladder repair
and/or regeneration is also under significant investigation. The
contribution of transplanted stem cells to tissue regeneration is
not only through differentiation and cell replacement but also
via paracrine effects [13]. Accordingly, various sources of
stem cells (embryonic stem cells (ESCs), BM-derived SCs,
tissue-specific SCs) have been shown to enhance tissue re-
generation upon bladder injury or reconstruction [14–20]. In
particular, Sharma et al. demonstrated the signaling effects of
bone marrow-derived mesenchymal stem cells (MSCs) and
hematopoietic stem cells in inducing regeneration of vascula-
ture, nerves, muscle, and urothelium upon bladder augmenta-
tion with a synthetic scaffold in a murine model [21]. While
stem cells can induce native urothelial regeneration over a
graft, they do not regenerate urothelium de novo.

The urothelium is highly regenerative and capable of grow-
ing over bioengineered scaffolds, but the urothelium from
patients with advanced bladder disease may not be so capable
or desirable [22]. This is particularly true with regard to bladder
cancer, which is primarily of urothelial origin. Bladder cancer is
believed to follow the two-hit hypothesis of neoplasia, such that
known genetic predispositions, likemutations in DNA repair or
tumor suppressor genes, are compounded by a secondary hit
from long-term exposure of urothelium to urine carcinogens
[23]. After endoscopic resection, 70 % of patients have tumor
recurrence in a different part of the bladder, classifying bladder
cancer as a field defect with premalignant urothelium scattered
throughout the bladder. Two theories of bladder cancer cell
origin have been proposed to account for this field defect
(reviewed in [24]). One theory postulates bladder cancer to be
monoclonal, developing from a single transformed cell that

gives rise to cancerous progeny, which spreads throughout
the bladder by various mechanisms [25]. An alternate theory
proposes that many transformed cells arise independently and
are genetically distinct as a result of long-term insult to the
entire urothelium [26]. Whether the etiology of bladder cancer
recurrence is a result of either one or both of these mechanisms,
the potential for malignancy in all urothelial cells of a bladder
cancer patient precludes the use of autologous cells for regen-
erative purposes. Therefore, there is a multifaceted need for
alternative sources of urothelium that can meet patient-specific
needs for reconstruction. In such cases of advanced disease,
alternative non-urologic or non-autologous sources of
urothelium are a necessity for bladder reconstruction via tissue
engineering. Thus, whether it is for reconstruction of a bladder
graft de novo or be for mere improvements to current
cystoplasty techniques via replacement of enteric epithelium
with urothelium, many patients would benefit from having a
readily available and healthy source of urothelium.

Potential Sources of Urothelium for Bladder
Reconstruction

The use of autologous cells for transplantation is ideal, as
adverse immunological responses and graft rejection are ne-
gated. However, since most patients in need of bladder recon-
struction have advanced bladder disease or bladder cancer, the
use of autologous urothelium for seeding bladder grafts is not
ideal or safe. Urothelium from patients with benign bladder
diseases has been shown to have reduced proliferative abilities
in vitro [22]. Thus, urothelium from these patients may not be
capable of being produced to the quantities needed for engi-
neering bladder tissue, while it may also have impaired func-
tion when returned in vivo. Particularly in the case of cancer,
patients would require non-urologic, genetically healthy tissue
for a source of regenerated urothelium. Thus, alternate sources
for transplantable, non-pathogenic urothelium are focused on
that derived from either adult stem cells or pluripotent stem
cells, including human embryonic stem cells (hESCs) and
human-induced pluripotent stem cells (hiPSCs).

Adult stem cells are fairly easy to obtain and culture, are
autologous, and are therefore an attractive source for
urothelium in bioengineering. Urothelium has been derived
frommultiple adult stem cells, including adipose-derived stem
cells, urine-derived stem cells, and bone marrow-derived
MSCs [27–29]. Fetal or post-natal stem cells, which are not
autologous but do have relatively low immunogenicity prop-
erties, have also been differentiated into urothelium [30–32].
The primary limitation of using adult and fetal stem cell-
derived urothelium hinges on a poorly understood differenti-
ation process that typically occurs through either
transdifferentiation or cell fusion. For instance, the long-term
function and safety of mesenchymal lineage cells becoming
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epithelial has not been sufficiently investigated. Furthermore,
adult cells have limited proliferation potential in vitro and fetal
cells have potential immunological repercussions.

However, the pluripotent characteristics of hESCs and
hiPSCs make them attractive candidates for cell therapy, as they
have the potential to renew and proliferate indefinitely and
differentiate into any cell type. The concept of using urothelium
derived from autologous hiPSCs for patients with a history of
bladder cancer is predicated on current fast developments in
genomic mapping that may show that urothelium, derived from
somatic cells outside the bladder, is free of secondary mutations
associatedwith bladder cancer. Like adult stem cells, pluripotent
stem cells for use in clinical application are not without issue.
hESCs are non-autologous and derived from human embryos,
which is of significant worldwide ethical debate, while hiPSCs
are derived from somatic cells that have been reprogrammed
with known oncogenes, potentially posing a safety risk.

All points considered, human ESCs and hiPSCs may still
provide efficacious sources from which to derive urothelium
for use in future bladder tissue engineering, particularly for
bladder cancer patients.

Differentiation of Urothelium from Pluripotent Stem Cell
Sources

Early investigations proved the ability to differentiate
urothelium from pluripotent stem cells using mouse models.
Oottamasathien et al. used murine embryonic bladder mesen-
chyme in tissue recombination experiments to differentiate
urothelium from mouse ESC [33], while murine embryoid
bodies have also been directed toward the urothelial lineage
upon in vivo transplantation into mice [34]. More recently, it
has been shown that retinoic acid (RA), via GATA-4/6 signal-
ing, induces efficient differentiation of murine ESCs and
iPSCs to urothelium in vitro [35••, 36].

While the murine model provided evidence of feasibility,
only recently has the differentiation of human urothelium from
pluripotent stem cells been reported. As such, hESCs and
hiPSCs have now been efficiently induced into urothelium
in vitro, providing significant progress toward urothelial cell
transplant for clinical applications [37••, 38••, 39•]. These
in vitro models of differentiation also provide a useful and
needed study model for human urothelial development.

In Vitro Induction of Urothelium Through
a Developmental Stage Process

During embryogenesis, differentiation of endodermal lineages
(epithelial cells, including urothelium) from ESCs follows a
specific progression of development through the definitive
endoderm (DE) stage. Presumably, the most efficient

differentiation to mature endodermal tissues in vitro would
therefore follow this in vivo developmental progression. To
that end, d’Amour et al. developed a protocol to induce DE
from hESCs in vitro, which appropriately mimics the known
gene expression transitions of gastrulation [40•]. With mouse
embryonic fibroblast (MEF) feeders, low serum supplemen-
tation, and activin A stimulation, DE production was highly
efficient, approximating 80 %. The induced DE was also
functional, as DE could be differentiated into various endo-
dermal lineages in in vivo transplantation experiments.

Using this DE induction protocol, human ESCs and
hiPSCs were recently induced to urothelium [37••]. Although
multiple culture conditions for urothelial induction from DE
were tested, the most efficient induction proved to be culturing
under standard conditions for human urothelium (keratinocyte
basal mediumwith epidermal growth factor (EGF) and bovine
pituitary extract (BPE)), supplemented with low levels of
serum (Table 1). Expression of uroplakins, specific markers
of urothelial cell lineage, showed the urothelial cell yield to be
up to 60 % for both hESCs and hiPSCs. Upon subsequent
passages and selective expansion in urothelial cell growth
medium, culture purity reached 90 % urothelium.

In addition to this in vitro culture system being effective at
producing urothelium, it also appeared to mimic what is
known about the developmental stages of urothelial cell dif-
ferentiation during embryogenesis. The expression of various
stage-specific transcription factors followed a directed process
from hESC to DE to urothelium, as depicted in Fig. 1. Fur-
thermore, co-expression of uroplakins with known urothelial
fate specification mediators in a temporal fashion suggested
the appropriate development to urothelium. FoxA2 is amarker
of DE that is downregulated as urothelium matures. Accord-
ingly, the association of FoxA2 with uroplakins decreased
over the urothelial induction period. The transcription factors
IRF-1, Get1, and GATA-4 have been shown to be involved in
urothelial fate specification and were appropriately associated
with uroplakin-expressing cells within the first week of DE
induction to urothelium [35••, 37••, 41, 42].

More recently, Kang et al. altered this development-directed
induction approach to minimize the use of xenogeneic products
with the intent to derive human urothelium that could be used
in clinical applications (Table 1) [38••]. The urothelium
expressed appropriate lineage markers (UPs, cytokeratins)
and tight junction proteins, while exhibiting physiologically
appropriate low permeability in a functional assay.

Human iPSCs, generated from urinary tract stromal tissue,
were also previously induced to urothelium (Table 1) [39•].
However, the hiPSCs were directly differentiated to
urothelium using a conditioned medium culture approach,
rather than a development-directed approach. The resulting
cells displayed a mixed stromal and urothelial phenotype,
which may suggest incomplete or inappropriate differentiation
that may, in part, be due to an undefined developmental path.
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The derivation of urothelium in vitro through an interme-
diary DE step is efficient. The rendered urothelium expresses
the appropriate urothelial-specific markers and functions as an
impermeable barrier in vitro. While the data suggests that
urothelium derived from pluripotent stem cells in this manner
has high likelihood of being able to be used for cell replace-
ment in vivo, more intense studies are necessary to show
safety and efficacy of the induced urothelium. Nonetheless,
this directed culture system also provides a useful in vitro
model for studying human bladder development.

The Role of Retinoic Acid in Urothelial Development

Retinoic acid is a primary vitamin A derivative that functions
in a wide array of cellular processes, including fate specifica-
tion of various endodermal tissues. It has been shown to be
important for bladder development from the urogenital sinus
and for differentiation of mouse urothelial cells from pluripo-
tent stem cells [35••, 43, 44]. While RA was shown to act
through GATA-4/6 in differentiating urothelium from mouse
ESCs, the role of RA and GATA-4/6 signaling in human
urothelial cell fate has not been definitively determined. In-
duction of urothelium in the presence of serum was not
enhanced by the addition of exogenous RA [37••]. However,
RA significantly enhanced the differentiation of urothelium in
a serum-free system [38••]. Thus, as serum contains RA, it
likely contributes to specification of urothelium in vitro. In
serum-free systems, it appears necessary to supplement exog-
enous RA for induction of urothelium. Thus, while it is likely
that RA is important for urothelial differentiation, it is unclear
whether its action is through GATA-4/6 in humans, as only a
nominal association of GATA-4 was found with UP-
expressing cells of hESC-derived urothelium [37••].

Xenogeneic-Free Strategies for Clinical Applications

It is widely accepted that animal and human products, partic-
ularly feeder cells and serum (FBS), need to be avoided in
culture systems that will produce cells for human clinical
applications. The significant challenge to these in vitro differ-
entiation systems is in maintaining the pluripotency of stem
cells, the unique property that allows them to be differentiated
into nearly any cell type. Although not without flaws, current
strategies utilize serum replacers in lieu of FBS and various
extracellular matrices (ECM), such as matrigel, collagen, and
fibronectin, instead of feeder cells [45, 46].

Serum replacers are often proprietary and even if the con-
stituents are known, the concentrations are typically not. Like
serum replacers, the exact composition of matrigel is unknown.
Importantly, matrigel also contains growth factors that can
contribute to differentiation and proliferation. Accordingly,T
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hESCs and hiPSCs were capable of being induced to DE and
subsequently urothelium using a culture system that substituted
matrigel for MEF feeder cells and a serum replacer for FBS
[38••]. Although the production of DE and urothelium in this
culture system was less efficient than the previously published
system, the derived cells nonetheless fulfilled phenotypic and
functional expectations of urothelium in vitro [37••]. While a
truly chemically defined system for culturing pluripotent stem
cells has yet to evolve, thesemodifications in serum and feeders
do limit the xenogeneic material in the culture system.

If progress can be made in the xenogeneic-free culturing of
pluripotent stem cells and their induction to DE, there is a
significant potential for the induction step to urothelium to be
achieved in such a manner. Human urothelial cells are typi-
cally grown in vitro using a keratinocyte basal medium sup-
plemented with EGF and bovine pituitary extract [47–51].
Induction of urothelium from DE was achieved using these
standard urothelial cell growth conditions supplemented with
RA, either exogenous or in the form of serum. Thus, exoge-
nous RA could replace serum in the induction medium. Pre-
vious studies in both mice and human relied heavily on cell
co-culture or conditioned medium environments to induce
urothelium from various stem cell sources [29–31, 33, 34,
39•, 52–54]. However, differentiation of human urothelium

from hESCs and hiPSCs in vitro was efficiently achieved in
their absence [37••, 38••]. Interestingly, cell co-culture and
conditioned medium methods produced urothelium less effi-
ciently than standard culture conditions [37••].

Matrices were also not required for efficient induction to
urothelium [37••]. Although feeders were used for support in
the initial stem cell cultures, these feeder cells were typically
dead and removed from culture by the end of DE induction
(Osborn and Kurzrock, unpublished observations). Thus,
urothelium was induced from DE in the absence of feeders
and/or matrices. In contrast, Kang et al. maintained cell cul-
tures on matrigel throughout all phases of differentiation to
urothelium and noted that matrigel significantly increased the
expression of urothelial-specific markers, as compared to
other matrices [38••]. Considering the known potential for
unwanted effects of matrigel on growth and differentiation
of cells, this observation needs to be considered carefully and
the quality of the induced urothelium investigated moving
forward. As urothelium can be induced in the absence of a
matrix, removal of matrigel from the urothelial induction
phase might be a better option.

Urothelium can be efficiently cultured long-term and ex-
panded in serum-free conditions and in the absence of a matrix
for growth support in vitro [47, 48] (Osborn and Kurzrock,

Fig. 1 The induction of urothelium from human pluripotent stem cells.
The pluripotency of two classes of stem cells can be harnessed to produce
various differentiated cell types in vitro. Embryonic stem cells (ESCs) are
the pluripotent stem cells that make up the inner cell mass of the human
blastocyst during embryogenesis and that give eventual rise to all three
germ layers: endoderm, mesoderm, and ectoderm. Induced pluripotent
stem cells (iPSCs) are differentiated somatic cells that have been
reprogrammed to a pluripotent state using forced expression of distinct
sets of transcription factors via retroviral or lentiviral infection. From the
pluripotent state, ESCs and iPSCs can be induced to the urothelium either

through a developmental stage (1) or direct induction (2) approach. The
developmental stage approach follows the specification of the urothelium
during embryogenesis, such that ESCs and iPSCs are differentiated to
definitive endoderm and subsequently to endodermal cell lineages such as
the urothelium (1). The direct induction approach drives pluripotent stem
cells directly to the urothelium, using conditioned medium to mimic the
epithelial-mesenchymal interactions of the bladder (2). Transcription
factors, known to associate with the different cell types at various stages
of endodermal development, are indicated in the boxes below the phase at
which they are expressed
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unpublished observations). Therefore, the post-induction cul-
turing of stem cell-derived urothelium can likely be achieved
under xenogeneic conditions as well.

Practical and Future Applications of In Vitro-Derived
Urothelium

Admittedly, more thorough study of hESC- and hiPSC-derived
urothelium needs to be conducted, specifically with regard to
in vivo function and safety, prior to clinical application. In-
duced urothelium phenotypically resembled normal urothelium
and likewise performed well in in vivo functional tests of
permeability. In a preliminary assay, hESC-derived urothelium
did not form teratomas when orthotopically transplanted
in vivo, suggesting biosafety [37••]. However, as hiPSCs are
reprogrammed using known oncogenes, the current human
application of these pluripotent stem cells and their derivatives
needs further evaluation. Although far from ready for clinical
use, the data supports continued validation studies.

It has also been reported that urinary tract fibroblasts can be
reprogrammed to pluripotency (hiPSCs) and subsequently
differentiated into urothelium [39•]. Although this provides
an interesting model to study development and epigenetics, it
most likely does not have utility in clinical practice. Most
patients requiring bladder reconstruction have advanced blad-
der diseases and/or cancer. These patients would benefit most
from urothelium derived from non-urologic yet autologous
sources. As skin iPSCs can be efficiently driven to urothelium,
this approach seems more relevant to the clinical application
of bioengineered bladder tissue [37••, 38••].

Conclusions

The current protocols for bladder reconstruction are less than
optimal, as use of gastrointestinal tissue leads to significant
complications. The increased risk of cancer due to the juxtapo-
sition of intestinal epithelium with urine is of particular concern
as the life expectancy of patients receiving augments also in-
creases. As there is a dire need for improvement in bladder
grafts to be used for reconstruction, tissue engineering has
become a significant focus of the urologic research community.
Since the majority of patients who require cystoplasty suffer
from advanced bladder disease, it is often not feasible, practical,
or safe to utilize autologous urothelium for tissue engineering
purposes. This is particularly true in the case of bladder cancer,
which is deemed a field defect, rendering the entire urothelium
to be considered premalignant. Thus, the ability to differentiate
urothelium from pluripotent stem cells such as ESCs and iPSCs
provides a potentially valuable non-urologic source of
urothelium for tissue engineering. While urothelium can now
be efficiently produced from pluripotent stem cells in vitro using

developmentally directed culture methods, the translational ap-
plication of utilizing pluripotent stem cells and the in vivo
functional capacity of the induced urothelium require validation.
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