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Abstract—This letter considers the capacity computations of

faster-than-Nyquist (FTN) signaling. It calculates the theoretical

capacity of FTN signaling which is obtained by a correlated input.

The capacity-achieving power spectral density (PSD) is derived

and its superiority over the independent input is shown. The

practical issue imposed by the capacity-achieving PSD, i.e., out-

of-band (OOB) emission, is shown. To solve this issue, an upper-

bound is introduced for the input PSD to limit the OOB emission.

The new optimization problem is solved and the constrained PSD

is obtained. The introduced PSD captures the trade-off between

the obtained capacity and the OOB emission.

I. INTRODUCTION

In this letter, we consider the problem of transmitting data
over a bandlimited additive white Gaussian noise (AWGN)
channel by means of a set of signals that are generated by
linear modulation. Linear modulation signals have the form
x(t) =

P
a[n]p(t�n�T ) where {a[n]} are the symbols to be

transmitted and can be independent or correlated. The pulse
shape p(t) usually has useful detection properties, e.g., or-
thogonality, which is commonly mentioned as No-ISI Nyquist
condition. An example of such pulses is called raised cosine
(RC) pulse and is extensively used in communication standards
including the DVB-S2X in satellite communication [1].

Shannon’s classical result states that the highest transmis-
sion rate over the AWGN channel is W log2(1 + P/WN0)
where W is one-sided bandwidth, P is the average power,
and N0/2 is the power spectral density (PSD) of the white
noise [2]. Such a capacity is achieved by the sinc pulse and
T = 1

2W . However, the sinc pulse has serious realization
problems and disadvantages in practice. Therefore, smoother
orthogonal pulses are utilized which introduce the excess
bandwidth. This excess bandwidth remains unutilized by an
orthogonal signaling. However, the excess bandwidth can be
utilized by the Faster than Nyquist (FTN) Signaling [3].

FTN was first introduced in [4] where its minimum Eu-
clidean distance property was analyzed. FTN has been exten-
sively studied in past few years [5]. For example, asymptotic
optimality of binary FTN signaling is shown in [6], non-binary
FTN and the bit error rate (BER) performance are studied in
[7], [8], the detection and the receiver design are examined in
[9], [10] and the application of FTN in multiuser broadcast
channel is considered in [11], [12]. The information rates of
FTN signaling and the provided gain by faster signaling is
analyzed in [3], [13]. In [3], an independent input with a
constant PSD that satisfies the power constraint is considered.
In [13], a more general set of inputs including independent
and correlated inputs is considered. Denoting the input PSD as
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Sa(f), f 2 [�1/2, 1/2], the power constraint is expressed asR 1/2
�1/2 Sa(f)df  P and the capacity-achieving input is found

by using the well-known water-filling algorithm. Although the
mentioned power constraint is correct for Nyquist signaling,
the correlated input in conjunction with FTN signaling will
alter the power constraint and thus change the capacity expres-
sions. The erroneous power constraint does not fully reveal the
potential of FTN signaling on increasing the capacity.

Our goal in this work is to comprehensively study the power
constraint and the resulting capacity expression. We derive
the capacity-achieving PSD and show its enhancement over
the independent input. To alleviate the practical issues of the
capacity-achieving input, we modify the input PSD constraint
to strike a trade-off between the independent and capacity-
achieving inputs.

II. SYSTEM MODEL

We consider the fundamental single-carrier communication
model. The transmitted linearly modulated baseband signal has
the form

x(t) =
NX

n=1

a[n]p(t� n�T ), (1)

where {a[n]} is a stationary Gaussian process with power
spectral density (PSD) of {Sa(f), f 2 [�1/2, 1/2]} which is
periodic in f with period of 1. The symbol interval is denoted
by �T where � 2 (0, 1] is the compression factor in FTN
signaling and � = 1 yields the traditional Nyquist signaling
with signaling rate of 1/T . Also, p(t) is a root-Nyquist
pulse shaping filter with unit energy, i.e.,

R1
�1 |p(t)|2dt = 1.

Denoting g(t) = p(t) ? p⇤(�t), the Nyquist No-ISI condition

is expressed as: g(nT ) =

⇢
1 n = 0
0 n 6= 0

. The Nyquist No-

ISI condition can be equivalently expressed as GT (f) =P1
k=�1 G

�
f � k

T

�
= T . The PSD of the transmitted signal

x(t) can be calculated as Sx(f) = Sa(�Tf)G(f). The trans-
mission power is calculated as Px =

R1
�1 Sx(f)df . Because

Sa(�Tf) is periodic in f with period of 1/�T , the transmission
power can be written as:

Px =

Z 1/2�T

�1/2�T

Sa(�Tf)G�T (f)df =
1
�T

Z 1/2

�1/2

Sa(f)G�T (
f
�T

)df,

(2)

where G�T (f) =
P1

k=�1 G
�
f � k

�T

�
. Note that for the

Nyquist signaling, i.e., � = 1, GT (f) = T , and thus, the
transmit power reduces to Px =

R 1/2
�1/2 Sa(f)df which is

commonly used in the literature. However, for � < 1, the
above equality does not hold. Also note that for independent
symbols, i.e., Sa(f) = �2

a, the transmission power reduces
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Fig. 1: FTN system model.

to Px = �2
a

�T

R 1/2
�1/2 G�T (

f
�T )df = �2

a. Assuming the AWGN
channel, the received signal at the decoder is denoted as:
y(t) =

PN
n=1 a[n]p(t� n�T ) + n(t) where n(t) is the white

noise with the PSD of �2
n = N0/2. At the decoder, the set

of sufficient statistics is obtained by a matched filter followed
by a sampler which samples at time instants tm = m�T as
shown in Fig. 1. Thus, the samples can be written as:

y[m] =
NX

n=1

a[n]g((n�m)�T ) + ⌘[m], (3)

where ⌘[m] =
R1
�1 n(t)p⇤(t�m�T )dt and the correlation of

the noise sample can be denoted as E{⌘[m]⌘⇤[n]} = �2
ng((n�

m)�T ). The input-output relation can be written in matrix
form as:

yN = GNaN + ⌘N , (4)

where yN = {y[1], · · · , y[N ]}, aN = {a[1], · · · , a[N ]},
⌘N = {⌘[1], · · · , ⌘[N ]} and GN is an N ⇥N Toeplitz matrix
whose elements are defined as:

[GN ]m,n = g((n�m)�T ). (5)

Note that with Nyquist signaling, the input-output relation is
independent for each transmitted symbol denoted as y[m] =
a[m] + ⌘[m].

III. EXISTING RESULTS

In [3], the capacity of FTN signaling for independent
symbols with power constraint of P is calculated as:

C(P, �T ) =

Z 1/2�T

0
log2

✓
1 +

P

�2
n

G�T (f)

◆
df. (6)

In [13], the capacity with correlated symbols is calculated as:

C(P, �T ) = sup
Sa(f)

Z 1/2�T

0
log2

✓
1 +

1

�2
n

Sa(�Tf)G�T (f)

◆
df

s.t.

Z 1/2

�1/2
Sa(f)df = P, (7)

where the the optimization problem is solved by the well-
known water-filling strategy. However, in these results, the
effect of FTN signaling on the power transmission is ignored
which resulted in erroneous results. Hence, we revisit the
capacity expression with the correct transmission power and
reveal the main advantages of FTN signaling.

IV. FTN CAPACITY EXPRESSIONS REVISITED

For completeness, we derive the capacity expressions for
FTN signaling, following the steps taken in [14] and [15].
Based on [14], the capacity of the discrete-time system in
(4), which resembles an ISI channel, is equal to CDT =
limN!1

1
N I(yN ;aN ) given the input symbols satisfy the

power constraint in (2). The differential entropy of a stationary
Gaussian n-vector, xN , with covariance matrix of ⌃N

x is equal
to [16]:

h(xN ) =
N

2
log2

✓
2⇡e

h
det(⌃N

x )
i1/N◆

. (8)

In addition, according to the Toeplitz distribution theorem [17],
as N ! 1, the asymptotic differential entropy approaches:

lim
N!1

1

N
h(xN ) =

1

2

Z 1/2

�1/2
log2 (2⇡e�x(f)) df, (9)

where �x(f) is the generating function of the Toeplitz matrix
⌃x defined as �x(f) =

P1
n=�1 [⌃x]n e

�j2⇡fn and [⌃x]n
represents the nth diagonal element of ⌃x.

Using (8) and (9), the asymptotic information rate of
CDT = limN!1

1
N I(yN ;aN ) can be calculated in the

following steps:

CDT = lim
N!1

1

N
h(yN )� lim

N!1

1

N
h(⌘N )

=
1

2

Z 1/2

�1/2
log2

�
�2
nĝ(f) + ĝ2(f)Sa(f)

�
� log2

�
�2
nĝ(f)

�
df

=
1

2

Z 1/2

�1/2
log2

✓
1 +

1

�2
n

ĝ(f)Sa(f)

◆
df, (10)

where ĝ(f) =
P1

n=�1 g(n�T )e�j2⇡fn and after some cal-
culations, it can be shown that ĝ(f) = G�T (f/�T ). Then,
after normalizing by the signaling rate, the capacity of FTN
signaling can be formulated as:

C(P, �T ) = sup
Sa(f)

1
2�T

Z 1/2

�1/2

log2

✓
1 +

1
�2
n
G�T (

f
�T

)Sa(f)

◆
df

s.t.
1
�T

Z 1/2

�1/2

Sa(f)G�T (
f
�T

)df  P. (11)

Note that the power constraint in the new capacity formulation
differs from the power constraint mentioned in (7). Consider-
ing Jensen’s inequality, the capacity is achieved by:

Sa(f) =

⇢ �TP
µG�T (f/�T ) G�T (f/�T ) 6= 0

0 o.w.
, (12)

where µ = L (f 2 [�1/2, 1/2]|G�T (f/�T ) 6= 0) and L(I) is
the Lebesgue measure of the set I . By simple calculations, the
capacity can be written as:

C(P, �T ) =
µ

2�T
log2

✓
1 +

�TP

µ�2
n

◆
. (13)

Remarks 1: For the sinc function with any signaling rate,
the achieved capacity is C(P, �T ) = 1

2T log2

⇣
1 + TP

�2
n

⌘
.

Remarks 2: For Nyquist signaling, i.e., � = 1 with any No-
ISI satisfying pulse shape, i.e., GT (f/T ) = T , the capacity-
achieving input and the achieved capacity are Sa(f) = P
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and C(P, �T ) = 1
2T log2

⇣
1 + TP

�2
n

⌘
, respectively. This verifies

dissipation of the excess bandwidth with Nyquist signaling.
Remarks 3: For any non-orthogonal signaling, i.e., � < 1,

the capacity-achieving input and the capacity expression are
calculated by inserting µ = min{1, fBW �T} in (12) and (13),
respectively, where fBW is the frequency support of g(t).

Example 1: Consider the RC pulse shape with a roll-of-
factor of � whose Fourier transform is denoted as:

G(f) =

8
<

:

T |f |  1��
2T

T
2

h
1 + cos

⇣
⇡T
�

�
|f |� 1��

2T

�⌘i
1��
2T < |f |  1+�

2T

0 o.w.

.

The folded-scaled spectrum G�T (
f
�T ) =

P1
k=�1 G

⇣
f
�T � k

�T

⌘
is depicted in Fig. 2 for T = 1

and different values of � and �. Observe that for � = 1,
all the pulse shapes with different roll-of-factors result in
a constant folded-scaled spectrum. Decreasing � alters the
shape of the folded-scaled spectrum.

(a) � = 0 (b) � = 0.5

Fig. 2: Illustration of the folded-scaled spectrum for different
values of � and �.

It can be calculated that µ = min{1, (1 + �)�)} and as a
result:

C(P, �T ) =

8
<

:

1
2�T log2

⇣
1 + �TP

�2
n

⌘
1

1+� < �  1

1+�
2T log2

⇣
1 + TP

(1+�)�2
n

⌘
�  1

1+�

,

which is obtained by the correlated input expressed in
(12). On the other hand, with independent input, i.e.,
Sa(f) = P , the achievable rate is equal to Cind(P, �T ) =R 1/2�T
0 log2

⇣
1 + P

�2
n
G�T (f)

⌘
df also derived in [3] .

A comprehensive comparison of C and Cind is illustrated in
Fig. 3 for P = 20 dB. Note that for the compression factor of
1

1+� < � < 1, the excess bandwidth is exploited by FTN and
the achievable rate is increased. However, as � < 1

1+� , further
compression provides no extra gain. Using FTN, the capacity-
achieving input and the independent input can improve the
performance of the Nyquist signaling up to 40% and 65%,
respectively.

These results state that, in terms of capacity, Nyquist
signaling is optimal only for the sinc pulse. For other pulse
shapes, FTN can exploit the excess bandwidth and improve
the capacity. Although FTN signaling with independent in-
put can improve the achievable rate, the correlated input
achieves the capacity and further boosts the advantage of

Fig. 3: Comparison of C and Cind for P = 20 dB

FTN signaling. However, the capacity-achieving input imposes
hardware-related problems, stability issues and out-of-band
(OOB) emission in practical settings. This is because the PSD
of the capacity-achieving input is proportional to the inverse
of the folded-scaled spectrum. Thus, the capacity-achieving
PSD can take very large values due to the small values of the
folded-scaled spectrum.

V. NEW CONSTRAINED CAPACITY

To solve the mentioned practical issues, we introduce an up-
perbound constraint on the input PSD, i.e., Sa(f)  ✓P where
✓ 2 [1,1) can be chosen based on the hardware capabilities
and system sensitivity to OOB emission. Intuitively, looser
upperbound results in higher capacity and on contrary more
stringent upperbound results in lower capacity in exchange
for less hardware complications and lower OOB emission.
The constrained capacity for the FTN signaling with PSD
upperbound-constraint can be stated as:

C✓(P, �T ) = sup
Sa(f)

1
2�T

Z 1/2

�1/2

log2

✓
1 +

1
�2
n
G�T (

f
�T

)Sa(f)

◆
df

s.t.
1
�T

Z 1/2

�1/2

Sa(f)G�T (
f
�T

)df  P

Sa(f)  ✓P. (14)

The KKT conditions can be written as:

�1

 
1

�T

Z 1/2

�1/2
Sa(f)G�T (

f

�T
)df � P

!
= 0,

�2(f) (Sa(f)� ✓P ) = 0,

G�T (
f
�T )

�2
n +G�T (

f
�T )Sa(f)

� 2�1G�T (
f

�T
)� 2�T�2(f) = 0,

where �1 � 0 and �2(f) � 0 are the Lagrange
multipliers. Therefore, Sa(f) can be calculated as: Sa(f) =(

1
2�1G�T (f/�T )+2�T�2(f)

� �2
n

G�T (f/�T ) G�T (f/�T ) 6= 0

0 o.w.
.

Considering the KKT conditions and with some calculations,
Sa(f) can be further simplified as:

Sa(f) =

8
<

:

✓P � > ✓PG�T (f/�T ) + �2
n

���2
n

G�T (f/�T ) ✓PG�T (f/�T ) + �2
n � � > �2

n

0 o.w.

, (15)
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where � = 1/2�1. The procedure to find � is similar
to the well-known water-filling algorithm. Defining U =
{f 2 [�1/2, 1/2]|� > ✓PG�T (f/�T ) + �2

n} and V =
{f 2 [�1/2, 1/2]|✓PG�T (f/�T ) + �2

n � �}, then the power
constraint can be written as:

T (�) =
✓P

�T

Z

f2U
G�T (

f

�T
)df + (�� �2

n)
µV
�T

� P = 0,

where T (�)  (✓�1)P is a monotonically increasing function

(a) Illustration of T (�) with respect to �

(b) ✓-limited PSD for different values of ✓

Fig. 4: Analysis of the proposed algorithm for finding ✓-
limited PSD.

in � as shown in Fig. 4a for � = 1, � = 0.5, P = 1 and
different values of ✓. Therefore, the optimal � can be found
by a simple bisection search. The optimal values of � in Fig.
4a are 1.57 and 1.67 for ✓ = 8 and ✓ = 2, respectively.
The optimal PSD can be calculated by inserting the optimal �
in (15). Using the proposed algorithm, the optimal PSDs are
illustrated in Fig. 4b for � = 1, � = 0.5, P = 1 and different
values of ✓. In summary, the proposed method limits the very
large values of the original PSD to ✓P and then adjusts the
rest of the PSD in order to satisfy the power constraint.

VI. NUMERICAL RESULTS

In this section, we analyze the derived results using the
RC pulse. First, we examine the average transmit power with
Nyquist and FTN signaling. We assume that the inputs are
drawn from either an independent Gaussian process or a
Gaussian process with capacity-achieving PSD of Sa(f) =

⇢ �TP
µG�T (f/�T ) G�T (f/�T ) 6= 0

0 o.w.
. To generate the capacity-

achieving symbols, a random realization of white noise is
convolved by a sequence with PSD of S1/2

a (f). Next, the
symbols are modulated by a root raised cosine filter. Realiza-
tions of such sequences are shown in Fig. 5a for independent
and capacity-achieving symbols with Nyquist rate, i.e., � = 1
and a FTN rate, i.e., � = 0.6. Then, the average power
Px = E

�R
t |x(t)|

2dt
 

is shown in Fig. 5b for different values
of �. Fig. 5 shows that the capacity-achieving PSD combined

(a) The time domain modulated signal for
Nyquist and FTN signaling with � = 0.6

(b) Px versus � for Nyquist and FTN signaling

Fig. 5: Illustration of the effect of FTN on transmit power.

with FTN signaling satisfies the power constraint. On the
other hand, the same PSD combined with Nyquist signaling,
results in large instantaneous and average power. Also, note
that independent PSD satisfies the power constraint and results
in the same average power for all values of �.

In Fig. 6, the effect of FTN signaling on the capacity
is illustrated. As the signaling rate increases, the capacity
increases. However, as � drops below 1

1+� , the capacity does
not improve anymore. In addition, for � � 1

� � 1, change of
� has no effect on the capacity which shows the waste of the
excess bandwidth.

As mentioned before, the capacity-achieving PSD imposes
some practical issues like OOB emission. The OOB emission
is calculated as the total power leaked out of the allocated sub-
band, and shown in Fig. 7 for � = 1, � = 0.5, P = 10 dB. As
✓ increases, the OOB emission increases and for large values
of ✓, the OOB emission approaches an unaccepted level of
5 dB. On the other hand, by increasing ✓, the achievable
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Fig. 6: Illustration of the effect of FTN on capacity.

rate increases. In fact, we have C1 = Cind and C1 ! C.
Therefore, ✓ provides a flexible mechanism to capture the
trade-off between an acceptable OOB emission and a desired
rate. For example, ✓ = 10 can result in an acceptable OOB
emission of ⇠ �30 dB while it provides ⇠ 2.5 bits/s rate
(i.e., 96% of the FTN capacity).

Fig. 7: Illustration of the effect of ✓ on OOB emission and
capacity.

In Fig. 8, the capacity of ✓-limited PSD with ✓ = 10 is
compared with that of independent and capacity-achieving
PSDs for � = 0.5, 1 and � = 0.5. Not only does the
proposed PSD maintain an acceptable OOB emission, but also
it provides ⇠ 10% gain compared with the independent PSD.

VII. CONCLUSION

In this work, we analyzed the capacity of FTN signaling.
We showed that an independent PSD does not achieve the
capacity of FTN signaling. Instead, the capacity-achieving
PSD is derived which is proportional to the inverse of the
folded-scaled spectrum of the pulse shape. However, the
capacity-achieving input causes practical issues such as OOB
emission. To solve these issues, a new optimizing problem is
introduced with an additional constraint on the input PSD. The
introduced ✓-limited input PSD can strike a trade-off between
the independent input and the capacity-achieving input. The

Fig. 8: Comparison of C, C✓ and Cind..

value of ✓ can be engineered to achieve an acceptable OOB
emission and a desirable capacity.
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