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Multi-lane hybrid traffic flow model:

quantifying the impacts of lane-changing maneuvers on traffic flow

Jorge A. Laval ∗ and Carlos F. Daganzo †

October 25, 2004

Abstract. A multi-lane traffic flow model realistically captures the disruptive effects of lane-
changing vehicles by recognizing their limited ability to accelerate. While they accelerate, these
vehicles create voids in the traffic stream that affect its character. Bounded acceleration explains
two features of freeway traffic streams: the capacity drop of freeway bottlenecks, and the quantitative
relation between the discharge rate of moving bottlenecks and bottleneck speed. The model com-
bines a multilane kinematic wave module for the traffic stream, with a detailed constrained-motion
model to describe the lane-changing maneuvers, and a behavioral demand model to trigger them.
The behavioral demand model has only one parameter. It was held constant in all experiments.
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1 Introduction

Lane-changing activity on busy freeways has received increasing attention in the literature during the last
decade. Research has produce both conjectures [1–5] and empirical evidence [6–9] suggesting how lane changes
affect the traffic stream (eg, its capacity), but a quantitative understanding of the actual impacts has not yet
been reached.

This paper attempts to fill this gap. It proposes that a lane-changing vehicle creates a temporary moving
bottleneck on its target lane while it accelerates to the speed prevailing on that lane. Since the ensuing slow-
down on the target lane can trigger other disruptive lane changes (DLC’s), the multilane facility is modeled as
a set of streams linked by the DLC’s. The resulting model only needs one more parameter than the simplest
kinematic wave model (which requires three), yet it explains several puzzling observations without re-calibration.

Existing traffic flow models do not address the DLC phenomenon. Extensions to kinematic wave (KW)
theory [10, 11] with lane-changing [12–18] are inadequate because they treat DLC maneuvers as a fluid that
can accelerate instantaneously and therefore does not sufficiently hinder vehicles behind. Some microscopic
simulation models can consider realistic accelerations, but they have not yet been used successfully to model
DLC’s. Recent experience with these models [19] indicates that lane-changing greatly increases the complexity
of the model specification and estimation process.

To overcome these problems, a hybrid approach was developed in [20] that combines the best features of
microscopic and macroscopic models: the parsimony of the KW model (for the traffic stream) with the accuracy
of microscopic models (for slow vehicles). Slow vehicles are treated in this reference as moving bottlenecks within
a single KW stream, as in the kinematic wave theory of moving bottlenecks (KW-MB) [21–24]. Unfortunately,
this requires as an input the maximum possible passing rates, which can only be guessed approximately.

This obstacle is removed in this paper by modeling each lane as a separate KW stream interrupted by
the lane-changing particles, and then recognizing that the maximum passing rate on a target lane is zero.
The incremental transfer (IT) principle for multilane KW problems [12], and a behavioral demand model for
lane-changing with only one parameter are used to predict the flow transfers between neighboring lanes. A
constrained motion model that captures a vehicle’s ability to accelerate after changing lanes, recognizing both
mechanical resistance and the restrictions imposed by downstream traffic, is used to generate DLC trajectories.

The remainder of this paper is organized as follows. §2 formulates the multilane KW model and shows how
discrete moving bottlenecks can be incorporated in it. §3 presents a method for quantizing lane-changes. §4
contains examples showing the agreement of the model with known behavior of lane-drops and slow moving
obstructions. Finally, a discussion is provided in §5.

2 Multilane KW model

A continuum multilane extension of the KW model for a highway with n = 2 lanes was first presented in [13];
see also [14, 15] . For n > 2 the conservation equation for a single lane, `, is:

∂k`

∂t
+

∂q`

∂x
= Φ`, ` = 1 . . . n (1)

where k`(t, x) and q`(t, x) give the density and flow on ` at the time-space point (t, x). The inhomogeneous
term Φ` is the net lane-changing rate onto lane `, in units of vehicles per unit time per unit distance. It was
postulated in [15] that Φ` was a linear function of the set of k`’s, but the idea was not applied successfully at
the time because effective numerical methods [16, 25–27] had not yet been developed. The next two subsections
refine the idea in [13] and show how it can be implemented in discrete time.

2.1 The continuum lane-changing model

Define the vector k(t, x) .= [k1(t, x), . . . , kn(t, x)] and let Φ``′(k, t, x), ` 6= `′ be a function giving the lane-
changing rate from lane ` to lane `′. Then, the net lane-changing rate onto lane ` is:

Φ` =
∑

`′ 6=`

Φ`′` − Φ``′ . (2)
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To complete the formulation we specify functions Φ``′ that realistically represent the competition between
drivers’ desires for changing lanes, and the availability of space in the target lane. We do not assume the Φ``′ ’s
are linear in k.

To strike a balance between people’s desires for changing lanes and the available space capacity, we first
specify functions of (k, t, x) defining: (a) a desired lane-changing rate from ` to `′ (ie, a demand for lane-changing
in units of veh/time-space) L``′ , ` 6= `′, (b) a desired set of through flows on `, T`, and (c) the available capacity
(units of flow) on lane `, µ`. Formally,

L``′ = L``′(k, t, x), (3a)
T` = T`(k, t, x), (3b)
µ` = µ`(k`, t, x). (3c)

Demand functions L and T are obtained by disaggregating with a choice model the sending (or demand)
function of KW theory; the capacity function µ` is the receiving (or supply) function of KW theory [25, 26, 28].
A competition mechanism, F , then determines the actual lane-changing rates Φ``′ and through flows q` from
(3), ie:

(Φ`−1,`, q`,Φ`+1,`)
.= F(L`−1,`, T`, L`+1,`, µ`). (4)

The function F should reflect sensible priority rules, which depend upon the nature of the lane-changing
maneuvers (discretional or mandatory). For discretional lane changes we use the IT recipe, which allocates
differentials of flow to their desired target on a first-come-first-served basis. Mandatory lane changes can be
modeled similarly but are not studied in this paper.

2.2 The discrete formulation

It is assumed from now on that the fundamental diagram (FD) on each lane is triangular with free-flow speed
u, wave speed −w and jam density per lane κ. All freeway lanes are partitioned into small sections of length
∆x and time is discretized into steps of duration ∆t; see Fig. 1. The grid for time, distance and lane is
(tj

.= j∆t, xi
.= i∆x, `). For numerical stability we set

∆x
.= u∆t. (5)

We will use indices i and j to denote the calculated values at a discrete point (tj , xi); ie, kj
i` is the discrete

approximation of k`(tj , xi). In the discrete world, the conservation equation becomes

kj+1
i` − kj

i`

∆t
+

qj
i` − qj

i−1,`

∆x
=

∑

`′ 6=`

Φj
i−1,`′` − Φj

i``′ ,∀ `. (6)

This equation is ready for stepping through time, as there is only one term with time index j + 1. At each
iteration one calculates L, T and µ for every cell with (3) using the current densisites kj as arguments. One
then computes the lane-changing rates and through flows qj

i`, q
j
i−1,`, Φ

j
i−1,`′` and Φj

i``′ with the IT principle (4)
and then evaluates kj+1

i` with (6).
The desired aggregate number of advancing moves in ∆t is given by the sending function for triangular FDs:

∆tmin{ukj
i`, Q}. The desired number of lane-changing moves is then

Lj
i``′∆t∆x

.= πj
i``′∆tmin{ukj

i`, Q}, ∀ `,∀ `′ 6= `, (7)

where πj
i``′∆t is the fraction of choice-makers wishing to change from lane ` to lane `′ in ∆t.

We will assume for maximum simplicity that the choice probability is proportional to the positive speed
difference between lanes, ∆vj

i``′
.= max{0, vj

i`′ − vj
i`}, where vj

i` is the average speed on lane `; ie 1

πj
i``′∆t

.=
∆vj

i``′

u

∆t

τ
, ∀ `,∀ `′ 6= `. (8)

1We propose using Eddie’s generalized space-mean speed on a look-ahead section downstream of the current position during
an evaluation period immediately preceding the current instant. Our tests used negligible evaluation periods comparable with the
vehicle spacing.
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The parameter τ has units of time. It follows now that the probability of staying in the same lane in the next
∆t is 1−∑

`′ 6=` πi``′∆t, which will be in (0, 1] if we choose ∆t ¿ τ . Thus, the demand for through flow is

T j
i`∆t

.= ki`∆x(1−
∑

`′ 6=`

πj
i``′∆t) ∀ `, (9)

The available capacity is given by the receiving function for a triangular FD:

µj
i`∆t

.= ∆tmin{w(κ− kj
i`), Q}. (10)

This completes the formulation of the multilane KW model. A more detailed description of the algorithm
is given in [29]. Note that equations (7)-(10) have only introduced one additional parameter, τ . Appendix A
demonstrates that the discrete model is numerically stable and converges to a continuum solution as the lattice
is refined. Thus, ∆t and ∆x are not parameters of the model; they should be simply chosen as small as possible.

This model, however, is not yet sufficiently realistic. It ignores that the disruption caused by a lane change
depends on the initial speed of the lane-changing vehicle and on its ability to accelerate. As a result, it
underestimates the effects of DLC ’s. The following section shows how to remedy this problem by inserting
discrete particles in the stream.

3 Discrete lane-changes: The hybrid model

The basic idea consists in quantizing the lane-changing rates from model (3)-(10) to generate discrete lane-
changes, and then treating the temporary obstructions as blockages that move with bounded accelerations on
the target lane with the method in [30]. This is possible because the blockages have a known (zero) passing rate
and a trajectory that can be determined endogenously, eg with the constrained motion (CM) model of vehicles
kinetics in [20]. In the CM model the particle has the initial speed of the sending lane but is constrained both
by its ability to accelerate and by the downstream flow on its target lane.

To quantize the process we can simply evaluate the cumulative number of lane changes from (i, `) to (i+1, `′)
by time tj , ηj

i``′ , and then use the “floor” function bηj
i``′c to generate integer jumps. In our tests, we added

a degree of randomness, by generating particles as outcomes of Poisson variables with mean ηj
i``′ − ηj−1

i``′ , but
this is not necessary. The complete hybrid model is very parsimonious since it only requires the three usual
KW parameters (free-flow speed, capacity and jam density), and the relaxation time for lane-changing, τ . It
also requires the parameters of the CM model but these are readily available and do not pose an estimation
problem.

4 Empirical tests

The following numerical experiments assume that τ = 3 secs and the triangular FD on each lane has: free-flow
speed u = 60 mph, congested wave speed w = −15 mph and jam density per lane κ = 150 vpmpl. Additionally,
all lane-changing vehicles are assumed to have the acceleration capabilities of a typical car.

4.1 Lane-drops

The experiments in [31] show a consistent reduction in flow after the onset of congestion on bottlenecks caused
by freeway lane-drops. The sample corresponds to 6 weekdays on two different three-lane freeways: the M4
motorway near London, UK; and the I-494 freeway in Minneapolis, Minnesota, USA. In both cases flow drops
in the range of 6 to 12% were observed.

The proposed model reproduces these phenomena. Consider a 0.5 km (.3 mi) 3-lane freeway with a lane-drop
at x = 0.33 km (.2 mi); see Fig. 2a. At t = 0 the freeway is empty and the input demand gradually increases
up to the point that a queue forms and spills back to the freeway entrance. The numerical rescaled N -curves
produced by our method (with ∆t= 0.3 secs) for all lanes combined shown in part (b) were measured at the 4
evenly-spaced locations defined in part (a).

It can be seen from part (b) how the capacity drops from 2890 vph to 2656 vph at t = 16 min after the
formation of the queue, which represents an 8.3% drop. Part (c) of the figure shows the vehicle accumulation
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on the shoulder lane for 0.17 ≤ x ≤ 0.33. Notice how the breakdown takes place at the same time when the
accumulation exceeds six vehicles. This is in agreement with recent empirical observations at merge bottlenecks
[8]. This may or may not be a coincidence. After all, a lane-drop is similar to a merge in that vehicles near the
bottleneck are forced onto the adjacent lane.

4.2 Capacity flow downstream of a moving obstruction

Reference [24] describes the results of several experiments where constructions with a range of controlled speeds
v were introduced in two freeways. It was found that there was a reproducible relation between the capacity of
the moving bottleneck, Qm (the queue discharge rate,) and v, ie

Qm = Qm(v), with dQm

dv > 0 for v > 30 mph. (11)

This behavior is still not well understood. Existing theories either assume that dQm

dv = 0 (see [22, 23, 32]), or
introduce (11) as an exogenous boundary condition [20]. By doing this, however, all the factors that could affect
capacity are ignored.

To test the hybrid model we simulated the experiments in [24] for v ∈ {0, 5, 10, 20, . . . 50} and n ∈ {2, 3, 4}.
The curves in Fig. 3 plot the resulting (normalized) capacity, ρ = Qm(v)/Qm(u), versus v. They match the
empirical data of [24] (circles in the figure) reasonably well, considering that no parameters were re-calibrated.

The model predicts two regimes. Regime 1 (v > 30) where ρ(v) increases, and regime 2 (v < 30) where ρ(v)
decreases. Although [24] the does not describe experiments in this latter regime, we note from the previous
section that the hybrid model predicts ρ(0) reasonably well. Thus, it is reasonable to assume that the trend
reversal is real.

The two-regime phenomenon is qualitatively explained by the spatial location of lane changes. Fig. 4
shows the k-maps for one simulation for two bottleneck speeds, v =1 and 20 mph. Lane-changing locations
are depicted as bold dots in the figure. Note from the white regions how passing maneuvers reduce the flow
downstream of the moving obstruction, as expected. The key observation here is that the closer a maneuver is
to the bottleneck, the bigger the void in front of the lane-changer. This is because the lane-speed differences
are greater close to the bottleneck. The reason for the decline in regime 1 is a direct consequence of this effect,
because as v increases the lane-speed differences drop and lane-changing become less and less disruptive.

Note from Fig. 4a that there is a critical distance from the bottleneck where lane-changing no longer has an
effect and that for very low speeds a significant number of lane changes occur beyond this critical distance. The
trend of regime 2 is then explained because as v → 0, more and more lane changes take place far upstream from
the bottleneck where lane-speeds are similar. Of course, this result is a consequence of our simple 2 lane-choice
model (8), but it clearly highlights the importance of lane-changing location relative to the bottleneck.

5 Discussion

A four-parameter multilane hybrid model for traffic flow that recognizes the bounded accelerations of lane-
changing vehicles has been introduced. The model appears to explain the reduction in flow observed after the
onset of congestion at freeway lane-drops and the relationship between the discharge rate of a moving bottleneck
and its speed and The good match suggests that DLC theory may also describe the mechanisms governing other
common bottleneck types.

Our preliminary research shows that DLC theory also explains the “capacity drop” phenomenon observed
at merge bottlenecks. This suggests that bounded accelerations are at the heart of bottleneck behavior. This
information should allow ITS practitioners to manage capacity more efficiently by controlling the actual variables
that induce the drop in capacity. Since the spatial distribution of lane-changes appears to play a key role, one can
enhance traffic flow by controlling the location of lane changes; eg, by posting lane-changing bans or advisories
[33] at key locations.

The framework proposed in this paper is general and can be extended to model multiple traffic streams both
on freeways (eg, merges and diverges) and on urban streets. This should not be a difficult task because the
boundary conditions imposed by multiple stream problems (ie, the merging and diverging process at ramps,

2very high speed differences should discourage lane changes.
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roundabouts and signalized/unsignalized intersections) can be handled very naturally with the multilane mod-
eling framework.

Acknowledgment- This research was partially funded by the International Center of ExCellence on Urban
Transportation (ICECUT) at the University of California, Berkeley and the University of California Trans-
portation Center (UCTC).
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Figure 1: Discretized freeway representation.

9



(a)

(c)

N
(t

)-
2
6
5
6
*
t

time, min

2890 vph

2656 vph

time, min

#
o
f 

v
eh

ic
le

s

at x0

at x1

at x2

at x3

(b)

Figure 2: Simulation of a 25-minute rush on a lane-drop: (a) configuration and snapshot at t = 2 min; (b)
rescaled N -curves (c) vehicle accumulation on shoulder lane for 0.17 ≤ x ≤ 0.33.

10



Figure 3: Dimensionless bottleneck discharge rate, ρ, as a function of the slow vehicle speed v for n ∈ {2, 3, 4}
lanes.
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Figure 4: k-maps for a moving obstruction traveling at (a) v =1 mph and (b) v = 20 mph.
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Figure A1: (a) A 2x1 lane-drop; (b) exact solution in the fundamental diagram; (c) numerical N -curves; (d)
numerical k-map with ∆t= 0.2 sec.

A Appendix: Hybrid model convergence demonstration

In this section we examine the example of a lane-drop to show the convergence of model (3)-(10). The parameter
values used in this section are: u = −w = 60 mph, κ = 150 vpmpl and τ = 3 sec.

A.1 The numerical experiment

Consider a 0.4-mile, 2-lane freeway segment that has a lane-drop on lane 2 at x = 0.4 mi; see Fig. A1a. At
t = 0 all lanes have optimal density k0 = 75 vpmpl and the input demand is also k0 for t > 0.

The numerical N -curves predicted by our method (∆t= 0.2 sec) for all lanes combined are shown in part
(c), which are measured at the 5 evenly-spaced locations shown in part (a). This figure shows that this solution
consists of an instantaneous transition between states C and B; see part (b) of the figure. This solution coincides
with the (single-pipe) KW solution and indicates that the multi-lane model does not affect the discharge rate
of the bottleneck. 3

When we look at individual lanes separately, we observe reasonable patterns. Consider part (d) of the
figure, which shows the k-maps of the numerical solution for each lane and for both lanes combined. Note how

3This coincidence is a property of triangular fundamental diagrams and should not be true in general.
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the density on lane 2 near the bottleneck is approx 140 vpm and decreases gradually upstream. The opposite
happens on lane 1 with a density of k0 at the bottleneck and increases gradually upstream. This behavior is
reasonable, as common experience indicates that vehicles on the ending lane tend to drive slower the closer to
the bottleneck they are.

To show the convergence of the model one must show that it is stable and consistent [34]. This is done next.

A.2 Stability

Let N0(x) be the initial N -profile used in the previous example; ie, the N -values along the road at t = 0, which
in this case are given by N0(x) = 150x. Also let a perturbed profile Ñ0(x) = 152x. If Mj is the operator
obtained after j iterations of the numerical scheme (3)-(10), stability means that for all j:

‖ N0 − Ñ0 ‖≤ ε ⇒‖MjN0 −MjÑ0 ‖≤ ε. (A1)

for some norm ‖ · ‖. Condition (A1) states that errors in the input data do not grow with time.
Fig. A2a shows the values of the errors ‖ MjN0 −MjÑ0 ‖ for the L∞-norm, ∆t= 0.5 sec and tj ≤ 30 sec.

It is clear that (A1) is satisfied since the errors decay as time passes.

Figure A2: (a) Error propagation showing stability of M; (b) total number of lane-changes as a function of
∆t.

A.3 Consistency

Let M∆t be the operator obtained after one iteration of M with time-step ∆t, and let K∆t be the exact
continuum operator up to time ∆t. The model is consistent if

‖ M∆tN0 −K∆tN0 ‖→ 0 as ∆t → 0. (A2)

Condition (A2) indicates that the solution of M tends to the continuum solution as the grid is refined.
Fig. A3 shows the k-maps of the lane-drop example for different mesh sizes. It becomes clear that the

solution tends to Fig. A1d, obtained with ∆t = 0.2 sec. Fig. A2b shows the total number of lane-changes (on
the entire freeway during the whole simulation period) as a function of ∆t, which also converges to approx. 17.5
as ∆t → 0.
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Figure A3: k-maps of the lane-drop example for ∆t = 2 sec (top,) ∆t = 1 sec (middle) and ∆t= 0.5 sec
(bottom.)
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