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ABSTRACT OF THE DISSERTATION 

 

 

Identifying and characterizing de novo tandem repeat mutations and their contribution to 

autism spectrum disorders 

by 

Ileena Mitra 

 

Doctor of Philosophy in Bioinformatics and Systems Biology 

University of California San Diego, 2021 

 

Professor Melissa Gymrek, Chair 

 

 

Genetic factors are known to make a large contribution to the risk of Autism Spectrum Disorders 

(ASD) (1). The heritability of ASD is estimated to be over 50%, and it is estimated that de novo rare 

variants contribute in about 30% of simplex autism-affected cases (2,3).  To date, population sequencing 

studies have been limited to analyzing single nucleotide variants (SNVs), small insertions and deletions 

(indels), or copy number variants (CNVs) (4).  



 

xiv 

This dissertation expands genetic research to further identify potential genomic regions and 

pathogenic mutations associated with ASD. Tandem repeats (TRs) are a class of repetitive structural 

variants composed of 1-20 base pair repeating units (5). TRs exhibit mutation rates that are orders of 

magnitude higher than SNPs, indels, or CNVs (6), and thus represent one of the largest sources of human 

genomic variability (4,5). TRs are often associated with diseases characterized by neurological and 

developmental symptoms (7–9).  for example, Fragile X Syndrome, the most prevalent genetic cause of 

ASD (10). To date, direct studies of de novo TR mutations have been limited in population genetic 

studies.  

In this dissertation, I present a framework for population-scale characterization of genome-wide 

de novo TR mutations and their contribution to the genetic etiology of ASD. In my first chapter, I present 

my bioinformatics pipeline using MonSTR to analyze whole genome sequencing data to identify high-

confidence, germline de novo TRs within parent-offspring trios. MonSTR, a novel statistical method, 

takes genotype likelihood values reported by a TR variant caller as input and estimates the posterior 

probability of a mutation resulting in a repeat copy number change at each TR loci in each child.  

In the following chapters, I present the results from identifying de novo TR mutations in autism-

affected and unaffected children. I characterize patterns of TR mutational mechanism in the general 

population, in which I found an average of 54 de novo TRs per individual. I show that ASD affected 

individuals have a higher number of de novo TR mutations, specifically in regulatory regions and brain-

related genes, as well as larger sized mutations, compared to matched unaffected siblings. Lastly, I 

applied a novel natural selection-based method (SISTR) to identify deleterious de novo TR mutations, and 

show that autism probands are enriched for rare and pathogenic TR mutations. Overall, this dissertation 

presents and applies a novel framework for identifying and prioritizing de novo TR mutations in order to 

better understand TR mutational mechanisms and the genetic etiology of ASD.
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CHAPTER 1: INTRODUCTION 

1.1 Tandem Repeats 

Repetitive variants constitute an estimated 30% percent of the human genome, and are found in 

both coding and non-coding regions (11,12). Repetitive variants fall into various classes based on their 

structure and mode of duplication. I focus on tandem repeats (TRs), which I define as composed of short 

tandem repeats (STRs) and variable number tandem repeats (VNTRs). STRs, also called microsatellites, 

are distinguished as one to six base-pair (bp) motifs and VNTRs consist of motif lengths of over six bp. 

TRs consist of motifs repeated consecutively in sequence for a variable number of times. The genotype 

for TR variants is represented by the number of repeats of a motif at a given locus. Most TRs are highly 

multi-allelic due to their variable nature. TRs gain and lose repeat units at high rates due to polymerase 

slippage during DNA replication (13). Due to this error prone replication process, STRs have been 

reported to have a genome-wide average mutation rate of 10-8 to 10-2 mutations/locus/generation (6) and  

VNTR mutation rates are estimated to be around 10-5 (14), which is higher than most other types of de 

novo variations (Table 1) (4). 
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Table 1: Comparison of inherited and de novo variants by Rocio Acuna-Hidalgo, et al. (2016). (4) 

 

 

Due to their repetitive structure, TRs present unique challenges in sequencing, genotyping and 

mutation calling on a genome-wide population-level (5).  First, PCR preparation for sequencing will 

cause replication errors during the amplification stage, therefore PCR-free protocols must be used. 

Second, there are many algorithmic difficulties during read-pair alignment (5) due to normal variation in 

TR lengths, where insertions or deletions deviate from the reference genome. Third, the ability to 

genotype (infer the number of repeats present)  is complicated due to the fact that TRs are much longer 

than the standard Illumina read lengths of 100-150 bp. Due to these technical challenges in the 

interpretation of TRs, most previous sequencing studies have deliberately removed repetitive regions of 

the genome in analysis.  
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A number of genetic studies have demonstrated TRs to have widespread effects on a range of 

complex phenotypes in humans (5,7). Many Mendelian diseases with neurological or psychological 

symptoms are due to TR expansions (Table 2) (7). In addition, there is growing evidence that these 

repetitive variants are likely to contribute to biological differences (15) and polygenic diseases (7). A  

particularly interesting case is Fragile X Syndrome which accounts for about 2-6% of all ASD cases (16). 

It is due to an expansion of more than 200 repeats of a “CGG” STR upstream of FMR1 (17,18). TRs are a 

class of genetic variation likely contributing to risk for ASD and other neuropsychiatric disorders and 

remains to be uncovered. 
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Table 2: Tandem repeat disorders affecting the nervous system by Anthony J. Hannan (2018). (7) 
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1.2 Genetic architecture of Autism Spectrum Disorders 

Autism Spectrum Disorders (ASD) is an early onset developmental disorder characterized by 

symptoms of deficit in communication and social interaction and restrictive and repetitive behaviors (1). 

Family studies demonstrate a significant genetic basis for susceptibility of ASD (19) and the genetic SNP-

based heritability has been estimated between 17% to 52% (2).  

Numerous family whole-exome and whole-genome sequencing (WGS) studies have found a 

strong contribution of de novo mutations to ASD (20–23). Germline de novo mutations are alleles that do 

not follow Mendelian inheritance, meaning they are observed in the offspring’s germline DNA but are not 

present in the germline DNA of the parents. The novel nature of germline de novo variation excludes 

them from evolutionary selection and purification, and thus, these mutations are more likely to have 

negative fitness consequences compared to inherited genetic variation (24).  

It is estimated that de novo point mutations and de novo copy number variants (CNVs) contribute 

to an estimated 30% of all simplex ASD (3). In addition, our genome-wide study of mosaic de novo 

single nucleotide variants (SNVs), structural variants (SVs), and STRs in paternal sperm show a role of 

these variants in ASD risk recurrence (25). Studies have found over 102 genes have been found to be 

associated with ASD (26), yet these associated genes only explain a small percentage of ASD cases 

(17,27). Previous studies assessing de novo mutations contributing to ASD have been limited to SNVs, 

small insertion-deletions (indels), and CNVs and have excluded repetitive variants.  

Information from repetitive variants remains missing in most population sequencing studies due 

to sequencing errors and algorithmic difficulties in genotype interpretation. Given the rapid mutation rates 

of repetitive variants, they contribute a large number of de novo mutations per generation (5). Thus, TRs 

present rich and unexplored source of de novo mutations that may contribute to ASD and other 
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neuropsychiatric disorders. Assessment of repetitive variants will add more information to understanding 

the genetic etiology of ASD and may potentially explain a fraction ASD cases. 

 

1.3 Outline 

Chapter 2 describes the statistical method and bioinformatics pipeline created to identify de novo 

TR mutations in WGS data of parent-offspring trios.  

Chapter 3 and 4 examine the patterns of de novo TR mutations in healthy and ASD affected 

individuals.  

Chapter 5 describes the interpreting pathogenic de novo TR mutations for ASD risk. 
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CHAPTER 2: IDENTIFYING TANDEM REPEAT MUTATIONS 

2.1 Introduction 

Human genetic studies have focused on understanding how genetic variation and mutations affect 

phenotypes. Population sequencing studies primarily analyze SNV mutations using standardized 

pipelines. At present, there are no standardized procedures for discovering repeat mutations in WGS data, 

such as exists for SNV mutations (28). Therefore, my goal was to develop a streamlined and efficient 

pipeline to process raw WGS or whole exome sequencing (WES) data into a format readily usable for 

analyses of TR mutations. This would mitigate numerous technical challenges and allow the human 

genetics community to have a standardized and reproducible methodology for TR population analyses.  

In this chapter, I present the novel statistical method MonSTR, a novel bioinformatics algorithm 

for detecting TR mutations within parent-offspring trios (Section 2.2). MonSTR can be applied genome-

wide to large population whole-genome sequencing (WGS) datasets. MonSTR features a likelihood-based 

method for detecting mutation events based on individual genotype likelihood values, transmission rate, 

and prior locus mutation probability. MonSTR further attempts to determine the maternal versus paternal 

phase for unambiguous mutation events. 

In addition, I describe building a comprehensive, high-throughput pipeline that includes all 

necessary steps starting from TR variant calling in WGS to ending with a list of high confidence de novo 

TR mutations identified within a parents-offspring family (trio) (Fig. 1, Section 2.3). The experimental 

and statistical validation results presented below (Section 2.4 and 2.5) show that this pipeline can 

robustly identify genome-wide de novo TR mutations.  
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2.2 MonSTR model and method details 

2.2.1 MonSTR statistical model 

MonSTR’s likelihood model is based on a previously published model for identifying de novo 

point mutations (28). It considers a single trio (father, mother, and child) at a time. Let 𝐺𝑚 = (𝑔𝑚1, 𝑔𝑚2) 

be the diploid genotype (allele lengths) of the mother, 𝐺𝑓 = (𝑔𝑓1, 𝑔𝑓2) the diploid genotype of the father, 

and 𝐺𝑐 = (𝑔𝑐1, 𝑔𝑐2) the diploid genotype of the child in a trio. Here we will assume that the child’s 

genotype is ordered, with allele 𝑔𝑐1 derived from the mother and 𝑔𝑐2 from the father. The likelihood of a 

particular genotype configuration with no mutation can be defined as: 

𝐿(𝐺𝑚 , 𝐺𝑓 , 𝐺𝑐 | 𝐷)  ∝ 𝑀(𝐺𝑚|𝐷)𝐹(𝐺𝑓|𝐷)𝐶(𝐺𝑐|𝐷)  × 𝑇(𝐺𝑐| 𝐺𝑚 , 𝐺𝑓) × 𝑃(𝐺𝑚 , 𝐺𝑓) 

Where 𝐷 denotes available WGS data for the family at that locus, 𝑀(𝐺𝑚|𝐷) denotes the 

likelihood of maternal genotype 𝐺𝑚 given the data, 𝐹(𝐺𝑓|𝐷) denotes the likelihood of paternal genotype 

𝐺𝑓 given the data, 𝐶(𝐺𝑐|𝐷) denotes the likelihood of child genotype 𝐺𝑐 given the data, 𝑇(𝐺𝑐| 𝐺𝑚 , 𝐺𝑓) is a 

transition probability, and 𝑃(𝐺𝑚 , 𝐺𝑓) is the prior probability of observing the parent genotypes. Genotype 

likelihoods 𝑀, 𝐹, and 𝐶 are obtained directly from the GGL (genotype likelihood) field output by 

GangSTR (29). MonSTR is also compatible with the GL field (genotype likelihood) output by HipSTR 

(30). We assume a uniform prior on all genotypes, so the prior term is dropped. For simplicity below we 

drop the 𝐷 term. 

The likelihood the observed data with no mutation is computed as: 

𝐿(𝑛𝑜𝑚𝑢𝑡 )  =  ∑ ∑ 𝑀(𝐺𝑚)𝐹(𝐺𝑓)𝐺𝑓𝐺𝑚
 ∑ 𝑇(𝐺𝑐| 𝐺𝑚 , 𝐺𝑓) × 𝐶(𝐺𝑐)𝐺𝑐 ∈𝐼           (Eq. 1) 
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Where  𝐼 represents genotypes that could result from all possible transmission scenarios, i.e., 

𝐺𝑐 =  (𝑔𝑚1, 𝑔𝑓1),   (𝑔𝑚1, 𝑔𝑓2),  (𝑔𝑚2, 𝑔𝑓1), or  (𝑔𝑚2, 𝑔𝑓2). The transmission probability 𝑇(𝐺𝑐| 𝐺𝑚 , 𝐺𝑓) is 

simply equal to 0.25 for any particular transmission. 

The likelihood of a mutation occurring is computed as: 

𝐿(𝑚𝑢𝑡 ) =  ∑ ∑ 𝑀(𝐺𝑚)𝐹(𝐺𝑓)𝐺𝑓𝐺𝑚
 ∑ 𝑇(𝐺𝑐| 𝐺𝑚 , 𝐺𝑓)𝐺𝑐 ∈𝐼 [∑ 𝑅(𝑔𝑐1, 𝑘)𝐶(𝑔𝑐1 + 𝑘, 𝑔𝑐2)

𝑘
 +

𝑅(𝑔𝑐2, 𝑘)𝐶(𝑔𝑐1, 𝑔𝑐2 + 𝑘)] (Eq. 2) 

Where  𝑅(𝑔, 𝑘) gives the transition probability of allele 𝑔 mutating by 𝑘 units. The above 

equation considers all four possible transition scenarios (similar to the likelihood for no mutation), 

followed by a mutation either to the maternally inherited allele (𝑔𝑐1) or to the paternally inherited allele 

(𝑔𝑐2).  

Finally, MonSTR computes the posterior probability of a mutation as: 

𝑃(𝑚𝑢𝑡|𝐷)  =  
𝐿(𝑚𝑢𝑡|𝐷)𝑃(𝑚𝑢𝑡)

𝐿(𝑚𝑢𝑡|𝐷)𝑃(𝑚𝑢𝑡) + 𝐿(𝑛𝑜𝑚𝑢𝑡|𝐷)(1 − 𝑃(𝑚𝑢𝑡))
 

Where 𝑃(𝑚𝑢𝑡) gives the prior probability of mutation. 

MonSTR allows for specifying locus-specific mutation parameters based on the mutation model 

presented below. For this study we used a naive mutation transition probability treating each mutation 

size as equally likely and a constant prior probability of mutation across all TRs. In future use cases, 

mutation rate priors and transition probabilities could be more accurately set based on observed de novo 

mutations from this or other studies. 

 

 



 

10 

2.2.2 MonSTR statistical model for chromosome X 

The model presented above (2.2.1) applies to autosomal TRs. MonSTR implements a modified 

version of the model for identifying mutations on chromosome X.  

For chromosome X loci, males have haploid genotype calls. Thus, 𝐺𝑓 = (𝑔𝑓) rather than 𝐺𝑓 =

(𝑔𝑓1, 𝑔𝑓2). For female children, Equations 1 and 2 above have only slight modifications: 

• 𝐼, which represents the set of child genotypes that could result from all possible transmission 

scenarios, includes 𝐺𝑐 =  (𝑔𝑚1, 𝑔𝑓) or   (𝑔𝑚2, 𝑔𝑓). 

• The transition probability 𝑇(𝐺𝑐| 𝐺𝑚 , 𝐺𝑓) is set to 0.5 for each case. 

 

For male children, 𝐺𝑐 = (𝑔𝑐), and the following further modifications are made: 

• 𝐼 includes child genotype possibilities 𝐺𝑐 =  (𝑔𝑚1) or (𝑔𝑚2).  

• The transition probability only depends on the maternal genotype and 𝑇(𝐺𝑐| 𝐺𝑚) is set to 0.5 for 

each possible child genotype. 

• Equation 2 (likelihood of mutation) is modified to only consider mutations from the mother: 

𝐿(𝑚𝑢𝑡 ) =  ∑ 𝑀(𝐺𝑚)

𝐺𝑚

 ∑ 𝑇(𝐺𝑐| 𝐺𝑚)

𝐺𝑐 ∈𝐼

[∑ 𝑅(𝑔𝑐1, 𝑘)𝐶(𝑔𝑐1 + 𝑘)

𝑘

 ] 

 

2.2.3 Naïve mutation model 

In addition to the model-based mutation detection method described above (2.2.1, 2.2.2), 

MonSTR also implements two naïve methods: 
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If the --naïve option is specified, MonSTR will simply check if the child genotype call can be 

explained by Mendelian inheritance from genotypes called in the parents. Thus, it does not consider 

uncertainty from genotype likelihoods and outputs a binary result for mutation/no mutation rather than a 

posterior probability. 

If the --naïve-expansions-frr <int1,int2> option is specified, MonSTR will output candidate 

expansion mutations that have either <int1> fully repetitive reads (FRRs.  described previously (29,31). 

Fully repetitive reads at a locus indicate a potential repeat expansion) in a child and 0 in parents, or 

<int2> flanking reads supporting an allele length greater than the largest allele observed in parents. 

 

2.2.4 Inferring parent of origin 

For each mutation identified, we attempted to infer the likely parent of origin based on the child 

and parent genotypes. Let 𝐶 = (𝑐1, 𝑐2) be the child genotype, where 𝑐𝑖 is the number of repeats called in 

the ith allele. Similarly, let 𝐹 = (𝑓1, 𝑓2) and 𝑀 = (𝑚1, 𝑚2) denote the father and mother genotypes, 

respectively. If 𝑐1 ∈ 𝑀 and 𝑐1 ∉ 𝐹, we determine 𝑐2 to be the new allele and phase the mutation to the 

father. If 𝑐2 ∈ 𝑀 and 𝑐2 ∉ 𝐹, we determine 𝑐1to be the new allele and phase the mutation to the father. 

Similarly, if 𝑐1 ∈ 𝐹 and 𝑐1 ∉ 𝑀 or 𝑐2 ∈ 𝐹 and 𝑐2 ∉ 𝑀, the new allele is determined to be 𝑐2 or 𝑐1, 

respectively, and the mutation is phased to the mother. All mutations not meeting the above conditions 

were labeled with phase as unknown.  
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2.2.5 MonSTR implementation details 

MonSTR is implemented as a standalone command-line program written in C++. To improve 

speed and integration with other tools, it uses standard file formats and leverages the htslib library 

(www.htslib.org) and previously written VCF parsing libraries implemented in HipSTR (30). 

MonSTR takes as input a multi-sample VCF with genotype likelihoods for each sample generated 

by HipSTR (30) or GangSTR (29) and a pedigree file (in plink.fam (32) format https://www.cog-

genomics.org/plink2/formats#fam). It outputs a tab-delimited file describing mutation posterior 

probabilities, mutation sizes, and parent of origin inferences, for each trio at each TR. 

MonSTR can call mutations using either “model-based” (default) or “naïve” mode (options --

naïve or --naïve-expansions-frr described above). In the “model-based” option, users can choose either a 

global prior probability of mutation (default to 10-3 mutations per locus per generation) or input a file with 

per-locus mutation rates to use as priors. Further, the transition probabilities 𝑅(𝑔, 𝑘) can be set either to a 

uniform probability to mutate to any allele, or users may input values of parameters  (length dependent 

direction bias), 𝑝 (mutation step size geometric distribution parameter), and the central allele, which are 

described in detail below, to implement more detailed step size distribution models. 

MonSTR also offers many options to discard individual calls based on properties including their 

coverage, genotype quality score, or noise in estimated repeat copy number from individual reads. It will 

only process a family if all members of the trio have genotypes remaining after filtering.  

The MonSTR implementation extends code originally included in the HipSTR software 

(https://github.com/tfwillems/HipSTR) written by Thomas Willems (30). Full documentation of these and 

other options can be found at https://github.com/gymreklab/STRDenovoTools. 
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2.2.6 MonSTR limitations and relationship to other tools 

Our study presents MonSTR, a tool for identifying de novo mutations at TRs from family-based 

TR genotypes. MonSTR uses a statistical model incorporating genotype likelihoods and mutation 

parameters to estimate the posterior probability of mutation at each TR in each child. Compared to a naïve 

method of simply identifying conflicting genotypes between parents and children, MonSTR achieves 

lower false positive rates on simulated data, especially for loci with high genotype uncertainty as is the 

case for genotype calls with low coverage (Fig. 3). 

To our knowledge, no similar tool exists for identifying de novo TR mutations from genotype 

data. A recent study by Trost, et al. (33), applied ExpansionHunter Denovo (34) to identify candidate TR 

expansions enriched in ASD. However, this method does not actually detect de novo mutations and is not 

directly comparable to MonSTR. The de novo in their method name instead refers to the fact that it does 

not rely on a pre-specified annotation of the locations of TRs in the reference genome, but rather takes a 

reference-free approach to identify potential repeat expansions. Further, by design ExpansionHunter 

Denovo (34) only considers large repeat expansions beyond the sequencing read length, whereas our 

pipeline (GangSTR/MonSTR) focuses on stepwise changes at shorter TRs. While there is some overlap, 

the set of TRs analyzed by these two methods is largely orthogonal. 

While MonSTR is capable of utilizing detailed locus-specific mutation parameters as prior 

information, our study used a uniform prior mutation rate and naïve transition probabilities across all TRs 

for several reasons. (i) At the outset of this study, per-locus mutation parameters were only available for a 

subset of genome-wide loci. Most of these were inferred indirectly by MUTEA (35) and have high 

standard errors. (ii) A major goal of our study was to characterize genome-wide properties of TR 

mutations. Incorporating information about mutation rates or transition probabilities learned from smaller 
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previous studies could bias our results toward learning trends that have already been reported. By using 

inputs to MonSTR that are relatively agnostic to known trends, we are more confident in our findings 

such as differences in relative mutation rates between classes of TRs and biases in step sizes. (iii) Finally, 

genotyping TRs from NGS is still noisy, and genotype likelihoods output by GangSTR (29) or other tools 

are imperfect. We found that applying default MonSTR parameters to GangSTR genotypes identified a 

high number of false positive mutations (~50% validation rate). Inspection of these TRs identified that 

GangSTR occasionally assigned high likelihood to erroneous genotypes at some loci prone to read 

misalignments at TR regions. In these cases, tuning parameters such as mutation rate priors or posterior 

thresholds is insufficient to remove false positive calls. Thus, we needed to apply additional heuristic 

filters (e.g., requiring the de novo allele to be supported by at least 3 reads) to achieve reasonable 

validation rates (~90%). These filters currently have more influence than tuning mutation rate priors and 

reduce sensitivity, but are necessary to achieve low false positive rates. In future work, with more robust 

TR genotype likelihoods from GangSTR or other tools and locus-specific prior mutation parameters 

inferred from this or other studies, MonSTR’s model-based method is likely to be of further benefit. 

 

2.3 TR genotyping and de novo mutation discovery pipeline 

2.3.1 Simplex autism family WGS data 

The Simons Simplex Collection (SSC) dataset, collected by the Simons Foundation Autism 

Research Initiative (SFARI) (36),  used in this study consists of 1,637 quad families (Table 3). CRAM 

files containing WGS reads aligned to the hg38 reference genome and phenotype information for phases 

1-3 were obtained from SFARI base (https://base.sfari.org/). SFARI recruited families where neither 

proband nor sibling were known to have: (1) a confirmed rare and exonic de novo CNV (≤1% population 

frequency).  (2) an inherited CNV that is rare and encompasses ≥ 10 genes.  and/or (3) a known, rare 
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likely gene disrupting mutation within the exome (20). The selected families were also selected to 

minimize birth-order effects due to paternal age (20). The sporadic autism diagnosis in only a single child 

in the simplex families suggests that de novo mutations are likely to contribute to the ASD phenotype. For 

each individual, 1μg of DNA was extracted from blood samples. The data was generated by Illumina 

Hiseq paired-end WGS with PCR-free library preparation protocol. Genome sequencing coverage 

consisted of 34.8 ± 5.3x and a median library insert size of 417.8 ± 111.5 bp (20). 

 

Table 3: Description of SSC datasets used for analysis of de novo TR mutations. 

Table shows the number of families from the Simons Simplex Collection (36) included in our study.  

 # Families 

Available 

# Families 

Analyzed 

# Families After 

All QC 

Phase 1 500 quads 500 488 

Phase 2 598 quads 597 578 

Phase 3-1 449 quads 449 438 

Phase 3-2 91 quads 91 89 

Total 1638 families 1637 1593 

 

2.3.2 Bioinformatics pipeline architecture  

We performed a genome-wide analysis of de novo TR mutations (Fig. 1) using WGS available 

for 1,637 quad simplex families sequenced to 35× coverage as part of the Simons Simplex Collection 

(SSC) (36) (Table 3), which have been ascertained to enrich for probands likely to harbor previously 

uncharacterized pathogenic de novo mutations (20). We used GangSTR (29) to estimate diploid repeat 

lengths in each sample at 1,189,198 TRs with repeat unit lengths of 1–20 base pairs (bp) and median total 

TR lengths of 12 bp in the hg38 reference human genome assembly. TR genotype results were used as 

input to MonSTR to identify mutations in each child.  



 

16 

Figure 1: Study Design. 

We analyzed de novo TR mutations from WGS data for quad families from the Simons Simplex Collection. BAM, binary sequence 

alignment/map format. VCF, variant call format.  

 

 

2.3.3 Genome-wide TR genotyping 

CRAM files were processed on Amazon Web Services (AWS) using the AWS Batch service. 

Genotyping of autosomal TRs was performed with GangSTR v2.4.2 (29) using the reference TR file 

hg38_ver16.bed.gz available on the GangSTR website (https://github.com/gymreklab/GangSTR) and 

with the option --include-ggl to enable outputting detailed genotype likelihood information. Chromosome 

X TRs were genotyped using GangSTR v2.4.4 with additional options --bam-samps and --samp-sex to 

interpret sample sex for chromosome X. A separate GangSTR job was run for each family on each 

chromosome resulting in separate VCF files for each. 

Genotypes were then subject to call-level filtering using dumpSTR, which is included in the 

TRTools toolkit v1.0.0 (37). DumpSTR was applied separately to each VCF with parameters --min-call-

DP 20 --max-call-DP 1000 --filter-spanbound-only --filter-badCI --require-support 2 --readlen 150. Male 

chromosome X genotypes were filtered separately using the same parameters except with --min-call-DP 

10. These options remove genotypes with too low or too high coverage, with only spanning or flanking 

reads identified indicating poor alignment, and with maximum likelihood genotypes falling outside 95% 
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confidence intervals reported by GangSTR (29). After call-level filtering, each sample was examined for 

call-level missingness. All samples had >90% call rate and no outliers were identified. 

Filtered VCFs from each phase were then merged using mergeSTR (TRTools v1.0.0) (37) with 

default parameters. The merged VCF was then used as input to dumpSTR to compute locus-level filters 

using the parameters --min-locus-hwep 10-5 --min-locus-callrate 0.8 --filter-regions 

GRCh38GenomicSuperDup.sorted.gz --filter-regions-names SEGDUP to remove genotypes overlapping 

segmental duplications. The file GRCh38GenomicSuperDup.sorted.gz was obtained using the UCSC 

Table Browser (38) (hg38.genomicSuperDups table). For chromosome X, the Hardy-Weinberg 

Equilibrium filter was applied only to females. Filters obtained from analyzing each phase were combined 

and any TRs failing locus-level filters in any phase were removed from further analysis.  

 

2.3.4 Identifying de novo TR mutations 

MonSTR v1.0.0 was called separately on each family after applying call-level and locus-level 

genotype filters described above. MonSTR was called with non-default parameters --max-num-alleles 100 

--include-invariant --gangstr --require-all-children --output-all-loci --min-num-encl-child 3 --max-perc-

encl-parent 0.05 --min-encl-match 0.9 --min-total-encl 10 --posterior-threshold 0.5. Autosomes were run 

with the --default-prior -3 and chromosome X was run with the --naive option. These options remove TRs 

with too many alleles which are more likely to be error-prone, process all TRs even if no variation was 

observed, indicate to use GangSTR-output likelihoods (29) (rather than HipSTR (30)), only output loci if 

both children in the quad were analyzed, output all loci even if no mutation was observed, apply a 

constant prior of per-locus mutation rate of 10-3, require de novo mutation alleles to be supported by at 

least 3 enclosing reads, require de novo mutation alleles to be supported by fewer than 5% of parent 

enclosing reads, require 90% of enclosing reads in each sample to match the genotype call, require a 
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minimum of 10 enclosing reads per sample in the family, and label calls with posterior probability ≥0.5 as 

mutations. 

Resulting mutation lists output by MonSTR were subject to further quality control. We filtered 

families with likely sample contamination evidenced by extreme mutation counts (7 families, number of 

mutations > 1000), outlier mutation rates (16 families with number of mutations <20 and >241), 

mutations for which both children in the family were identified as having mutations at the same TR 

(n=43,239), and TRs with more than 25 mutations identified (n=15) as these are likely error-prone loci. 

We further filtered: calls for which the child was homozygous for the new allele (n=214,639), loci with a 

strong bias toward only observing contractions or expansions (n=179, two-sided binomial p<0.0001). We 

initially observed that mutations for which the parent of origin was homozygous often appeared to be 

erroneous due to drop out of one allele at heterozygous parents. This was most apparent for large 

mutations (± ≥ 5 repeat units) involving longer alleles difficult to span with short reads. We thus further 

required the new alleles to be supported by at least 6 enclosing reads in the child when the parent was 

called as homozygous.  

Our stringent filtering of input genotypes and resulting mutations is unlikely to capture large 

repeat expansions, which are often not supported by enclosing reads because the resulting alleles are 

longer than Illumina read lengths. Thus, genotype likelihoods are more spread out and posterior estimates 

at these loci are lower and they will fail many of the QC options specified above. To additionally identify 

candidate expansions, we called MonSTR again on each family using the non-default parameter --naive-

expansions-frr 3,8 which looks for TRs for which either: (1) the child has at least three fully repetitive 

reads and both parents have none or (2) the child has at least 8 flanking reads supporting an allele longer 

than any allele supported in either parent.  We filtered candidate expansions identified in more than 3 

samples, as we expect expansions to be rare. A total of 78 candidate expansions were identified across all 
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families (Appendix, Table 9). These were merged with the total list of mutations for downstream 

analysis. 

 

2.4 Evaluation of mutations with capillary electrophoresis (CE) fragment analysis 

To directly assess the quality of genotype and mutation calls within families, we performed 

fragment analysis using capillary electrophoresis on 49 TR mutations across 5 SSC quad families 

(Appendix, Table 6). Tested mutations show a validation rate of 90% (44 out of 49), an improvement 

over validation rates previously reported for de novo indels (39) (Appendix, Table 7). 

Whole blood-derived genomic DNA for 5 SSC quad families was obtained through SFARI Base 

to validate a subset of TR mutation calls. For each candidate TR, we designed primers to amplify the TR 

and surrounding region (Appendix, Table 6). A universal M13(-21) sequence (5’-

TGTAAAACGACGGCCAGT-3’) was appended to each forward primer. We then amplified each TR 

using a three-primer reaction previously described (40) consisting of the forward primer with the M13(-

21) sequence, the reverse primer, and a third primer consisting of the M13(-21) sequence labeled with a 

fluorophore. 

The forward (with M13(-21) sequence) and reverse primers for each TR were purchased through 

IDT. The labeled M13 primers were obtained through ThermoFisher (#450007) with fluorescent labels 

added to the 5’ ends (either FAM, VIC, NED, or PET). TRs were amplified using the forward and reverse 

primers plus an M13 primer with one of the four fluorophores with GoTaq polymerase (Promega 

#PRM7123) using PCR program: 94°C for 5 minutes, followed by 30 cycles of 94°C for 30 seconds, 

58°C for 45 seconds, 72°C for 45 seconds, followed by 8 cycles of 94°C for 30 seconds, 53°C for 45 

seconds, 72°C for 45 seconds, followed by 72°C for 30 minutes. 
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The CGG repeat at chr7:103989357 in the 5’UTR of RELN could not be amplified using the 

three-primer method and was genotyped using published primers (41) (forward: 5′-FAM-

CGCCTTCTTCTCGCCTTCTC-3′ and reverse: 5′-CGAAAAGCGGGGGTAATAGC-3′). The TR was 

amplified with HotStarTaq Polymerase (Qiagen #203203) using PCR program: 95°C for 15 minutes, 

followed by 35 cycles of 94°C for 45 seconds, 58°C for 60 seconds, 72°C for 60 seconds, followed by 

72°C for 30 minutes. 

Fragment analysis of PCR products was performed on a ThermoFisher SeqStudio instrument 

using the GSLIZ1200 ladder, G5 (DS-33) dye set, and long fragment analysis options. Resulting .fsa files 

were analyzed by manual review in GeneMapper (ThermoFisher # 4475073).  
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Figure 2: Example TR mutation validated by capillary electrophoresis. 

A mutation resulting in two additional copies of CGG in the 5’UTR of the gene RELN (chr7:103989357.  hg38) was identified 

based on WGS analysis (top). Alleles with 11 or more copies of CGG at this TR were previously implicated in ASD and have been 

shown to reduce RELN expression (42,43) . The region was amplified by PCR and the mutation was confirmed by capillary 

electrophoresis. Estimated fragment sizes for each sample (bottom x-axis) and the corresponding repeat numbers (top x- axis) are 

annotated. The fragment length corresponding to the de novo allele (12×) is denoted by the dashed gray box.  
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2.5 Statistical validation of pipeline  

2.5.1 Evaluating MonSTR on simulated WGS data 

We tested our framework on simulated WGS data, which demonstrated high sensitivity to detect 

de novo TR mutations resulting in changes of up to 10 repeat copies and low false-positive rate (<1%) 

compared with a naive method in most settings (Fig. 3).  

We created 78 quad families with 100 TR loci randomly selected from TRs passing all filters 

described above in the SSC cohort. One simulated quad family consists of the father, mother, child with 

known mutation (proband), and child with no mutation (control). We tested the ability of our entire 

pipeline to genotype TRs with GangSTR and call de novo mutations with MonSTR. To test the effect of 

depth of coverage, we generated datasets with 1-50x mean coverage with a mutation size of +1 or -1 

repeat unit changes in the proband. To test the effect of TR mutation size, we generated WGS data with 

40x coverage and mutations in probands ranging from -10 to 30 repeat unit changes. Contraction 

mutations that would have resulted in negative repeat copy numbers were excluded. For both tests, we 

simulated data under three scenarios: (1) both parents with homozygous reference TR genotypes, (2) one 

parent heterozygous, (3) both parents heterozygous (Fig. 3). 

WGS data were simulated using ART_illumina v2.5.8 (44) with non-default parameters -ss HS25 

(HiSeq 2500 simulation profile), -l 150 (150b reads), -p (paired-end reads), -f coverage (coverage was set 

as described above), -m 500 (mean fragment size) and -s 100 (standard deviation of fragment size). 

ART_illumina was applied to fasta files generated from 10Kb windows surrounding each TR locus, 

applying any mutations as described above. The resulting fastq files were aligned to the hg38 reference 

genome using bwa mem v0.7.12-r1039 (45) with non-default parameter -R 

“@RG\tID:sample_id\tSM:sample_id”, which sets the read group tag ID and sample name to sample_id 
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for each simulated sample. TRs were genotyped from aligned reads jointly across all members of the 

same family with GangSTR using identical settings to those applied to SSC data. 

We tested three mutation calling settings: a naïve mutation calling method based on hard 

genotype calls, MonSTR using default parameters, and MonSTR using an identical set of filters as 

applied to SSC data. We found overall all methods perform similarly well above 30x coverage. At lower 

coverage, MonSTR’s model-based method achieves reduced sensitivity but greater specificity compared 

to a naïve mutation calling pipeline (Fig 3). 
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Figure 3: Evaluation of MonSTR using simulated data. 

a, Evaluation of a naive TR mutation-calling method. WGS was simulated for probands with mutations and controls with no 

mutation under three different scenarios for a range of mean sequencing coverages. Top plots show the sensitivity (blue line). 

Bottom plots show the false positive rate (FPR). Shaded bars show the percent of transmissions called as mutation (blue), no 

mutation (dark grey), or no call (light ray). b, Evaluation of MonSTR’s default model-based method. Plots are the same as in a. but 

based on MonSTR’s default model. Note FPR lines are not visible because all are at 0%. c, Evaluation of TR mutation calling using 

default model-based MonSTR settings as a function of mutation size. The top plot is the same as in a, b, and shows the sensitivity 

to detect mutations as a function of their size. The bottom plot compares the estimated called mutation size (y-axis) compared to 

the true simulated mutation size (x-axis). Bubble sizes show the number of mutation calls represented at each point. d, Evaluation 

of TR mutation calling as a function of mutation size after quality filtering. Plots are same as in c, but using the stringent quality 

filters in MonSTR applied to analyze the SSC cohort. Compared to default settings, sensitivity is decreased especially for larger 

expansions, but inferred mutation sizes are unbiased. All plots are based on simulation of 100 randomly chosen TR loci. c, d, show 

results for scenario #1. 
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Figure 4: Correlation of mutation rate with paternal age per child.  

The scatter plot shows the father’s age at birth (x-axis) versus the number of autosomal de novo TR mutations identified (y-axis). 

Each point represents one child (n = 3,186). The dashed black line gives the best fit line. 

 

2.5.2 Comparison to previously reported mutation rates 

We next compared our results to known TR mutation trends (Fig. 5). Similar to previous studies 

(6,35,46), estimated mutation rates are highest for TRs with shorter repeat units (Fig. 5a) and are 

positively related to total length (in bp) of the reference TR (Fig. 5b).  

Following de novo SNVs genetic studies (20,47), autosomal TR mutation rates are correlated 

with paternal age (Pearson’s r = 0.19.  two-sided P = 2.1 × 10−26.  n = 3,186.  Fig. 4). At TR mutations 

a

b

d

c

Simon Simplex

Collection

×1,637

TR genotyping

(GangSTR)

BAMs VCFs
(1 per family) Call-level &

locus-level filters

(DumpSTR)

VCFs De novo TR

mutation calling

(MonSTR)

TR mutation

database

chr7:103989357 (CGG)
n

10,10 8,10

10,10 8,12

180 190 200 210 220 230 240

Estimated fragment size (bp)

Estimated # CGG repeats

8× 10
×

12
×

14
×

16
×

18
×

20
×

6×4×2×0×

In
te

n
s
it
y
 (

a
.u

.)

Father (10,10)

Mother (8,10)

Sibling (10,10)

Proband (8,12)

RELN

15 20 25 30 35 40 45 50

Age of father at birth

20

30

40

50

60

70

80

90

100
#

 T
R

 M
u
ta

ti
o

n
s

Best fit

0 20 40 60 80 100 120

# TR mutations per child

0

100

200

300

400

500

#
 C

h
ild

re
n

Probands

Siblings

r=0.19 p=2.1×10-26

Mitra, et al. Figure 1Figure 1



 

26 

(excluding homopolymers) for which the parent of origin could be inferred, 74% were phased to the 

father, which is similar to previous reports for de novo SNVs (48,49).  

Mutation counts in SSC are concordant with published mutation rates for CODIS forensics TRs 

(Fig. 5c), and are significantly correlated with genome-wide rates estimated by our MUTEA (35) method 

on an orthogonal set of unrelated individuals (Pearson r = 0.26.  two-sided P < 10−200.  n = 548,724.  Fig. 

5d).  

Mutation rates for CODIS markers were obtained from the National Institute of Standards and 

Technology (NIST) website (https://strbase.nist.gov/mutation.htm). 95% confidence intervals on the 

estimated number of mutations that should be observed in SSC were obtained by drawing mutation counts 

from a binomial distribution with n=the total number of children genotyped at each locus and p=the NIST 

estimated mutation rate. Intervals were obtained based on 1,000 simulations.  

Genome-wide autosomal TR mutation rates and constraint scores estimated using MUTEA (35) 

were obtained from https://s3-us-west-

2.amazonaws.com/strconstraint/Gymrek_etal_SupplementalData1_v2.bed.gz (columns est_logmu_ml and 

zscore_2). TRs were converted from hg19 to hg38 coordinates using the liftOver tool available from the 

UCSC Genome Browser (38) Store free for academic use (https://genome-store.ucsc.edu/). We 

intersected the lifted over coordinates with the GangSTR reference using the intersectBed tool included in 

BEDTools v2.28.0 (50). Only TRs overlapping GangSTR TRs by at least 50% (-f 0.5) and with the same 

repeat unit length in each set were used for analysis. 
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Figure 5: Genome-wide de novo TR mutation rate patterns.  

a, Distribution of average TR mutation rates by period. For each repeat unit length (x-axis), bars give the genome-wide estimated 

TR mutation rate (y-axis, log10 scale). Average mutation rates were computed as the total number of mutations divided by the total 

number of children analyzed. The numbers of TRs considered (rounded to the nearest 1,000) in each category are annotated. b, TR 

mutation rate vs. length. The x-axis shows the TR reference length (hg38), and the y-axis shows the log10 mutation rate estimated 

across all TRs with each reference length. Colors denote different repeat unit lengths. c, Number of TR mutations observed for 

CODIS markers. Red dots show observed mutation counts. Black dots show expected mutation counts and lines give 95% 

confidence intervals based on mutation rates reported by NIST. Each x-axis category denotes a separate CODIS marker. The total 

number of children analyzed is annotated above each marker d, Observed TR mutation counts concordant with MUTEA (35). 

Boxes show the distribution of log10 mutation rates estimated by MUTEA (y-axis) at each TR with a given number of mutations 

observed in SSC children (x-axis). Black middle lines give medians and boxes span from the 25th percentile (Q1) to the 75th 

percentile (Q3). Whiskers extend to Q1-1.5*IQR (minima) and Q3+1.5*IQR (maxima), where IQR gives the interquartile range 

(Q3-Q1). Data are shown for n = 548,724 TRs for which MUTEA estimates were available. 
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CHAPTER 3: PATTERNS OF TANDEM REPEAT MUTATIONS IN THE GENERAL 

POPULATION 

3.1 Introduction 

Studying genomic mutational mechanisms is necessary to the understanding of evolution and 

basic DNA biology. Population genetics studies analyzing genomic mutations have focused on SNVs, 

indels, and CNVs (Table 4) (4). To date, studies on TR mutational processes have been limited in the 

number of TR loci analyzed due to the availability applicable technologies (6). Therefore, the genome-

wide mutational patterns of de novo repetitive mutations remained to be understood.  

We applied MonSTR and the bioinformatics pipeline (Chapter 2, Fig. 1) to analyze de novo TR 

mutations first in the SSC 1,593 unaffected children (Table 3). We characterized genome-wide 

mutational properties of autosomal and chromosome X TR loci in the general population. Seeing that TR 

motif classes have different mutational patterns, we examined each motif class separately, as well, as 

together. We sought to assess the contribution of external factors (e.g., sex, parental age, parent of origin) 

and intrinsic sequence features (e.g., GC content, recombination rate, replication timing, etc.) to modulate 

mutation rate for each TR class. Our bioinformatics pipeline (Fig. 1) allowed for the analyzes of over of 

over 1 million TRs genome-wide and varying motif sizes up to 20 bp. Our analysis of precise TR 

mutation changes and their sizes enables the first genome-wide characterization of TR mutation 

properties. Our results below highlight the importance of including TRs in human genetic studies because 

de novo TRs double the known average mutation burden per child (Table 5, Fig. 6). Importantly, this 

analyses allowed us to gain a better understanding of TR mutational mechanisms, such as, new insights 

on the influence of parental origin (Section 3.3.2) and length-bias in mutation sizes (Section 3.3.3).  
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3.2 Methods 

3.2.1 Determinants of TR mutation rates 

Genomic and epigenomic features for each TR (Fig. 13) were compiled from a variety of 

resources. BEDTools intersect v2.28.0 (50) was used to overlap GangSTR reference TRs for each 

annotation after using liftOver to convert each to hg38 coordinates. Recombination rates (51) were 

obtained from 

https://github.com/cbherer/Bherer_etal_SexualDimorphismRecombination/blob/master/Refined_genetic_

map_b37.tar.gz. Rates were log10 transformed with a pseudo count of 0.0001 to avoid infinite values. TRs 

with scaled recombination rates ≤-3 were filtered. PhastCons (52) annotations were obtained from 

http://hgdownload.cse.ucsc.edu/goldenpath/hg38/phastCons100way/. Values were log10 transformed with 

a pseudo count of 0.0001 to avoid infinite values. TRs with transformed scores ≤-4 were filtered. 

Nucleosome occupancy scores were obtained from 

http://hgdownload.soe.ucsc.edu/goldenPath/hg18/database/uwNucOccMec.txt.gz (Mec (53)) and 

http://hgdownload.soe.ucsc.edu/goldenPath/hg18/database/uwNucOccDennis.txt.gz (Dennis (54,55)). 

Notably these two annotations were scored in opposite directions and should be anti-correlated. TRs with 

“Mec” annotations ≤-1 were filtered. TRs with “Dennis” annotations ≤-4 or ≥2, respectively, were 

filtered. Conserved promoter annotations were obtained from Table S9 of An et al (39). DNaseI 

hypersensitivity peaks based on 125 cell types profiled by the ENCODE Project (56) were obtained from 

the UCSC genome browser 

(http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeRegDnaseClustered/) and were 

treated as binary features. Histone modification peaks for embryonic stem cells (H1) were obtained from 

the Encode Project website (https://www.encodeproject.org) and were treated as binary features 

(accessions ENCFF180RPI, ENCFF720LVE, ENCFF835TGA, ENCFF219TGT, ENCFF483GVK, 

ENCFF695ZZV, ENCFF781GRI, ENCFF067WBB, ENCFF714VTU, ENCFF073WSF). GC content for 
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TR motifs and for varying size windows around each TR were computed using a custom script based on 

the hg38 reference genome. 

We fit a Poisson regression model to predict mutation counts in unaffected individuals at each TR 

based on these features. A separate model was fit for each feature and each repeat unit length, in each 

case using TR reference length (in bp) as a covariate. In each model the exposure was set to the number 

of observed transmissions in unaffected individuals. Models were fit using the 

discrete.discrete_model.Poisson module from the Python statsmodels library v0.10.1 

(https://www.statsmodels.org/). 

 

3.2.2 Analysis of mutation directionality bias 

The observed bias of longer alleles to contract and shorter alleles to expand (Fig. 11) could 

potentially be explained by genotyping errors at heterozygous loci due to “heterozygote dropout” of long 

alleles, leading to erroneous homozygous genotype calls. To reduce the potential impact of heterozygote 

dropout on apparent mutation directionality, we restricted this analysis to mutations with an absolute size 

of ≤5 units. When analyzing mutations from heterozygous vs. homozygous parents (Fig. 12), we further 

restricted to mutations consisting of a single unit and for which the child had at least 10 enclosing reads 

supporting the de novo allele, indicating the allele could be easily spanned and would be less prone to 

dropout. 

 

3.3 Genome-wide patterns of de novo TR mutations 

After applying the bioinformatics pipeline in about 1600 simplex ASD families (Chapter 2), we 

identified a total of 175,291 high-confidence TR mutations across 94,616 distinct loci in 1,593 families 
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(average 53.9 autosomal mutations per child.  Fig. 6) corresponding to an average mutation rate of 

5.6 × 10−5 mutations per locus per generation.  

 

Figure 6: Distribution of the number of autosomal de novo TR mutations.  

TR mutation counts are shown for non-ASD siblings (blue) and probands (red).  
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The majority of mutations observed result from expansions or contractions by a single repeat unit, 
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(6,57–59)  (Table 4, Fig. 8). Overall, mutations show a bias toward expansions (71%) vs. contractions 

(29%). When excluding error-prone homopolymer TRs, only 56% of mutations are expansions, still 

significantly more than the 50% expected by chance (binomial two-sided P=4.8×10-249.  n=71,822).  

 

Figure 7: Size distribution of TR mutations.  

Sizes are expressed in terms of repeat units, where >0 represents expansions and <0 represents contractions. 
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Figure 8: Mutation size distributions by repeat unit length.  

Histograms show the distribution (y-axis, fraction of total) of de novo TR mutation sizes for each repeat unit length (x-axis, number 

of repeat units). Mutations <0 denote contractions and >0 denote expansions. Colors denote different repeat unit lengths 

(grey = homopolymers.  red = dinucleotides.  gold = trinucleotides.  blue = tetranucleotides.  green = pentanucleotides.  

purple = hexanucleotides). 
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Table 4: Comparison to previously reported TR mutation parameters. 

Mutation rates were computed as the total number of mutations divided by the total number of 

transmission events observed at each class of TRs. Only healthy individuals were included in this 

analysis. p denotes the probability that a mutation is a single unit. 

Study 
Repeat unit 

(bp) 
# TRs # Mutations Mutation rate Step size (p) 

Present study 

1 

2 

3 

4 

5 

6 

325,079 

92,425 

116,185 

282,332 

115,465 

28,166 

49,106 

20,677 

3,253 

9,253 

1,641 

356 

9.8 × 10^-5 

1.4 × 10^-4 

1.8 × 10^-5 

2.1 × 10^-5 

9.0 × 10^-6 

8.0 × 10^-6 

0.47 

0.59 

0.74 

0.86 

0.73 

0.43 

Weber and Wong 2,4 28 24* 1.2 × 10^-3 0.87 

Ellegren 
2 

4 
52 102 - 

0.85 

0.92 

Huang et al 2 362 97 1.9 × 10^−4 0.37 

Ballantyne et al 

(Y-STRs) 
3-6 186 924 

3.78×10^−4 to 

7.44×10^−2 
0.96 

Sun et al 
2 

4 
2,477 2,058 

10.01 × 10^−4 

(tetra) 

2.73 × 10^−4 

(di) 

0.68 

0.99 

 

3.3.2 TR mutations show distinct patterns based on parent of origin 

We find significant biases in TR mutation characteristics arising in maternal vs. paternal 

germlines which provide insights into general biological mechanisms of TR mutation.  We examined 

mutation sizes separately for the subset of mutations phased to either the maternal or the paternal 

germline. The bias towards expansions versus contractions (excluding homopolymers) is significant for 

maternal phased mutations (57% expansions.  binomial two-sided P = 3.7 × 10−39.  n = 9,190) but not for 

paternal phased mutations (50% expansions.  P = 0.71.  n = 26,550) (Fig. 10), suggesting that the overall 

expansion bias observed is primarily driven by maternally derived mutations. Further, maternal phased 

mutations result in significantly larger changes in repeat unit copy number (Mann–Whitney one-sided 
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P < 10−200). This trend is recapitulated across all repeat unit lengths (Fig. 9), with the strongest effect at 

dinucleotide TRs. 

Given that we find that distinct parent of origin patterns on mutation frequency and size, we 

believe distinct prezygotic  biological mechanism are involved. Strand slippage during DNA replication is 

widely considered the predominant driver of TR mutations (60). However, previous studies have reported 

that other mechanisms, including non-homologous end joining (NHEJ) of DNA double-stranded breaks 

(61) and recombination-mediated processes such as meiotic gene conversion (62), may also play a role. 

Intriguingly, we find that mutations derived from maternal germlines are significantly larger and more 

prone to expansion than those from paternal germlines. Whereas spermatogonia undergo more frequent 

mitosis events which may lead to a higher rate of slippage events, oocytes lie dormant for decades and 

can accumulate DNA damage that must be repaired by error-prone processes such as homologous 

recombination or NHEJ (63). Further, oocytes have been reported to have crossover frequencies 1.7x of 

that of spermatocytes (64), providing increased potential for recombination-mediated mutations. Our 

results are consistent with a stronger influence of slippage resulting in smaller mutations in the paternal 

germline and of alternative TR mutation processes leading to larger mutations in the maternal germline. 
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Figure 9: Mean absolute mutation size by parental origin.  

Dots show the mean absolute mutation size for mutations phased towards the paternal (black) and the maternal (grey) germlines. 

Data are mean ± s.d. One-sided P-values were computed using a Mann–Whitney test.  
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Figure 10: Mutation size distributions by parental origin.  

Histograms show the distribution of de novo TR mutation sizes for mutations arising in the paternal (b) and maternal (c) germlines 

(homopolymers excluded). 

 

3.3.3 Allele directionality bias 

Previous studies assessing TR mutational patterns reported a directionality bias in mutations, with 

longer alleles more likely to experience contractions and shorter alleles more likely to experience 

expansions (6,35,65). We observe a similar bias (Fig. 11). We find that the directionality bias is notably 

stronger for mutations originating from parents heterozygous for two different allele lengths (Fig. 12), 

whereas little bias is observed for mutations from homozygous parents. This suggests that the observed 

trend could be driven in part by interaction between parent alleles, which has been previously 

hypothesized (65). 
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Figure 11: Directionality bias in TR mutation size.  

The x-axis gives the size of the parent allele relative to the hg38 reference human genome.  
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Figure 12: Mutation directionality bias in homozygous vs. heterozygous parents.  

In each plot, the x-axis gives the size of the parent allele relative to the reference genome (hg38). The y-axis gives the mean mutation 

size in terms of number of repeat units across all mutations with a given parent allele length. A separate colored line is shown for 

each repeat unit length (red = dinucleotides.  gold = trinucleotides.  blue = tetranucleotides.  green = pentanucleotides). Plots are 

restricted to mutations that were successfully phased to either the mother or the father for which the parent of origin was 

homozygous (b) or heterozygous (c). To restrict to highest confidence mutations, these plots are based only on mutations with step 

size of  1 and for which the child had more than 10 enclosing reads supporting the de novo allele. 

 

3.3.4 Influence of local genomic and epigenomic features on TR mutation rates 

We investigated determinants of TR mutation rates and found that local genomic features are only 

modestly predictive of TR mutation rates, similar to previous reports (Fig 13). We investigated 

relationships between TR mutation rates and genomic or epigenomic features. We fit a separate Poisson 

regression for each repeat unit length relating observed mutation counts to each feature. As expected, 

reference TR length is the strongest predictor of mutation rates across all TRs (Fig 13). Several features 

show similar patterns across all TRs, including the presence of active chromatin marks (negative effect) 

and recombination rate (positive effect, which has been previously suggested (66)). Other features, such 

as GC content, show distinct patterns across different TR classes. These results suggest TR variation is 

driven by a variety of mutational mechanisms that may be unique to each TR unit class. 
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Figure 13: Determinants of TR mutation rates.  

The Poisson regression coefficient is shown for each feature in models trained separately for each repeat unit length. Features 

marked with an asterisk denote significant effects (two-sided P < 0.01 after Bonferroni correction for the number of features tested 

across all models). Nominal P-values are annotated above each plot. Error bars give 95% confidence intervals. 
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CHAPTER 4: PATTERNS OF DE NOVO TANDEM REPEAT MUTATIONS IN AUTISM  

4.1 Introduction 

Autism spectrum disorders (ASDs) are due to complex genetic factors, including common 

polygenic variation, rare variants, and epistatic effects (2). Genetic studies have been unraveling the 

complex genetic architecture of ASD for decades. Many studies have found a significant contribution of 

de novo mutations to ASD (21–23,67). These studies, and ours, aim to better understand the pathology of 

ASD. 

To better understand the contribution of de novo TR mutations to ASD, we applied MonSTR and 

the bioinformatics pipeline (Chapter 2, Fig. 1) to the SSC dataset, which consists of simplex families 

(Table 3). The sporadic autism diagnosis in only a single child in the simplex families suggests that de 

novo mutations are more likely to contribute to the ASDs phenotype (20). We compared the TR 

mutational burden in ASD children to their matched unaffected siblings in order to identify genetic 

patterns associated with ASD. We sought to assess the mutational burden in genomic regions (e.g., 

coding, promoter, intron, etc.) to identify disrupted regions relevant to ASD. Our analyses reveled the 

ways in which de novo TR mutations differ in ASD, such as, by number, size, and other factors (Section 

4.3). We also assessed the functional consequences of TR mutations on gene expression (Section 4.5), 

highlighting the importance to study expression TRs in the context of diseases (15). This analyses 

allowed us to gain a better understanding of how TRs play a role in in the genetic etiology of ASD. 
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4.2 Methods 

4.2.1 Mutation burden statistical testing 

Mutation excess in probands vs. non-ASD siblings was tested using a paired t-test as 

implemented in the Python SciPy library v1.3.1 (https://docs.scipy.org/doc/scipy/reference/index.html) 

function scipy.stats.ttest_rel. We compared a vector of counts of mutations in probands to a vector of 

counts in mutations in non-ASD siblings, ordered by family ID. 

Comparison of TR mutation burden in probands vs non-ASD siblings was also computed after 

adjusting for the father’s age at birth. We used the Python statsmodels ordinary least squares regression 

module to regress unaffected mutation counts on paternal age. We then used this model to compute 

residual mutation counts in each sample after regressing on paternal age.  

Relative risk was computed as the ratio of the mean number of mutations in probands vs. non-

ASD siblings. Relative risk of greater than 1 indicates a higher burden in the probands. We estimated a 

95% confidence interval on the fraction of mutations 𝑝 =
𝑛𝑝

𝑛𝑝+𝑛𝑠
 in each category that are in probands vs. 

siblings based on a binomial distribution (𝑆𝐸(𝑝) = √
𝑝(1−𝑝)

𝑛𝑝+𝑛𝑠
 ) where 𝑛𝑝 and 𝑛𝑠 are the number of 

mutations observed in probands and siblings, respectively. We then used the upper and lower bounds on 

the fraction of mutations in probands 𝑝𝑙𝑜𝑤 = 𝑝 − 1.96𝑆𝐸(𝑝).  𝑝ℎ𝑖𝑔ℎ = 𝑝 + 1.96𝑆𝐸(𝑝) to compute the 

corresponding 95% confidence intervals for relative risk as (
𝑡𝑠𝑝𝑙𝑜𝑤

𝑡𝑝(1−𝑝𝑙𝑜𝑤)
,

𝑡𝑠𝑝ℎ𝑖𝑔ℎ

𝑡𝑝(1−𝑝ℎ𝑖𝑔ℎ)
 ), where 𝑡𝑠  and 𝑡𝑝 are 

the total number of sibling and proband samples considered, respectively. 

Gene annotations were obtained from the UCSC Table Browser (38) using the hg38 reference 

genome. Fetal brain promoter and enhancer annotations were obtained from fetal brain male ChromHMM 
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(68) annotations available on the ENCODE Project website (https://www.encodeproject.org/.  accession 

ENCSR770CMJ).  

The contribution of de novo TR mutations to ASD risk was calculated by taking the difference in 

total autosomal mutations identified in probands vs. siblings divided by the number of probands, as was 

done in a previous study of non-coding mutations in ASD (27). 

 

4.2.2 Enrichment of common variant risk  

GWAS SNP associations were downloaded from GWAS catalog (69) (ASD [EFO_0003756] 

n=637 SNPs.  SCZ [EFO_0000692] n=3,476.  EA [EFO_0004784] n=3,966). We tested whether TR 

mutations falling within 50kb of autosomal GWAS SNPs for each trait showed increased burden in 

probands vs. siblings by performing a Mann-Whitney test (Python function scipy.stats.mannwhitneyu) 

comparing mutation counts in probands vs. non-ASD siblings. We performed an additional test excluding 

mutations resulting in alleles with AF<0.05.  

 

4.2.3 Gene-set enrichment analysis using MAGMA 

For gene-set enrichment analysis, the autism gene set was defined as genes with coding or 

promoter TR mutations (transcription start site +/- 5kb) in probands only (n=268 genes). We similarly 

defined a control gene set with coding or promoter mutations only in unaffected siblings (n=242 genes).  

Genes that could not be mapped to Entrez IDs and SNPs required for MAGMA analyses were excluded. 

These are the same gene sets as used in Fig. 21 and Fig. 22a. We performed an additional test with genes 

limited to predicted pathogenic mutations in proband (n=17 genes were successfully mapped) vs 

unaffected (n=5 genes were successfully mapped) (Appendix, Table 10). As input we used SNP 
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summary statistics available from GWAS for ASD (70), schizophrenia (SCZ) (71), and educational 

attainment (EA) (72). NCBI gene definitions were used with an upstream and downstream window of 

10kb, and gene-level SNP P-values and gene-set enrichment P-values were obtained using the default 

settings in MAGMA. 

 

4.2.4 Gene expression analysis 

The Developmental Transcriptome dataset containing RNA-seq normalized gene expression 

values and meta-data for developmental brain tissue regions  was downloaded from the BrainSpan Atlas 

of the Developing Human Brain (73) (https://www.brainspan.org/static/download.html). Expression 

values were log-transformed before analysis, adding a pseudo count of 0.01 to avoid 0 values. We 

excluded brain structures “CB”, “LGE”, “CGE”, “URL”, “DTH”, “M1C-S1c”, “Ocx”, “MGE”, “PCx”, 

and “TCx” since those structures only had data for male samples at 3 or fewer time points. We used a 

one-sided Mann-Whitney test (scipy.stats.mannwhitneyu) to compare the distribution of expression in 

genes with only proband mutations vs. genes with only unaffected sibling mutations separately for each 

tissue. Meta-analysis across all brain regions was performed using Fisher’s method to combine P-values. 

The following abbreviations are used for brain structures: A1C=primary auditory cortex.  AMY= 

amygdaloid complex.  CBC=cerebellar cortex.  DFC=dorsolateral prefrontal cortex.  HIP=hippocampus.  

IPC=posteroventral (inferior) parietal cortex.  ITC=inferolateral temporal cortex.  M1C=primary motor 

cortex.  MD=mediodorsal nucleus of thalamus.  MFC=anterior cingulate cortex.  OFC=orbital frontal 

cortex.  S1C=primary somatosensory cortex.  STC=posterior superior temporal cortex.  STR=striatum.  

V1C=primary visual cortex.  VFC=ventrolateral prefrontal cortex. Expression STR summary statistics 

were obtained from Supplementary Data 2 of Fotsing, et al. (15).  
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4.3 TR mutation burden in ASD 

The total number of de novo autosomal TR mutations observed genome-wide is significantly 

higher in probands (mean=54.65 mutations) vs. non-ASD siblings (mean=53.05 mutations) (Fig. 6 and 

14, paired t-test two-sided P=9.4×10-7.  n=1,593.  relative risk [RR] = 1.03). This trend remains after 

adjusting mutation counts for paternal age (P=1.08×10-5), excluding homopolymers (P=0.0071 after 

paternal age adjustment), and is consistently observed across each SSC phase (Table 5). Autosomal 

mutations in probands result in significantly larger repeat copy number changes (Mann-Whitney one-

sided P=0.017.  Fig. 15). We analyzed chromosome X mutations separately and observed a moderate 

excess in male probands vs. male non-ASD siblings (Mann-Whitney two-sided P=0.01) but no difference 

in females (P=0.73). 

Our study is underpowered to detect specific TR loci enriched for mutations in probands vs. 

siblings at genome-wide significance (Fig. 16). Instead, we evaluated whether TRs within particular 

genomic annotations show an excess of mutations in probands vs. non-ASD siblings (Fig. 14). Mutations 

in coding regions have the highest magnitude of excess in probands vs. non-ASD siblings, but the excess 

is not statistically significant (RR=1.67.  paired t-test two-sided P=0.16) likely due to the small number of 

autosomal coding mutations (n=32, Appendix, Table 8).  We observe significant enrichment for de novo 

TR mutations falling within annotated fetal brain promoters (Fig. 14.  RR=1.20.  paired t-test two-sided 

P=0.0013.  significant after Bonferroni correction for 7 tests), which was observed previously for non-

coding point mutations10. 

The observed genome-wide excess of TR mutations in probands is modest (RR=1.03), suggesting 

that only a subset of mutations are pathogenic. Indeed, the majority (84%) of TR mutations result in 

alleles that are already common (allele frequency [AF] ≥1%) in unaffected SSC parents, and thus, are 
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likely benign. When we stratify our mutation burden analysis by the frequency of the mutant allele (Fig. 

18), we find that the mutation excess in probands increases for mutations resulting in rarer alleles, with 

the strongest effect at alleles unobserved (AF=0) in SSC parents (RR=1.10.  paired t-test two-sided 

P=0.021.  Fig. 17). This pattern remains after excluding error-prone homopolymer TRs (Fig. 19). 
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Figure 14: Mean mutation counts by gene annotation. 

Bars denote the mean number of mutations in non-ASD siblings (blue) and probands (red). Error bars give 95% confidence 

intervals. Circles and squares show counts for females and males, respectively. UTR, untranslated region. 

 

Figure 15: Mean mutation sizes in probands versus non-ASD siblings 

Bars show mean mutation size ± 95% CI (in number of repeat units). The number of mutations in each category is annotated in the 

figure. In a, b, single and double asterisks denote significant increases (P < 0.05) before and after Bonferroni correction, 

respectively. 
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Figure 16: Power to detect per-locus TR mutation enrichments. 

a, Number of recurrent mutations required to reach genome-wide significance. We performed a Fisher’s exact test to test for an 

excess of mutations in probands (n = 1,593) vs. non-ASD siblings (n = 1,593), for a different number of hypothetical mutation 

counts in probands (x-axis) and assuming 0 mutations observed in non-ASD siblings. The black line shows the two-sided P-value 

(log10 scale) obtained for each test. The grey dashed line denotes the P-value required to meet a genome-wide significance of 

P < 0.05 with Bonferroni multiple testing correction. b, Sample sizes required to identify genome-wide significant TRs. The x-axis 

shows sample size (log10 scale) in terms of the number of quad families analyzed. Each line represents a different rate of mutation 

at a particular TR in probands, assuming 0 mutations at that TR in siblings (blue = 0.001%.  orange = 0.01%.  green = 0.05%.  

red = 0.1%.  purple = 0.3%). The y-axis shows the power to detect a specific TR at genome-wide significance for each rate. c, 

Quantile-Quantile plots for per-locus TR mutation burden testing. For each TR we performed a Fisher’s exact test to test for an 

excess of mutations in probands vs. siblings. The x-axis gives expected -log10 P-values under a null (uniform) distribution. The y-

axis gives observed -log10 P-values from burden tests. Each dot represents a single TR. Black = all TRs. Gray = homopolymers 

excluded. 
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Figure 17: All coding and 5′UTR mutations to novel alleles. 

a, Mutations in probands at coding or 5′UTR TRs to unobserved alleles. Each panel shows a de novo TR mutation observed in ASD 

probands to an allele (x-axis, repeat copy number) not observed in SSC parents. Black histograms give the allele counts in parents. 

Red arrows denote the allele resulting from each specified de novo TR mutation. Pedigrees show genotypes of parents and the child 

with the mutation (probands = black diamonds.  non-ASD siblings = white diamonds). The text below pedigrees gives the gene 

and region in which the mutation occurred. b, Mutations in non-ASD siblings at coding or 5′UTR TRs to unobserved alleles. Plots 

are the same as in a. except show mutations in non-ASD siblings. 

  

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

# CCG rpts

0

500

1000

1500

2000

2500

3000

5 10 15 20 25 30

# CCG rpts

0

500

1000

1500

2000

2500

3000

2 4 6 8 10 12

# AGCGG rpts

0

1000

2000

3000

4000

4 6 8 10 12

# AGC rpts

0

500

1000

1500

2000

2500

3000

3500

4000
8,8

5,8

8,8

HDAC2 (5’UTR)

5,7

5,10

5,5

VPS37D (5’UTR)

7,18

16,30

7,16

DIP2B (5’UTR)

14,18

14,20

14,14

GDF7 (coding)

a

b

0 2 4 6 8 10 12
# AGCGCC rpts

0

500

1000

1500

2000

2 3 4 5 6 7 8

# ACGG rpts

0

1000

2000

3000

4000

2 3 4 5 6 7
# AAC rpts

0

1000

2000

3000

4000

2 4 6 8 10 12

# CCG rpts

0

1000

2000

3000

4000

1 2 3 4 5 6
# AGCTCC rpts

0

1000

2000

3000

4000

0 1 2 3 4 5 6
# AGG rpts

0

1000

2000

3000

4000

3 4 5 6 7 8

# CCG rpts

0

1000

2000

3000

4000

1 2 3 4 5 6

# CCCGG rpts

0

1000

2000

3000

4000

A
lle

le
 c

o
u
n

t 
in

 p
a

re
n
ts

A
lle

le
 c

o
u
n

t 
in

 p
a
re

n
ts

A
lle

le
 c

o
u

n
t 
in

 p
a
re

n
ts

4,5

5,10

5,5

SMPD1 (coding)

4,4

2,4

4,4

POLG (coding)

3,3

3,4

3,3

ADRA2A (5’UTR)

5,5

5,6

5,5

HECTD2 (5’UTR)

3,3

3,4

3,3

HEXIM1 (coding)

4,4

4,5

4,4

AGDRB2 (coding)

7,7

7,9

7,7

TRIOBP (coding)

4,4

4,6

4,4

FBLN2  (5’ UTR)

0 1 2 3 4

# AACAGG rpts

0

1000

2000

3000

4000

2 4 6 8 10 12 14

# CCG rpts

0

1000

2000

3000

4000

4 5 6 7 8 9 10 11 12 13

# CCG rpts

0

1000

2000

3000

4000

1 2 3 4 5 6

# AGG rpts

0

1000

2000

3000

4000

3 4 5 6 7 8 9 10

# CCG rpts

0

1000

2000

3000

4000

3 4 5 6 7 8

# CCG rpts

0

1000

2000

3000

4000

0 1 2 3 4 5

# ACGAGG rpts

0

1000

2000

3000

4000

A
lle

le
 c

o
u

n
t 

in
 p

a
re

n
ts

A
lle

le
 c

o
u

n
t 
in

 p
a
re

n
ts

8,8

8,11

8,8

HIC1 (coding)

2,2

1,2

2,2

DIP2C (coding)

4,4

4,12

4,4

FOXC1 (coding)

4,4

3,4

4,4

KDM8 (coding)

3,3

2,3

3,3

MNX1 (coding)

5,5

5,6

5,5

FOXO3 (5’UTR)

6,6

5,6

6,6

ACER3 (coding)

Proband coding/promoter autosomal mutations to novel alleles

Sibling coding/promoter autosomal mutations to novel alleles



 

52 

Figure 18: Mutation burden by AF. 

The x-axis stratifies mutations on the basis of non-overlapping bins of the frequency of the mutant allele in parents in the SSC. 

Data are mean ± 95% CI. The number of mutations in each category is annotated in the figure. ‘All’ includes all mutations. For 

other bins, only TRs for which precise copy numbers could be inferred in at least 80% of SSC parents are included. a, b, d are based 

on mutations in n = 1,593 probands and n = 1,593 siblings. 
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Figure 19:TR mutation burden in ASD excluding homopolymers. 

a, Mutation burden by gene annotation. b, Mutation burden by frequency of the allele arising by de novo mutation. The x-axis 

stratifies mutations based on non-overlapping bins of the frequency of the de novo allele in healthy controls (SSC parents). “All” 

includes all mutations. For other allele frequency bins, only TRs for which precise copy numbers could be inferred in at least 80% 

of SSC parents are included. AF = allele frequency. In both plots, the y-axis gives RR in probands vs. non-ASD siblings. Dots show 

estimated relative risk and lines give 95% confidence intervals. Gray = all samples.  green = males only.  purple = females only. 

Both plots show only TRs with repeat unit length >1bp. 
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Table 5: De novo TR mutation burden stratified by SSC datasets. 

Unadjusted p-values are based on a two-sided paired t-test comparing counts of each mutation in 

probands vs. unaffected siblings. Adjusted p-values are based on counts adjusted for paternal age. 

Phase 

Mean # Mutations - 

probands 

Mean # Mutations - 

controls 

P-value 

(unadjusted) 

P-value 

(adjusted) 

Phase 1 53.4 51.9 0.026 0.069 

Phase 2 54.3 53.1 0.027 0.048 

Phase 3_1 55.9 54.1 0.00045 0.0011 

Phase 3_2 57.8 54.0 0.008 0.008 

 

4.4 Common variant enrichment analyses  

We repeated our mutation burden analysis restricting to TRs within 50kb of SNPs previously 

associated with ASD or related traits through genome-wide association studies (GWAS). We observed no 

significant mutation excess for TRs within 50kb of ASD genome-wide association study (GWAS) 

signals, but observe nominally significant increased mutation burden in ASD probands for mutations near 

GWAS signals for schizophrenia (SCZ) and educational attainment (EA), which are positively genetically 

correlated with ASD (70) (Fig. 20a). The burden is strongest and significant for EA after multiple 

hypothesis correction (Mann Whitney two-sided P=0.0073) when only considering mutations resulting in 

common alleles (frequency >0.05.  Fig. 20b), suggesting counter-intuitively that some de novo TR 

mutations may result in ASD risk alleles that are common in the population and may be in linkage 

disequilibrium with signals identified by SNP-based GWAS. The observation of stronger enrichment for 

SCZ and EA is consistent with previous analyses of de novo point mutations (26) and may be in part due 

to higher-powered GWAS for those traits compared to ASD. 

We additionally performed gene-set enrichment analyses using MAGMA (74) to test whether 

genes identified by our TR analysis in ASD are enriched in common variants associated with EA, SCZ, or 

ASD. We used two methods to construct gene sets from TR mutations, most of which are non-coding and 

cannot be directly assigned to a gene. First, as in Fig. 21, we defined a proband gene set consisting of 
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genes with proband TR mutations in coding or promoter regions and no mutations identified in unaffected 

siblings. Second, we defined a second target list consisting only of genes with predicted severe mutations 

in probands (Appendix, Table 10). For both gene sets, we defined a similar set of control genes as those 

with only mutations in unaffected siblings. No significant enrichments were observed for control gene 

sets. We observed nominally significant enrichment of the first set in ASD GWAS (P=0.0309) and the 

second set in SCZ GWAS (P=0.0283). However, after correcting for multiple hypothesis testing, none of 

these enrichments remains significant.  

 

Figure 20: TR mutation burden near SNPs associated with ASD and related traits. 

a, b, Bars show mean TR mutation counts in probands (red) vs. non-ASD siblings (blue) for TRs within 50kb of published GWAS 

associated SNPs (ASD = autism spectrum disorder.  SCZ = schizophrenia.  EA = educational attainment) considering (a) all TR 

mutations (ASD n = 4,213.  SCZ n = 22,811.  SCZ n = 25,668 TR mutations) or (b) mutant allele frequency is >5% in controls 

(SSC parents) (ASD n = 2,774.  SCZ n = 14,661.  SCZ n = 16,364 TR mutations). Error bars give 95% confidence intervals around 

the mean. Single asterisks denote nominally significant increases (Mann–Whitney one-sided P < 0.05). Double asterisks denote 

trends that are significant after Bonferroni correction for the six categories tested. Circles and squares show counts for females and 

males, respectively. 
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4.5 Proband mutations predicted to alter gene expression 

Based on the observed enrichment in fetal brain promoters and previously demonstrated role of 

TRs in regulating gene expression (15), we hypothesized that de novo TR mutations in probands may act 

in part by altering gene expression during brain development. We examined expression of genes with 

coding or promoter mutations using the BrainSpan Atlas of the Developing Human Brain (73) resource. 

We found that genes with TR mutations only observed in ASD probands (proband gene set) show 

significantly higher prenatal expression compared to genes with only mutations found in unaffected 

siblings (control gene set) (Mann-Whitney one-sided P=6.3×10-15 at 13 post-conceptional weeks [pcw], 

meta-analysis across 16 brain structures.  Fig. 21). Median expression of the proband gene set is higher 

across all time points with the strongest effects at prenatal periods (Fig. 22a) in all brain structures 

analyzed except cerebellar cortex (CBC) and mediodorsal nucleus of thalamus (MD). We additionally 

tested whether proband mutations are predicted to alter brain expression of nearby genes based on our 

previous genome-wide analysis of effects of TR variation on gene expression (15). We found that 

predicted effects of proband mutations are significantly stronger than for TRs with only mutations in 

unaffected siblings in Brain-Caudate (Fig. 22b.  Mann-Whitney two-sided P=0.037), but not for Brain-

Cerebellum or the 15 other non-brain tissues analyzed in that study. Proband mutations are predicted to 

more significantly alter expression of nearby genes in the brain compared to control mutations (Fig. 22b). 

We identified specific TR mutations in coding or promoter regions resulting in alleles unobserved 

in unaffected parents. One example such proband mutation shown in Fig. 17a is a deletion of 3 copies of 

CAG in the 5’UTR of HDAC2, which results in a previously unobserved allele of 5 copies. In our 

previous genome-wide analysis of effects of TRs on gene expression (15), we identified a negative 

association between CAG copy number and expression of HDAC2. The de novo allele of 5 copies in the 

proband is thus predicted to increase expression of HDAC2, which is highly expressed prenatally in the 

dorsolateral prefrontal cortex and other brain regions in the BrainSpan database. Notably, a recent study 
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found that HDAC2 is upregulated in the prefrontal cortex of a Shank3-deficient mouse model of ASD  

(75) and that down-regulating HDAC2 rescues social deficits. These results are consistent with the 

hypothesis that deletion of CAG copies, resulting in increased HDAC2 expression, could contribute to an 

ASD phenotype. 
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Figure 21: Expression of genes with de novo TR mutations in brain. 

Red and blue lines show the distribution of expression of genes with only proband (n = 268 genes) or sibling mutations (n = 242 

genes), respectively. Dots give medians and lines extend from the 25th to 75th percentiles of expression across all genes in each 

set. A1C, primary auditory cortex.  AMY, amygdaloid complex.  CBC, cerebellar cortex.  DFC, dorsolateral prefrontal cortex.  

HIP, hippocampus.  IPC, posteroventral (inferior) parietal cortex.  ITC, inferolateral temporal cortex.  M1C, primary motor cortex.  

MD, mediodorsal nucleus of thalamus.  MFC, anterior cingulate cortex.  OFC, orbital frontal cortex.  S1C, primary somatosensory 

cortex.  STC, posterior superior temporal cortex.  STR, striatum.  V1C = primary visual cortex.  VFC = ventrolateral prefrontal 

cortex. 

  



 

59 

Figure 22: Proband de novo TR mutations enriched in brain-expressed genes. 

a, Ratio of median expression in proband-only genes to control-only genes across time points. The heatmap shows the ratio of the 

median expression of genes with only proband mutations (n = 268 genes) to that of genes with only mutations in non-ASD siblings 

(n = 242 genes). Each row shows a different brain structure from the BrainSpan dataset. Each column shows a different 

developmental time point. The black vertical line separates pre-natal from post-natal time points. Gray boxes indicate no data was 

available for that time point. Brain structure acronyms are defined in 4.2.4. b, Proband TR mutations enriched for brain expression 

STRs. The quantile-quantile plot shows the distribution of expression STR (eSTR) unadjusted P-values based on associating TR 

length with gene expression in Brain-Caudate samples in the GTEx cohort46. eSTR association P-values are two-sided and are 

based on t-statistics computed using linear regression analyses performed previously. Each point represents a TR by gene 

association test using a linear regression model42. The x-axis gives expected -log10 P-values and the y-axis gives observed -log10 

P-values. Red points show TRs with at least one de novo mutation in probands and 0 in controls. Blue points show TRs with at 

least one de novo mutation in controls and 0 in probands. We found no significant difference in either Brain-Cerebellum or the 

other 15 non-brain tissues analyzed in that study, which we expected should not be relevant to ASD (not shown). 
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CHAPTER 5: PRIORITIZING DISEASE RELEVANT TR MUTATIONS IN AUTISM  

5.1 Introduction 

A major barrier in genomic analyses of TRs is interpreting their consequence for disease risk. 

Determining likely causal subsets of TR mutations presents a major challenge because traditional SNV-

based annotations (e.g. protein-truncating, missense) are not applicable to TRs (76,77). Therefore, the 

genomics field requires a rigorous statistical framework for identifying likely pathogenic TRs, similar to 

metrics, such as, gene-level constraint or pLI scores used for SNVs (76,77). 

We aimed to create a novel framework to prioritize de novo TR mutations most contributing to 

ASD risk. To assess the severity of TR mutations, we categorized mutations based on allele frequency 

and predicted deleteriousness. We applied SISTR (Selection Inference on Short Tandem Repeats), a novel 

method to measure negative selection at short TRs (STRs) (Section 5.2). This method is used to predict 

the pathogenicity of specific TR alleles arising from de novo mutations. SISTR currently only supports 

short TRs with repeat lengths of 2-4bp, as these repeats are abundant and can be genotyped relatively 

accurately, and our mutation models are most accurate for these loci (35). Importantly, SISTR allowed us 

to identify an abundance of rare and pathogenic TR mutations in ASD children that may be clinically 

relevant (Section 5.3). By uncovering pathogenic TR mutations contribution to ASD, we add a novel 

layer of information to the genetic etiology of ASDs, uncover additional disease susceptibility loci, and 

capture new gene targets for functional and therapeutic research. 
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5.2 Inferring selection coefficients at TRs using SISTR 

We developed SISTR (Selection Inference at Short TRs), a population genetics framework for 

inferring selection coefficients at individual TR loci. SISTR fits an evolutionary model of TR variation 

that includes mutation, genetic drift, and negative natural selection to available empirical allele 

frequencies to infer the posterior distribution of selection coefficients. Our mutation model is based on a 

modified version of the generalized stepwise mutation model (GSM) (78). To model negative selection, 

we assume the central allele at each TR has optimal fitness (w=1), and that the fitness of other alleles is 

based on their difference in size from the optimal allele.  

SISTR applies approximate Bayesian computation (ABC) based on a previously described 

forward simulation technique (79) to infer per-locus selection coefficients by fitting allele frequencies for 

one TR at a time given a predefined optimal allele length and fixed set of mutation parameters. Our 

method outputs the median posterior estimate of s and computes a likelihood ratio test comparing the 

likelihood of the inferred s value to the likelihood of s=0.  

For each TR with a repeat unit length of 2-4bp, we used SISTR to estimate selection coefficients 

based on allele frequencies in SSC parents. We set the optimal allele length at each TR to the modal allele 

and used mutation parameters described in the above as input. We excluded TRs with repeat lengths in 

hg38 <11 units for dinucleotides, <5 units for trinucleotides, and <7 repeats for tetranucleotides, since 

those repeats are typically not polymorphic. We included only TRs for which precise copy numbers could 

be inferred in at least 80% of SSC parents. We further filtered TRs at which the 95% confidence interval 

on our estimate for s was greater than 0.3, indicating we could not estimate s precisely. After filtering, 

62,941 STRs remained for analysis. 

We used the Benjamini-Hochberg procedure (80) to adjust P-values for multiple hypothesis 

testing. To identify TRs under significant selection, we chose TRs with adjusted P-value <0.01, 
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corresponding to a false discovery rate of 1%. Allele-specific selection coefficients, which can be 

interpreted as pathogenicity scores, were computed as (|𝑎 − 𝑜𝑝𝑡|)𝑠, where 𝑎 is the number of repeat 

copies for the de novo allele, 𝑜𝑝𝑡 is the optimum (modal) repeat and 𝑠 is the selection coefficient for the 

TR inferred using SISTR. 

 

5.3 Prioritizing pathogenic TR mutations 

We sought to further prioritize TR mutations based on their predicted deleterious effects. Metrics 

commonly used to annotate SNV mutations (76,81,82) are not applicable to TRs, which tend to be multi-

allelic and result in either non-coding mutations or in-frame indels. To overcome this challenge, we 

developed a novel population genetics framework, Selection Inference at Short TRs (SISTR) to measure 

negative selection against individual TR alleles. SISTR fits an evolutionary model of TR variation that 

includes mutation, genetic drift, and negative natural selection to empirical allele frequency data (per-

locus frequencies of each allele length) to infer the posterior distribution of selection coefficients (s) at 

individual TRs (Fig. 23). SISTR is agnostic to gene annotations and analyzes both coding and non-coding 

TRs. Parameter s can be interpreted as the decrease in reproductive fitness impact for each repeat unit 

copy number away from the population modal allele at a given TR. Testing our method on simulated 

datasets capturing a range of mutation and selection models, SISTR accurately recovers simulated values 

down to s=10-4, corresponding to strong or moderate selection, for most settings (Fig. 24a-b.  Fig. 25). 

We applied SISTR to estimate selection coefficients at genome-wide TRs based on allele 

frequencies observed in unaffected SSC parents. Notably, SISTR currently only handles TRs with repeat 

unit lengths 2-4bp. Of those, SISTR could not fit models at 4.4% of TRs, potentially indicating inaccurate 

model assumptions for those loci. After filtering TRs where s could not be reliably inferred 62,941 TRs 

remained for analysis. We found that the overall distribution of selection coefficients is robust to input 
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choices including demographic model and prior distribution on s (Fig. 24c). As expected, TRs with 

significant predicted selection coefficients have significantly stronger MUTEA (35) constraint scores 

(Mann-Whitney one-sided p<10-200.  Fig. 25b). Further, protein-coding TRs under strongest negative 

selection tend to be in genes less tolerant of missense mutations (83) (Mann-Whitney one-sided 

P=0.00028.  Fig. 24d), or loss of function SNV mutations (82) (Mann-Whitney one-sided P=0.00067.  

Fig. 24e), compared to coding STRs not inferred to be under negative selection (s=0). 

We next tested for an enrichment of evolutionarily deleterious TRs in probands compared to non-

ASD siblings. When restricting to TR loci predicted to be under selection (s>0 with false discovery rate 

[FDR]<1%), we find an increased mutational burden in probands (Fig. 25c), which is most notable for 

mutations resulting in rare mutant alleles. Stratifying mutations based on allele-specific selection 

coefficients results in a further increased mutational burden (Fig. 25d). De novo TR mutations with rare 

or unobserved allele frequencies and estimated to be the most deleterious (top 1% of s scores) show the 

strongest relative risk (RR=1.34 [95% CI 1.05-1.73.  one-sided P=0.010] for rare [AF<0.01] alleles and 

RR=2.50 [95% CI 1.30-6.35.  one-sided P=0.0056] for unobserved low fitness alleles, compared to 

RR=1.03 [95% CI 1.02-1.04.  one-sided P=4.7×10-7] genome-wide). We identified 35 mutations, of 

which 25 are in probands, resulting in previously unobserved alleles predicted to be strongly deleterious 

(top 1% of s scores). Of these, multiple proband mutations are in genes with point mutations previously 

implicated in ASD (e.g., PDCD1, KCNB1, AGO1, CACNA2D3, FOXP1, RFX3, MED13L) or related 

phenotypes, whereas only two rare mutations are found in siblings to be related to ASD genes 

(Appendix, Table 10). Overall, these results suggest that the subset of TR mutations resulting in rare 

alleles under strongest selection are most pathogenic for ASD risk.  
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Figure 23: Prioritizing TR mutations by fitness effects.  

a, Comparison of true versus inferred per-locus selection coefficients. The x-axis shows the true simulated value of s, and the y-

axis shows the mean s value inferred by SISTR across 200 simulation replicates. Each color denotes a separate mutation model 

based on the repeat unit length (period) and optimal allele. b, Comparison of SISTR and MUTEA (35) . Boxes show the distribution 

of MUTEA constraint scores for TRs inferred to have non-significant (top.  n = 43,672 TRs) or significant (bottom.  n = 6,251 TRs) 

selection coefficients (FDR <1%). White middle lines show the medians and boxes span from the 25th percentile (Q1) to the 75th 

percentile (Q3). Whiskers extend to Q1 − 1.5 interquartile range (IQR) (minima) and Q3 + 1.5 IQR (maxima). c, Mutation 

burden at TR loci under negative selection. The x-axis stratifies mutations on the basis of the same allele frequency categories as 

in Fig. 18. Blue dots show relative risk considering only TRs inferred to be under the strongest negative selection (FDR <1%). 

Data are mean ± 95% CI. d, Per-allele selection coefficients stratify mutation burden within allele frequency bins. Larger s values 

denote a mutation resulting in an allele predicted to be more deleterious. s10 and s1 correspond to the top 10% and top 1% of 

pathogenicity scores, respectively. Data are mean ± 95% CI. 
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CHAPTER 6: CONCLUSION 

6.1  Conclusion 

We present a framework for the identification and prioritization of de novo TR mutations. We 

find on average 54 autosomal TR mutations per individual. The true number of mutations is probably 

underestimated owing to the stringent filtering applied to candidate mutations. Overall, our results 

identify novel patterns of TR mutation and suggest that the burden of de novo TR mutations is similar in 

magnitude to the total number of de novo point mutations per child (20,84). 

We find a significant genome-wide excess of de novo TR mutations in probands compared with 

non-ASD siblings. On the basis of this excess, we estimate that these mutations contribute to 

approximately 1.6% of simplex idiopathic ASD probands. A recent study analyzing an orthogonal set of 

variants estimated that larger complex TR expansions contribute to 2.6% of simplex cases (33) .Taken 

together, these results suggest TRs may account for around 4% of simplex ASD cases, comparable in 

magnitude to non-coding point mutations (27). 

Notably, only a subset of de novo TR mutations is likely to contribute to ASD risk or have 

deleterious effects. We find that mutations resulting in mutant alleles that are very rare (AF <0.001) or 

estimated to be under strong negative selection show the greatest signal of excess mutations in probands. 

The relative risk observed for these most severe mutations (RR = 2.50), which are all non-coding, is 

similar in magnitude to previously reported relative risks for protein-truncating variants (3). We estimate 

the overall contribution to simplex ASD to be highest for mutations resulting in common alleles (of the 

1.6% estimated above, 1.1% is attributed to mutations with AF >0.05). The impact of these mutations is 

not obvious and is the subject of future study. 

Our study faced several limitations: (1) identification of TR mutations remains challenging and 

requires stringent filtering to achieve high validation rates.  (2) our results exclude important TR mutation 
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classes, such as sequence interruptions (85), somatic variation (25), and complex repeat expansions which 

have been recently studied elsewhere (33).  and (3) we do not currently have power to implicate specific 

TRs at genome-wide significance (Fig. 16). Future methods improvements and increasing sample sizes 

are likely to pinpoint the specific TR mutations most relevant to ASD. The framework developed in our 

study will serve as a valuable resource for further characterizing TR mutations and their role in ASD and 

other diseases. 
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APPENDIX 

Abbreviations: 

ASD, Autism Spectrum Disorders 

bp, base pair 

CE, capillary electrophoresis 

CNV, copy number variant 

indels, small insertions and deletions 

STR, short tandem repeats 

SNV, single nucleotide variants 

TR, tandem repeats 

VNTR, variable number tandem repeats 
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Table 6: Primers used for capillary electrophoresis validation experiments. 

The table lists primers for each TR mutation validated. Each forward primer had an M13(-21) universal adapter sequence 

appended, shown in blue. The CGG TR at chr7:103989357 could not be amplified using the three primer method and was 

genotyped separately using published primers from Krebs et al. 2007.  

Chromos

ome 

TR start 

position (hg38) 

Repeat 

unit Forward primer Reverse primer 

chr1 106950468 GT 

TGTAAAACGACGGCCAGTCATGCACTCTG

GCAACCTAA 

TCGTGTAGACGGTAGGC

ACA 

chr1 217937145 AAAT 

TGTAAAACGACGGCCAGTGCTGAGCTCTC

CTTTGCTTC 

TGTCAGGAAACAATGCC

AAA 

chr1 242233155 AATG 

TGTAAAACGACGGCCAGTCAGTCTGGGTG

ACAGAGCAA 

AAAACCCTGGGTCTCAC

CTT 

chr1 6733191 CA 

TGTAAAACGACGGCCAGTGGTGAGCTATG

ATTGCACCA 

CAGGCCTCTGAAGCAGA

AAG 

chr1 76108862 GT 

TGTAAAACGACGGCCAGTAATCCCTCGAT

CGAAACAAA 

TAAGGCACCCCAAAGGA

AAC 

chr10 57337770 CA 

TGTAAAACGACGGCCAGTCAGGATCCCTG

AACTCAAGC 

ATGACAGTTGCCATTGCT

GT 

chr10 72427734 AT 

TGTAAAACGACGGCCAGTCAAGACCAGCT

TCAGCATCA 

GGCATGGTTAGGACCTC

AAA 

chr11 2442377 AC 

TGTAAAACGACGGCCAGTTGGTTCCAAAG

GAATTTAGCA 

GCTTCAGCTGTGCTGTGG

TA 

chr11 36246191 AATA 

TGTAAAACGACGGCCAGTCTGGGCAACAG

AGTGAGATG 

TCTCTTACCAGAGGGGCT

GA 

chr11 63798227 AC 

TGTAAAACGACGGCCAGTCACACCTGGCA

CTGTCTCAT 

GGGAATAGCGGAGGAAG

GTA 

chr11 85908552 TAGA 

TGTAAAACGACGGCCAGTCTGGGCAACAC

AGCATAGAC 

CGGGGTTTCATCATGTTG

GT 

chr12 4096182 TTCC 

TGTAAAACGACGGCCAGTCACACAAATGA

CCCCAACTG 

GAGATGAGATCGCGTCA

CTG 

chr12 75962280 T 

TGTAAAACGACGGCCAGTTACAACCATTG

TGCCTGGAA 

TGGGAGGCTGAGGTAGA

GAA 

chr12 131901040 T 

TGTAAAACGACGGCCAGTTGTAACTCCCC

ATCCCAGAG 

CCCAGTCTCATCCCATTG

TT 

chr12 70011632 AG 

TGTAAAACGACGGCCAGTTGAGGTGGTGG

TTACAGCAG 

CCATGCAGAGACTCTTGC

TC 

chr12 92269453 T 

TGTAAAACGACGGCCAGTCCAGGCTGGAA

TACAGTGGTA 

TACTTTGGGAGGTCGAG

GTG 

chr13 102648430 GT 

TGTAAAACGACGGCCAGTCCAGTTAACAG

CCACTGCAC 

CATGGGTCCCTCAGAGA

CAT 

chr13 75404064 AC 

TGTAAAACGACGGCCAGTCACAATGCTAG

AGAAAGTTCAAGG 

TTCTTACTGCGCCATCTT

TTT 

chr13 81527591 CTAT 

TGTAAAACGACGGCCAGTTTGAACAGCAA

GTGAACCTTT 

TTTTTCTGCTATTTTTGGT

ATTTTCA 

chr14 41606868 GCC 

TGTAAAACGACGGCCAGTCTTTGGGAAGC

CCAGCTC 

ACACGCGCACACACATA

CAT 

chr15 53480481 AC 

TGTAAAACGACGGCCAGTGCATTTCTTTTC

ATTGCATTTT 

CACCCACACATTCATTCC

AC 

chr15 72443969 T 

TGTAAAACGACGGCCAGTACATTCTGGCC

TCGTACCTG 

AGTGAGGCCCCATCTCTT

TT 

chr15 80839290 GT 

TGTAAAACGACGGCCAGTGGAGTGAAGG

CTGTGGAGTC 

CTCCCTCAGAAGCTGGTG

TC 

chr16 62573638 AATA 

TGTAAAACGACGGCCAGTCCCAGGAGTTT

GAGGCTACA 

TGATGATCTACAGCCCTT

TGC 

chr16 58599051 A 

TGTAAAACGACGGCCAGTGGCAGGAGAA

CTGCTTGAA 

CAGCAGGAAATACAGCA

TGTAAG 

chr16 67644335 T 

TGTAAAACGACGGCCAGTACCTTAGCCCC

AGGCTTC 

GAGACCCTGTCTCTGCAA

AA 
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chr17 8128309 TAGA 

TGTAAAACGACGGCCAGTGGCCAACAGAC

CCAGACTC 

CCGCACGTTAAGCAAAT

ACA 

chr18 38020886 TCTA 

TGTAAAACGACGGCCAGTTTATGGCAGGA

AGAGGTTGG 

TTGGTGATAGAAACAAA

TAGACGA 

chr18 38020886 TCTA 

TGTAAAACGACGGCCAGTTTATGGCAGGA

AGAGGTTGG 

TGTCTTCTTGGATTATTT

AGGATCTTT 

chr2 1273636 TA 

TGTAAAACGACGGCCAGTATGCTGGGATA

ATTGGATGC 

TTCATGGTTTGTGCTTCT

GG 

chr20 18095896 AC 

TGTAAAACGACGGCCAGTTGAGAGGACA

ACTGGGAGGA 

AGGACAAAAGCAACCTG

GAA 

chr20 42508128 TG 

TGTAAAACGACGGCCAGTTCCCAGGCCTG

AAATAACAA 

CAGGCGCTCCTAGAAAC

AAA 

chr3 54501407 T 

TGTAAAACGACGGCCAGTTCCTCCCTCCG

GTTTCTTAT 

TTGAGGCTGCAGTGAGT

CAT 

chr3 46654755 TG 

TGTAAAACGACGGCCAGTTGTCAAAACCC

ATAGAATGAACA AGATGCCCCACTGCACTC 

chr4 123573491 TTAT 

TGTAAAACGACGGCCAGTTCCCAGGTTTA

AAGCCACTG 

AAACGGCAAAGACAAAT

TGC 

chr4 136965932 AT 

TGTAAAACGACGGCCAGTGGCAGGTCTTT

CTTGAGCTG 

AGCCTGGCTTTTTACTGG

TAG 

chr4 176019003 T 

TGTAAAACGACGGCCAGTCCCTGGCCACA

CTTACCTTA 

CATGTGCCTGTAATCCCA

GA 

chr4 46950717 AAAT 

TGTAAAACGACGGCCAGTTTCCACCTCTTT

AAAAGCCATT 

GCTTGAAGCTTCTTGCTT

CC 

chr5 18768193 GT 

TGTAAAACGACGGCCAGTTCAGGAGCTTT

GTTGAAGGTG 

TGGAACAAAGCAGAGAA

TCC 

chr6 12322154 AC 

TGTAAAACGACGGCCAGTGGTGGAAGTAA

TGGTTTCTTGCT 

TGTCCCCTGGAAAGAAA

AATC 

chr6 50207587 TCTA 

TGTAAAACGACGGCCAGTCCCAAACCTTG

GATCCTTTT 

TGGGTGGGTGGAGAGAT

AGA 

chr6 84874972 AC 

TGTAAAACGACGGCCAGTGTCCCAATGCC

TCTACTGGA 

CCGGGGTGTTGTTCATAT

TC 

chr6 89959098 CA 

TGTAAAACGACGGCCAGTGAAGCTGGCCC

TGTCAATAA 

GTGGGCTGACCATGTTTT

TC 

chr7 18349308 AC 

 

TGTAAAACGACGGCCAGTAAGGCTTTTGC

ATTTGTTGG 

AAATAAGCCAGCAAGGA

GGA 

chr7 27264534 AC 

TGTAAAACGACGGCCAGTCCCAGCTACTT

GGGAAACTG 

CCATGCAATAGCTTGGGT

TT 

chr7 103989357 CCG FAM-CGCCTTCTTCTCGCCTTCTC 

CGAAAAGCGGGGGTAAT

AGC 

chr8 50595021 TG 

TGTAAAACGACGGCCAGTCCCAACCCCTC

TCTTTTCTC 

CATTCCCCAAAAATAAA

GACCA 

chr9 36061394 AC 

TGTAAAACGACGGCCAGTTGCTTGTACCC

AGCATCCTT 

TCCAGTGGCCTCTTAGAA

CA 

chr9 6685998 TTA 

TGTAAAACGACGGCCAGTCCCAGGTACAA

GCGATTCTG 

GGGTGACAGAGCAAGAA

CCT 
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Table 7: Comparison of GangSTR vs. capillary genotypes at candidate TR mutations.  

The table lists 49 TR candidate mutations in 5 families. Columns include: family identifier, family member 

(fa=father, mo=mother, s1=sibling, p1=proband), TR chromosome, TR start position (hg 38), genotype called by GangSTR, 

genotype called by capillary electrophoresis, genotype validated between both methods (Y=yes, N=no), mutation validated 

between both methods (Y=yes, N=no, NA=low sequencing quality). The row for corresponding to the child with the inferred 

mutation (proband or sibling) at each locus is in bold. All genotypes are given in terms of the number of copies of the repeat 

unit. 

 

Famil

y 

Membe

r 

Chro

m 

TR start 

position 

(hg38) 

GangST

R 

Genotype 

(A1) 

GangST

R 

Genotype 

(A2) 

Capillary 

Genotyp

e (A1) 

Capillary 

Genotyp

e (A2) 

Genotyp

e 

Validate

d 

Mutation 

Validated 

1 fa chr6 50207587 12 12 12 12 Y 

Y 
1 mo chr6 50207587 11 12 11 12 Y 

1 p1 chr6 50207587 12 12 12 12 Y 

1 s1 chr6 50207587 12 13 12 13 Y 

1 fa chr1 6733191 16 16 16 16 Y 

N 
1 mo chr1 6733191 16 16 16 25 N 

1 p1 chr1 6733191 16 16 16 16 Y 

1 s1 chr1 6733191 16 25 16 25 Y 

1 fa chr1 76108862 17 17 17 17 Y 

Y 
1 mo chr1 76108862 15 15 15 15 Y 

1 p1 chr1 76108862 15 17 15 17 Y 

1 s1 chr1 76108862 14 17 14 17 Y 

1 fa chr10 72427734 16 23 16 23 Y 

Y 
1 mo chr10 72427734 8 26 8 26 Y 

1 p1 chr10 72427734 8 17 8 17 Y 

1 s1 chr10 72427734 8 23 8 23 Y 

1 fa chr11 85908552 16 16 16 16 Y 

Y 
1 mo chr11 85908552 13 15 13 15 Y 

1 p1 chr11 85908552 13 16 13 16 Y 

1 s1 chr11 85908552 13 15 13 15 Y 

1 fa chr12 70011632 15 23 15 23 Y 

Y 
1 mo chr12 70011632 12 12 12 12 Y 

1 p1 chr12 70011632 12 15 12 15 Y 

1 s1 chr12 70011632 12 24 12 24 Y 

1 fa chr12 92269453 14 27 14 14 N 

N 
1 mo chr12 92269453 14 14 14 14 Y 

1 p1 chr12 92269453 14 28 14 14 N 

1 s1 chr12 92269453 14 27 14 14 N 

1 fa chr13 81527591 11 13 11 13 Y 

Y 
1 mo chr13 81527591 10 12 10 12 Y 

1 p1 chr13 81527591 12 14 12 14 Y 

1 s1 chr13 81527591 10 13 10 13 Y 

1 fa chr15 53480481 18 18 18 18 Y 

Y 
1 mo chr15 53480481 21 24 21 24 Y 

1 p1 chr15 53480481 18 20 18 20 Y 

1 s1 chr15 53480481 18 21 18 21 Y 

1 fa chr15 72443969 14 14 14 14 Y 

Y 
1 mo chr15 72443969 14 14 14 14 Y 

1 p1 chr15 72443969 14 15 14 15 Y 

1 s1 chr15 72443969 14 14 14 14 Y 

1 fa chr16 58599051 19 20 19 20 Y 

Y 
1 mo chr16 58599051 20 20 20 21 N 

1 p1 chr16 58599051 19 23 19 23 Y 

1 s1 chr16 58599051 19 20 19 20 Y 

1 fa chr16 67644335 18 18 18 18 Y 

Y 
1 mo chr16 67644335 18 18 18 18 Y 

1 p1 chr16 67644335 18 18 18 18 Y 

1 s1 chr16 67644335 18 19 18 19 Y 
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1 fa chr17 8128309 14 16 14 16 Y 

Y 
1 mo chr17 8128309 13 16 13 16 Y 

1 p1 chr17 8128309 13 13 13 13 Y 

1 s1 chr17 8128309 14 16 14 16 Y 

1 fa chr18 38020886 9 12 9 12 Y 

Y 
1 mo chr18 38020886 10 10 10 10 Y 

1 p1 chr18 38020886 10 12 10 12 Y 

1 s1 chr18 38020886 11 12 11 12 Y 

1 fa chr3 46654755 10 11 10 11 Y 

Y 
1 mo chr3 46654755 10 11 10 11 Y 

1 p1 chr3 46654755 11 12 11 12 Y 

1 s1 chr3 46654755 11 11 11 11 Y 

1 fa chr8 50595021 16 16 16 16 Y 

Y 
1 mo chr8 50595021 16 18 16 18 Y 

1 p1 chr8 50595021 16 16 16 16 Y 

1 s1 chr8 50595021 15 16 15 16 Y 

1 fa chr9 36061394 22 26 22 26 Y 

Y 
1 mo chr9 36061394 22 29 22 29 Y 

1 p1 chr9 36061394 26 37 26 29 N 

1 s1 chr9 36061394 27 29 27 29 Y 

1 fa chr9 6685998 15 18 15 18 Y 

Y 
1 mo chr9 6685998 9 15 9 15 Y 

1 p1 chr9 6685998 9 17 9 17 Y 

1 s1 chr9 6685998 15 18 15 18 Y 

1 mo chr4 46950717 8 14 8 14 Y 

Y 
1 p1 chr4 46950717 8 15 8 15 Y 

1 s1 chr4 46950717 8 8 8 8 Y 

1 fa chr4 46950717 8 13 8 13 Y 

1 fa chr6 84874972 24 25 24 25 Y 

Y 
1 mo chr6 84874972 18 18 18 18 Y 

1 p1 chr6 84874972 18 25 18 25 Y 

1 s1 chr6 84874972 18 22 18 22 Y 

1 fa chr6 89959098 20 28 20 28 Y 

Y 
1 mo chr6 89959098 24 25 24 25 Y 

1 p1 chr6 89959098 25 26 25 26 Y 

1 s1 chr6 89959098 20 24 20 24 Y 

2 fa chr10 57337770 22 26 22 26 Y 

Y 
2 mo chr10 57337770 22 23 22 23 Y 

2 s1 chr10 57337770 23 26 23 26 Y 

2 p1 chr10 57337770 22 24 22 24 Y 

2 fa chr11 63798227 16 24 16 24 Y 

Y 
2 mo chr11 63798227 16 16 16 16 Y 

2 s1 chr11 63798227 16 23 16 23 Y 

2 p1 chr11 63798227 16 24 16 24 Y 

2 fa chr12 

13190104

0 15 15 15 15 Y 

Y 
2 mo chr12 

13190104

0 15 15 15 15 Y 

2 s1 chr12 

13190104

0 15 15 15 15 Y 

2 p1 chr12 

13190104

0 15 16 15 16 Y 

2 fa chr13 75404064 12 12 12 12 Y 

N 
2 mo chr13 75404064 12 19 12 19 Y 

2 s1 chr13 75404064 10 12 12 12 N 

2 p1 chr13 75404064 12 19 12 19 Y 

3 fa chr14 41606868 7 8 7 8 Y 

Y 
3 mo chr14 41606868 7 8 7 8 Y 

3 s1 chr14 41606868 7 8 7 8 Y 

3 p1 chr14 41606868 8 10 8 10 Y 

2 fa chr15 80839290 23 23 23 28 N 
N 

2 mo chr15 80839290 23 29 23 29 Y 
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2 s1 chr15 80839290 23 28 23 28 Y 

2 p1 chr15 80839290 23 30 23 29 N 

2 fa chr7 

10398935

7 10 10 10 10 Y 

Y 
2 mo chr7 

10398935

7 8 10 8 10 Y 

2 s1 chr7 

10398935

7 10 10 10 10 Y 

2 p1 chr7 

10398935

7 8 12 8 12 Y 

2 fa chr1 

24223315

5 9 9 9 9 Y 

Y 
2 mo chr1 

24223315

5 9 11 9 11 Y 

2 s1 chr1 

24223315

5 9 10 9 10 Y 

2 p1 chr1 

24223315

5 9 9 NA NA NA 

4 fa chr11 36246191 9 12 9 12 Y 

Y 
4 mo chr11 36246191 12 13 12 13 Y 

4 s1 chr11 36246191 9 12 9 12 Y 

4 p1 chr11 36246191 11 13 11 13 Y 

4 fa chr16 62573638 11 14 11 14 Y 

Y 
4 mo chr16 62573638 10 11 10 11 Y 

4 s1 chr16 62573638 11 11 11 11 Y 

4 p1 chr16 62573638 11 13 11 13 Y 

5 fa chr1 

10695046

8 22 26 22 26 Y 

Y 
5 mo chr1 

10695046

8 19 19 19 19 Y 

5 p1 chr1 

10695046

8 19 25 19 25 Y 

5 s1 chr1 

10695046

8 19 22 19 22 Y 

5 fa chr1 

21793714

5 7 11 7 11 Y 

Y 
5 mo chr1 

21793714

5 7 11 7 11 Y 

5 p1 chr1 

21793714

5 11 13 11 13 Y 

5 s1 chr1 

21793714

5 11 11 11 11 Y 

5 fa chr2 1273636 8 8 8 8 Y 

Y 
5 mo chr2 1273636 8 8 8 8 Y 

5 p1 chr2 1273636 8 8 8 8 Y 

5 s1 chr2 1273636 6 8 6 8 Y 

5 fa chr3 54501407 14 16 14 16 Y 

Y 
5 mo chr3 54501407 14 16 14 16 Y 

5 p1 chr3 54501407 16 17 16 17 Y 

5 s1 chr3 54501407 14 16 14 16 Y 

5 fa chr4 

12357349

1 3 3 3 3 Y 

Y 
5 mo chr4 

12357349

1 3 3 3 3 Y 

5 p1 chr4 

12357349

1 2 3 2 3 Y 

5 s1 chr4 

12357349

1 3 3 3 3 Y 

5 fa chr4 

13696593

2 12 13 12 13 Y 
N 

5 mo chr4 

13696593

2 7 7 7 15 N 
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5 p1 chr4 

13696593

2 7 12 7 12 Y 

5 s1 chr4 

13696593

2 12 15 12 15 Y 

5 fa chr4 

17601900

3 19 23 19 23 Y 

Y 
5 mo chr4 

17601900

3 19 23 19 23 Y 

5 p1 chr4 

17601900

3 22 23 22 23 Y 

5 s1 chr4 

17601900

3 19 23 19 23 Y 

5 fa chr5 18768193 19 24 19 24 Y 

Y 
5 mo chr5 18768193 19 24 19 24 Y 

5 p1 chr5 18768193 24 24 24 24 Y 

5 s1 chr5 18768193 22 24 22 24 Y 

5 fa chr6 12322154 16 17 16 17 Y 

Y 
5 mo chr6 12322154 13 15 13 15 Y 

5 p1 chr6 12322154 11 17 11 17 Y 

5 s1 chr6 12322154 13 17 13 17 Y 

5 fa chr7 18349308 25 26 25 26 Y 

Y 
5 mo chr7 18349308 20 25 20 25 Y 

5 p1 chr7 18349308 25 25 25 25 Y 

5 s1 chr7 18349308 20 28 20 28 Y 

5 fa chr7 27264534 23 28 23 28 Y 

Y 
5 mo chr7 27264534 22 23 22 23 Y 

5 p1 chr7 27264534 23 25 23 25 Y 

5 s1 chr7 27264534 22 23 22 23 Y 

5 fa chr11 2442377 19 21 19 21 Y 

Y 
5 mo chr11 2442377 20 23 20 23 Y 

5 p1 chr11 2442377 20 21 20 21 Y 

5 s1 chr11 2442377 18 20 18 20 Y 

5 fa chr12 4096182 13 17 13 17 Y 

Y 
5 mo chr12 4096182 10 13 10 13 Y 

5 p1 chr12 4096182 13 14 13 14 Y 

5 s1 chr12 4096182 10 13 10 13 Y 

5 fa chr12 75962280 20 23 20 23 Y 

Y 
5 mo chr12 75962280 21 21 21 21 Y 

5 p1 chr12 75962280 21 24 21 24 Y 

5 s1 chr12 75962280 21 23 21 23 Y 

5 fa chr13 

10264843

0 12 17 12 17 Y 

Y 
5 mo chr13 

10264843

0 12 19 12 19 Y 

5 p1 chr13 

10264843

0 12 12 12 12 Y 

5 s1 chr13 

10264843

0 16 19 16 19 Y 

5 fa chr18 38020886 6 10 6 10 Y 

Y 
5 mo chr18 38020886 10 11 10 11 Y 

5 p1 chr18 38020886 6 12 6 12 Y 

5 s1 chr18 38020886 10 11 10 11 Y 

5 fa chr20 18095896 22 25 22 25 Y 

Y 
5 mo chr20 18095896 22 28 22 28 Y 

5 p1 chr20 18095896 21 28 21 28 Y 

5 s1 chr20 18095896 22 22 22 22 Y 

5 fa chr20 42508128 11 11 11 11 Y 

Y 
5 mo chr20 42508128 11 11 11 11 Y 

5 p1 chr20 42508128 11 12 11 12 Y 

5 s1 chr20 42508128 11 11 11 11 Y 
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Table 8: All de novo TR Mutations in coding regions. 

The table lists 33 de novo TR mutations in protein-coding regions. Columns include: Phenotype (1=unaffected sibling, 2=ASD 

proband), TR chromosome, TR start position (hg 38 reference), mutation unit size (number of repeats), repeat motif, 

frequency of de novo allele in SSC parents, and gene name.                                                                  

Phenotype 

(2=proband, 

1=control) Chromosome 

Position 

(hg38) 

Mutation 

size (# units) Repeat motif 

Frequency of 

new allele Gene 

2 1 31756261 1 AAC 0 ADGRB2 

2 1 50419102 -2 CCG 0.172459 DMRTA2 

2 1 154869724 2 AGC 0.002472 KCNN3 

2 2 20667363 2 CCG 0 GDF7 

2 2 199819527 1 A 0.112661 FTCDNL1 

2 3 40462030 1 AGC 0.0136 RPL14 

2 3 48927631 -1 AAG 0.003322 ARIH2 

2 3 49312475 1 A 0.000644 USP4 

2 6 108561445 -2 CCG 0.011272 FOXO3 

2 7 91265145 1 CCG 0.406848 FZD1 

2 9 12775888 3 AGC 0.001498 LURAP1L 

2 11 6390707 5 AGCGCC 0 SMPD1 

2 11 62727008 -1 CCG 0.00043 HNRNPUL2 

2 12 6667905 -2 AGC 0.001076 ZNF384 

2 12 102958394 1 AGC 0.01428 ASCL1 

2 15 89326710 -2 AGG 0 POLG 

2 17 45150159 1 AGCTCC 0 HEXIM1 

2 17 67959646 1 AGCCCCTCC 0.174449 BPTF 

2 19 40512815 1 AGCGGGCGC 0.006607 SPTBN4 

2 22 37746313 2 CCG 0 TRIOBP 

2 X 136502889 -1 AAG 0 HTATSF1 

1 1 154869724 -1 AGC 0.111236 KCNN3 

1 1 154869724 1 AGC 0.11573 KCNN3 

1 3 63912686 -2 AGC 0.000665 ATXN7 

1 6 1611317 8 CCG 0 FOXC1 

1 7 157005635 -1 ACGAGG 0 MNX1 

1 9 97854419 2 CCG 0.308129 FOXE1 

1 10 356496 -1 AACAGG 0 DIP2C 

1 11 47767112 -2 ACC 0.430267 FNBP4 

1 12 118068523 1 AGG 0.024395 VSIG10 

1 16 27219017 -1 AGG 0 KDM8 

1 17 2057111 3 CCG 0 HIC1 

1 17 67959646 1 AGCCCCTCC 0.174449 BPTF 
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Table 9: All de novo repeat expansions. 

The table lists 78 de novo TR expansion mutations. Columns include: Phenotype (1=control, 2=ASD proband), TR 

chromosome, TR start position (hg 38 reference), mutation unit size (number of repeats), repeat motif, gene name, and known 

associated phenotypes.                                                                  

Phenotype 

(2=proband, 

1=control) Chromosome 

Position 

(hg38) 

Mutation 

size (# 

units) Repeat motif Gene Gene Association 

2 1 108180617 13 AG 

SLC25A24 

(intron) 

Fontaine progeroid 

syndrome (Ehmke et 

al. 2017) 

2 1 156817048 12 AG 

SH2D2A 

(promoter) 

No known phenotype 

associations. 

2 1 161851142 5 AC 

ATF6 

(intron) 

Type 2 Diabetes 

(Meex et al. 2007).  

Achromatopsia (Kohl 

et al. 2015) 

2 1 164716686 5 AC 

PBX1 

(intron) 

ASD (De Rubeis S , et 

al. 2014).  

Developmental 

disorders (DDD Study. 

2017).  Developmental 

delay and ASD (Coe et 

al. 2018) 

2 2 30304937 12 AG LBH (intron)   

2 2 34119626 5 AC intergenic   

2 2 45432004 6 AAAT intergenic   

2 3 31216580 8 AG intergenic   

2 3 133370872 10 AC 

TMEM108 

(intron) 

No known phenotype 

associations. 

2 4 78629320 5 AG intergenic   

2 5 59131598 6 AC 

PDE4D 

(intron) 

Developmental delay 

and ASD (Coe et al. 

2018).  Stroke 

(Gretarsdottir et al. 

2002).  Acrodysostosis 

2 (Michot et al. 2012) 

2 5 123962238 5 AC intergenic   

2 5 152863986 18 AG intergenic   

2 6 16687658 7 AC 

ATXN1 

(intron) 

Repeat expansions in 

ATXN1 are associated 

with Spinocerebellar 

Ataxia 1 and 

Hereditary Ataxia (Orr 

et al. 1993.  Banfi et 

al. 1994.  Zuhlke et al. 

2002). 

2 6 120460511 5 AAAAT intergenic   

2 6 143427097 10 AC 

ADAT2 (3' 

UTR) 

No known phenotype 

associations. 

2 7 39005485 18 AC 

POU6F2 

(intron) 

Wilms tumor (Perotti 

et al. 2004) 

2 7 54111194 13 AG intergenic   

2 7 92688582 6 AC 

CDK6 

(intron) 

Primary microcephaly 

(Hussain et al. 2013).  
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cancer (Shennan et al. 

2000) 

2 7 100634178 7 AC TFR2 (intron) 

Hereditary 

hemochromatosis 

(Feder et al. 1996) 

2 7 131868327 10 AC intergenic   

2 7 150755610 13 AG intergenic   

2 8 8429599 12 AC intergenic   

2 9 27573529 5 CCCCGG 

C9orf72 

(intron) 

Repeat expansions in 

C9orf72 are associated 

with amyotrophic 

lateral sclerosis (ALS) 

and frontotemporal 

dementia (FTD) 

(Balendra et al. 2018). 

2 11 36270138 7 AG 

COMMD9 

(downstream) 

No known phenotype 

associations. 

2 11 126091248 6 AAAAG intergenic   

2 12 23726119 6 AG 

SOX5 

(intron) 

Intragenic SOX5 

deletions associated 

with ASD and 

intellectual disability 

(Rosenfeld et al. 2010.  

Lamb et al. 2012).  

Developmental delay 

and ASD (Coe et al. 

2018).  

2 12 50505002 12 CCG 

DIP2B (5' 

UTR) 

5' UTR CGG repeat 

expansions are 

associated with Mental 

retardation 

(Winnepenninckx et 

al. 2007).  

Developmental delay 

and ASD (Coe et al. 

2018).  

2 14 97155210 6 AC intergenic   

2 16 20691752 6 AC 

ACSM1 

(intron) 

No known phenotype 

associations. 

2 16 50672497 5 AC 

SNX20 (3' 

UTR) 

No known phenotype 

associations. 

2 16 86777643 15 AC intergenic   

2 17 7885308 8 CCG 

CHD3 

(intron) 

ASD (Iossifov et al. 

2014).   

Developmental delay 

and ASD (Coe et al. 

2018).  

2 17 51831668 11 AGC 

CA10 

(intron) 

No known phenotype 

associations. 

2 18 591973 15 AG intergenic   

2 18 591973 9 AG intergenic   

2 19 8694854 13 AG intergenic   

2 20 63015968 6 AGAGGCAGGG intergenic   

2 X 96775354 10 TG 

DIAPH2 

(intron) 

Mutations in DIAPH2 

are associated with 

premature ovarian 

failure 2 (Philippe et 
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al. 1995.  Sala et al. 

1997, Bione et al. 

1998). 

1 1 28247135 6 AAAG intergenic   

1 2 30304937 11 AG intergenic   

1 2 44497710 20 AG intergenic   

1 2 57120223 6 AC intergenic   

1 2 70561093 5 AAGG intergenic   

1 2 233086120 5 AAAG intergenic   

1 3 5788918 5 AAATGCACAGGAAT intergenic   

1 3 183712192 5 AAAAT intergenic   

1 4 152264129 11 AG intergenic   

1 5 23931476 13 AG intergenic   

1 5 77551981 8 AAAAT intergenic   

1 5 178644795 14 AC intergenic   

1 6 41155376 12 AG intergenic   

1 7 1023625 9 AC 

C7orf50 

(intron) 

No known phenotype 

associations. 

1 8 104730454 13 AG intergenic   

1 9 103006018 10 AC 

CYLC2 (3' 

UTR) 

Loss-of-function 

CYLC2 deletions 

associated with ASD 

(Gonzalez-Mantilla et 

al., 2016, Levy et al., 

2011, Stobbe et al., 

2013). 

1 9 123740900 15 AG intergenic   

1 10 107285591 6 AATGG intergenic   

1 10 128010546 6 AAAAG intergenic   

1 11 110884225 8 AG intergenic   

1 12 2420103 13 AC intergenic   

1 12 31108534 5 AAAT intergenic   

1 12 89164804 15 AG intergenic   

1 12 115909728 5 AAAAC intergenic   

1 13 112811162 5 AC 

ATP11A 

(intron) 

Developmental delay 

and ASD (Coe et al. 

2018).  

1 14 83715680 8 AG intergenic   

1 15 22963495 7 AACAT intergenic   

1 17 14300434 7 AC intergenic   

1 17 39183338 7 AAG intergenic   

1 17 48677964 9 AG intergenic   

1 18 30625693 7 AG intergenic   

1 19 8156492 6 AAAAT intergenic   

1 19 32721680 8 AAAAT intergenic   

1 21 37563882 6 ACGCGG intergenic   
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1 21 40453041 9 AC intergenic   

1 X 22249209 7 GT PHEX (exon) 

Mutations in PHEX 

associated with X-

linked 

hypophosphatemic 

rickets (Filisetti et al. 

1999.  Gaucher et al. 

2009, etc.) 

1 X 32199781 8 TG DMD (intron) 

Developmental delay 

and ASD (Coe et al. 

2018).  Duchenne 

muscular dystrophy 

(DMD), Becker 

muscular dystrophy 

(BMD), and 

cardiomyopathy 

(Kunkel 1986.  

Yoshida et al. 1998.  

Daoud et al. 2009, 

etc.). 

1 X 32948114 9 AC DMD (intron) 

Developmental delay 

and ASD (Coe et al. 

2018).  Duchenne 

muscular dystrophy 

(DMD), Becker 

muscular dystrophy 

(BMD), and 

cardiomyopathy 

(Kunkel 1986.  

Yoshida et al. 1998.  

Daoud et al. 2009, 

etc.). 

1 X 135306289 5 AC 

ZNF75D 

(intron) 

No known phenotype 

associations. 
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Table 10: Top candidate pathogenic de novo TR mutations. 

The table lists de novo TR mutations resulting in previously unobserved alleles with most severe pathogenicity score (top 1% 

of pathogenicity scores). Columns include: Phenotype (1=unaffected sibling, 2=ASD proband), TR chromosome, TR start 

position (hg 38 reference), mutation size (number of repeats), repeat motif,  pathogenicity score, gene, known associated 

phenotypes, and ASD SFARI score. 

  

Phenotype 

(2=proban

d, 

1=control) 

Chromoso

me 

Position 

(hg38) 

Mutation 

size (# 

units) 

Repeat 

motif 

Pathogenic

ity Score Gene 

Gene 

Associatio

n 

SFARI 

Gene 

(https://gen

e.sfari.org/

database/h

uman-

gene) 

2 14 31071890 3 AAAT 0.14475 

AP4S1 

(intron) 

Spastic 

paraplegia 

52 (Abou 

Jamra et 

al. 2011)   

2 2 241850724 -3 AGC 0.08979 

PDCD1 (3' 

UTR) 

Developm

ental delay 

and ASD 

(Coe et al. 

2018).  

Multiple 

sclerosis 

(Kroner et 

al. 2005).  

Systemic 

lupus 

erythemato

sus 

(Prokunina 

et al. 2002) Score=3 

2 5 123374214 -4 AAC 0.07336 

CEP120 

(intron) 

Developm

ental delay 

and ASD 

(Coe et al. 

2018).  

Joubert 

syndrome 

(Roosing 

et al. 

2016).  

Short-rib 

thoracic 

dysplasia 

(Shaheen 

et al. 2015)   

2 12 116290124 -1 AAAT 0.07209 

MED13L 

(upstream) 

ASD 

(Satterstro

m et al. 

2020).  

Developm

ental delay 

and ASD 

(Coe et al. 

2018).   

Mental 

retardation Score=1 
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(Asadollah

i et al. 

2013) 

2 5 50954696 5 AATT 0.06805 intergenic     

2 20 49348524 -4 AC 0.03784 

KCNB1 

(downstrea

m) 

Developm

ental delay 

and ASD 

(Coe et al. 

2018).  

Epileptic 

encephalop

athy 

(Torkaman

i et al. 

2014) Score=1 

2 3 25897920 1 AC 0.03528 intergenic     

2 1 35866936 -7 AC 0.02716 

AGO1 

(upstream) 

Developm

ental delay 

and ASD 

(Coe et al. 

2018).  Score=2 

2 10 124884378 -4 AAAT 0.02492 intergenic     

2 3 54249663 -11 AC 0.02266 

CACNA2

D3 (intron) 

ASD 

(Satterstro

m et al. 

2020).  

Developm

ental delay 

and ASD 

(Coe et al. 

2018).  Score=2 

2 7 68421891 4 AAAT 0.02208 intergenic     

2 9 3441309 -3 AG 0.02175 

RFX3 

(intron) 

ASD 

(Satterstro

m et al. 

2020).  

Developm

ental delay 

and ASD 

(Coe et al. 

2018).  Score=1 

2 13 45831180 -5 AAAT 0.02085 

SIAH3 

(intron) 

No known 

phenotype 

association

s.   

2 8 90210309 -5 AAAT 0.0195 

LINC0053

4 

(upstream) 

No known 

phenotype 

association

s.   

2 9 4121621 -10 AC 0.01932 

GLIS3 

(intron) 

Developm

ental delay 

and ASD 

(Coe et al. 

2018).  

Neonatal 

diabetes 

(Taha et al. 

2003)   

2 3 70813032 3 AATG 0.019 

FOXP1 

(downstrea

m) 

ASD 

(Satterstro

m et al. 

2020).  Score=1 
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Developm

ental delay 

and ASD 

(Coe et al. 

2018).   

Mental 

retardation 

with 

language 

impairmen

t and with 

or without 

autistic 

features 

(Hamdan 

et al. 

2010). 

2 8 94226294 2 AC 0.01862 

CDH17 

(upstream) 

No known 

phenotype 

association

s.   

2 2 55870644 -3 AAC 0.0177 

EFEMP1 

(intron 

near splice 

site) 

Doyne 

honeycom

b 

degenerati

on of 

retina 

(Stone et 

al. 1999)    

2 12 67113369 -10 AC 0.0174 intergenic     

2 5 55067784 -4 ATCC 0.01715 intergenic     

2 2 151878551 -9 AC 0.0162 

CACNB4 

(intron) 

Epilepsy 

(Escayg et 

al. 2000)    

2 2 112876339 -1 AAAT 0.01592 

IL37 

(upstream) 

No known 

phenotype 

association

s.   

2 7 141807438 -5 AAT 0.01578 intergenic     

2 3 48888571 2 AAAT 0.01448 

SLC25A2

0 (intron) 

Carnitine-

acylcarniti

ne 

translocase 

deficiency  

(Huizing et 

al. 1997)   

2 13 97232852 2 AC 0.01422 

MBNL2 

(intron) 

No known 

phenotype 

association

s.   

1 4 30716894 1 AGC 0.05552 

PCDH7 

(upstream) 

Developm

ental delay 

and ASD 

(Coe et al. 

2018).    

1 11 48001350 5 AC 0.02979 

PTPRJ 

(intron) 

Colon 

cancer 

(Ruivenka

mp et al. 

2002)   

1 13 43770687 -1 AC 0.0261 

ENOX1 

(intron) 

Developm

ental delay   
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and ASD 

(Coe et al. 

2018).  

1 13 89466656 -8 AGAT 0.02504 

LINC0104

0 (intron)     

1 9 21636638 -2 AC 0.01917 intergenic     

1 13 106650603 -3 AGAT 0.01876 

LINC0044

3 (intron)     

1 7 91380294 -8 AC 0.01876 intergenic     

1 3 139114125 -4 AC 0.01815 

BPESC1 

(intron)     

1 17 75482525 -2 ACAT 0.01516 

TMEM94 

(intron) 

Intellectual 

developme

ntal 

disorder 

with 

cardiac 

defects and 

dysmorphi

c facies 

(Stephen et 

al. 2018)   

1 3 48888571 2 AAAT 0.01448 

SLC25A2

0 (intron) 

Carnitine-

acylcarniti

ne 

translocase 

deficiency 

(Huizing et 

al. 1997)   
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