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safety-critical applications including guidance for clinical procedures and for drug safety
assessment. As a consequence, there is an urgent need for a more detailed and quantitative
understanding of the ways that uncertainty and variability influence model predictions. In
this paper, we review the sources of uncertainty in these models at different spatial scales,
discuss how uncertainties are communicated across scales, and begin to assess their relative
importance. We conclude by highlighting important challenges that continue to face the cardiac
modelling community, identifying open questions, and making recommendations for future
studies.

This article is part of the theme issue ‘Uncertainty quantification in cardiac and
cardiovascular modelling and simulation’.

1. Introduction
Mechanical contraction of the heart is initiated and synchronized by a wave of electrical
activation that originates in the natural pacemaker in the right atrium and propagates through
the atria and into the ventricles. An abnormal sequence of electrical activation and recovery
in the heart results in a cardiac arrhythmia, which may require urgent medical intervention.
Understanding the mechanisms that initiate and sustain cardiac arrhythmias is a central question
in cardiac electrophysiology because there are implications for the design and guidance of clinical
interventions as well as for understanding the mechanisms of drug action.

Mathematical and computational models of the heart can provide a detailed and quantitative
description of the electrical activation and recovery of cells and tissue, as well as the associated
changes in intracellular Ca2+ concentration that initiate contraction [1]. These models have been
widely used as research tools, but there is a direction of travel towards safety-critical applications
that include drug safety testing [2] and guidance for clinical interventions [3].

Multi-scale electrophysiology models integrate models at the cell, tissue and whole organ
scale. There are exciting opportunities for the adoption of multi-scale cardiac models in a
predictive capacity, but these will require a much more rigorous assessment of model credibility
and confidence in predictions [4] as part of a regulatory process that takes into account validation,
verification and uncertainty quantification (UQ) of biomedical models [5].

This paper contributes to this process by undertaking an audit of the sources of uncertainty in
multi-scale and personalized models of cardiac electrophysiology. Our aims are to document the
uncertainties associated with cardiac models at different scales, to assess their relative importance
and to make recommendations for best practice. We concentrate on models of electrophysiology
in order to keep the analysis tractable, but we have included references to relevant and related
work on UQ in models of cardiac mechanics and cardiovascular flow. Our main focus is on
the effects of experimental errors, uncertainties and natural variability on model calibration;
discrepancies between model and reality arising from modelling assumptions and simplifications;
uncertainties arising from the choice of modelling framework; and the challenges presented by
the clinical setting.

2. Background

(a) Cardiac electrophysiology models at different scales
During each normal heart beat cardiac cells undergo an action potential (AP), which is a
sequence of electrical activation and recovery. In the resting state, the cell membrane is electrically
polarized. There is a potential difference of around −90 mV across the cell membrane, with
intracellular space maintained at a lower potential than extracellular space by differences in ion
concentrations. During activation, the potential difference depolarizes to around +30 mV as a
result of conventional current carried by Na+ and Ca2+ ions that flow into the cell. The cell then
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repolarizes back to −90 mV as a result of currents that flow out of the cell, mainly carried by K+
ions. Following activation, the cell remains in a refractory state until recovery is complete.

Inward and outward currents flow through ion channels, pumps and exchangers in the cell
membrane. Their behaviour can be represented in mathematical models, where ionic currents
are described as a set of coupled and nonlinear ordinary differential equations (ODEs) [6].
Biophysically detailed cell models can also represent the storage, sequestration, release and
uptake of intracellular Ca+ as an additional set of ODEs.

Cardiac cells (myocytes) are typically rod-shaped, and tend to be aligned with their neighbours
to form fibres and sheets [7]. Myocytes are electrically coupled through gap junctions located
predominantly at their ends, and so AP propagation is faster along fibres than across fibres, with
an intermediate propagation speed within sheets. At the cell scale, propagation of the AP from one
cell to its neighbours is a discrete process [8], but at the macroscopic scale normal cardiac tissue
behaves as a continuum. The bidomain model of cardiac tissue represents tissue as a continuum
composed of intracellular and extracellular domains, and a generalization of Ohm’s Law leads
to a system of partial differential equations (PDEs) with the cell model included as a reaction
term [9]. The bidomain model incorporates anisotropic propagation along fibres as conductivity
tensors in both intracellular and extracellular domains. If the conductivity tensors for both
domains are proportional, which corresponds to identical anistropy ratios, then the bidomain
equations can be simplified to the monodomain equation, which is a single reaction–diffusion
PDE.

Cardiac tissue models are typically solved on a computational mesh using finite difference,
finite element or finite volume methods. The mesh may be an idealized geometry, such as a two-
dimensional (2D) sheet, or an anatomically detailed model obtained from medical images. These
solutions will involve choices of model parameters, such as tissue conductivities, as well as solver
parameters, such as times steps and space steps [10].

(b) Features of interest
Cardiac cell and tissue model outputs include features that not only depend on model parameters
and structure but also influence model behaviour. These are illustrated in figure 1 and include:

— Action potential shape and duration. The AP upstroke determines propagation speed
in tissue, and action potential duration (APD) is related to the refractory period, which
determines the rate at which the cell can be repeatedly activated.

— Spontaneous activity. Some cells are able to generate spontaneous AP. This is essential
for cells in the heart’s natural pacemaker where the rate of spontaneous depolarization
is an important feature, but in other regions of the heart spontaneous early or delayed
afterdepolarizations (EADs and DADs) can result in arrhythmias.

— Dynamic behaviour. APD and propagation speed are rate-dependent properties of
cardiac cells and tissue, and under some conditions cells and tissue exhibit alternans,
where APD alternates from one beat to the next.

— Activation and recovery sequence. A consistent electrical activation sequence from one
beat to the next is important for efficient mechanical contraction. Abnormal activation
and recovery sequences arising from tissue pathology or EAD/DADs can disrupt
contraction, and also indicate heightened vulnerability to arrhythmia.

— Arrhythmia vulnerability. Re-entry is a type of arrhythmia where an AP continually
propagates into recovering tissue, and it can be initiated by a premature stimulus
(for example, from a DAD) with particular strength and timing. Vulnerability can be
quantified from the range of stimulus strength and timing that results in re-entry.

— Arrhythmia stability. Once initiated, re-entry can remain stable with a single rotating AP,
or may break up into multiple waves of activation.
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Figure 1. Cardiac electrophysiology models: action potentials (a) and action potential duration restitution (b) produced by a
model of rabbit ventricular cell electrophysiology [11] paced at a cycle length of 300 ms, showing the effects of halving the
transient outward current Ito, and doubling the rapidly inactivating K+ current IKr . Snapshots of epicardial electrical potential
from simulations in a rabbit ventricle model with a phenomenological cell model [12], showing activation following pacing at
the apex (c), followed by unstable re-entry initiated by a premature stimulus (d). Arrows show direction of action potential
propagation. Red regions show activated tissue and blue regions show recovered tissue. (Online version in colour.)

(c) Uncertainty and variability
A cardiac or cardiovascular model is a quantitative representation of a real system. Since models
embed assumptions and simplifications, they are necessarily an incomplete representation, and
so their outputs and behaviours will differ from those of the real system. Additional differences
will arise from the functional form of the model, the precision with which model parameters
are known, the choice of initial and boundary conditions, and errors arising from the numerical
solution scheme that is selected. Physiological systems are inherently variable, for example
cardiac AP vary from cell to cell and from beat to beat in the same cell [13,14], and so further
differences between the model and the real system will result from natural variability. This may be
evident as model parameters that are described by a distribution instead of a single number. UQ
provides a conceptual framework within which uncertainty and variability can be characterized
[15,16], and the application of these ideas to cardiac models is an area of emerging importance
[4,17–20]. However, there is sometimes confusion about what is meant by uncertainty, variability,
sensitivity and error, and so next we discuss and clarify these terms.

Uncertainty is associated with a lack of information, and uncertainties are often categorized
as either epistemic or aleatory. Epistemic uncertainties result from a lack of knowledge about a
system, and can in principle be reduced. For example, one type of epistemic uncertainty in a cell
model could be discrepancy between the model and real system arising from an ion current that is
neglected or incorrectly formulated in the model. This uncertainty could, in principle, be reduced
by performing more experiments and/or developing a better model [21]. Aleatory uncertainties
result from random variation in the system, and are considered to be irreducible. In most cases,
aleatory uncertainty and variability can be considered interchangeable.

Variability in cardiac models normally refers to the multiple values that a model parameter
can have at different locations or times. This natural variability is inherent in biological systems.
An example is the intrinsic beat-to-beat fluctuation of APD in a single cell and extrinsic cell-to-cell
differences in APD [13].

Uncertainty analysis and sensitivity analysis are related but distinct ideas [17]. Uncertainty
analysis is normally used to investigate how uncertainty in model parameters affects model
outputs [22]. Sensitivity analysis naturally follows uncertainty analysis as it gauges how
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variability in model outputs can be related qualitatively or quantitatively to contributions from
changes in model parameters or other inputs [23,24].

Several techniques have been developed for sampling-based approaches used to perform
uncertainty analysis, namely Monte Carlo (MC) and Latin hypercube sampling (LHS) methods
[25–29]. MC methods involve multiple model evaluations using random numbers to sample
from probability distributions of uncertain inputs. Sampling is guided by the specification of a
probability density function, depending on a priori information. The results of these evaluations
can be then used to characterize uncertainties in model responses and perform sensitivity analysis
[30–32]. LHS methods use stratified sampling without replacement, where the random parameter
distributions are divided into subintervals with equal probability. LHS is a space-filling technique
that optimizes the coverage of a high dimensional input space. LHS allows for un-biased
measure of the average model output, with the advantage that it requires fewer samples when
compared with simple random sampling to achieve the same coverage. Several developments
that explain how to implement LHS methods in different scientific applications can be found
in [27,33–35].

Normally, uncertainties are considered to affect the output of a computational model, but they
should not be termed errors because they are physical and inherent in the model itself. Errors
can be defined as an a priori estimate of deficiencies in the models or the algorithms employed
to solve them. Errors are mathematical in nature and arise when translating the system physics
into approximate numerical algorithms and computational code. Inaccuracies, intrinsic to the
discretization process, are introduced in this step giving rise to numerical errors. These errors
can be controlled and reduced to a smaller level if the numerical methods and algorithms used
are selected carefully. Acknowledged error is related to the finite precision arithmetic that is
used to perform the calculations (round-off) and convergence accuracy. Unacknowledged error
is related to coding mistakes during implementation, and can lead to differences between codes
that implement identical models [36].

3. Cell scale models
Cardiac electrophysiology models at the cellular scale reconstruct the AP and Ca2+ transient of
cardiac myocytes, facilitate understanding of mechanisms, and are represented typically using a
system of non-linear, coupled and often stiff ODEs [6]. Following the initial work by Noble in 1962
[37], tremendous progress has been made, resulting in the development of numerous cell models
for different species and different regions of the heart [6,38,39]. Depending on the purpose and
context of use, these cell models are often constructed using biophysically detailed, simplified or
phenomenological frameworks [6,38]. While biophysically detailed cell models integrate explicit
descriptions of transmembrane ion channels, transporters and exchangers and intracellular Ca2+

handling, simplified models are generated by reducing the number of ODEs in biophysically
detailed models. In simplified models, intracellular Ca2+ dynamics are frequently described using
a common pool [40], compartmentalized [41] or spatially detailed representation [42]. On the
other hand, phenomenological models are designed for large scale tissue simulations and use a
minimal number of ODEs to reproduce key aspects of global dynamics of the transmembrane
voltage at low computational cost [6], without accounting for details of ion currents or Ca2+

handling.
Transmembrane voltage in cardiac cell models is generally described by a Hodgkin and

Huxley type electrical circuit model, in which the gating behaviours of ionic currents are
simulated using memory-less Markov chain-type models, and transporters and exchangers are
simplified as time-independent processes [6]. Intracellular Ca2+ release from the ryanodine
receptors (RyR) is modelled by multiple-state Markov models or ODEs. Although each
component of these models is calibrated against data from carefully designed experiments,
uncertainties can arise from discrepancy between the model and the real system, calibration and
choice of an appropriate model. We discuss each of these sources in turn.
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(a) Model discrepancy, calibration and identifiability
Biophysically detailed cell models combine models of subcellular processes and so model
discrepancy (sometimes called structural uncertainty) in each component is propagated to the
cellular level. This is exemplified by the number and topology of states in a Markov model of ion
currents and current models of intracellular Ca2+ recycling [4], as well as simplifications to the
models of intracellular Ca2+ buffers and post-translational modifications. Typically, models are
calibrated before being used for predicting unseen scenarios, sometimes referred as the context
of use. One aspect of model calibration is the process of tuning model parameters to minimize
the difference between observations and model simulations. However, even for cell scale models,
this is not a trivial task [43]. Model parameters describing channel conductances and flux rates
are generally further tuned to simultaneously calibrate the model output often to important
electrophysiological biomarkers such as APD, resting membrane potential, upstroke velocity, and
systolic and diastolic Ca2+ concentrations. These data are obtained from multiple experimental
protocols and conditions (e.g. different pacing rates, extracellular ion concentrations).

Identifiability can be an important consideration when calibrating a model. An identifiable
model has a unique set of parameters for which the model simulation matches a particular
experiment [44]. Non-identifiability can indicate that the model structure is incorrect, or that
the experimental observations do not allow the parameters to be identified. The activation and
recovery of real cardiac cells is very robust, and is based on many redundant components. This
redundancy can make the task of model calibration ill-posed. For instance, in [45], a model of
the human ventricular AP was adjusted to reproduce specific experimental observations. By
calibrating only to the shape of the AP, hundreds of models, each with a different parameter
set, could reproduce the data and so the model was not identifiable. Conversely, a wide range
of AP can be produced by variations in model parameters [46]. Measurements of AP alone may,
therefore, be necessary but not sufficient to calibrate a cell model correctly [47,48]. In [45], it was
found that by using both the AP shape and the transmembrane resistance profile as two different
objective functions, the models were forced to solve a trade-off and the possible candidates that
could reproduce both observations decreased to just a few. Assessing whether we have sufficient
experimental information that allows us to infer all of the parameters therefore becomes a task of
primary importance [21,48,49], and a recent review discusses these issues in detail [50].

(b) An abundance of cell models
Cardiac cell models have been developed to represent myocytes from many different species and
different parts of the heart. Many of these models have been encoded and curated within the
CellML framework (see https://models.physiomeproject.org/electrophysiology). In addition,
different research groups have independently developed cardiac models that represent the same
species and region of the heart, usually based on different experimental data sets [51–53]. One
might expect these models to be similar. However, they usually differ in many aspects, and may
behave very differently. Selecting an appropriate model for a particular task therefore becomes
important, and highlights the limitations of cardiac electrophysiology models. For example
figure 2 illustrates three models of the human ventricular AP each with a different time course of
AP and principal currents.

In [51], six different models of human ventricular myocytes were compared. They were all
based on systems of ODEs, but ranged from a phenomenological model with only four state
variables, to a biophysically detailed model with 67 state variables. The differences in complexity
reflect the intended context of use of these models. A more detailed context of use will usually
require a more detailed model, but complexity often has to be tensioned against computational
cost. For example, a model used to investigate the whole-cell consequences of a gene mutation
or drug action will require a detailed Markov chain description of ion channel states, which may
be computationally intensive when embedded in a tissue scale model. On the other hand, cell
models that use the Hodgkin–Huxley (HH) formalism to describe ion channel kinetics would be

https://models.physiomeproject.org/electrophysiology
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Figure 2. Uncertainties in cell scale models arising from model choice showing different action potential shapes, calcium
transients, APD restitution and time course of principal ionic currents produced by different human models for ventricular
myocytes. (Online version in colour.)

appropriate for a study of arrhythmia dynamics, and would be less computationally intensive. We
could think of a hierarchy of models, where detailed models should be able to reproduce some
basic phenomena as precisely as the most simple model developed for this task. However, this is
not currently the case [51]. There are many possible reasons for this observation, and we describe
three of them below.

First, the different models compared in [51] were developed using different experimental
datasets, which partially explains the reason for their lack of consistency. Second, in [52], a
comparison was carried out between two human atrial models that were based on the same set
of experimental data available at the time. The models have similar complexity, were both based
on the HH formalism and yet behave differently. After a careful analysis, the lack of consistency
was attributed to different structure in the models of intracellular Ca2+ storage and release. In the
absence of Ca2+ data for human atrial cells, two different and previously developed mammalian
models of Ca2+ handling were incorporated into the cell models. These modulate transmembrane
ion currents in different ways, resulting in uncertainty arising from different model discrepancies.
A third source of inconsistency between models of the same species and the same region of
the heart is natural variability. It is well known that neighbouring cells can behave similarly
when diffusively coupled in tissue, but differently when isolated, which is due to electrotonic
effects [54]. In addition, cells used in experiments can come from different hearts, of different
ages, gender and health condition, with different genotype and phenotype. However, most of
the models in cardiac electrophysiology today do not take account of natural variability, which is
often partially reported in experimental work using basic statistical measures such as mean and
variance. Uncertainties, variability and errors in experimental observations can also come from
experimental design, instrumentation, experimental conditions, experimental protocols, and can
even be influenced by the experimentalist in charge of the experiment. Therefore, methods such as
history matching (HM) and Markov chain MC are promising for model calibration because they
take explicit account of uncertainty and variability in observations. For instance, HM can define
feasible regions of the model parameters that produce results within the experimental variability
[55]. Markov chain MC methods search for probability distributions for all the parameters that
again can produce results within the experimental variability, but are more computationally
demanding [56]. Therefore, instead of adjusting a single model to the experimental data, Markov
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chain MC and HM can generate a population of models, where each model can reproduce the
experiments within a margin given by the total variability.

(c) Uncertainty in cell scale models
Developing accurate mathematical models of cardiac cell electrophysiology requires integration
of multiple data sets from various in vivo/vitro sources into a reliable biophysical computational
platform. Although this methodology is routinely applied, as demonstrated by the increasing
number of studies which use or extend previously developed cardiac cellular models [57,58],
there are major challenges in increasing the prediction capabilities. A meta-analysis of two
human ventricular cell models has shown that although both models aim to represent the same
physiological system, the sources of parameter values from different species and cell types, as
well as the function of equivalent components were significantly different [59]. Experimental
measurements may be made at room temperature, and although model parameters are sometimes
adjusted to compensate for temperature differences, these adjustments might lead to further
uncertainty [60].

All of these uncertainties can affect features of interest in cardiac electrophysiology models.
Uncertainty and variability in model parameters influence the shape and duration of both the
AP and the Ca2+ transient, as well as rate-dependent dynamical behaviours including APD
restitution and the presence of alternans [52]. Even in a single cell model, wide variations in
parameters can produce enormous variation in the AP [46]. Certain regions in parameter space
can also produce spontaneous depolarization of cell models [61,62]. The choice of cell model
for a particular application is an important source of uncertainty, and discrepancy between the
model and the real system may make the greatest contribution to output uncertainty (figure 2). In
the following section, we consider how these cell scale uncertainties combine with uncertainties
associated with tissue scale models.

4. Generic tissue scale models
Models of AP propagation in cardiac tissue reconstruct the electrical coupling of individual
myocytes through gap junctions. Generic tissue models implement models of AP propagation,
where the tissue geometry is configured to answer a specific research question rather than
to represent a particular individual. The main context of use for generic tissue models is as
research tools for understanding integrative physiological mechanisms. Personalized models
aim to reconstruct electrical activation in an individual, and we cover these in §5. Uncertainty
in generic tissue models arise from the choice of tissue geometry, modelling framework, initial
conditions, and boundary conditions. We consider these in turn below.

(a) Tissue geometry
Individual myocytes are rod-shaped, and tend to be aligned in fibres. Propagation in cardiac
tissue is typically anisotropic because AP propagation is faster along fibres than transverse
to them. In ventricular tissue, the fibre structure can be well characterized [63], although this
approach does not explicitly consider fibre branching. Furthermore, fibres are also arranged in
sheets, and the orthotropic behaviour arising from preferential propagation within sheet planes
is less well understood [64].

Generic cardiac tissue models can be configured as a one-dimensional fibre, a 2D sheet, a
2D sheet with anatomical detail such as a short axis slice through the ventricles, a 2D surface
representing generic atrial anatomy, a three-dimensional (3D) tissue block with or without
anisotropy/orthotropy (see, for example, figure 3), a 3D ellipsoid or idealized biventricular
model, or a 3D atrial or ventricular model based on generic anatomy. Fibre and sheet fields
can be incorporated into anatomical models using rule-based methods that are grounded in
experimental observations [63,65,66].
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Simplified geometries enable mechanisms to be simulated and investigated without the
confounding effects of anatomical detail, but there is associated model discrepancy because these
geometries may not represent the fine detail of real tissue. For example, there is a tendency for re-
entrant drivers in AF to anchor in regions characterized by a large atrial wall thickness gradient
[67,68], and this is an observation that would be missed by simplified 2D atrial geometries. The
importance of model discrepancy in this context depends on the research question, and so a
simplified geometry should be chosen with consideration of the assumptions and limitations,
and these should be carefully documented.

(b) Modelling framework
A homogenization approach to models of coupled cells leads to a set of one or more PDEs that
describe AP propagation, where the cell models described above appear as a reaction term [9,69].
This is a convenient simplification that enables efficient numerical solutions on a mesh.

Cardiac tissue can be represented as a bidomain or a monodomain. For anisotropic tissue, if
the ratio of longitudinal and transverse conductivity is the same for intracellular and extracellular
space, and provided no current is injected into the extracellular space, the differences between
bidomain and monodomain simulations are minimal [70,71]. However, use of the bidomain
model is essential for the correct modelling of the response to defibrillation [72]. Errors arising
from numerical solutions of both monodomain and bidomain models are relatively small,
provided care is taken to ensure numerical convergence [59,73,74].

The homogenization inherent in both bidomain and monodomain models assumes that tissue
can be treated as a functional syncytium. However, cardiac tissue microstructure affects activation
and recovery in real tissue, and this is a source of model discrepancy. Important features include
heterogeneity of cell type [54], fibre and sheet architecture [64], the presence of fibrosis and small
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lines of block [75,76], and the role of the conduction system [77]. Some of these effects are blurred
by diffusive coupling in bulk tissue, but may be exposed under pathological conditions such
as the presence of fibrosis. For example, small scale features can be important for simulating
mechanisms of atrial fibrillation [78], and alternative approaches that preserve microstructure
have been proposed [79–81].

Fibrosis is an important aspect of microstructure. Several recent studies have addressed the
problem of representing the presence of fibroblasts, macrophages and their coupling [82–85], but
there is no consensus on the most suitable approach. The spatial scale of patchy fibrosis varies,
and different configurations of fibrosis influence vulnerability to arrhythmias [86,87]. Although
it is known that there are regional differences in the response of the ventricles to autonomic
stimulation [88], the distribution of nerve terminals is not well established [89]. All of these can
be considered to be sources of epistemic uncertainty in generic tissue models.

(c) Parameter selection
A significant component of the modelling framework is the choice of model parameters
including tissue conductivities, surface to volume ratio and membrane capacitance. Tuning these
parameters enables a tissue model to be calibrated so that it is representative of real tissue.
However, these parameters depend on the choice of cell model [9], are very difficult to measure
directly [64], may vary spatially and estimates can vary as much as fivefold [9]. A pragmatic
approach to calibration is to adjust these parameters to reconstruct the conduction velocity
or activation pattern observed in real tissue. For anisotropic and orthotropic simulations, a
further choice is the ratio of conductivities. Figure 3 illustrates how the ratio of longitudinal
and transverse conductivity, as well as the presence of curved fibres, can influence activation,
recovery and APD in a small tissue block. Detailed models of tissue microstructure are being
used to characterize the distributions of these parameters in normal and diseased tissue [90],
but parameter selection and choice of cell model should be considered an important source of
uncertainty in generic tissue models.

(d) Boundary and initial conditions
For monodomain simulations, typical boundary conditions are that the gradient of
transmembrane potential difference normal to the edge or surface is zero. For bidomain
simulations, different types of boundary condition can be imposed that can take into account the
leakage of current into surrounding non-myocardial tissue [9]. The effects of changing boundary
conditions on arrhythmia stability are small [71], but are important for detailed modelling of
the response to pacing or defibrillation shocks [72]. On the other hand, initial conditions can be
important because of the nonlinear nature of behaviours such as VF mechanisms, where small
perturbations to initial conditions can influence the activation sequence [4].

(e) Uncertainty in generic tissue scale models
Cardiac tissue models inherit all sources of uncertainty in cell scale models, since their behaviour
depends on the choice of cell model and the cell model parameters. For example, the AP upstroke
in a cell model influences conduction velocity in tissue, which goes on to affect the activation
sequence. Both APD and APD restitution at cell scale affect the recovery sequence in tissue.
Spontaneous depolarization at the cell scale may be produced by variability in model parameters,
and can result in arrhythmias in tissue [91]. Diffusive coupling in tissue tends to suppress the
effect of both intrinsic and extrinsic variability in AP shape and duration in cell scale models
[14]. Nevertheless, selection of cell model parameters can affect the behaviour of simulated
arrhythmias [92]. In particular, a cell-scale APD restitution curve that is either steep or shows
alternans can increase vulnerability to re-entry in tissue, as well as influencing stability or re-
entry [52,53]. However, despite the generally accepted understanding that the cell model and its
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parameters influence simulated electrical activation in tissue, there is not yet a comprehensive
and quantitative description of uncertainty propagation from cell to tissue scale.

A further issue is that although electrical activation in the heart acts to initialize
and synchronize mechanical contraction, the effects of mechanics are often neglected in
electrophysiology simulations and this is an important source of model disrepancy. Mechanical
contraction not only deforms the tissue but also changes repolarization via electrotonic effects,
results in local changes in stretch-activated ion channels, and promotes wavebreak and
arrhythmia in disease conditions [93–95].

5. Personalized tissue models
Personalized computational tissue models of AP propagation differ from generic tissue models
in that the physical parameters and tissue geometry of the system are calibrated to simulate the
behaviour of one or more chambers in the heart of a specific patient or animal. A personalized
model can be thought of as a special case of a generic model. The objective or context of use for
personalized electrophysiology modelling is to aid disease diagnosis, support treatment planning
or as part of a broader cohort study seeking mechanistic insight by studying individuals. For
example, one might seek to use personalized modelling to diagnose the origin or mechanism
by which an arrhythmia is triggered or maintained in a particular individual, or to minimize
destruction of myocardium by testing a range of potential ablation strategies [96].

In developing personalized models, care must be given to the choice of model as well as the
assumptions and simplifications made. A personalized model of cardiac electrophysiology will
use a similar modelling framework to generic tissue models. However, constructing personalized
models also involves calibration using specific experimental or clinical measurements. These
observations are typically noisy, sparsely collected or incomplete due to practical or ethical
considerations, which lead to sources of epistemic uncertainty [97].

(a) Data acquisition for personalized models
Observations may be incorporated from a range of imaging modalities, electrical measurements
or patient records. Imaging modalities include various forms of magnetic resonance imaging
(MRI), particularly delayed gadolinium enhancement for quantifying and co-localizing fibrosis
and scar. Electrical observations can be used to calibrate tissue properties [98,99], and are
recorded either from the body surface or directly from the myocardium. The body surface
electrocardiogram (ECG) is the most common electrical measurement because it is non-invasive.
However, ECGs provide only low-resolution information about the gross electrical activity of the
heart. More recently, electrocardiographic imaging (ECGi) offers a higher-resolution alternative
and can localize information about activation and recovery times [100]. Intra-cardiac electrical
signals (electrograms) are obtained from direct contact between a multi-polar diagnostic catheter
and the myocardium at or close to the endocardial surface. These are more costly and necessarily
invasive, but provide detailed and localized electrophysiological measurements as well as
positional information that can be used to generate an endocardial mesh. Epicardial electrograms
may also be obtained, for example during open-heart surgery [101].

(b) Mesh generation
Electroanatomical mapping data or MRI are frequently used for generating a mesh representing
the geometry of the personalized model. Fibre orientation is not easy to characterize in vivo and
so algorithmic methods are typically used to generate local fibre angles in personalized models
[63]. The difference between algorithmic fibre orientation and the actual fibre orientation in an
individual is likely to have a small effect on the electrical activation sequence, but could introduce
a much greater discrepancy in models that include cardiac mechanics. Electroanatomical mapping
uses catheter sensors to locate the interior surface of a chamber and build a corresponding
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Figure 4. Impact of shape uncertainty on simulated activation times in the human left atrium. Left panel shows statistical
model of the human left atrium, with the mean shape shown as solid surface and uncertainty shown as blurring. Right-hand
panel shows expected value (top) and standard deviation (bottom) of local activation time (LAT), following initial activation
close to the coronary sinus. For further details see [102]. (Online version in colour.)

mesh; however, uncertainties may arise from observational uncertainty in electrode locations [97],
missing regions of the chamber and the combined motion of the thoracic cavity and heart. If MRI
is used to create a mesh, uncertainty may arise due to poor resolution of the imaging modality and
errors in the segmentation process [102]. As an example of how mesh uncertainty affects model
behaviour, figure 4 illustrates the effect of uncertainty in a left atrial mesh on simulated electrical
activation times [102].

Minimally invasive cardiac MRI also contributes to observational uncertainty in personalized
modelling when delayed enhancement protocols are used to identify likely regions of scar or
fibrosis based on the signal intensity. In particular challenges in the normalization of MR signal
intensity may lead to differences in the level of intensity used to identify scar and therefore poor
intra-patient reproducibility and inter-patient consistency [103,104].

(c) Model selection and parameter fitting
For personalized tissue models to be used in the clinical setting, a simplified cell model is often
used to reduce computation time [98,105], and so model discrepancy associated with this choice
can be an important consideration. Parameter uncertainty arises directly in tissue conductivities
due to our limited understanding of how MRI intensity relates to the electroarchitecture of the
imaged substrate [104,106–108]. This may be further compounded by uncertainties due to co-
registration of data from different imaging modalities. Parameter uncertainty also arises due to
heterogeneity of cell types, which is challenging to measure in vivo. This might be accounted for
in the calibration process [109].

Where electrograms are used for parameter fitting, observational uncertainty may include
errors in the electrode location which is often determined due to a magnetic or impedance-based
localization system. This will affect both the electroanatomic geometry generated by the mapping
process as well as the relative position of specific recordings [97,110]. Electrode movement during
signal acquisition will also generate uncertainty. Processing of the signals used for calibration
will also be subject to observational uncertainty. For example, local activation times (LATs) are
regularly computed clinically and the consistent identification of these timings is often unclear
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[97]. This may be due to noise in the signal arising from poor contact or changes in impedance
due to the movement of blood around the electrode.

Model discrepancy may also become more significant for personalized modelling where the
pathological substrate is poorly characterized and represented in the mathematical model. For
example, the nature of conduction across diffuse fibrosis in the atrium is poorly understood
and there are outstanding challenges in constructing the most appropriate representation in
mathematical models [82]. There are also residual uncertainties due to physical processes which
are often not accounted for, such as the lack of an explicit Purkinje network in a ventricular model.

(d) Uncertainty in personalized models
Personalized models inherit uncertainties from cell scale and generic tissue scale models. The
increase in model complexity in personalized tissue models leads to a corresponding increase in
the complexity and sensitivity of the output to uncertainty and variability in the model and its
parameters. Consequently, robust UQ becomes more important, particularly when the context of
use requires identifying bifurcations in the solution space; for instance, when determining if a
particular treatment will terminate an arrhythmia, or not.

A key challenge is to balance the effect of uncertainties arising from these sources against the
benefits of a personalized approach. Some of the unique considerations for UQ in personalized
models in the clinical setting include effective model calibration given time constraints and
limited data, how uncertainties propagate across scales, and communicating uncertainties
effectively so that model outputs can be used as part of the decision making process. A
further challenge is to develop or adapt methods to generate consistent samples from uncertain
anatomical and functional measurements. For example, an anatomical model sampled from a
statistical shape model [102] should have tissue conductivities that are sampled such that the
activation sequence is consistent with observations. Samples that also represent microstructure
are an additional challenge, although methods developed for geostatistical modelling may prove
to be of benefit in the future [111].

Initial condition and boundary condition uncertainties are particularly significant for
personalized modelling and are closely related to the observational uncertainties described above.
In particular, pacing locations may be uncertain (due to observational error) but also the current
amplitude injected, duration and stimulus and contact area of pacing electrode may not be known
precisely. More subtle effects may result from the way that a re-entrant arrhythmia is initiated. For
example, atrial fibrillation can be initiated by simulating burst pacing [96,112] or by seeding phase
singularities [113], and an arrhythmia may be simulated in a model tuned to sinus rhythm [105].
The relative importance of these uncertainties remains an open question. For models that link to
mechanics and the cardiovascular system then the idea of a physiological envelope of plausible
initial and boundary conditions becomes important.

The relative importance of these uncertainties is not well characterized. Initial studies indicate
that uncertainty arising from geometry and the fibrotic substrate may be more important
than uncertainties or variability in cell and tissue electrophysiology, and this observation was
consistent for both atrial and ventricular models [114–116]. Further studies should investigate
the individual and combined effects of the factors listed above on patient-specific predictions.
Understanding the way that uncertainties in mesh generation combine with model discrepancy
to influence model credibility is an important and as yet unanswered question.

6. Challenges, open questions and recommendations
In this paper, we have reviewed the potential sources of uncertainty in multi-scale models
of cardiac electrophysiology. The list is a long one, and one response would be that cardiac
electrophysiology models are unreliable because of the potential for uncertainties in outputs.
On the other hand, the value and effectiveness of multi-scale cardiac models for explaining
underlying mechanisms and guiding interventions has been demonstrated in a range of
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experimental and clinical studies [98,99,117,118]. The importance of the present analysis is,
therefore, to highlight the potential impact of uncertainties on model outputs and predictions,
and to make recommendations for ways in which these impacts can be mitigated. Some sources
of uncertainty and variability, especially at the cell scale, are becoming understood. Others are
not well characterized. A quantitative and systematic assessment of their relative importance
and how they are coupled across scales, remains an important challenge. We have highlighted
particular open questions below.

— Cell model calibration and identifiability remain key concerns for cardiac electro-
physiology models. This topic is covered in detail by another paper in this volume [48]
and a recent review [50]. Despite some progress, there is a need to reflect on current
experimental methods [21,119], the way that uncertainties in experimental data are taken
into account in cell model calibration [43,120], ways to fit models to data from individual
cells and populations [45,46,49], the extent to which experimental datasets are available to
the research community and how cell models can be constructed to facilitate uncertainty
and sensitivity analysis [18]. The importance of identifiability is yet to be explored
in depth; in some situations it may be important to know that a model is uniquely
identifiable, but identifiability may be less of a concern for generic tissue models that
aim to reconstruct generic behaviours.

— Selection of an appropriate cell scale model to answer a particular research question can
be difficult because it may involve choosing among many models, each with associated
assumptions, simplifications and model discrepancy. Recent comparative studies (e.g.
[51,52]) are helpful in this regard, along with tools that enable comparison of model
components [121]. However, cell models are often selected based on personal preference
or existing codes, so there is a clear need for guidelines that can be used for rational model
choice.

— Natural variability has been assessed at the cell scale [13,39,46,49], tissue scale [14] and
in population studies of shape [102]. However, there are open questions about how
natural variability at these different scales interacts to influence tissue and organ scale
behaviours, how natural variability should be accounted for in generic models, how
natural variability in generic models should inform the credibility of personalized models
and how prior distributions of model parameters can be constructed to represent natural
variability. Methods developed for geostatistics may be promising tools to identify and
take account of spatial correlations among model parameters in cardiac tissue [111].

— Cohort modelling of variability within populations is important for in silico clinical
trials where a model is used to simulate an intervention on a range of patients [5].
Methods and techniques developed for UQ will be relevant for this type of application,
but progress is at an early stage.

— Quantitative comparison of different sources of uncertainty and variability at different
scales has yet to be undertaken in a systematic way. The present manuscript has
highlighted potential sources of uncertainty, and the next step is to assess their relative
importance quantitatively. This open question will highlight important sources of
uncertainty, and will motivate efforts to reduce them. A particular example would be
the way that credibility of a personalized model is informed by better understanding of
sources in uncertainty in generic tissue models.

— Coupling of uncertainties across scales requires tools to couple uncertainties across
scales and types of model [92,116]. This coupling may operate not only from cell to whole
organ, but also in the reverse direction. Co-variances among model parameters, especially
at different scales, are also an important consideration. A recent study has reviewed
sensitivity analysis in many different modelling applications, and has highlighted the
fact that many sensitivity analyses are flawed because model input spaces have not been
explored thoroughly taking into account co-varying inputs [122].
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Cardiac electrophysiology models have become a valuable tool not only for basic science, but
also have been proposed for transition into clinical applications [98,99,117,118]. The credibility of
model outputs has therefore become an important challenge. Models are necessarily incomplete
representations of reality, and so uncertainty and sensitivity analysis should focus on quantifying
the extent to which the model outputs are reliable, and the minimization of uncertainty [122]. For
safety-critical applications, these are crucial questions.

The main recommendation from the present analysis is therefore that taking into account
uncertainty and variability should be considered a critical aspect of cardiac electrophysiology
model development and evaluation. This is a particularly important consideration for models
that are to be used in safety-critical applications, where there is a need to assess robustness
of outputs, and sensitivity to clinically meaningful biomarkers. Examples of good practice
are beginning to emerge, where the robustness of a predictive model to uncertainties in the
anatomical mesh and electrophysiology have been assessed [114,115]. Nevertheless, there is
an urgent need for end-to-end UQ frameworks that include tools for model calibration, data
assimilation, uncertainty propagation using both intrusive and non-intrusive methods, as well
as certification and validation.
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