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abstract: A persistent question in biology is how information from
ancestors combines with personal experiences over the lifetime to
affect the developmental trajectories of phenotypic traits. We address
this question by modeling individual differences in behavioral de-
velopmental trajectories on the basis of two assumptions: (1) dif-
ferences among individuals in the behavior expressed at birth or
hatching are based on information from their ancestors (via genes,
epigenes, and prenatal maternal effects), and (2) information from
ancestors is combined with information from personal experiences
over ontogeny via Bayesian updating. The model predicts relation-
ships between the means and the variability of the behavior expressed
by neonates and the subsequent developmental trajectories of their
behavior when every individual is reared under the same environ-
mental conditions. Several predictions of the model are supported
by data from previous studies of behavioral development, for ex-
ample, that the temporal stability of personality will increase with
age and that the intercepts and slopes of developmental trajectories
for boldness will be negatively correlated across individuals or ge-
notypes when subjects are raised in safe environments. We describe
how other specific predictions of the model can be used to test the
hypothesis that information from ancestors and information from
personal experiences are combined via nonadditive, Bayesian-like
processes.

Keywords: innate, predispositions, developmental systems, differential
consistency, intraindividual variability, IIV, Bayesian updating, per-
sonality, boldness, repeatability.

Introduction

A long-standing assumption in biology is that information
that shapes the development of behavior can come from
a variety of different sources. Information can come from
an individual’s distant ancestors (e.g., via genes; Leimar
et al. 2006; Shea 2007) or from its immediate ancestors
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(e.g., via maternal effects [Uller 2008] or inherited epi-
genetic markers [Bonduriansky and Day 2009; Shea et al.
2011]). Of course, information can also come from per-
sonal experiences that animals have over the course of
their lifetimes, for example, via learning (Shettleworth
2010) or the many other processes by which information
from the environment can affect development (reviews in
West-Eberhard 2003; Gluckman et al. 2005b; Bateson and
Gluckman 2011).

What is not clear is how information from an individ-
ual’s ancestors and information from its personal expe-
riences combine with each other over ontogeny to affect
the expression and development of phenotypic traits. The
lack of attention to this question has left empiricists who
study individual differences in developmental patterns
with observations in search of explanations. For instance,
investigators who use longitudinal protocols to study per-
sonality in humans and animals have found that person-
ality is less temporally stable (less differentially consistent)
early in life than later in life (squid: Sinn et al. 2008;
humans: Roberts and DelVecchio 2000; Caspi et al. 2005;
dogs: Fratkin et al. 2013; fish: Edenbrow and Croft 2011),
but the reasons for this pattern are currently unclear. Sim-
ilarly, researchers have detected significant positive or neg-
ative correlations across individuals or genotypes between
trait values and the developmental plasticity of those traits
(Auld et al. 2010; Mathot et al. 2012), but again, the rea-
sons for these patterns are obscure.

To date there have been two suggestions about ways that
information from ancestors might combine with infor-
mation from personal experiences to affect developmental
trajectories. Classical quantitative genetics begins with the
assumption that the effects of genes and experiential fac-
tors on phenotypic traits are additive (Falconer and
Mackay 1996), and this assumption has been incorporated
into models showing that selection can favor the evolution
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of developmental mechanisms that combine information
from genetic cues and information from environmental
cues to predict the conditions that are likely to occur dur-
ing an individual’s lifetime (Leimar 2005, 2009; Leimar et
al. 2006). Other authors have suggested that information
from ancestors, evolutionary history, or genes might be
combined with information from personal experiences via
nonadditive, Bayesian-like processes (e.g., Dall et al. 2005;
McNamara et al. 2006; Pierre and Green 2008; Schmidt
et al. 2010). This idea follows from the widespread success
of Bayesian approaches to model learning (McNamara and
Houston 1980; Dall et al. 2005; Courville et al. 2006;
McLinn and Stephens 2006; Trimmer et al. 2011) and from
the fact that, in principle, Bayesian updating is the best
way to combine information from different sources to
estimate the state of the world (Lange and Dukas 2009).

Bayesian models for combining information from an-
cestors with information from personal experience sound
promising, but at present, such models are still in their
infancy. Frankenhuis and Panchanathan (2011a, 2011b)
made an important first step in addressing this issue, by
using Bayesian approaches to demonstrate how stochastic
variation in sampling might lead to individual differences
in developmental trajectories, even if every individual
starts with the same information from their ancestors (i.e.,
every individual has the same prior distribution). Their
model provides a plausible explanation for intragenotypic
variability, situations in which virtually isogenic animals,
raised under the same set of conditions, express different
behavior (Freund et al. 2013; Stamps et al. 2013). However,
it does not address the broader question of how devel-
opmental trajectories would be affected if individuals be-
gan with different prior distributions, based on infor-
mation from their ancestors.

Two problems, one minor and one major, must be ad-
dressed to investigate how individual differences in infor-
mation from ancestors might combine with information
from personal experiences to affect trait development.
First, any general model of development must account for
the fact that individuals or genotypes that express the same
mean trait values at a given age can differ in their devel-
opmental plasticity, that is, the extent to which their trait
values change after exposure to the same external stimuli
(e.g., Cohen et al. 2008; Auld et al. 2010; Dingemanse and
Wolf 2013). For instance, individuals who express the same
level of antipredator behavior at a given age can express
very different levels of antipredator behavior after expo-
sure to cues from a predator (Bell and Sih 2007). In Bayes-
ian models, this issue can be easily addressed using prior
or posterior distributions that differ with respect to both
their means and their variances (see “Model Description”
and apps. A, E; apps. A–E available online).

The second, more challenging problem is designing a

testable model. A major sticking point is finding a way to
estimate the prior distributions of individuals before they
have been exposed to a particular type of personal expe-
rience. Empiricists using Bayesian models to study learning
typically sidestep this problem, either by assuming that
every individual has the same, noninformative prior dis-
tribution at the beginning of the experiment (e.g., Holyoak
and Cheng 2011) or by thoroughly pretraining their sub-
jects to ensure that they all have the same prior distribution
before measuring their behavior (e.g., McLinn and Ste-
phens 2006; Biernaskie et al. 2009). Here we suggest one
possible solution to this problem: assume that the behavior
expressed by naive individuals, before they have had any
relevant personal experience, is based on information from
their ancestors. Behavioral biologists studying develop-
ment routinely make this assumption (e.g., Adret 2004;
Bremner 2011; Westerman et al. 2012; Waters and Burg-
hardt 2013). By extension, if individuals not only express
a given type of behavior soon after birth or hatching but
also continue to express that behavior as they grow and
develop, it seems reasonable to assume that personal ex-
periences during the juvenile period might affect the de-
velopmental trajectory of that behavior. Building on these
assumptions, we show how one can estimate the mean
and the variance of the prior distributions of neonates on
the basis of the mean and the variability of the behavior
they express soon after birth or hatching. Then, standard
Bayesian approaches can be used to predict the behavioral
developmental trajectories of different individuals as a
function of the behavior they expressed as neonates and
to predict how those developmental trajectories would
change as a function of the conditions in which those
individuals were raised. This approach can be used to gen-
erate predictions that can be readily tested by empiricists,
using protocols already available to study individual dif-
ferences in behavioral traits.

We illustrate this approach by analyzing the develop-
mental trajectories for behavior patterns related to “bold-
ness,” a personality trait that has been studied in a wide
range of animals, including humans (Fox et al. 2005; Réale
et al. 2007; Conrad et al. 2011). One advantage of focusing
on boldness is that in many species, individuals exhibit
different levels of boldness soon after birth or hatching,
before they have been exposed to personal experiences that
might provide information about the level of danger in
their environment (e.g., see Edenbrow and Croft 2011;
Sussman and Ha 2011). In addition, it is possible to es-
timate, at least at a qualitative level, information relevant
to danger that might be conveyed to developing individ-
uals by cues they perceive in their environment. For in-
stance, it seems reasonable to assume that repeated ex-
posure to cues from predators over ontogeny might
indicate that the environment was relatively dangerous.
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Conversely, the absence of cues from predators, aggressive
conspecifics, or any other potential dangers might also
convey information about the current environment (Sih
1992; Welton et al. 2003; Stamps et al. 2009). In particular,
it seems reasonable to assume that the continued absence
of any cues indicative of danger over ontogeny would
indicate to developing animals that the current environ-
ment is relatively safe.

The goals of this study were to explore the implications
of assuming that information from ancestors and infor-
mation from personal experiences are combined by Bayes-
ian updating and, in particular, to design a simple model
based on this assumption whose predictions could be read-
ily tested by empiricists studying individual differences in
the development of behavioral and other traits. We first
describe the model and its predictions and then consider
conditions that have to be satisfied to test those predic-
tions. We show that several of those predictions are already
supported by empirical data and discuss others that could
be readily tested in a controlled laboratory setting. Finally,
we conclude with suggestions for future research on the
question of how information from ancestors and experi-
ence combines across ontogeny to affect the developmental
trajectories of behavioral and other traits.

Model Description

Since excellent introductions to the use of Bayesian models
for studying animal behavior are available elsewhere (see
McNamara and Houston 1980; Hilborn and Mangel 1997;
McNamara et al. 2006; Trimmer et al. 2011), here we
summarize the concepts most relevant to this study. Bayes-
ian models include four basic components: prior distri-
butions, posterior distributions, likelihood functions, and
response functions. Informally, a prior distribution spec-
ifies an individual’s beliefs about a biologically relevant
variable (e.g., the state of danger) before it has a given
experience (e.g., being chased by a predator), and a pos-
terior distribution specifies that individual’s beliefs about
that same variable after it has had that experience. The
likelihood function for a particular type of experience
specifies the probability that that experience would occur,
given each possible state of the variable; the response func-
tion links beliefs to behavior, by specifying the relationship
between an individual’s current belief (based on its prior
or posterior distribution) and the behavior it expresses
based on that belief. The posterior distribution after one
experience becomes the prior distribution for the next
experience, which is why Bayesian approaches are useful
for modeling development, where it is typical for a given
individual to have a series of experiences over ontogeny,
each of which may provide additional information about
a state of the world (Frankenhuis and Panchanathan

2011a, 2011b). When Bayesian models are empirically
tested, most authors do not assume that individuals behave
in a strictly Bayesian fashion. Instead, it is typically as-
sumed that humans or animals use rules of thumb or other
cognitive processes that yield reasonable approximations
of the estimates of patterns of behavior that would be
generated by Bayesian updating (McNamara and Houston
1980; Gigerenzer and Todd 1999; McNamara et al. 2006;
Trimmer et al. 2011; Bowers and Davis 2012). For addi-
tional background on the Bayesian approach used in this
study, see appendix A.

Here, we consider how animals might combine infor-
mation from ancestors and information from personal ex-
periences to estimate the state of a variable we call
“danger,” where danger indicates the risk of injury, harm,
or death. We assume that in nature, the state of danger
can take on a value ranging from a minimum value in the
safest possible environment to a maximum value in the
most dangerous possible environment. For computational
ease, we assume that there are 100 possible states of danger,
ranging in increments of 0.01 from a minimum value of
0 (no danger) to a maximum value of 1.0 (the maximum
level of danger in the natural environment), and we de-
scribe prior distributions and posterior distributions that
specify the probability that the level of danger falls within
each of the 100 mutually exclusive possible states (see app.
B).

One of the difficulties in describing prior distributions
is that, in theory, these distributions can take on a variety
of different shapes. For our model we use the beta dis-
tribution to generate a wide range of biologically reason-
able prior distributions. Beta distributions use two param-
eters, a and b, to generate probabilities whose values
continuously vary in the range between 0 and 1. We focus
on sets of a and b values that generate monotonically
increasing, monotonically decreasing, unimodal (hump-
shaped), and uniform distributions. We do not consider
U-shaped distributions (a ! 1 and b ! 1), in which the
extreme states of 0 and 1 are both more likely to occur
than any of the intermediate states.

This study asks how differences among agents in the
means and the variances of their prior distributions would
affect the behavior of those agents after they all had the
same experience (same likelihood function). We focused
on prior distributions with mean values ranging from 0.1
to 0.9. For each of these mean values, we set the lowest
variance at 0.001 and determined the beta distribution that
generated this variance. For each mean value, we also de-
termined the beta distribution with the highest possible
variance, under the constraint noted above (beta distri-
butions with a ≥ 1 and/or b ≥ 1).

Beta distributions were also used to model biologically
reasonable likelihood functions for a given variable. Like-
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lihood functions can vary with respect to their “reliability”
(McLinn and Stephens 2006) or “validity” (Frankenhuis
and Panchanathan 2011a), terms that indicate the prob-
ability of a given experience being associated with the dif-
ferent possible states of the variable. We assume that any
personal experiences or cues that generate likelihood func-
tions are readily perceived by every individual, so that we
can ignore sampling costs or individual differences in es-
timates of the state due to sampling error (see Frankenhuis
and Panchanathan 2011b). In the main text, we illustrate
the basic concepts using a simple right-biased likelihood
function (i.e., one that indicates that the experience is
more strongly associated with states with high values than
with states with low or moderate values), but we consider
a range of other possible likelihood functions in appendix
C.

Response functions link prior or posterior distributions
with the behavior that an agent expresses based on those
distributions. When prior and posterior distributions are
continuously distributed, the mean (expected value) of
those distributions is generally considered to provide the
best estimator of the state (Trimmer et al. 2011), so we
assume that the mean level of behavior expressed by an
agent at any given time is directly related to the mean of
its prior or posterior distribution at that point in time. In
the text, we illustrate our main points by using linear
response functions, in which the mean level of behavior
is linearly related to the mean of the prior or posterior
distribution. However, we have also examined response
functions with other shapes (sigmoid, exponential, and
asymptotic; see app. D).

An important innovation is our assumption that the
variability of the behavior of an agent at a given time is
positively related to the variance of its prior or posterior
distribution at that point in time. At the individual level,
the stochastic, short-term variability in the behavior ex-
pressed in a given context is termed “intraindividual var-
iability” (IIV; Nesselroade 1991; Stamps et al. 2012; Wang
et al. 2012; Biro and Adriaenssens 2013). At the genotypic
level, the stochastic variability in the behavior of isogenic
individuals reared under the same conditions and then
tested at the same age in the same context has been called
“intragenotypic variability” (Stamps et al. 2013). Recent
empirical studies have revealed significant differences
across individuals in IIV (Stamps et al. 2012; Biro and
Adriaenssens 2013; Briffa et al. 2013) and significant dif-
ferences across genotypes in intragenotypic variability
(Kain et al. 2012; Stamps et al. 2013), indicating that it is
practical to detect differences among agents in either type
of behavioral variability, if such differences exist. Impor-
tantly, there is empirical support for the assumption that
IIV is related to the variance of prior distributions. Recent
studies of animals and humans indicate that subjects can

be trained to estimate the variance of prior distributions
and that when this is done, the IIV of their neural activity
and/or their behavioral responses is positively related to
the variance of those prior distributions (Daw et al. 2005;
Berniker et al. 2010; Funamizu et al. 2012).

In order to model how information from ancestors af-
fects behavioral developmental trajectories, we assume that
agents with all of the prior distributions described above
(mean values from 0.1 to 0.9, variances from 0.001 to the
maximum possible variance for each mean) exist in the
same population, that the mean behavior of each neonate
is directly related to the mean of its prior distribution, and
that the variability of its behavior is directly related to the
variance of its prior distribution. Each agent is then ex-
posed to the same experience (i.e., an experience with a
given likelihood function). We combine the prior distri-
bution with the likelihood function, using Bayesian up-
dating to obtain a posterior distribution, as described in
appendix B, and we assume that the mean and variance
of the behavior each agent expresses after exposure to the
experience are directly related to the mean and variance
of its posterior distribution. This process allows us to es-
timate how a single experience would affect the means and
variances of the posterior distributions of agents with a
wide range of prior distributions (see app. E). We then
repeat this process and plot the output of the response
function for each of the prior or posterior distributions
to predict changes over ontogeny in the expected behavior
and the variability of behavior of each agent.

For each agent, we can compute a developmental tra-
jectory, which describes the expected (mean) level of be-
havior expressed by that agent at a series of ages. The
expected behavior at birth or hatching (i.e., at age 0) is
given by the intercept of an agent’s developmental trajec-
tory, and the change in behavior after one or more ex-
periences is indicated by the shape or slope of its devel-
opmental trajectory. We can also determine how the
behavioral variability of an agent changes over ontogeny,
by plotting the intraindividual or intragenotypic variability
of behavior for each agent at age 0 and at each successive
age. Analyses were run for the full range of prior distri-
butions indicated above (see app. E), but for purposes of
illustration in the text we focus on 15 agents, each with a
different prior distribution (five means of 0.1, 0.3, 0.5, 0.7
or 0.9 and three variances of 0.001, 0.02, and the maximum
possible variance for the given mean). Together, these 15
distributions span the range of prior distributions that are
possible under the assumptions of our model. We assume
that each individual is exposed four times to the same
experience (same likelihood function), and then we graph
the effects of that experience on its developmental trajec-
tory and behavioral variability over ontogeny.
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Figure 1: Left, developmental trajectories (based on the expected behavior at five ages) for 15 hypothetical agents (individuals or genotypes),
after repeated exposure to an experience with a moderately reliable, right-biased likelihood function (shown on right), assuming a linear
response function. The means of their prior distributions (at age 0) are indicated by the following symbols: circles for 0.1, squares for 0.3,
upward triangles for 0.5, diamonds for 0.7, and downward triangles for 0.9. The variances of their prior distributions are indicated by lines:
dot-dashed gray for 0.001, dashed black for 0.02, and solid black for the maximum variance for the given mean. Right, the likelihood
function indicates the probability of the experience, given the state (P(ExpFState), for each of the 100 possible states, ranging from 0 to 1.

Results and Discussion

How Different Prior Distributions Affect
Developmental Trajectories

We can now consider how developmental trajectories of
agents with different prior distributions would change if
they were all repeatedly exposed to a right-biased likeli-
hood function (fig. 1). One obvious result is that most
developmental trajectories are nonlinear: for those agents
whose behavior changes over ontogeny, the rate of change
in behavior is higher early in ontogeny than later in on-
togeny. In addition, the shapes of the trajectories vary
systematically across agents. In the current example, in
which the likelihood function is right biased, ontogenetic
changes in behavior very early in life (age 0–1) are most
pronounced for agents whose prior distributions have low
means and high variances, and they are least pronounced
for agents whose prior distributions have very high means
(e.g., 0.9) or very low variances (0.001). In addition, when
the slopes of developmental trajectories are computed
across the entire period (from age 0 to age 4), the slopes
and intercepts of the trajectories are negatively related to
one another across the 15 agents. Figure 1 also shows that
differences among agents in prior distributions can have
long-lasting effects on their behavior later in life. That is,
despite repeated exposure to an experience with a mod-
erately reliable likelihood function, agents with very low

mean scores for behavior at age 0 still have lower scores
at age 4 than agents who had high scores at age 0.

Finally, figure 1 indicates that the temporal consistency
of individual differences in behavior is lower early in on-
togeny (age 0–1) than later in ontogeny (age 3–4). Dif-
ferential consistency (also called “broad-sense repeatabil-
ity”) indicates the extent to which individual differences
in behavior are maintained over a specified period of time
(Hayes and Jenkins 1997; Caspi and Roberts 2001; Stamps
and Groothuis 2010). The differential consistency of be-
havior over a given period (e.g., from age 0 to age 1) can
be estimated by computing the slope of each agent’s de-
velopmental trajectory over that period and then com-
puting the variance, across agents, in their slopes. Differ-
ential consistency is negatively related to the variance in
slopes across agents, so that the highest possible value of
differential consistency occurs when every agent has the
same slope. In the example illustrated in figure 1, the slopes
of the developmental trajectories vary more across agents
early in ontogeny (age 0–1) than they do later in ontogeny
(age 3–4), indicating that differential consistency increases
with age.

We next consider how the variability of behavior (IIV
for individuals or intragenotypic variability for genotypes)
would change over ontogeny if agents with different prior
distributions were repeatedly exposed to the same, right-
biased experience (fig. 2). When agents have prior distri-
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Figure 2: Change over ontogeny in the behavioral variability (in-
traindividual variability for individuals, intragenotypic variability for
genotypes) of 15 hypothetical agents after repeated exposure to an
experience with a moderately reliable, right-biased likelihood func-
tion (fig. 1, right), assuming a linear response function. Symbols and
lines indicate prior means and prior variances as in figure 1. All of
the agents with prior distributions with very low behavioral vari-
ability (0.001) are indicated by the same dot-dashed gray line because
for all of them, behavioral variability is maintained at levels near 0
throughout their lives.

butions with high variance (indicated by solid lines), the
variability of behavior is high at age 0, after which it usually
declines over ontogeny. A notable exception is the agent
with a low prior mean and a high prior variance (indicated
by circles and solid black lines in fig. 2), whose behavioral
variability increases from age 0 to age 1 and then gradually
declines later in ontogeny. This result follows from a gen-
eral principle of Bayesian updating, namely, that infor-
mation that sharply conflicts with an individual’s previous
estimate of the state of the world is likely to decrease,
rather than increase, its level of certainty about its estimate
of the state (see app. E; fig. E2; figs. A1, A2, C1–C7, D1–
D4, E1, E2 available online). For agents whose prior dis-
tributions have intermediate variance (0.02, indicated by
dashed lines), behavioral variability declines modestly, if
at all, over ontogeny. Finally, in agents with prior distri-
butions with low variance (0.001, indicated by dot-dashed
lines), variability is very low at age 0 and remains at the
same low level for the rest of ontogeny. Across all of the
agents, the model predicts that both average variability
and interindividual differences in variability would be
higher early in ontogeny (from age 0 to age 1) than later
in ontogeny (from age 3 to age 4).

At a qualitative level, most of these patterns are robust
to changes in likelihood and response functions (see apps.
C, D). Across all of the likelihood functions and response

functions tested, our model indicates that if animals are
repeatedly exposed to the same experience, that is, the
same likelihood function, then (1) the rate of change of
behavior is higher early in ontogeny than later in ontogeny,
(2) the temporal consistency of differences among agents
in mean levels of behavior (differential consistency) is
lower earlier in ontogeny than later in ontogeny, (3) the
rate of change in behavior over ontogeny is highest for
agents whose mean level of behavior when naive differs
most from the behavior encouraged by the likelihood func-
tion, (4) differences among agents in their prior distri-
butions continue to affect the behavior expressed by those
individuals later in life, (5) on average, behavioral vari-
ability declines over ontogeny, and (6) agents with low
behavioral variability at birth or hatching change their
behavior less over ontogeny than do agents with high be-
havioral variability at birth or hatching.

However, one important pattern that does change as a
function of likelihood functions is the relationship, across
agents, between the absolute value (i.e., the magnitude)
of the slope, S, and the intercept, I, of their developmental
trajectories. Right-biased likelihood functions encourage
negative relationships between I and S (e.g., figs. 1, C1–
C4). However, if the same set of agents were repeatedly
exposed to an experience with a left-biased likelihood
function, the model predicts a positive relationship be-
tween I and S (e.g., fig. C6), while repeated exposure to
a unimodal (hump-shaped) likelihood function is ex-
pected to lead to a nonlinear relationship, across agents,
between I and S (e.g., fig. C7). Thus, for the same set of
agents, correlations between the intercepts and the mag-
nitude of the slopes of their behavioral developmental tra-
jectories are predicted to vary as a function of the likeli-
hood function for the conditions in which they were raised.

Testing Predictions of a Bayesian Model of Development

Assumptions. An important consideration in testing any
Bayesian model of behavioral development is choosing the
right type of personal experience. This is not a trivial prob-
lem, because many types of experiences, especially those
that occur early in life, constrain the development of be-
havioral and other traits by restricting the resources avail-
able for somatic growth and development (Monaghan
2008; Bateson and Gluckman 2011; Nettle et al. 2013).
Examples include periods of food deprivation or bouts of
infection soon after birth or hatching. Such experiences
might provide information about food levels or risk of
parasitism later in life, but they also have immediate effects
on the level or quality of resources that can be allocated
to the development of the physiological and morphological
systems that generate behavior (Gluckman et al. 2005a;
Monaghan 2008; Devevey et al. 2010). Situations in which
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a given experience provides information about conditions
later in life but also has immediate effects on resource
allocation are more complicated to model and study
(Monaghan 2008; Nettle et al. 2013). Hence, empirical
tests of Bayesian models of development should focus on
personal experiences that provide organisms with infor-
mation about the state of the world but do not directly
affect the resources that are available to support somatic
growth and development.

A second important implicit assumption is that the state
of the world remains constant over the period when be-
havior is measured. In the laboratory, it may be possible
to ensure that environmental conditions do not change
through ontogeny. However, this assumption must also be
approximately valid under natural conditions for the study
species. If in nature the state of the world is highly variable
over ontogeny, individuals might weigh recent information
more heavily than old information when estimating the
current state (Mangel 1990). Alternately, an individual’s
own internal state might provide it with information about
predictable changes in the state of the world over ontogeny.
For instance, if small juveniles are more vulnerable to
predators than large juveniles (e.g., Sogard 1997), an in-
dividual’s current size might provide it with indirect, rel-
atively reliable information about its current risk of pre-
dation. Similarly, if juveniles are less likely than adults to
be attacked by conspecific adults (delBarco-Trillo et al.
2011; Templeton et al. 2012), an individual’s maturational
state might provide it with information about its risk of
being attacked. In support of these ideas, there is evidence
that developmental trajectories for boldness can change
when individuals undergo major transitions in morpho-
logical or physiological state (e.g., during maturation [Sinn
et al. 2008] or across metamorphosis [Hedrick and Kortet
2012]), even if those animals are maintained in captivity
under constant conditions. Thus, the predictions of the
current model are most likely to apply when the state of
variables such as danger does not vary predictably over
ontogeny in the natural habitat.

A final caveat is that all of the subjects in an experiment
should have equal access to cues that provide information
about the state of the world. Under natural conditions,
this may not be the case, for example, bolder individuals
might be more likely to sample the environment, and
hence gain more information about it, than shy ones (see
Mathot et al. 2012). Practically speaking, this means using
cues that can be readily perceived by every subject and do
not require active sampling.

Predictions. A general prediction from our model is that
when different individuals or genotypes develop under the
same set of conditions, differential consistency (broad-
sense repeatability) will increase with age. Our model

therefore provides a simple general explanation for the
ontogenetic increases in the temporal stability of person-
ality that have been reported in several taxa (see “Intro-
duction”).

More important, our model predicts specific patterns
of developmental trajectories when agents who express
different levels of behavior when naive are raised under
specific sets of environmental conditions. For instance, we
suggest that an extended period with no cues from pred-
ators, aggressive conspecifics, or other dangers would, un-
der natural conditions, indicate that an individual was
living in a relatively safe environment. Conveniently, many
researchers studying the development of behavioral traits,
including boldness, raise and maintain their subjects under
standard laboratory conditions. In part because of animal
welfare concerns and in part to reduce variability in be-
havior, standard laboratory conditions typically lack any
cues or stimuli from predators, aggressive conspecifics, or
other biotic or abiotic cues that might be associated with
risk or danger in nature. Of course, tests used to assess
boldness necessarily involve exposing subjects to stimuli
they perceive to be at least modestly dangerous. However,
it is possible to assay boldness using stimuli that do not
reliably indicate high levels of danger, to conduct tests
infrequently, and to maintain the experimental subjects
under benign conditions between each test (e.g., Edenbrow
and Croft 2011). Thus, assuming that an individual’s level
of boldness would be negatively related to its estimate of
the level of danger in the environment (see app. A), our
model predicts that repeated exposure to experiences sug-
gesting (with intermediate reliability) that the environment
was safe would generate developmental trajectories for
boldness similar to those illustrated in figure 1.

Although studies of individual or genotypic differences
in the developmental trajectories of boldness are still quite
rare, we found two that appear to satisfy the criteria out-
lined above. Recently, Sussman and Ha (2011) reported
on a study of developmental trajectories for boldness in
pigtailed macaques (Macaca nemestrina). Their subjects
were maintained in individual cages, with no exposure to
predators or dangerous conspecifics from birth through
the first 10 months of life, and the monkeys exhibited
significant differences in boldness as neonates. As pre-
dicted by our model, the rate of change in boldness was
highest in infants and declined at older ages: the juveniles’
developmental trajectories had the shapes predicted by the
model (best fitted using growth equations in which be-
havior scores approached asymptotes at older ages). In
addition, as predicted by our model, there was a significant
negative relationship (r p !0.52, P ! .001) across 152
individuals between their intercepts and slopes: infants
who were initially shy changed more (became much
bolder) over the 10-month period, while infants who were
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initially bold did not change as much (remained relatively
bold) over the same period of time (A. Sussman, personal
communication).

In a second example, Edenbrow and Croft (2011) stud-
ied the ontogeny of boldness in mangrove killifish (Kryp-
tolebias marmoratus), taking advantage of the fact that this
is one of a handful of vertebrates that produce clones.
They raised fish from 20 genotypes in isolation from hatch-
ing, with no cues from predators, including conspecifics
(cannibalism has been reported in this species; see Taylor
2012). The fish began to mature at about 90 days, so we
focus here on the results of tests of boldness for juveniles
at days 2, 30, and 61 posthatch. Levels of boldness at day
2 varied significantly across the genotypes (M. Edenbrow,
personal communication). Subsequently, boldness in-
creased nonlinearly as a function of age, with higher rates
of change for young juveniles than for older juveniles and
significant differences among the genotypes in the slopes
of their developmental trajectories for boldness (Edenbrow
and Croft 2011). In this case, there was a nonsignificant
negative relationship across the 20 genotypes between
boldness scores at day 2 and the rate of increase in boldness
from day 2 to day 61 (r p !0.371, P p .107; M. Eden-
brow, personal communication).

Several predictions of our model have not yet been
tested. One is that the developmental trajectories of the
same agents would vary in specific ways if they were raised
under conditions with different likelihood functions. For
instance, if the set of killifish clones described in the pre-
vious paragraph were repeatedly exposed during the ju-
venile period to cues from predators, we predict that their
developmental trajectories for boldness would be similar
to those illustrated in figure C6. That is, individuals who
initially were very bold would become shyer, while indi-
viduals who were initially shy would remain shy. In con-
trast, if the same clones were raised with cues indicating
an intermediate level of danger, we predict that their tra-
jectories would be similar to those illustrated in figure C7:
very bold individuals would become shyer, very shy in-
dividuals would become bolder, and intermediately bold
individuals would maintain their behavior. That is, our
model predicts that relationships between the intercepts
and the magnitude of the slopes of developmental trajec-
tories for the same set of agents can be negative or positive
or have other shapes, depending on the likelihood func-
tion. Thus, it provides a possible explanation for observed
variation across studies and across species in the extent
and direction of correlations between trait values and the
developmental plasticity of those traits (Auld et al. 2010;
Mathot et al. 2012).

Several novel, nonintuitive predictions of the model fol-
low from our assumption that behavioral variability at
birth or hatching is related to the variance of the prior

distribution, that is, the extent to which neonates are “cer-
tain” about their prior estimate of the state of the world
(see app. A). Here, the major caveat is that the behavior
in question should be fully functional in neonates, since
the intraindividual variability of some types of behavior
may change over ontogeny as a result of maturational
changes in neurological or morphological systems (see the
ontogenetic changes in the IIV of reaction times in hu-
mans; Tamnes et al. 2012). However, if we can assume
that the variability of the behavior expressed by a neonate
reflects that individual’s uncertainty about its estimate of
the state of the world, several predictions are possible. For
instance, our model indicates that for agents who express
the same mean level of behavior when naive, those with
high levels of behavioral variability as neonates would tend
to change their mean behavior more over ontogeny than
those with low levels of behavioral variability at the same
age. The model also predicts that when agents express
intermediate levels of behavioral variability as neonates,
behavioral variability would initially increase with age for
agents whose mean behavior as neonates was very different
from the level of behavior encouraged by the experience
but would decline with age for agents whose mean be-
havior as neonates was closer to the level of behavior en-
couraged by the experience.

General Discussion and Conclusions

This study provides a simple but potentially powerful way
to begin investigating a long-standing question in biology,
namely, how information from ancestors combines with
information from personal experiences to generate indi-
vidual or genotypic differences in developmental patterns.
In the absence of attention to this question, it has been
difficult for empiricists to interpret patterns they have ob-
served in their data and difficult for theoreticians to in-
corporate reasonable assumptions about this process into
their models.

We illustrated this approach with a simple scenario, in
which individual differences in estimates of one variable
(here, danger) affect the development of one type of be-
havior (here, behavior related to boldness). However, as-
suming that the basic conditions are met (e.g., behavior
is expressed by neonates and then continues to be ex-
pressed by juveniles), the same approach could be ex-
tended to generate testable predictions involving other
continuously distributed variables (e.g., population den-
sity), other behavioral traits (e.g., aggressiveness), or even
physiological traits that vary among neonates, continue to
be expressed over ontogeny, and change in response to
cues from the environment (e.g., developmental trajec-
tories for stress responsiveness and the hypothalamic-
pituitary-adrenal axis; Hostinar et al. 2014; Koch et al.
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2014). In addition, of course, individual differences in
prior distributions might affect the developmental trajec-
tories of trait syndromes involving combinations of be-
havioral, physiological, and morphological traits (see Ka-
sumovic 2013). However, since morphological traits often
respond more slowly and less reversibly to changes in en-
vironmental cues than do behavioral traits (Gabriel et al.
2005; Hossie and Murray 2012), more complicated models
involving lagged or constrained responses might be re-
quired to predict the developmental trajectories of mor-
phological traits under different sets of environmental con-
ditions, as a function of differences among agents in their
prior distributions at birth or hatching.

More generally, we suggest that a better understanding
of how information from ancestors combines with infor-
mation from personal experiences over ontogeny will be
necessary to convert the study of individual or genotypic
differences in developmental patterns from a descriptive
to a predictive science. Despite many years of discussion
about ways that genes, maternal effects, personal experi-
ences, and other factors might interact over ontogeny to
affect the development of behavioral and other traits (see
Oyama 2000; Bateson and Gluckman 2011), empirical
studies of individual or genotypic differences in devel-
opmental trajectories or of relationships between the in-
tercepts and slopes of developmental trajectories are still
primarily descriptive, because there is little theory to drive
them. We hope that this article will encourage others to
consider how information from ancestors might combine
with information from personal experiences over ontogeny
to affect developmental trajectories. For instance, it might
be useful to construct models based on different assump-
tions about rules for combining information from ances-
tors and information from experience (e.g., models based
on additive rules) and then ask which models do a better
of job of predicting individual or genotypic differences in
developmental trajectories. Once we have a better idea of
how information from ancestors and information from
personal experiences combine over ontogeny to affect de-
velopmental trajectories, it will be possible to incorporate
reasonable assumptions about this process into future
studies of the proximate and ultimate factors responsible
for the interindividual or intergenotypic variation in de-
velopmental trajectories that is so often observed for be-
havioral and other traits.
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This content downloaded from 128.120.194.195 on Thu, 2 Oct 2014 11:49:56 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Behavioral Developmental Trajectories 000

stein, and J. van Alphen, eds. Behavioral ecology of insect para-
sitoids. Blackwell, Oxford.
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Individual Differences
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(Am. Nat., vol. 184, no. 5, p. 000)

Effects of the Means and Variances of Prior Distributions on Bayesian Updating
Here, we show how differences between individuals in the means of their prior distributions affect Bayesian updating.
One individual (fig. A1A) has a prior distribution with a high mean, indicating that at birth or hatching, this individual
estimates that the level of danger is more likely to be high than it is to be low or moderate. This individual is then
maintained for a period (e.g., a month) under “safe” conditions, with no exposure to cues from predators, aggressive
conspecifics, or any other potential dangers. As is indicated by the shape of the likelihood function, this type of
experience is more likely to occur when the level of danger is low than when it is moderate to high. When this
individual’s prior distribution is combined with this likelihood function, via Bayesian updating, it yields the posterior
distribution shown in figure A1A. That is, after the experience, this individual revises downward its belief about the level
of danger. Finally, assuming that “boldness” is negatively related to the mean of the prior or the posterior distribution for
danger, we would expect this individual to be bolder after the experience (based on the mean of its posterior distribution)
than it was when it was naive (based on the mean of its prior distribution).
A second individual (fig. A1B) has a prior distribution with a low mean, indicating that when it is naive, this

individual estimates that the level of danger is more likely to be low than it is to be moderate to high. This individual is
then exposed to the same experience (same likelihood function) as the individual in figure A1A. However, in this case,
the estimate of the state of danger provided by this individual’s prior distribution is very similar to the estimate of the
state of danger provided by the experience. As a result, its posterior distribution is very similar to its prior distribution.
By extension, we would expect this individual’s boldness score after the experience to be similar to its score when it was
naive.
This example illustrates a very general, very basic feature of Bayesian updating, namely, that the effects of the same

experience on estimates of the state of the world depend on the discrepancy between the prior distribution and the
likelihood function (Courville et al. 2006). One can intuitively see that if a naive individual believes that the world is a
safe place, an extended period of time with no cues indicative of danger simply confirms its initial belief and hence has
little or no effect on its belief that the world is safe. On the other hand, if a naive individual believes that the world is
dangerous, an extended period of time with no cues indicative of danger is a “surprise,” so this experience is more likely
to change its estimate of danger.
A second important point is that the effect of a potentially informative experience on an individual’s estimate of the

state of the world also depends on the variance of its prior distribution (fig. A2). Consider a situation in which two
individuals both have prior distributions with the same mean value (mean p 0.8). That is, when naive, both of them
estimate that the state of danger is relatively high. However, the variance of the first individual’s prior distribution (fig.
A2A) is much higher than the variance of the second individual’s prior distribution (fig. A2B). Both individuals are then
exposed to experience indicating that the level of danger is moderately low. In the case of the first individual, this
experience leads to a reduction in its estimate of the level of danger, that is, a posterior distribution shifted to the left of
its prior distribution (fig. A2A). However, in the case of the second individual, the same experience has little effect on its
estimate of danger; its posterior distribution is very similar to its prior distribution (fig. A2B). Thus, although both
individuals would be expected to express the same low level of boldness when naive, after the same experience, the first
individual’s level of boldness would increase, but the second individual’s level of boldness would not change.
In this case, the intuitive explanation is that the variance of an individual’s prior distribution indicates the degree of

confidence an individual has in its initial belief about the state of the world. If a naive individual vaguely suspects that
the world might be dangerous, experience indicating that it is actually safe should alter its estimate of the state of the
danger, and hence its behavior. However, if a naive individual firmly believes that the world is dangerous, that same
experience should have little or no effect on either its belief or its behavior.
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Figure A1: Effect of the mean of the prior distribution on Bayesian updating. Two individuals are both exposed to the same experience,
with the likelihood function indicated in red. The first individual has a prior distribution with a high mean (A); the second individual has
a prior distribution with a low mean (B). When the likelihood function and the prior distribution contradict each other (A), the posterior
distribution is displaced from the prior distribution. In contrast, when the likelihood function and the prior distribution are concordant (B),
the posterior distribution is very similar to the prior distribution.
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Estimating Posterior Probabilities Using Bayesian Estimation
Our analysis is based on the assumption that an individual’s behavior is influenced by its estimate of the value of a
variable A (e.g., danger) and that these values can vary continuously between a minimum and a maximum. However, for
the purposes of computing the posterior probability, it is easier to discretize the variable into a number of small, mutually
exclusive states. We assume that the minimum and maximum values of the variable are Amin p 0 and Amax p 1. Thus,
when we discretize the variable into n p 100 equally spaced states between its minimum and maximum values, the ith
state will be bounded by (0.01(i ! 1), 0.01i). If A1, A2, ..., An are the n individual states, then the probability of the
variable being in state Ai is described by P(Ai). Also, since A1, A2, ..., An represent all possible states of the variable, the
sum of their probabilities will add up to 1, that is,

P(A )" P(A )" … " P(A ) p 1.1 2 n

Next, P(B) is the probability that experience B will occur. The probability of B, given variable A, is given by the Law
of Total Probabilities as , where P(BFAi) represents theP(BFA) p P(A )P(BFA )" P(A )P(BFA )" … " P(A )P(BFA )1 1 2 2 n n

conditional probability of B, given the state Ai. The conditional probability function relating the experience to the
variable, that is, P(BFA), is called the likelihood function (see “Model Description”). Using Bayes’s theorem, we can now
estimate the posterior probability of any given state Ai, given the occurrence of the experience B, as

P(A )P(BFA )i iP(A FB) p .i P(B)

In our analysis, we use the beta distribution (see “Model Description”) to describe both prior distributions and
likelihood functions. The general form of the probability density function for a beta distribution is

G(a " b)
a!1 b!1P(x) p x (1! x) ,

G(a)G(b)

with 0 ≤ x ≤ 1 and P(x) p 0 for all x outside this range, where G represents the Gamma function and a and b are
parameters of the beta distribution. Because this analysis involves two different beta distributions, we describe the prior
distribution using a beta distribution in which a p a and b p b and the likelihood function using a second beta
distribution, in which a p c and bp d.
For n p 100, for the prior distribution we can numerically approximate the probability P(Ai) by

0.01(i ! 1)" 0.01i
P(A ) p 0.01p p 0.01p (0.01i ! 0.005),i A A[ ]2

where pA(x) is the probability density function for the first beta distribution. Similarly, the probability of occurrence of the
experience B, given the ith state Ai, can be computed as

0.01(i ! 1)" 0.01i
P(BFA ) p p p p (0.01i ! 0.005),i B B[ ]2

where pB(x) is the probability density function for the second beta distribution.
The posterior probabilities of each of the states can then be computed as follows. First, we compute the prior

distribution. If we indicate the midpoint of the ith state as and A1, A2, ..., An are the n statesy p (0.01i ! 0.005)i
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associated with variable A, then the prior probability distribution may be computed using the standard beta probability
density function as

G(a ! b) a"1 b"1P(A ) p 0.01p (y ) p 0.01 (0.01i " 0.005) (1" 0.01i ! 0.005) .i A i G(a)G(b)

Similarly, the conditional probability, P(BFAi), for each state can be computed using the beta probability function with
parameters c and d as

G(c ! d) c"1 d"1P(BFA ) p 0.01p (y ) p 0.01 (0.01i " 0.005) (1" 0.01i ! 0.005) .i B i G(c)G(d)

Based on Bayes’s theorem, the posterior probability of each state is given by , for i p 1,P(A FB) p P(A )P(BFA )/P(B)i i i

2, ..., n. Finally, we need to normalize these posterior probabilities, so that the sum .P(A )! P(A )! … ! P(A ) p 11 2 n

Normalization is required because we have specified that A1, A2, ...., An cover all possible states of the variable A, so that
the sum of the probabilities of these states must add up to 1 for any prior or posterior distribution. We normalize the
posterior probabilities by dividing each P (AiFB) by the term

100

P(A FB),! i
ip1

so that the final posterior probabilities are given by

P(A FB) P(A )P(BFA ) P(B) P(A )P(BFA )i i i i ip p .100 100 100P(B)! P(A FB) ! P(A )P(BFA ) ! P(A )P(BFA )i i i i iip1 ip1 ip1

The posterior distribution generated by this procedure is not necessarily a beta distribution, even though the prior
distribution was a beta distribution. However, this posterior distribution can be used as the prior distribution for the next
experience because this posterior distribution is available as a computed distribution at the end of the process described
above.
Although P(B) can take on many different values, the value of P(B) itself does not affect the computation of the

posterior distribution, because of the process of normalizing the posterior probabilities (see equation above). An
alternative method for computing the distributions for P(Ai) and P(BFAi) would be to use the cumulative probability
distribution function for a beta distribution. For example, the prior distribution can be computed as P(Ai) p
betaCDF(0.01i, a, b) " betaCDF(0.01(i " 1), a, b), where betaCDF is the beta cumulative distribution function with
parameters a and b. This function is available in most standard statistical packages (e.g., R, SAS).
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Appendix C from J. A. Stamps and V. V. Krishnan, “Combining
Information from Ancestors and Personal Experiences to Predict
Individual Differences
in Developmental Trajectories”
(Am. Nat., vol. 184, no. 5, p. 000)

Effects of Different Likelihood Functions on Developmental Trajectories
Effects of the Reliability of Likelihood Functions on Developmental Trajectories

Differences among agents (individuals or genotypes) in developmental trajectories are most apparent for likelihood
functions with intermediate reliabilities. When the likelihood function for a given experience is very unreliable (fig. C1),
the experience has little effect on the behavior of any agent. As a result, differences across agents in developmental
trajectories will be difficult to detect, and any behavioral differences observed in naive agents will be largely maintained
through ontogeny. Conversely, when the likelihood function for a given experience is very reliable (fig. C4), the
experience has a very strong effect on the behavior of all but those agents whose prior distributions have very low
variance. As a result, after a relatively short period, most agents express similar behavior.
For all figures in this appendix, the means of the prior distributions (at age 0) are indicated by symbols—circles for

0.1, squares for 0.3, upward triangles for 0.5, diamonds for 0.7, and downward triangles for 0.9—and the variances of the
prior distributions are indicated by lines—dot-dashed gray for 0.001, dashed black for 0.02, and solid black for the
maximum variance for the given mean. The likelihood functions used to generate each set of developmental trajectories
are indicated in the right-hand panel. For each likelihood function, we indicate the probability of the experience, given
the state (P(ExpFState)) for each of the 100 states from 0 to 1.
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Figure C1: Developmental trajectories (left) for a likelihood function with mean p 0.556, var p 0.076, a p 1.25, and b p 1 (right).
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Figure C2: Developmental trajectories (left) for a likelihood function with mean p 0.667, var p 0.056, a p 2, and b p 1 (right).
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Figure C3: Developmental trajectories (left) for a likelihood function with mean p 0.800, var p 0.0267, a p 4, and b p 1 (right).
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Figure C4: Developmental trajectories (left) for a likelihood function with mean p 0.889, var p 0.010, a p 8, and b p 1 (right).

Effects of the Shapes of Likelihood Functions on Developmental Trajectories

For likelihood functions of different shapes, the behavior of different agents tends to converge on the behavior
encouraged by the experience. In addition, rates of change in behavior are higher early in ontogeny than later in
ontogeny, differential consistency is lower early in ontogeny than later in ontogeny, differences among agents in prior
distributions have long-lasting effects on behavior, and there are predictable relationships, across agents, between
intercepts and the shapes or slopes of their developmental trajectories. These effects are illustrated here using a right-
biased (fig. C5), a left-biased (fig. C6), and a unimodal (fig. C7) likelihood function.
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Figure C5: Developmental trajectories (left) for a right-biased likelihood function with mean p 0.667, var p 0.056, a p 2, and b p1
(right).
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Figure C6: Developmental trajectories (left) for a left-biased likelihood function with mean p 0.333, var p 0.056, a p 1, and b p 2
(right).
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Figure C7: Developmental trajectories (left) for a unimodal likelihood function with mean p 0.5, var p 0.04, a p 2.625, and b p
2.625 (right).
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Appendix D from J. A. Stamps and V. V. Krishnan, “Combining
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Individual Differences
in Developmental Trajectories”
(Am. Nat., vol. 184, no. 5, p. 000)

Effects of Different Response Functions on Developmental Trajectories
We model different response functions as follows: (1) a linear function, B p m; (2) an asymptotic function, B p 1 !
e!m/0.3; (3) an exponential function, B p (1/27)(e!m/0.3 ! 1); and (4) a sigmoid function, B p 1/(1 " e10(m!0.5)); m is the
mean of a prior or a posterior distribution and B is level of behavior. For each response function, we illustrate the
developmental trajectories of 15 hypothetical agents, each of which was exposed four times to a personal experience with
a right-biased likelihood function with intermediate reliability (mean p 0.67, var p 0.056, a p 2, and b p1; see fig.
C2).
For all figures in this appendix, the means of the prior distributions (at age 0) are indicated by symbols—circles for

0.1, squares for 0.3, upward triangles for 0.5, diamonds for 0.7, and downward triangles for 0.9—and the variances of the
prior distributions are indicated by lines—dot-dashed gray for 0.001, dashed black for 0.02, and solid black for the
maximum variance for the given mean. The shape of the response function is shown in a panel to the right of each set of
developmental trajectories.
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Figure D1: Developmental trajectories (left) for a linear response function (right).
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Figure D2: Developmental trajectories (left) for an asymptotic response function (right).
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Figure D3: Developmental trajectories (left) for an exponential response function (right).
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Figure D4: Developmental trajectories (left) for a sigmoid response function (right).
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Appendix E from J. A. Stamps and V. V. Krishnan, “Combining
Information from Ancestors and Personal Experiences to Predict
Individual Differences
in Developmental Trajectories”
(Am. Nat., vol. 184, no. 5, p. 000)

Joint Effects of Mean and Variances of Prior Distributions on Bayesian Updating
Here we consider how the means and variances of prior distributions jointly affect Bayesian updating, based on the model
outlined in the text (also see app. B). We define a variable Dmean to indicate the effect of a given experience on an
individual’s estimate of the state, where Dmean p (mean of the posterior distribution ! mean of the prior distribution). A
second variable, Dvar, indicates the effect of a given experience on an individual’s certainty about that estimate, where
Dvar p (variance of the posterior distribution ! variance of the prior distribution). Figures E1 and E2 indicate the values
of Dmean and Dvar, respectively, after individuals with a range of prior distributions have been exposed once to an
experience with a right-biased likelihood function with intermediate reliability.
Many basic features of Bayesian updating are evident in figure E1. Because the likelihood function for this particular

experience is right biased, the experience has a much stronger effect on the estimate of the state (Dmean) for individuals
whose prior distributions had low mean values (e.g., prior mean p 0.1) than for individuals whose prior distributions had
high mean values (e.g., prior mean p 0.9). In addition, regardless of their prior means, the same experience has less
effect on the estimate of the state for individuals whose prior distributions had low variance (e.g., prior variance ! 0.01)
than for individuals whose prior distributions had higher variance.
The mean and variance of an individual’s prior distribution also determine how a given experience will affect an

individual’s degree of certainty about its estimate of the state of the world, as indicated by Dvar (fig. E2). Although
exposure to experience with a right-biased likelihood function usually reduces uncertainty (indicated by negative values of
Dvar), there are two important exceptions. First, if prior distributions have low mean values (here, ≤0.2), this experience
increases rather than decreases uncertainty (indicated by positive values of Dvar). In addition, this experience has little or
no effect on uncertainty for individuals whose prior distributions had a low variance to begin with. Both of these patterns
make intuitive sense. If the information provided by personal experience sharply conflicts with an individual’s belief
before that experience, then the individual should be more uncertain about the state of the world after the experience than
before. Otherwise, reasonably informative experience should reduce uncertainty, except for individuals whose uncertainty
was already low before the experience.
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Figure E1: Effects of an experience with a moderately reliable right-biased likelihood function on Dmean (the difference between the mean
of the posterior distribution and the mean of the prior distribution), for prior distributions with a range of means and variances. The
likelihood function (right) indicates the probability of the experience, given the state, for each of the 100 possible states between 0 and
1. In this case, the likelihood function has a mean of 0.67 and a variance of 0.056; it was generated by a beta function in which a p 2
and b p 1.
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Figure E2: Effects of a moderately reliable right-biased likelihood function on Dvar (the difference between the variance of the posterior
distribution and the variance of the prior distribution), for prior distributions with a range of means and variances. The likelihood function
is the same as that in figure E1. The axes for this figure are oriented differently from those in figure E1 to improve legibility.
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