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Abstract

Not only in social sciences but also in chemometrics, the paths (e.g., regression coefficients,

correlations) between latent variables are often estimated by regarding the estimated latent variable

scores as observed variables. Such methods are often called “factor score regression”. Recently

partial least square (PLS) path modeling is used for the same purpose. Similarly, the latent variable

scores estimated for discrete observed variables are used to infer relationships between the latent

variables and other external variables. It is widely known that such estimators are generally biased.

In this paper, we investigate theoretically why factor score regression estimators are generally

biased, and we propose a new method for estimation of paths between latent variables using the

estimated latent variables. We prove that the proposed estimators are consistent for continuous

indicators. We also show in the simulation studies that our method greatly reduces bias when using

these estimated latent variable scores for discrete indicators.

Keywords: Structural Equation Modeling, Item Response Theory, Factor Analysis, Partial Least

Squares, Item Parceling



1 Introduction

In social sciences, the main interest of research often lies in quantitive expression of relationships

between latent variables that represent (psychological or sociological) constructs. Structural equa-

tion modeling (SEM) is suitable for inference and description of these relationships. As an important

extension of Spearman’s early ideas on factor analysis (Bartholomew, 2007), and built especially

upon the many early contributions of Jöreskog (e.g., 1977), today SEM includes a variety of statis-

tical models that are highly relevant to psychological research (e.g., Bauer & Curran, 2004; Bollen,

2002; Bollen & Curran, 2006; Lee, 2007; Yuan & Bentler, 2007). It is well known that SEM is fre-

quently applied in the psychological (e.g., MacCallum & Austin, 2000) and related sciences (e.g.,

Hays, Revicki, & Coyne, 2005).

In contrast to simultaneous ML estimation of measurement and structural relations in SEM,

many researcher prefer to estimate the latent variable scores and then use traditional regression

methods to determine their relations.

In this paper we investigate the reason why the estimators of parameters regarding the rela-

tionships between latent variables (i.e., correlations between latent variables) are biased, when the

estimated latent variable scores are used as if they are observed. We also propose a simple, valid

estimation method using the estimated latent variable scores.

We consider a situation where two or more blocks of variables are observed on the same subjects.

For example, consider a very simple SEM model depicted in Figure 1 (two blockes of variables and

four variables for each block). There are several variants of estimation methods using estimated

factor scores, but generally a stepwise estimation method can be divided into three steps:

(1) Estimate the parameters in the measurement part of the model (submodel 1 and 2 in Figure 1).

(2) Estimate the factor scores in exploratory (or confirmatory) factor analysis using the estimated

parameters obtained in the step (1).

(3) Perform regression analysis, path analysis or factor analysis (submodel 3) where the variables
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of the model are the estimated factor scores.

The above procedure to estimate regression coefficients is usually called “factor score regres-

sion” because the estimated factor scores are used in regression analysis, or a series of regressions,

as if they were observed variables. For examples, see e.g., Gass (1996) and Zammuner (1998). In

the latter section we will consider the case where the observed variables are discrete and the latent

variable scores are estimated using Item Response Theory (IRT).

Controversies About Structural Equation Modeling

Although simultaneous estimation in SEM can avoid the need for factor score regression, this ap-

proach may not be feasible. Many researchers have pointed out that there remain some problems in

the practical application of SEM to data, especially when mixed continuous and ordinal variables

are used, models are large, and simultaneous estimation methods such as maximum likelihood or

least squares methods are used. These issues will be summed up with the following four points:

(1) The intractability of simultaneous estimation methods when continuous and discrete variables

are mixed.

If all observed variables are continuous, then simultaneous estimation methods only require esti-

mates of moments, i.e., the sample mean vector and sample covariance matrix. However, including

binary or ordinal variables also requires considering response patterns as is typically done in item

response theory (IRT). A wedding of SEM and IRT methods is being developed. The generalized

linear and nonlinear methodologies described in De Boeck and Wilson (2004) provide a partial ap-

proach because they allow the prediction of IRT item parameters and person parameters by external

variables. The generalized linear latent and mixed (GLLAMM) modeling framework of Skrondal

and Rabe-Hesketh (2004; Rabe-Hesketh, Skrondal, & Pickles, 2004) also is promising since it al-

lows IRT/SEM combinations theoretically by a unification and extension of multilevel and latent

variable models to allow latent variable structural equation models in the context of measurement

models that permit a wide range of link functions and variable types. However, their approach re-
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quires numerical integration and calculation of the likelihood, which is difficult to impossible when

the model is complex or the number of variables is large. Thus “estimation can be quite slow,

especially if there are several random effects” (Rabe-Hesketh & Skrondal, 2005, p. 128). Since

computational time is proportional to number of cases and the square of number of parameters, this

methodology is not yet useful for larger models. The models considered by Lee and Song (2003) are

similarly general in that they allow nonlinear relations among normal latent variables and relation

of latent to observed variables, along with a variety of indicator types (e.g., binary, ordinal). Their

approach to model estimation and evaluation is based on Bayesian methodology including the Gibbs

sampler and MCMC. An advantage of their approach is that greater precision can be expected in

smaller samples, but estimation and evaluation requires accepting prior distributions on parameters

as well as a computational burden that is as large as that of GLLAMM. Thus although there has

been an important recent effort to joining IRT and SEM, the summary of Moustaki, Jöreskog, and

Mavridis still holds: “On the other hand, IRT models have been developed recently and there is no

flexible software available for fitting those models. If one wants to fit a model with many factors,

one will probably have to use LISREL, Mplus or EQS” ( 2004, p. 507).

Unfortunately, while methods such as Muthén’s (1984) and Lee, Poon and Bentler’s (1995)

approaches based on polychoric and polyserial correlations are applicable to the case where there

are continuous and ordered categorical observed variables, and they are easy to implement in Mplus

and EQS, these methods are not applicable when nominal observed variables are included in the

model. In theory, simultaneous estimation such as that based on maximum likelihood estimation

is applicable to SEM with mixed continuous and nominal observed variables (Moustaki & Knott,

2000; Sammel, Ryan & Legler, 1997). But again, simultaneous estimation methods are generally

very difficult for researchers to use in applied areas because the evaluation of the likelihood requires

numerical integration which becomes impractical in reasonably sized models.

(2) The effect of structural relation parameter estimates on the estimation of the measurement

model.
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It has been known for a long time (e.g., Kumar & Dillon, 1987) that partial misspecification in

a model causes large biases in the estimates of several free model parameters in SEM. In addition,

Burt (1973; 1976) and Hunter & Gerbing (1982) noted that simultaneous estimation of parameters in

the measurement and structural portions of a model could lead to bias. They recommended estimat-

ing these two sets of parameters separately. As an example, consider a typical SEM with multiple

indicators. In most cases, the meaning of the latent variables or factors in the model is determined

from the measurement model, that is, the estimated relationships between observed indicators and

factors. However, when a simultaneous estimation method, such as maximum likeihood or gen-

eralized least squares, is used, the parameterization of the structural relations may greatly affect

the estimates in the measurement equations. To avoid such confounding, Anderson & Gerbing

(1988) proposed a two-step model checking procedure that first confirms the measurement model

with a saturated structural model so that the structural relations have no impact on the measure-

ment model; then, with an appropriate measurement model, the researcher’s substantive structural

relations model of interest is added. Of course, this procedure does not solve the problem in that

the estimates in the measurement model, and hence the meaning of the factors, can change greatly

when other factors (and their indicators) are added to the model.

Simultaneous estimation in SEM has more arguable properties than might be found in com-

parable econometric simultaneous equation estimation, because in models with observed variables

only there can be no confounding with latent variables such as are used in SEM. In econometrics,

some stepwise estimation methods, such as limited maximum likelihood (ML) estimation or two

stage least squares estimation, have been proposed for estimating each measurement equation in-

dependently. Bollen (1996) has been an advocate for using a general version of this idea in latent

variable models, proposing that this would allow isolating specification errors in particular parts

of the model. Nonetheless, he did not develop a special procedure for isolating structural versus

measurement model misspecifications. The most complete theoretical development of two-stage

estimation in SEM was given by Yuan and Chan (2002). They proposed a model segregation ap-

proach where a model is completed by a second set of parameters contingent on the estistence of
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a first set of estimated parameters, and provided a detailed statistical development. Their approach

could be applied so that the measurement model is completely estimated at the first stage, and the

latent structural relations, estimated at the second stage, could not influence the meaning of the

factors. However, these developments in two-stage estimation have not considered the mixture of

continuous and ordinal variables with which we are concerned. In particular, they have not been

developed to allow the use of item response theory type measurement models along with latent vari-

able linear relations models. A statistically sound stepwise estimation method to accomplish this

purpose would be useful in social sciences.

(3) The need for data reduction.

The number of observed variables can be very large, e.g., Ashton, Lee, and Goldberg (2004)

studied 1,710 English personality-descriptive adjectives, and one can envision circumstances where

the number of latent factors extracted also can be quite large. While the number of latent variables

will be far less than the number of observed variables, especially when psychological scales or test

items are used as indicators, in such situations it would be desirable to first estimate the factors

and then to do all subsequent analyses on the factor score estimates alone. These estimated latent

variables would substantially reduce data size and facilitate data handling as well as modeling.

However, modeling with estimated factor scores can lead to biased conclusions about the latent

structural relations unless the methodology within which such factor score estimation is embedded

can eliminate any sources of bias.

(4) The existence of improper solutions.

It is well known that unless a sufficient number of good indicators of each factor is available,

improper solutions (negative variance estimates, also known as Heywood cases) can occur fre-

quently. Jöreskog (1967) reported that 9 out of 11 classical data sets possessed improper solutions,

and Anderson and Gerbing (1984) reported that with correct models, their simulation study found

that 24.9% of replications had improper solutions. An important consequence is that test statis-

tics no longer have their assumed distributions and model evaluation becomes difficult (see, e.g.,
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Stoel, Garre, Dolan, & vanden Wittenboer, 2006). There is an extensive literature on the reasons for

improper solutions (e.g., Chen, Bollen, Paxton, Curran, & Kirby, 2001), but it is also known that

“factor score regression” can reduce the occurence of improper solutions through its division and

separate treatment of the two parts of a complete model: the measurement model and the structural

relations model.

Can Factor Score Regression/PLS/Item Parceling resolve the problems?

In order to avoid the problems stemming from simultaneous estimation in SEM, a frequently used

method is a kind of stepwise estimation using estimated factor scores. A methodology such as

this is encouraged by statistical packages such as SPSS FACTOR that make it easy to save “factor

scores” or component scores for use in subsequent analyses. However, since such “factor scores” are

linear combinations of variables, they contain error and are biased. Hence factor score regression

procedures using such scores produce biased estimates, usually underestimating the relationship

between factors (see section 3).

In an important paper, Skrondal & Laake (2001) pointed out the bias problem and proposed a

modified version of the above estimation procedure especially for regression analysis between latent

variables. Their proposed method (i) estimates the factor scores for dependent factors by the Bartlett

method, (ii) estimates the factor scores for independent factors by the regression method (we review

these factor score estimates below; see also Yanai & Ichikawa, 2007, pp. 287-289), and (iii) uses

these estimated factor scores as if they were observed variables. They demonstrated the consistency

of their proposed method, but the method has some disadvantages:(1) The method is not available

for models that have more than three groups of factors (and indicators), (2) Independent factors and

dependent factors must be pre-specified before the analysis, (3) Their method underestimates the

correlations between factors, (4) Their method is not available when there are discrete variables in

the model, (5) Their method neglects the effect of estimation of parameters of the factor models,

and (6) they have not extended the theory to deal with higher-order factors. Their paper provided

a solution for a certain (but restricted) case, but they did not clarify the cause of bias arising from
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using estimated factor scores.

A second class of methods that estimate factor scores is that based on partial least squares

(PLS). Originally developed as an alternative to maximum likelihood emphasizing prediction and

“soft modeling” rather than statistical efficiency and confirmatory modeling (Wold, 1973, 1982),

it proposes to use estimates of latent factors based on blocks of variables using simple weighting

schemes along with optimal regression prediction of these latent variables across blocks of variables.

“PLS methods actually enrich a causal scheme with data analysis features and can be directly used in

situations where the classical ordinary least squares (OLS) criterion for regression and the maximum

likelihood estimation for structural equation models are not feasible because of critical situations

in the data, such as too many variables or too few observations or a too strong correlation between

variables or the presence of missing data” (Vinzi & Lauro, 2005, p. 1). As noted by McDonald

(1996), however, “The PLS methods are difficult to describe and extremely difficult to evaluate

partly because PLS constitutes a set of ad hoc algorithms that have generally not been formally

analyzed, or shown to possess any clear global optimizing properties (except in the well understood

case of just two composites), and partly because these devices are represented as a form of path

analysis with latent variables, and it can be difficult to determine what properties of latent variable

models they possess, if any” (p. 240). This critique has become somewhat less cogent as the

methodology is vibrant and continues to be developed in algebraic and algorithmic ways (e.g.,

Hwang & Takane, 2004; a dozen articles in the January 2005 issue of Computational Statistics &

Data Analysis). Certainly, PLS and ML-based estimates of latent factors can be quite close, as can

be coefficients (e.g., Tenenhaus et al., 2005). However, as far as we can tell, these methods have the

same drawback as factor score regression as described above. That is, PLS estimates will be correct

only under the joint conditions of consistency (sample size becomes large) and consistency at large

(the number of indicators per latent variable becomes large; Jöreskog and Wold, 1982). In practice,

the correlations between the latent variables will tend to be underestimated (Dijkstra, 1983).

Actually, McDonald (1996) developed six alternative factor score regression methods as variants

of PLS that optimized specific criteria. However, their statistical properties also were not developed.
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A drawback for our purposes is that, generally speaking, these variants of factor score regression

also do not extend to models with categorical indicators.

A third and popular method related to factor score regression is the “Item Parceling” methodol-

ogy. Item Parceling involves summing or averaging item scores from two or more items and using

these parcel scores (or “scale score” in personality psychology) as observed “latent variable scores”

to estimate the relationships between latent variables (Bandalos, 2002). In contrast to PLS, these

composite scores are fixed and not interatively updated. The rationale for the use of item parcels

in SEM is as follows (Bandalos & Finney, 2001): (1) The reliability of item parcels will be greater

than the raw scales (Cattell & Burdsal, 1975; Kishton & Widaman, 1994), (2) Even when the data

contain raw items that are nonnormally distributed or/and coarsely categorized, item parcels based

on a large number of items often can be regarded as normally distributed, and normal theory maxi-

mum likelihood and generalized least squares estimation techniques are applicable to such data, (3)

Item parceling can reduce the number of variables in the analysis, thus also reducing the ratio of

variables to subjects, which will lead to more stable estimates, and (4) Item parceling will typically

lead to better model fit than estimation using the raw items (Thompson & Melancon, 1996). In

spite of these advantages, item parceling has been criticized. There are at least two problems: (1)

The resulting parameter estimates are sometimes biased, and then typically they are underestimated

(Bandalos, 2002), and (2) The item parceling method does not always produce stable estimates

(MacCallum, Widaman, Zhang & Hong, 1999; Marsh, Hau, Balla & Grayson, 1998). Although

there are some theoretical results (e.g., Yuan, Bentler, & Kano, 1997), most conclusions on this

methodology are mainly due to simulation studies. Further theoretical analyses on item parceling

and factor score regression are still needed.

Content of the paper

In section 2, the model assumptions are made. These assumptions appear to be slightly restrictive:

however, they are the same for factor score regression or item parceling. In section 3, we discuss

the theoretical investigation of the sources of biases in factor score regression (also in PLS and
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the item parceling method). For notational convenience, we restrict our attention to a relatively

simple model: however, the results apply to general cases. In section 4, we propose an alternative

estimation method based on the estimated latent variables. The consistency of the proposed method

is also shown. In section 5, we provide simulation studies in various model setup to justify the

validity of the proposed method when the number of subjects and observed variables are finite. The

concluding remarks and discussions are provided in the last section.

2 Model

We assume the model setup which is usually made in factor score regression and the item parceling

method: Consider J > 1 measurement equations in which each equation measures different latent

variables.

In the j-th measurement model, each (Pj × 1) observed variable vector xj is independently

defined in terms of the Qj-component factor vector fj, and the Pj-component error vector ej by the

j-th measurement model,

xj = gj(f j) + ej (j = 1, · · · , J), (1)

where gj(·) is a linear or nonlinear function.

The distribution of xj in the j-th measurement model is also defined independently of the other

measurement models and the structural model.

Measurement models vary with the level of measurement. If each element of xj is a continuous

variable, the j-th measurement equation (Eqn.(1)) is usually expressed as a linear factor analysis

model, as below:

xj = αj + Λjfj + ej , E(ej) = 0 and V ar(ej) = Ψj , (2)

where ej follows the multivariate normal distribution with mean 0 and covariance matrix Ψj: and

Λj is the factor loading matrix.

If xj is dichotomous, the three-parameter logistic item response model (Lord & Novick, 1968;
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Embretson & Reise, 2000) is employed:

Pr(xjk = 1) = cjk +
cjk

1 + exp(−Dajk(fj − bjk))
(3)

where ajk, bjk, and cjk are the k-th item parameters of xj. Sometimes, the probit item response

model is also employed.

If xj is nominal or polytomous, the nominal response model proposed by Bock (1972) or the

graded response model proposed by Samejima (1969) is also available.

We further assume that the joint distribution of factor vectors, p(f 1, · · · , fJ |ξF ) follows multi-

variate normal distribution, where ξF denotes the parameter vector.

Therefore, the joint distribution of x1, · · · , xJ is

p(x1, . . . , xJ

∣∣ ξ1, . . . , ξJ , ξF ) =

∫
· · ·
∫ { J∏

J=1

pj(xj

∣∣ f j , ξj)
}
p(f1, . . . , fJ

∣∣ ξF )
J∏

J=1

df j (4)

where pj(xj

∣∣ f j , ξj) denotes the conditional distribution of xj with the given value of f j , and ξj

is the parameter vector in the conditional distribution.

If J = 2, the entire model (Eqn.(4)) is equivalent to the LISREL model proposed by Jöreskog

(1970). If J > 2, the entire model can be considered as a “multiple indicator model,” a submodel

of SEM.

ξF contains the mean vector and the covariance matrix of factors,

ν =

⎛
⎜⎜⎜⎝

ν1

ν2
...

νJ

⎞
⎟⎟⎟⎠ , Φ =

⎛
⎜⎜⎜⎝

Φ11 Φ12 · · · Φ1J

Φ21 Φ22 · · · Φ2J
...

...
. . .

...
ΦJ1 ΦJ2 · · · ΦJJ

⎞
⎟⎟⎟⎠ , (5)

where νj is the mean vector and Φjk is the covariance matrix of f j and fk.

Usually, the concern is not the covariance matrix of factors, but the parameters of the structural

equation. In this study, the objective of inference is to estimate parameters in the structural part of

the model, τ . The mean vector and the covariance matrix of factors, ν and Φ, are structured by τ ,

as ν(τ ) and Φ(τ ).
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Random Effect Model and Fixed Effect Model

For clarification, we define “random effect model” and “fixed effect model” as follows. The j-

th measurement model is called a “random effect model” if the factor scores follow multivariate

normal distribution. The distribution of xj can be expressed as follows:

p(xj

∣∣ ξj, ξFj
) =

∫
p(xj

∣∣ f j, ξj)p(f j

∣∣ ξFj
)df j. (6)

where ξFj
is the parameter vector of the marginal distribution of f j (i.e., the factor mean vector νj

and factor covariance matrix Φjj).

The j-th measurement model is called a “fixed effect model” if the factor scores are not random

variants but incidental parameters (Neyman & Scott, 1948). The distribution of xj can be expressed

as:

p(xj

∣∣ f j , ξj). (7)

ξ1, . . . , ξJ , ξF are usually called the “structural parameters,” as distinguished from incidental pa-

rameters, f . If we employ the random effect model, the objects of the inference are not incidental

parameters but structural parameters. In the fixed effect model, both the structural and incidental

parameters are usually estimated simultaneously.

It should be noted that if there are large number of subjects and the incidental parameters follow

some distribution, these two models are virtually the same (see Kiefer & Wolfowitz, 1956; Lindsay,

Clogg & Grego, 1991).

Further, we employed the fixed effect model and assumed that there are a large number of sub-

jects and that the incidental parameter vector f follows multivariate normal distribution. Henceforth

we refer to the employed model as the “fixed effect Kiefer & Wolfowitz type model.”

In this paper, it is also assumed that each random effect measurement model is identifiable, and

the structural parameters can be estimated.
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3 Bias of Estimators due to the Estimated Factor Scores: Factor
Analysis model

This section discusses why the estimates obtained using factor score regression are generally biased.

To be more concrete, we restate the factor score regression procedure as follows:

(1) Employ the random effect model (Eqn.(6)) and obtain ML estimate structural parameters in

each measurement model ξj, ξFj
. (For example, in the model depicted in Fiugre 1, regard

submodel 1 and 2 as the random effect model and estimate the parameters in these models.)

(2) Fix the parameters at the estimates, and then estimate the factor scores for each subject in each

measurement model. (Estimate factor score of fX and that of fY independently.)

(3) Regard the estimated factor scores as the observed variables, then estimate the parameters re-

garding the relationships between the factors (i.e., regression coefficients, correlations or fac-

tor loadings for higher factors). (Estimate parameters in submodel 3 by regarding factor scores

of fX abd fY as if they were observed.)

This procedure includes two sources of bias: (i) neglect of the uncertainty of the estimators of the

structural parameters in the first step, and (ii) overestimation of the variances of factors in the third

step. In this section, we focus our attention on the latter source of bias. Let the parameters of the

measurement part be known. The effects of the estimated structural parameters are not considered

in this section; please see the appendix for this (Proof of Proposition 3).

For the purpose of our demonstration, we assume two measurement models in which each factor

vector is measured by some observed continuous indicators. Each measurement model is expressed

as a factor analysis model (Eqn.(2)) :

xj = Λjf j + ej , f j ∼ N(νj,Φjj) and ej ∼ N(0,Ψj), j = 1, 2. (8)

For notational simplicity, αj was fixed at zero for each measurement model. Let Φ12 be the covari-

ance between f 1 and f 2.
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There are several estimation methods for factor scores in the factor analysis model. For illustra-

tive purposes, two representative estimators are considered here: (1) Bartlett’s method and (2) the

regression method. The former can be considered the ML estimator of the factor score vector in the

fixed effect factor analysis, while the latter can be regarded as the Bayes posterior mean estimator.

These two estimators as well as other estimators are expressed as the product of a matrix and the

observed variable vector.

Let f̂ 1 = A1x1 be the estimate of f 1 and f̂2 = A2x2 be the estimate of f 2. Therefore,

Cov(x1, x2) = Λ1Φ12Λ
t
2 and the joint distribution of the estimated factor follow multivariate nor-

mal distribution:

(
f̂1

f̂2

)
∼ N(

(
A1μ1

A2μ2

)
,

(
A1(Λ1Φ12Λ

t
1 + Ψ1)A

t
1 A1(Λ1Φ12Λ

t
2)A

t
2

A2(Λ2Φ21Λ
t
1)A

t
1 A2(Λ2Φ22Λ

t
2 + Ψ2)A

t
2

)
). (9)

Using the well known relationship between the regression model and the multivariate normal distri-

bution, the expectation of the regression coefficitent is as follow:

Cov(f̂1, f̂2) × V (f̂2)
−1 = A2(Λ2Φ21Λ

t
1)A

t
1

(
A2(Λ2Φ22Λ

t
2 + Ψ2)A

t
2

)−1
(10)

The expectation of the correlation matrix between f̂ 1 and f̂ 2 is

(
A1(Λ1Φ12Λ

t
1 + Ψ1)A

t
1

)−1/2
A2(Λ2Φ21Λ

t
1)A

t
1

(
A2(Λ2Φ22Λ

t
2 + Ψ2)A

t
2

)−1/2
(11)

If Bartlett’s estimators are used to calculate each factor score,

Aj = (Λt
jΨ

−1
j Λj)

−1Λt
jΨ

−1
j (j = 1, 2). (12)

If regression estimators are used to calculate each factor score,

Aj = ΦjjΛ
t
jΣ

−1
j = (Φ−1

jj + Λt
jΨ

−1
j Λj)

−1Λt
jΨ

−1
j (j = 1, 2). (13)

The expectation of the estimator of the mean, the regression coefficient, the correlaton matrix, and

the covariance matrix is expressed in Table 1.

Note that in this section we neglect the fact that the true values of the structural parameters such

as factor loadings are unknown and estimated. Therefore, the equivalence of the parameter and its
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Table 1: Estimates by various estimation methods using factor scores

Parameter True Bartlett
mean of f 1 ν1 ν1

mean of f 2 ν2 ν2

Regression Coefficient Φ12Φ
−1
22 Φ12(Φ22 + (Λt

2Ψ
−1
22 Λ2)

−1)−1

Covariance matrix Φ12 Φ12

Parameter Regression Skrondal & Laake
mean of f 1 Φ11Λ

t
1Σ

−1
1 ν1 Φ11Λ

t
1Σ

−1
1 ν1

mean of f 2 Φ22Λ
t
2Σ

−1
2 ν2 ν2

Regression Coefficient Φ11(Λ
t
1Σ

−1
1 Λ1)Φ12Φ

−1
22 Φ12Φ

−1
22

Covariance matrix Φ11Λ
t
1Σ

−1
1 Λ1Φ12Λ

t
2Σ

−1
2 Λ2Φ22 Φ11Λ

t
1Σ

−1
1 Λ1Φ12Λ

t
2Σ

−1
2 Λ2Φ22

expectation does not mean unbiasedness, but consistency (see proof of Proposition 1). As seen in

Table 1, the bias does not disappear even when the number of subjects goes infinity. See simulation

studies in Section 5.

The regression method does not always produce underestimated regression coefficients or cor-

relations, but it usually does, For example, suppose Φ11 = I,Φ22 = I. Then, the expectation of the

estimated regression coefficient

Cov(f̂1, f̂ 2) × V (f̂ 2)
−1 = (I − (I + Λt

1Ψ1Λ1)
−1)Φ12, (14)

is not greater than the true regression coefficient, Φ12.

This section addressed only Bartlett’s method, the regression method and the method by Skro-

ndal and Laake, but it should be noted that estimated factor scores using the other methods and

partial least squares yield inconsistent estimators (for inconsistency of the estimators of partial least

squares, see Areskoug, 1982) .

The estimated factor score is the sum of the true factor score and the error due to estimation, no

matter what estimation method for factor score we use. As shown in this section, the sample variance

matrix of estimated factor scores is the biased estimate of the true variance matrix of factors. This

fact results in the bias in factor score regression.

In this section, we explained why the bias occurs when estimated factor scores are used, but the

degree of bias must be investigated to know whether this problem is of practical importance. The
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degree of bias due to the familiar three step estimation method using factor score will be examined

by simulation studies in section 5.

4 The Proposed Estimation Method

To resolve the problem mentioned in the previous section, we propose a modified stepwise

estimation method using estimated factor scores. The method is divided into four steps:

Step 1 Employ the random effect model and estimate the parameters in each measurement model

(Eqn.(6)). Then, obtain the ML estimators of the structural parameters ξj, and ξF j
, ξ̃j and

ξ̃F j
. The parameter estimation in the random effect model in this step is usually called

marginal ML estimation in psychometrics (Bock & Aitkin, 1981). Henceforth we term these

“marginal ML estimators.” If factor rotation is necessary, it also should be executed in this

step.

Step 2 Employ the fixed effect model (Eqn.(7)) for each measurement equation and fix ξj at ξ̃j

obtained in the first step. Subsequently, calculate factor scores f̂
B

j by maximum likelihood (if

observed variables are continuous, the method is simply Bartlett’s method.)

Step 3 Estimate the factor mean vector and factor covariance matrix in the following manner. Let

ν̂ = 1
N

∑N
i=1 f̂

B

i be the sample mean of the estimated factor scores where f i is the latent

variable vector f = (f t
1, · · · , f t

J)t for the i-th subject. Let also f ij be the value of f j for the

i-th subject. Let Φ̂ be the sample covariance matrix of the estimated factor scores:

Φ̂ =
1

N

N∑
i=1

(f̂
B

i − ν̂)(f̂
B

i − ν̂)t. (15)

Further, use the sample mean of the estimated factor scores in the second step as the estima-

tor of the factor mean vector, ν̂ . Use the estimator Φ̃jj in the first step as the estimator of

Φjj instead of the sample covariance matrix of the estimated factor scores. Use the sample

covariance matrix between f j and f k as the estimator of factor covariance Φjk for (j �= k).
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Subsequently, the resulting estimator of Φ, ΦP can be expressed as follows:

Φ̂
P

=

⎛
⎜⎜⎜⎝

Φ̃11 Φ̂12 · · · Φ̂1J

Φ̂21 Φ̃22 · · · Φ̂2J
...

...
. . .

...
Φ̂J1 Φ̂J2 · · · Φ̃JJ

⎞
⎟⎟⎟⎠ (16)

Step 4 Estimate the parameters of the structural part in the model τ using the generalized least

squares method. Let τ be the structural parameter vector of the structural equation part; σ,

the vector of the non-redundant element of ν,Φ; and σ(τ ), the function of τ .

Moreover, let σ̂ be the corresponding estimator obtained in the third step, and let the estimate

of τ be the value that minimizes the following generalized least squared error function:

Q(τ ) =
1

2
(σ̂ − σ(τ ))tW−1(σ̂ − σ(τ )), (17)

where W is the covariance matrix of σ̂. See the appendix for detail.

Theoretical Justification of the Proposed Method

There are several criteria for evaluating an estimation method in mathematical statistics, such as

invariance, unbiasedness, efficiency, and so on. The most important issue is the “consistency” of

the estimator, which implies that as the number of observations increases, the estimator converges

to the true value of the parameter. We will investigate the consistency of the proposed estimator.

When the observed variables are continuous

We show the consistency of the proposed estimator when the observed variables are continuous.

Without loss of generality, we can restrict the case when the number of measurement models is two.

We use Φ̃jj (j = 1, 2) obtained in Step 1 as the consistent estimators of Φjj instead of the

sample variance matrices of the estimated factor scores. We can also show the following result.

Proposition 1. The sample covariance matrix of the estimated factor scores, Φ̂12 = 1
N

∑N
i=1(f̂

B

i1 −
ν̂1)(f̂

B

i2 − ν̂2)
t, is the consistent estimator of Φ12, considering the effect of estimation of structural

parameters.
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Proof. Without loss of generality, we consider the case where the means of factors are zero. Using

the Bartlett method to estimate the factor scores, we obtain

1

N

N∑
i=1

(f̂
B

i1 − ν̂1)(f̂
B

i2 − ν̂2)
t = Â1

{ 1

N

N∑
i=1

x1ix
t
2i

}
Â

t

2, (18)

where xji is the observed value vector of xj for the i-th subject. From invariance and consistency

of the ML estimators, Âj
p−→ Aj = (Λt

jΨ
−1
j Λj)

−1Λt
jΨ

−1
j , where p stands for “convergence in

probability”. From the law of large numbers, 1
N

∑N
i=1 x1ix

t
2i

p−→ Λ1Φ12Λ
t
2.

From the above results and by applying Slutsky Theorem, we observe

1

N

N∑
i=1

(f̂
B

i1 − ν̂1)(f̂
B

i2 − ν̂2)
t p−→ (Λt

1Ψ
−1
1 Λ1)

−1Λt
1Ψ

−1
1 Λ1Φ12Λ

t
2Ψ

−1
2 Λ2(Λ

t
2Ψ

−1
2 Λ2)

−1

= Φ12 (19)

Therefore, Φ̂
P

in Step 3 is the consistent estimator of Φ. Following the properties of the GLS

estimator and the consistency of σ̂, the proposed estimator of the paramaters in structural equation

obtained in Step 4 is consistent.

General case

We show that the proposed method has a kind of “consistency” (i.e., consistency at large) for gen-

eral case other than the continuous observable variables. By “consistent at large”, we mean that at

probability one, the estimation method finds the true values of structural parameters when the num-

ber of subjects and the observed variables in each measurement model goes to infinity (N → ∞
and Pj → ∞). To prove the consistency of the proposed stepwise estimation method under general

model setup, the following additional propositions must be proved to be true.

Proposition 2. The estimator of ξj and ξFj
in the first step, ξ̃j and ˜ξFj

, which are obtained under

the random effect measurement model (Eqn.(6)), are consistent although we employ the fixed effect

Kiefer & Wolfowitz type model.

Proposition 3. Estimator Φ̂
P

is consistent at large.
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In the fixed effect model, factor scores are the incidental parameters in that the number of factor

scores increase with the increase in the number of subjects. Further, the joint ML estimators of ξ j

and ξFj
are not consistent (Neyman & Scott,1948). However, as Kiefer & Wolfowitz (1956) pointed

out, marginal ML estimators are shown to be “consistent” in that the estimators converge to the true

value when the number of the indicator variables is large. Hence, Proposition 2 is true in the model

setup. Then, it is sufficient to prove Proposition 3. The sketch of the proof of Proposition 3 is given

in the appendix.

In the next section, by using simulation studies, we will consider the influence of the number of

subjects and variables.

An Alternative Estimation Method

Kano (1983) and Shapiro (1984) showed that when the variables are continuous, the estimator of τ ,

that minimizes the ML discrepancy function where the mean vector and the covariance matrix are

replaced by their consistent estimators, is consistent.

In this section, it is also shown that ν̂ and Φ̂
P

are consistent estimators of ν and Φ, respectively.

This indicates that the estimator of τ that minimizes the ML discrepancy function where the mean

and covariance are replaced by ν̂ and Φ̂
P

, is also proven to be consistent for τ . Therefore, instead

of the proposed fourth step, we can consistently estimate the structural parameter vector τ using

prevailing softwares such as SAS/STAT (SAS Institute, 1999) by considering Φ̂
P

as the sample

covariance matrix of factors and modeling the structural equation part. It should be noted that the

correct standard errors cannot be evaluated by this method.

5 Simulation Studies

In the previous section, the consistency of the proposed stepwise estimation method was proved.

However, in order to show the validity of the proposed method in a moderate sample size and in

a moderate number of indicators, the degree of bias must be investigated. In this section, some

simulation studies that compare the proposed method with familiar methods are discussed.
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5.1 Study 1: Two-dimensional factor analysis model

We modeled a situation in which two factors are assumed and each factor is measured by four

observed indicators. The model we considered here is the factor analysis model:

x =

(
λ1 λ2 λ3 λ4 0 0 0 0
0 0 0 0 λ5 λ6 λ7 λ8

)t

f + e, (20)

where x (8 × 1),f (2 × 1) and e (8 × 1) are the observable variable vector, latent variable vector,

and error vector, respectively. The first element of f is fX , while the second one is labeled fY .

The structural equation is assumed as follows:

fX = βfY + ζ, (21)

and the main point of interest in this study is β. The model we assume here is depicted in Figure

1. The true values of the factor loadings are shown in Figure 1. The variances of the errors for

the observed variables were 0.5. The true value of β was 0.7. V (fY ) and V (ζ) were fixed at 1

and 0.51, respectively (so that V (fX) = 1.) Five estimation methods were compared in this study:

(1) factor score regression using the estimated factor scores by Bartlett’s method (Bart), (2) factor

score regression using the estimated factor scores by the regression method (Reg), (3) the modified

estimation proposed by Skrondal & Laake (Skro), (4) the proposed method (Prop) and (5) the ML

estimation method in SEM. It should be noted that in methods (1)-(4), the factor scores of fX and

fY are independently estimated. Moreover, the factor variances were fixed at 1 in each method. The

variances of the estimated factor scores in methods (1)-(4) are not equal to one (see section 3).

Data generation and estimation were performed using the SAS package by combining SAS/IML

program with proc CALIS in SAS/STAT. To calculate the mean and the mean of squared error

(MSE) of estimates of β, 10000 data sets were generated; the results are reported in Table 2.

These results indicate that even when the number of subjects is very large (N = 10000), the

factor score regression by Bartlett’s method and the regression method underestimate β to a large

extent. On the other hand, the proposed method and the ML method produce valid estimates, even

for relatively small sample sizes (N = 300).
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5.2 Study 2: Two-level factor analysis model

In study 2, we assumed that three factors (level-one factor f1, f2, f3) exist, and each factor is mea-

sured by four observed continuous indicators; hence, the total number of observed variables is 12.

Moreover, the three factors are assumed to measure a common factor (level-two factor f4). There-

fore, the structural equation is assumed to be as follows:

fj = γjf4 + ζj (j = 1, 2, 3). (22)

The model assumed here is shown in Figure 2.

The true values of factor loadings are also shown in the figure. The variance of errors for the

observed variables was 0.5. V (f4) was fixed at 1 and V (ζ1) = 0.51, V (ζ2) = 0.64, V (ζ3) = 0.75,

respectively (so that V (f1) = V (f2) = V (f3) = 1.)

In this model setup, the estimation method using the Bartlett factor scores, the method using Re-

gression factor scores, and the method proposed by Skrondal & Laake produce the same estimates,

then the following three methods were compared: (1) factor analysis using estimated factor scores

by Bartlett method (Bart), (2) the proposed method (Prop) and (3) the ML method in SEM.

To calculate the mean and the mean of squared error (“MSE”) of estimates of λj (j = 1, 2, 3),

10000 data sets were generated; the true values and the corresponding results are reported in Table

3.

These results indicate that even when the number of subjects is very large (N = 10000), the

factor score regression by the Bartlett method (or the regression method, Skrondal & Laake) un-

derestimate γs to a large extent. On the other hand, the proposed method and ML method produce

valid estimates even in relatively small sample sizes (N = 300).

5.3 Study 3: Factor analysis model and two-parameter logistic model

In study 1, each measurement model was a factor analysis model. In this study, we assumed that

one factor was measured by continuous variables (In this case, the measurement model is factor

analysis), and the indicators of the other factor are binomial (In this case, the measurement model
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is the two-parameter logistic item response model (Eqn.(3)) ).

The true value of β was changed from −0.8 to 0.8 with increments of 0.2, and the number of

subjects was 200 or 500. The number of items (indicators) was set to 20 or 50. For each model

setup, 1000 data sets were generated; hence, the resulting number of data sets was 36000. The data

sets that yield improper solutions are discarded and not included in the study. Therefore, the total

number of data sets included in the study was 33683.

The following three methods are carried out: (i) the proposed method (“Prop”), (ii) the ordinary

factor score regression (“Old”), and (iii) the generalized least square estimation using estimated

polychoric and polyserial correlations (“poly-GLS”).

Data generation was carried out by SAS/IML, and the estimation was performed using SAS/IML,

Bilog-MG, and M-plus.

The resulting mean and the MSE of each estimate calculated using the 1000 data sets are listed

in Table 4.

There are five points that should be noted. (i) The estimates of the proposed method are more

accurate than the ordinary factor score regression in most of the model setup. (ii) As the number

of subjects increases, the estimates of the proposed method move closer to the true value. This is

not the case in ordinary factor score regression. (iii) As the number of subjects increases, both the

estimates of the proposed method and those of the ordinary factor score regression move closer to

the true value. However, even when the number of items is 50, the squared errors of the ordinary

method is very large as compared to the proposed method. This result is consistent with the the-

oretical investigation in the appendix (Eqn. (29)), (iv) The proposed method is sometimes biased

as compared to GLS using polyserial/polychoric correlations; however, it is not always biased, and

(v) GLS using polyserial/polychoric correlations yields improper solutions at a high rate, while the

proposed method scarcely yields improper solutions (see Table 5).
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5.4 Study 4: Factor analysis model and nominal response model

In study 1, each measurement model was a factor analysis model. In this study, we assumed that

one factor was measured by continuous variables (In this case, the measurement model is factor

analysis.) and the indicators of the other factor are nominal responses (Bock, 1972). In theory,

simultaneous estimation such as that based on ML estimation is applicable to SEM with mixed

continuous and nominal observed variables (Moustaki & Knott, 2000; Sammel, Ryan & Legler,

1997). However, simultaneous estimation methods are generally very difficult for researchers to

use in applied areas because the evaluation of the likelihood requires numerical integration which

becomes impractical in reasonably sized models. There is no prevailing software to deal with this

model.

The true value of β was changed from −0.8 to 0.8 with increments of 0.2, and the number of

subjects was 200 or 500. The number of items (indicators) was set to 25.

For each model setup, 1000 data sets were generated; hence, the resulting number of data sets

was 18000. (The data sets that yield improper solutions are discarded and not included in this study.)

The following two methods are carried out: (i) the proposed method (“Prop”) and (ii) the ordinary

factor score regression (“Old”). Data generation was carried out by SAS/IML, and the estimation

was performed using SAS/IML and MULTILOG.

The resulting mean and the MSE of each estimate calculated using the 1000 data sets are listed

in Table 6. The simulation study shows that the estimates of the proposed method are finer than the

ordinary factor score regression in most of the model setup. It is also observed that as the number

of subjects increases, the estimates of the proposed method move closer to the true value. This is

not the case in ordinary factor score regression.

6 Discussion

In this paper, we resolved the reason why the estimators of the parameters related to the relationship

between the latent variables using estimated factor scores are biased, even when the number of the
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subject is large.

We also proposed a modified stepwise estimation method using estimated factor scores and

showed some asymptotic properties. The simulation studies indicated that the proposed method is

valid under several model setups, while the ordinary factor score regression is biased even for very

large sample sizes.

The proposed method has the following advantages:

(1) The analysis becomes practical when the level of variables differs with the measurement mod-

els.

For example, assume that the indicators of factor A in the first measurement model are contin-

uous, and the indicators of factor B in the second measurement model are nominal. The ML

estimation in such a model is impracticable; however, it is very easy to infer the relationship

between factors A and B by the proposed method, because most of prevailing programs such

as SAS/STAT solve the first measurement model. The second measurement model can be

solved by using software such as MULTILOG. We can estimate the relationships between the

factors using the outputs of the prevailing softwares.

(2) The proposed method can eliminate the problem in which the model setup of the structural

equation part affects the estimation of the measurement part because the proposed method

separates the estimation of parameters in the measurement part (the first step) from the pa-

rameters in the structural part (the third and fourth parts).

(3) Raw data is not necessary to estimate the parameters in the structural part. The estimated factor

scores, the estimates of the measurement parts, and their variance matrices are sufficient.

Hence, the proposed method enables a secondary analysis for relationships between factors

to be easily executed.

(4) The proposed method can include the variations in the estimators caused by factor rotation.

Simultaneous estimation methods fail to incorporate factor rotation into the whole analysis,
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which leads them to underestimate the standard errors of the parameter estimators in the

structural part if the rotated factor loadings are set as constants. The proposed method can

evaluate the variation due to factor rotation by calculating the correct variance matrix of the

rotated factor loadings (e.g., Ogasawara, 1998).

(5) The proposed method diminishes improper solutions as compared to the previously proposed

simultaneous estimation methods.

As discussed in the previous sections, factor score regression is frequently used not only in

psychology but also in other social sciences. The “item parceling” method that is more frequently

used in psychology, social sciences and behavioral sciences can be considered as a coarse variant

of factor score regression. Several simulation studies have shown that the item parceling causes

the parameters in the structural part to be underestimated (Bandalos, 2002; MacCallum, Widamam.

Zhang & Hong, 1999; Marsh, Hau, Balla & Grayson, 1998).The theoretical investigations in section

3 and the appendices also show that the correlation or regression coefficients are underestimated in

the studies in which scale scores (parcel scores) are used to estimate the factor scores. The item

parceling method using scale scores can be expected to produce a coarser estimate than the factor

score regression using Bartlett’s estimates or regression estimates; thus, they are also expected to

cause a more serious bias. It is clear that this issue requires further research.
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APPENDIX

Generalized least squares as the fourth step

Following results shown in Lee, Poon & Bentler (1990), the resulting estimator of the fourth step

τ can be shown to follow multivariate normal distribution with the mean τ and covariance ma-

trix ((∂σ(τ )/∂τ )tW−1(∂σ(τ )/∂τ ))−1 asymptotically. Also, since it has been shown that 2Q(τ )

asymptotically follows a χ2 distribution, we can execute hypothesis testing (see Lee, Poon, &

Bentler (1990) for detail).

To use the above results, we must calculate the covariance matrix of σ̂, W . Let φ̂ = (ν̂t, vec(Φ̂)t)t

and φ̃D = vec(Φ̃D) where φD is the vector containing all elements of Φjj (j = 1 ∼ J). Let also

vec(f , φD) = (f t, φt
D)t and vec(Φ̂, φ̃D) = (φ̂

t
, φ̃D

t
)t.

Following pseudo maximum likelihood estimation theory (Gong & Samaniego, 1981; Parke,

1986),

vec(f̂
B
, φ̃D) ∼ N(vec(f , φD),Σf ,φD

), (23)

where Σf ,φD
is estimated as the inverse of the Fisher information matrix when the fixed effect

model is employed (Eqn.(7)).

Then we obtain,

vec(Φ̂, φ̃D) ∼ N(vec(Φ, φD), AΣf ,φD
At), (24)

where A =

(
I ⊗ at 2Np(F

tR ⊗ Ip) 0
0 0 I

)
, Np = 1

2
(Ip2 + Kpp), a = 1

N
1 and Kpp is a

commutation matrix (Magnus & Neudecker (1999)).

Then W is expressed as W = PAΣf ,φD
AtP t where P is the appropriate permutation ma-

trix.

Sketch of Proof of Proposition 3

Let f̂
B

j be the estimator of the factor score vector in the j-th measurement model. Let also

(
If j

If jξj

Iξjf j
Iξj

)

be the Fisher information matrix for factor scores and structural parameters of the fixed effect
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model expressed by Eqn.(7). Using the results of pseudo maximum likelihood estimation (Gong

& Samaniego, 1981: Yuan & Jennrich,2000),

(
f̂

B

j (ξ̃j)

ξ̃j

)
∼ N(

(
f j

ξj

)
,

⎛
⎝ I−1

f j

+ I−1

f j

If jξj
Σξj

Iξjf j
I−1

f j

−I−1

f j

If jξj
Σξj

−Σξj
Iξjf j

I−1

f j

Σξj

⎞
⎠), (25)

where ξ̃j is the marginal ML estimator in the first step with the variance Σξj
(calculated by the

inverse of the Fisher information matrix in the random effect model), and f̂
B

j (ξ̃j) is the estimator

of factor scores in the second step with ξ̃j given.

Because the mean of the marginal distribution is equal to the mean of the conditional distribu-

tion:

plim
Pj→∞

E(f̂
B

j ) = plim
Pj→∞

E(E(f̂
B

j |f j)) = νj . (26)

From the relationship between the variance of the marginal distribution and that of the conditional

distribution, it is also shown that

plim
Pj→∞

V (f̂
B

j ) = plim
Pj→∞

{
V (E(f̂

B

j |f j)) + E(V (f̂
B

j | f j))
}

= V (f j) + plim
Pj→∞

E(V (f̂
B

j | f j)). (27)

From the definition, the variance matrix of f j is the true variance of factor, Φj. E(V (f̂
B

j | f j))

is the variance of the factor score estimator f̂ j

B
with the true factor score fj given.

If the structural parameters in the measurement models are known, E(V (f̂
B

j | f j)) is the inverse

matrix of the Fisher information matrix If j
(or “test information matrix” in the area of educational

statistics) with the structural parameters given in the fixed effect j-th measurement model (Eqn.(7).).

However, if we do not know the true values of structural parameters and if we evaluate the

influence of the estimation in the first step, the second term in the right side of Eqn.(27) can be

expressed as follows in the large number of indicators:

plim
Pj→∞

E(V (f̂
B

j | f j)) = I−1

f j

+ I−1

f j

If jξj
Σξj

Iξjf j
I−1

f j

, (28)

See Hoshino & Shigemasu (2008) for concrete expression.
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It is shown that the sample covariance matrix of fj using the factor scores (calculated in the third

step) is inconsistent for estimating Ψjj, because the following equation holds:

plim
N,Pj→∞

1

N

N∑
i=1

(f̂
B

ji − f̄B
j )(f̂

B

ji − f̄B
j )t = Φjj + G, (29)

where f̄B
j = 1

N

∑N
i=1 f̂B

j and G = plimN, Pj→∞
1
N

∑N
i=1

[
I−1

f j

+ I−1

f j

If jξj
Σξj

Iξjf j
I−1

f j

]
.

On the other hand, the sample covariance matrix between fj and fk using estimated factor scores

is consistent for estimating Φjk:

plim
N,Pj→∞

Φ̂jk = plim
N,Pj→∞

1

N

N∑
i=1

(f̂
B

ji − f̄B
j )(f̂

B

ki − f̄B
k )t = Cov(f̂

B

ji, f̂
B

ki) = Cov(f ji, f ki) = Φjk.(30)

It follows from that ξ̃j and ξ̃k are mutually independent for j �= k because each ξs is estimated for

each measurement equation, Therefore we obtain that Cov(f̂ j

B
, f̂k

B | f j, f k) = 0 for ∀j �= l.

Therefore we observe that Φ̂
P

is a consistent estimator of Φ when the number of indicators is

large.
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[31] Jöreskog, K. G. (1967). Some contributions to maximum likelihood factor analysis. Psychome-

trika, 32, 443–482.
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Table 2: Resulting estimates of Study 1

N=300 True Bart Reg Skro Prop ML
Correlation .7000 .5190 .5190 .5190 .6953 .6989

MSE of Corr. .0346 .0346 .0346 .0078 .0028
Reg. coef. .7000 .4995 .5391 .6977 .6953 .6989

MSE of Reg. .0425 .0285 .0045 .0078 .0028

N=10000 True Bart Reg Skro Prop ML
Correlaton .7000 .5206 .5206 .5408 .6997 .7000

MSE of Corr. .0323 .0323 .0254 .0002 .0000
Reg. Coef. .7000 .5010 .5408 .6998 .6997 .7000

MSE of Reg. .0397 .0254 .0001 .0002 .0000

Table 3: Resulting estimates of Study 2

N=300 True Bart Prop MLE
γ1 .7000 .6085 .7038 .7051
γ2 .6000 .5115 .6036 .6038
γ3 .5000 .4058 .4969 .4971

MSE .0544 .0429 .0388

N=10000 True Bart Prop MLE
γ1 .7000 .6035 .7005 .7005
γ2 .6000 .5074 .5995 .5998
γ3 .5000 .4089 .5007 .5008

MSE .0269 .0012 .0010



Table 4: Resulting estimates of Study 3

N=500
Items True Prop Prop MSE Old Old MSE poly-GLS poly-GLS MSE

50 0.8 0.8053 .001517 0.6912 .014058 0.8123 .001156
50 0.6 0.6087 .001606 0.5223 .007783 0.6141 .001477
50 0.4 0.4105 .001652 0.3521 .003720 0.4136 .001622
50 0.2 0.2111 .001655 0.1809 .001621 0.2118 .001650
50 0.0 0.0107 .001625 0.0089 .001303 0.0333 .001722
50 -0.2 -0.1905 .001576 -0.1638 .002631 -0.2044 .001543
50 -0.4 -0.3922 .001526 -0.3369 .005525 -0.4083 .001470
50 -0.6 -0.5941 .001490 -0.5102 .009956 -0.6116 .001349
50 -0.8 -0.7960 .001470 -0.6835 .015941 -0.8127 .001131
20 0.8 0.8171 .002025 0.6501 .026068 0.8062 .001222
20 0.6 0.6175 .002100 0.4912 .014287 0.6096 .001405
20 0.4 0.4162 .002045 0.3310 .006475 0.4105 .001602
20 0.2 0.2136 .001954 0.1698 .002217 0.2099 .001692
20 0.0 0.0101 .001853 0.0082 .001276 0.0337 .001767
20 -0.2 -0.1941 .001780 -0.1545 .003512 -0.2024 .001640
20 -0.4 -0.3988 .001750 -0.3174 .008790 -0.4052 .001571
20 -0.6 -0.6037 .001779 -0.4804 .017086 -0.6072 .001425
20 -0.8 -0.8085 .001859 -0.6433 .028429 -0.8071 .001164

N=200
Items True Prop Prop MSE Old Old MSE poly-GLS poly-GLS MSE

50 0.8 0.8078 .004231 0.6935 .014440 0.8337 .004928
50 0.6 0.6101 .004393 0.5238 .008953 0.6333 .006293
50 0.4 0.4096 .004243 0.3516 .005383 0.4272 .005870
50 0.2 0.2075 .004131 0.1781 .003460 0.2176 .004827
50 0.0 0.0043 .004006 0.0036 .002946 0.0541 .004674
50 -0.2 -0.1999 .003911 -0.1717 .003702 -0.2187 .004778
50 -0.4 -0.4028 .004025 -0.3459 .005936 -0.4273 .006250
50 -0.6 -0.6053 .004035 -0.5197 .009468 -0.6344 .006124
50 -0.8 -0.8039 .004119 -0.6901 .015185 -0.8310 .007647
20 0.8 0.8365 .006268 0.6435 .030317 0.8251 .003204
20 0.6 0.6343 .006214 0.4877 .017304 0.6305 .004256
20 0.4 0.4286 .005835 0.3293 .008825 0.4285 .004671
20 0.2 0.2208 .005371 0.1693 .004262 0.2217 .004711
20 0.0 0.0114 .004988 0.0080 .003223 0.0569 .004952
20 -0.2 -0.1988 .004803 -0.1537 .005487 -0.2136 .004250
20 -0.4 -0.4088 .004803 -0.3150 .011122 -0.4208 .004119
20 -0.6 -0.6173 .004995 -0.4755 .020298 -0.6240 .003743
20 -0.8 -0.8239 .005217 -0.6344 .033457 -0.8209 .002896



Table 5: The number of Improper Solutions

# of datasets that
could not estimate # of

N=500 Items True value poly-GLS Prop. / Old valid datasets
50 0.8 13 0 1000
50 0.6 12 0 1000
50 0.4 12 0 1000
50 0.2 12 0 1000
50 0.0 12 0 1000
50 -0.2 12 0 1000
50 -0.4 12 0 1000
50 -0.6 12 0 1000
50 -0.8 12 0 1000
20 0.8 0 0 1000
20 0.6 0 0 1000
20 0.4 0 0 1000
20 0.2 0 0 1000
20 0.0 0 0 1000
20 -0.2 0 0 1000
20 -0.4 0 0 1000
20 -0.6 0 0 1000
20 -0.8 0 0 1000

N=200
50 0.8 360 8 735
50 0.6 349 7 747
50 0.4 351 7 745
50 0.2 350 7 746
50 0.0 353 7 743
50 -0.2 353 7 743
50 -0.4 351 5 746
50 -0.6 353 4 743
50 -0.8 362 3 735
20 0.8 1 7 1000
20 0.6 0 7 1000
20 0.4 0 7 1000
20 0.2 0 7 1000
20 0.0 3 7 1000
20 -0.2 1 7 1000
20 -0.4 0 5 1000
20 -0.6 0 4 1000
20 -0.8 1 3 1000



Table 6: Resulting estimates of Study 4

N=500 True value Prop Prop MSE Old Old MSE
0.8 0.7645 .003273 0.4936 .094399
0.6 0.5755 .002449 0.3665 .055074
0.4 0.3878 .001838 0.2434 .025089
0.2 0.1993 .001629 0.1238 .006413

0 0.0045 .001538 0.0028 .000591
-0.2 -0.1945 .001608 -0.1207 .006886
-0.4 -0.3954 .001587 -0.2463 .024168
-0.6 -0.5955 .001790 -0.3709 .053029
-0.8 -0.7857 .002070 -0.4953 .093305

N=200 True value Prop Prop MSE Old Old MSE
0.8 0.7941 .006040 0.5039 .088946
0.6 0.6017 .005146 0.3760 .051568
0.4 0.4041 .004720 0.2492 .024174
0.2 0.2007 .004392 0.1230 .007414

0 -0.0008 .004018 -0.0009 .001501
-0.2 -0.2052 .003920 -0.1270 .006792
-0.4 -0.4091 .004098 -0.2555 .022230
-0.6 -0.6108 .004652 -0.3825 .048569
-0.8 -0.7962 .005441 -0.5059 .087619
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