UC Irvine UC Irvine Previously Published Works

Title

Circadian Metabolic Oscillations in the Epidermis Stem Cells by Fluorescence Lifetime Microscopy of NADH in Vivo

Permalink https://escholarship.org/uc/item/8w99k3sf

Journal Biophysical Journal, 106(2)

ISSN 0006-3495

Authors

Stringari, Chiara Geyfman, Mikhail Wang, Hong <u>et al.</u>

Publication Date

2014

DOI

10.1016/j.bpj.2013.11.187

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

138-Plat

Circadian Metabolic Oscillations in the Epidermis Stem Cells by Fluorescence Lifetime Microscopy of NADH in Vivo

Chiara Stringari^{1,2}, Mikhail Geyfman¹, Hong Wang^{1,3}, Viera Crosignani¹, Vivek Kumar⁴, Joseph S. Takahashi⁴, Bogi Andersen¹, Enrico Gratton¹. ¹University California Irvine, Irvine, CA, USA, ²Laboratory for Optics and Biosciences, École Polytechnique, Paris, France, ³China Agricultural University, Beijing, China, ⁴University of Texas Southwestern Medical Center, Dallas, TX, USA.

There is a lack of non-invasive methods to monitor circadian metabolic oscillations of single cells in their native environment. Here we implement a labelfree method using NADH as an intrinsic biomarker and the Phasor approach to Fluorescence Lifetime microscopy to measure the metabolic optical fingerprint of single cells during the day-night cycle. For the first time we detect in vivo metabolic circadian oscillations within the stem cells of the epidermis layer. We observe higher ratios of free/bound NADH, i.e. NADH/NAD⁺, in the night with respect to the day. This difference indicates a glycolytic phenotype associated with high proliferation during the night and an oxidative phosphorylation phenotype associated with low proliferation during the day. We demonstrate that cell-to cell metabolic heterogeneity correlates with circadian phase as measured within the basal epidermal layer by Per1-Venus reporter assay. Finally, we show that NADH metabolic oscillations are Bmal1 dependent.

Work supported with NIH grants P50 GM076516 and P41 GM103540.