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Abstract

Recent advances in cell reprogramming via employing different sets of factors, which allows 

generation of various cell types that are beyond the downstream developmental lineages from the 

starting cell type, provide significant opportunities to study fundamental biology and hold 

enormous promise in regenerative medicine. Small molecules have been identified to enhance and 

enable reprogramming by regulating various mechanisms, and provide a highly temporal and 

tunable approach to modulate cellular fate and functions. Here, we review the latest development 

in cell reprogramming from the perspective of small molecule modulation.

Introduction

During development and in tissue homeostasis, cell identities are defined by specific gene 

expression programs, which are governed by core transcription factors. These factors 

interact with other transcription factors co-occupying specific regulatory elements of target 

genes to exhibit transcriptional cooperativity. They also recruit other transcriptional co-

regulators with chromatin remodeling activities (e.g., epigenetic proteins, such as histone 

and DNA readers, writers, and erasers) to regulate chromatin accessibility at specific DNA 

sequences, as well as transcriptional cofactors to activate or repress the activity of 

transcriptional machinery. These factors collaboratively modulate the frequency, specificity, 

and strength of gene expression to determine a particular cell fate.

To reprogram and stably establish a cell to a new fate, the balance of the original 

transcriptional network must be broken. Conventionally, disrupting this balance occurs 

through genetic approaches, such as overexpressing or knocking down/out core transcription 

factors. The generation of induced pluripotent stem (iPS) cells by ectopic expression of four 

transcription factors (iPSC-TFs) exemplifies such approach in this field [1]. Recently, small 

molecules have proven useful in regulating cell fate and function, especially cellular 

reprogramming.
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Compared to conventional genetic approaches, small molecules provide several distinct 

advantages to reprogramming. For example, small molecules modulate specific protein 

targets rapidly and often reversibly, and thus can regulate cell functions with higher 

precision in a temporal manner. Additionally, small molecules can be applied at various 

concentrations and combinations so that their effects are highly tunable. These features can 

improve their specificity and efficacy, alleviate safety concerns, and potentially overcome 

hurdles in clinical applications that genetic methods cannot.

Small molecules can regulate gene transcription typically through four classes of 

mechanisms: signaling pathway modulators, which activate or repress components of signal 

transduction to regulate downstream transcription activity; modulators of epigenetic 

proteins, which regulate the activity of epigenetic complexes; metabolic regulators, which 

adjust cell state and shift balance of metabolites that serve as ligands for proteins (e.g., 

GPCRs and nuclear receptors) and cofactors for epigenetic proteins; and nuclear receptor 

agonists and antagonists, which directly modulate transcription by regulating the activity of 

nuclear receptors (Figure 1). Here, we will review each of these categories for applying 

small molecules to reprogramming. We will also discuss the transdifferentiation paradigm 

and its possible mechanisms of action.

Signaling pathway modulators

Signaling pathway modulators represent a major group of small molecules regulating 

reprogramming. Some signaling pathways directly target the pluripotency transcriptional 

network to positively affect iPS cell generation. For example, a glycogen synthase kinase 

(GSK) 3 inhibitor, CHIR99021, was shown to promote maintenance of pluripotency and 

enhance reprogramming [2-4]. This is consistent with the mechanism that under Wnt 

stimulation, T-cell factor (TCF), a downstream component of the Wnt pathway could act in 

an activating complex to bind many pluripotency genes in ES cells, including Oct4 Sox2 and 

Nanog [5]. The LIF-Stat3 pathway, well characterized to sustain self-renewal of mouse 

embryonic stem (ES) cells [6], was shown to enhance late stage reprogramming using a 

system that excludes interference from two other LIF-dependent pathways, PI3K/Akt and 

MAPK/Erk [7].

Some signaling pathway modulators regulate essential events during reprogramming. For 

example, during iPS cell reprogramming fibroblasts lose mesenchymal characteristics and 

acquire epithelial features. Such changes indicate that reprogramming requires the 

mesenchymal-to-epithelial transition (MET), a key early barrier in this process [8,9]. Thus, 

small molecule inhibitors of the transforming growth factor (TGF)-β pathway, which 

induces EMT, would enhance reprogramming. Indeed, small molecule inhibitors of TGF-β 

pathway, such as SB431542, A-83-01, and E616452, greatly enhance iPS cell 

reprogramming or helped to functionally replace iPSC-TFs in various contexts [10-12]. 

These effects could be through the inhibition of TGF-β downstream transcriptional repressor 

Snail, and the following enhanced transcription of epithelial genes such as E-cad [8].

Signaling pathway modulators also help identify novel reprogramming mechanisms. For 

example, many cytoplasmic macromolecules and organelles are drastically turned over 

during reprogramming. This transformation may involve autophagy, a catabolic process that 
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recycles cell components by degrading proteins and organelles [13]. Chen et al. showed that 

several autophagy activators, such as rapamycin and PP242 (mTOR inhibitors), enhanced 

reprogramming [14]. Additionally, Wang et al. demonstrated that ATG5-dependent 

autophagy is essential to iPS cell reprogramming via Sox2-mediated repression of 

mammalian target of rapamycin (mTOR) in the early stage, which stimulates a transient 

onset of autophagy [15]. The mechanism for this effect relies on Sox2 to recruit the 

nucleosome remodeling deacetylase (NuRD) complex to a repressive region in mTOR's 

promoter.

Epigenetic Enzyme Inhibitors

In reprogramming, a key question is how iPSC-TFs remodel somatic chromatin and activate 

transcription of silenced pluripotency genes. This process involves recruiting chromatin 

modifiers that modulate the 3D structure of chromatin and accessibility of loci in silenced 

genes [16]. Studies continue to identify chromatin modulators that function in this process. 

For example, Mbd3, a member of repressive NuRD complex, was found to modulate 

reprogramming in a stage-dependent manner [17,18]. Additionally, inhibition of HDACs 

(histone deacetylases), another component of this complex, by small molecules such as 

Valproic acid and sodium butyrate, promoted reprogramming [19-21]. This class of enzymes 

regulates lysine acetylation of histones and usually condenses chromatin and represses 

transcription.

Other histone-modifying enzymes switch the active or repressive marks of both pluripotency 

and somatic genes to establish a pluripotency program during reprogramming. Utx, a 

H3K27 demethylase, binds Oct4 and co-occupies many regions of target genomes to help 

them keep their active marks in ES cells [22]. Interestingly, another H3K27 demethylase, 

Jmjd3, inhibits reprogramming, in part by activation of the Ink4α/Arf locus [23]. PHF20, 

which participates reprogramming and reactivation of endogenous Oct4 is also inhibited by 

Jmjd3. Additionally, Parnate, an inhibitor of the H3K4/9 histone demethylase LSD1, as well 

as several histone methyltransferase inhibitors, such as Dot1L inhibitor EPZ004777, G9a 

inhibitor Bix01294, and Ezh2 inhibitor DZNep, were shown to promote iPS cell generation 

[10,24,25].

Another critical epigenetic mechanism that controls gene expression is DNA methylation. 

Gene promoter methylation can stably inactivate gene expression by blocking binding of 

transcription factors. Inhibitors of DNA methyltransferases (that mediate transfer of methyl 

groups to DNA), such as RG108 and 5-zaz, were shown to increase reprogramming [25,26]. 

More recently, studies uncovered enzymes that mediate DNA demethylation in 

reprogramming. For example, ten eleven translocation (Tet) enzymes convert 5-mC to 5-

hmC in DNA, the initial step in active DNA demethylation [27,28]. Gao et al. showed that 

Tet1 not only promoted Oct4 demethylation and reactivation, but also functionally replaced 

exogenous Oct4 [29]. Hu et al. demonstrated that knocking out Tet1, 2, and 3 completely 

blocked MET and prevented reprogramming [30]. These and other studies found that TET 

enzymes regulate reprogramming by activating pluripotency genes and regulating 

intermediate events [31,32]. Interestingly, a recent study demonstrated that Vitamin C 
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increased Tet1 activity, and induced a rapid and global increase of 5hmC in mouse ES cells 

[33]. This may in part explain how Vitamin C enhances reprogramming [34].

Metabolic Regulators

Compared with somatic cells, many stem cells and highly proliferative cells rely more 

heavily on aerobic glycolysis to support their proliferation. For example, studies showed a 

correlation between the self-renewal ability of ES cells, reduced oxidative phosphorylation, 

and increased glycolysis [35,36], suggesting that the transition from oxidative 

phosphorylation to glycolysis be a barrier in reprogramming. In fact, the finding that 

hypoxic condition improved reprogramming efficiency and kinetics supports this hypothesis 

[37]. PS48, an activator of 3’ phosphoinositide-dependent kinase 1, which facilitated 

metabolic conversion to glycolysis, improved human iPS cell generation via ectopic 

expression of a single transcription factor (OCT4) [38]. Consistently, many small molecules 

that promote glycolytic metabolism and act more directly on metabolic pathways, such as 

fructose 2, 6-bisphosphate (an activator of phosphofructokinase 1) and Quercetin (which 

promotes HIF-1 activity) also promote reprogramming. Conversely, a glycolysis inhibitor, 

2-Deoxy-D-glucose, inhibits reprogramming [39].

Nuclear Receptor Agonists

Nuclear receptors can directly bind DNA and regulate gene expression. The ligand-

dependent nuclear receptors can be modulated by small molecule agonists and antagonists. 

An orphan nuclear receptor Nr5a2 was shown to functionally replace Oct4 in iPS cell 

reprogramming in the presence of Sox2, Myc, and Klf4 [40]. Another orphan nuclear 

receptor, Esrrb, a direct target of Nanog and a key component of pluripotency transcriptional 

program [41], worked with Oct4 and Sox2 to activate pluripotency genes [42]. Together 

with Nr5a2, another type of nuclear receptors, RARa/g greatly enhanced reprogramming 

efficiency and kinetics [40]. Consistent with this, some RAR agonists, such as AM580, 

CD437, and TTNPB, were shown to enhance reprogramming in various contexts [10,43].

Transdifferentiation

Besides using cell type specific transcription factors and miRNAs to induce lineage-specific 

reprogramming (i.e., transdifferentiation), an alternative approach using the paradigm of 

cell-activation and signaling-directed (CASD) strategy has been developed. This strategy 

employs temporal and transient overexpression of iPSC-TFs or treatment with reprograming 

inducing small molecules (cell activation, CA) in conjunction with tissue patterning cues 

(signal-directed, SD) to reprogram somatic cells into diverse lineage-specific cell types 

without entering the pluripotent state [44,45]. This strategy in part mimics epimorphic 

regeneration in some humbler organisms (e.g., newts), in that cells at the injury site undergo 

a deprogramming process to generate lineage-specific precursor cells that can re-

differentiate to replace lost cells. Using this strategy, cardiac, neural, endothelial, pancreatic 

and hepatic cells have been generated from fibroblasts via a corresponding tissue-specific 

multipotent precursor stage [46-50]. Recent studies have also identified cocktails of small 

molecules that enhance and/or functionally replace the reprogramming factors in the CASD 

transdifferentiation paradigm. For example, a chemical cocktail containing SB435142, 

CHIR99021, Parnate and Forskolin was identified to enable converting mouse fibroblasts 
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into cardiac cells through a cardiac precursor stage, but not a pluripotent state, in 

conjunction with a single transcription factor Oct4 during the cell activation/deprogramming 

step [51].

Compared to conventional transdifferentiation [52], CASD-based transdifferentiation might 

be advantageous because a single set of TFs may be used for all cell types . Additionally, 

transient gene expression might be more easily replaced with safer and more convenient 

methods without risking genetic modifications. Furthermore, CASD-based 

transdifferentiation generate lineage-specific progenitor cells that can be expanded, 

therefore, more advantageous for various applications to regenerative medicine.

Although the detailed mechanism of the CASD paradigm remains to be elucidated, it was 

hypothesized that the initial cell activation occurs by a universal deprogramming mechanism 

induced by iPSC-TFs and small molecules. The transient expression of reprogramming 

factors, especially those functioning as pioneer factors, initiates a wave of epigenetic 

remodeling by binding and recruiting epigenetic modifiers to regulatory elements, and 

mainly deprograms starting cell's transcriptional network. Interestingly, increasing numbers 

of small molecules have been shown to contribute to this universal mechanism of cell 

activation. Some of these small molecules include epigenetic modifiers (e.g. parnate and 

NaB) that induce open chromatin state and initiate epigenetic remodeling, as well as some 

that effectively signal to destabilize a fibroblast phenotype (e.g. CHIR99021 and SB431542) 

[51]. It is conceivable that the effects induced by these small molecules will have broad 

applications in CASD-based transdifferentiation, as well as various other processes of 

cellular reprogramming.

After initial cell activation, a destabilized cellular state can respond to patterning signals to 

complete lineage-specific transdifferentiation. This specification mechanism has not been 

well understood. Considering that iPSC-TFs participate in the initial differentiation 

programs of pluripotent stem cells, it might be that under the influence of the soluble 

differentiation signals, the transient expression of exogenous iPSC-TFs assume a similar 

specifying role during lineage specification [53-55]. In deprogrammed cells, transcription 

factors downstream of patterning signals may orchestrate with iPSC-TFs and other 

endogenous TFs to induce lineage specific transcription programs.

In analogy, the CASD mechanism may be conceptualized to a simple model of law of 

motion. In this model, pluripotent cells can roll down (differentiate) a slope of the 

differentiation landscape and settle into an energy minimum (that is stabilized by epigenetic 

barriers), where such differentiated cell type becomes relative static (Figure 2a). A static cell 

type is relatively motionless and does not move until an external force is applied to it. One 

such external force is activities exerted by reprogramming factors and small molecules, 

which destabilize the cellular state in an upright direction to push cell out of the minimum, 

while the force exerted by soluble specifying signals guides the cell toward another 

minimum in the landscape with a distinct epigenetic characteristics (Figure 2b). The synergy 

of these two forces directs lineage-specific transdifferentiation from one minimum to 

another on the landscape without the cell entering the pluripotent state.
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Conclusion

Major developments in cellular reprogramming have continued to advance stem cell biology 

toward translations. Future directions for cellular reprogramming would envision more 

efficient and precise control toward therapeutic applications. Small molecules will continue 

to play essential roles in controlling cell fate and improving our mechanistic understanding 

of cellular reprogramming. They also naturally promise to be developed as new generation 

of regenerative medicine aimed at stimulating tissue repair and regeneration through 

modulating cell fate and function in vivo.
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Figure 1. 
Small molecules regulate gene transcription mainly through four classes of mechanisms: 

signaling pathway modulators, which activate or repress components of signal transduction 

to regulate downstream transcription activity (a); modulators of epigenetic proteins, which 

regulate the activity of epigenetic complexes to modify epigenetic marks of certain 

chromatin region and its gene transcription (b); metabolic regulators, which adjust cell state 

and shift balance of metabolites that serve as ligands for proteins (e.g., GPCRs and nuclear 

receptors) and cofactors for epigenetic proteins (c); and nuclear receptor agonists and 
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antagonists, which directly modulate transcription by regulating the activity of nuclear 

receptors (d).
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Figure 2. 
Conceptual model of cellular reprogramming. (a) In the developmental and epigenetic 

landscape, pluripotent cells can roll down (differentiate) a slope and settle into an energy 

minimum (that is stabilized by epigenetic barriers), where such differentiated cell type 

becomes relatively static. A static cell type can be reprogrammed to other cell types under 

external forces. (b) These reprogramming processes are induced by a composition of an 

upright activation force pushing the cell out of the energy minimum (destabilizing the 

cellular state) and a specification force guiding the cell toward another minimum in the 

landscape.
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