
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title

Step Length Is a More Reliable Measurement Than Walking Speed for Pedestrian Dead-
Reckoning*

Permalink

https://escholarship.org/uc/item/8wc4n77w

ISBN

979-8-3503-2011-4

Authors

Elyasi, Fatemeh
Manduchi, Roberto

Publication Date

2023-09-01

DOI

10.1109/ipin57070.2023.10332483

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8wc4n77w
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


2023 13th International Conference on Indoor Positioning and Indoor Navigation (IPIN)

Step Length Is a More Reliable Measurement Than
Walking Speed for Pedestrian Dead-Reckoning*

Fatemeh Elyasi
Department of Computer Science and Engineering

University of California, Santa Cruz
Santa Cruz, USA
felyasi@ucsc.edu

Roberto Manduchi
Department of Computer Science and Engineering

University of California, Santa Cruz
Santa Cruz, USA

manduchi@ucsc.edu

Abstract—Pedestrian dead reckoning (PDR) relies on the
estimation of the length of each step taken by the walker in
a path from inertial data (e.g. as recorded by a smartphone).
Existing algorithms either estimate step lengths directly, or
predict walking speed, which can then be integrated over a step
period to obtain step length. We present an analysis, using a
common architecture formed by an LSTM followed by four fully
connected layers, of the quality of reconstruction when predicting
step length vs. walking speed. Our experiments, conducted on a
data set collected by twelve participants, strongly suggest that
step length can be predicted more reliably than average walking
speed over each step.

Index Terms—Pedestrian dead reckoning (PDR), Smartphone
inertial data, Step length estimation, Walking speed prediction

I. INTRODUCTION

Self-localization is a critical component of applications that
provide guidance and location-based information or that mon-
itor the movement of individuals (e.g., patients in a care
facility). In this paper, we focus on pedestrian self-localization
via inertial odometry, using the sensors commonly found in
commodity smartphones.

Strapdown inertial odometry is achieved through some
form of dead-reckoning from sensor data [1]. Standard dead-
reckoning involves double integration of data from the ac-
celerometers, after subtraction of the gravity vector. The
direction of gravity, expressed in the sensors’ frame, is tracked
by integrating data from the gyros. Normally, an Extended
Kalman Filter (EKF) is used to track velocity, position and
orientation (as well as sensor biases) through time [2]. It is
well known that noise and residual bias contribute to drift,
which manifests itself in an error in orientation and length of
the reconstructed trajectory that increases over time.

In order to improve the performance of these systems,
one could leverage the specific characteristics of human lo-
comotion. Walking is a succession of steps, where the gait
cycle at each step is formed by a stance phase (with the
foot approximately static on the ground) followed by a swing
phase. By using inertial sensors attached to the walker’s
feet or ankles, it is possible to reset the estimated velocity

*Research reported in this article was supported by the National Eye Insti-
tute of the National Institutes of Health under award number R01EY029260-
01. The content is solely the responsibility of the authors and does not
necessarily represent the official views of the National Institutes of Health.

during stance phases, thus greatly reducing drift (zero-velocity
updates or ZUPT [3]). While ZUPT cannot be applied on
data from smartphones worn elsewhere on one’s body, foot-
mounted sensors are often used to obtain reliable ground-truth
measurements (as we do in Sec. III-A). Modern approaches
to dead-reckoning use neural networks to learn the dynamic
characteristics of the inertial data recorded by a human walker,
to produce odometry results with less drift, and unaffected by
the phone’s orientation with respect to the walker’s body [4]–
[7].

A different approach (often called pedestrian dead-
reckoning, or PDR) measures distances traversed while walk-
ing by counting the number of steps taken, and adding together
the estimated length of each step. The heading orientation
is computed by integrating information from the gyros and
the accelerometers. Part of the appeal of PDR is in its
simplicity and robustness: counting steps from inertial data is
relatively simple, and any errors in step length determination
will have a linear effect on the computed location (whereas
an uncompensated accelerometer bias has a quadratic effect
due to double integration). Several machine learning methods
for the estimation of step lengths from inertial data have been
proposed in the literature [8]–[11].

In this article, we study methods to improve the accuracy of
distance measured via PDR. We argue that PDR does not dif-
fer fundamentally from other dead-reckoning algorithms. For
example, RoNIN [5] computes the walker’s velocity, which
is integrated through time to obtain location. By choosing
the period of time between two heel strikes (step period)
as integration interval, one obtains a vector representing the
displacement between two heel strikes, with magnitude equal
to the step length. Similarly, given an estimate of step length,
the average velocity during a step (walking speed) can be
obtained by dividing the step length by the step period. Hence,
provided that one can reliably detect individual steps, step
length and walking speed are easily interchangeable. The
main contribution of this work is an analysis of the ability
of a standard machine learning system (an LSTM followed
by four fully connected layers) to predict step length and
average walking speed during a step. We collected a data set
from twelve participants, who walked on different paths and
with different step lengths, while inertial data was collected
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by two smartphones worn on their bodies. Ground-truth step
length measurements were obtained from foot-mounted iner-
tial sensors and EKF-based odometry integrated with zero-
velocity updates. Experimental results show that our network
can predict step lengths more accurately than walking speed
over all metrics considered. This result can have practical
significance when designing a PDR system, and suggests that
machine learning odometry systems designed to measure the
walker’s velocity (e.g., RoNIN [5]) may not be optimal for
what concerns distance measurements.

II. RELATED WORK

Estimating step length plays a key role in the operation of
PDR system. It is a challenging task as gait patterns can vary
with gender, height, weight, age, and health condition [12].
Traditional step length estimation methods rely on simple
models, whose coefficients are normally regressed through
a calibration process. For instance, the Weinberg method
exploits the relationship between the stride length and the
difference of max and min values of the vertical accelera-
tion within the stride [13]. Kim et al. [14] measured step
lengths based on the average of the acceleration norm, while
Ladetto [15] utilized the local variance of the acceleration
signal. Linear models for step length estimation, as proposed
in [16], [17], combine step frequency and the user’s height
(which must be measured beforehand).

Machine learning-based methods for step length estimation
have been proposed in recent years. The model described
in [8] is based on autoencoders. Useful features from the
accelerometer and gyroscope readings are learned through
stacked autoencoders in a greedy layer-wise training manner.
Step length is predicted through a final regression layer using
learned features. A similar approach was employed in [11],
with deep belief network (DBN) for feature learning in place
of autoencoders. StepNet [10] combines a traditional method
with a learning-based model. In this scheme, higher-level
features extracted from raw inertial data, along with the smart-
phone location on the body (e.g., pocket, swing, texting), are
plugged into a model based on a convolutional neural network
(CNN) to estimate the Weinberg gain coefficient and measure
step length. LSTM in conjunction with an autoencoder model
was used to predict step lengths in [9]. In this study, temporal
dependencies and features embedded in raw inertial data are
first extracted by an LSTM network. Subsequently, learned
features along with traditional features are fed to an autoen-
coder to train a noise-robust encoder. Finally, a regression layer
is applied to predict the step length.

III. METHOD

A. Data Collection

In this section, we describe our methodology for collecting a
representative data set, and for obtaining ground-truth annota-
tions. We designed the study so as to record inertial data from
a variety of stride lengths, where the length of each stride
is accurately measured. Note that the common practice (e.g.,
[8], [10], [18]) of measuring step lengths by dividing a path

length by the number of steps taken in that path, may produce
inaccurate results, considering that, during “natural” walking,
a person’s step length has non-negligible variations (standard
deviation of step length between 3% and 7% of its average as
measured in [18]).

Twelve participants (6 female and 6 male, average age:
35.6) walked over four paths (except for participant P10 who
walked over three paths only) in an office building. Each
path was divided into a number of sub-paths, beginning and
ending at marked locations. For each sub-path, one of three
possible categories of stride length was prescribed: “natural”,
shorter than natural, or longer than natural. No other directions
were given to the participants, who were free to choose their
walking pace for a prescribed stride length category. The sub-
paths were chosen such that the overall length traversed was
the same across stride length categories (equal to 236 meters,
for a total traversal length of 709 meters per participant.) The
number of steps taken by the participants varied from 789
(P10) to 1344 (P9).

Each participant carried two inertial IMU packages (Xsens
DOT), each tied to either shoe using an elastic band. The
IMUs produced data from 3 accelerometers and 3 gyros at
the rate of 120 samples/s with 16 bits resolution. In addition,
each participant carried two smartphones (iPhone 13 Pro and
iPhone X), one tucked in a pants back pocket, the other held by
hand at about chest height, as if the participant were looking
at the smartphone’s screen. The smartphones ran an app that
collects time-stamped inertial data at a rate of 120 samples/s.
The IMU packages and the smartphones were synchronized to
a common time scale.

The inertial data recorded from each foot sensor was pro-
cessed using an EKF-based dead-reckoning algorithm with
zero-velocity updates to obtain accurate measurements of
stride length, defined as the path traversed between two
consecutive heel strikes of the same foot. The EKF odometry
algorithm tracked sensor biases along with attitude errors,
velocity errors, and position errors [19], [20]. We applied
the ZUPT algorithm [3] along with HDR correction [21] to
reduce gyro drift. In prior experiments, we verified that this
algorithm produced distance errors over long paths that were
consistently less than 1% of the total traversed distance in
the path. In order to measure stride lengths, we first detected
each heel strike as the highest peak of the accelerometer
magnitude within a window of 0.5 s around the beginning of
a stance period. Stance periods were identified based on three
conditions (magnitude of acceleration and of gyro readings,
local acceleration variance) as described in [20]. Strides were
measured by the path traversed between two consecutive heel
strikes (shown as circles in Fig. 1 (a)). Note that the ZUPT
algorithm performs a “correction” of the estimated location
during a stance period.

Fig. 1 (b) shows (in pink) the distribution of stride lengths
measured for all participants in our data collection (standard
deviation: σ = 0.38 m). The same figure shows (in green) the
distribution of stride lengths in the data set described in [9],
also collected using foot-mounted sensors. Note this prior data
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(a) (b)
Fig. 1. (a) An example of trajectory reconstructed for one foot-mounted
sensor (black line). Note that the ZUPT algorithm applies a correction at
each detected stance phase. The circles represent heel strike times, which
are used to compute individual stride lengths (shown by grey arrows). (b)
Distribution of stride lengths over all participants of our data collection (pink
bars), shown together with the distribution of stride lengths for the data set
of [9] (green bars).

was built from walkers adopting a rather uniform stride length
(σ = 0.12 m). We believe that a wide distribution of stride
lengths is paramount for a genuine assessment of an odometry
algorithm.

While foot-mounted sensors are ideally suited to measure
stride lengths, when processing inertial data from a smartphone
it is more convenient to measure step lengths, where a step is
the path traversed by the user’s body between two consecutive
heel strikes from opposite feet, as the data recorded by the
phone is approximately periodic over steps. During a step, one
of the two feet is in stance phase, while the other is in swing
phase. We define the ground-truth step length l̂i by taking the
mean of the two overlapping stride lengths (one per foot),
and dividing the result by 2. Along with the step length l̂i,
we measure the (average) walking speed during the same step
as v̂i = l̂i/T̂i, where T̂i is step period (time between two
consecutive heel strikes from opposite feet).

Fig. 2 shows scatterplots of step period T̂i vs. step lengths
l̂i for six of our participants. The figure also shows loci
of constant walking speed. Note how these distributions are
different across participants. For example, P1 and P9 kept an
almost constant step period for different step lengths (resulting
in large variations of walking speed). P4 and P12 adopted
different step periods for different sub-paths with prescribed
“shorter than normal” stride lengths, such that the walking
speed was very different for the same step length.

B. Algorithms

The goal of our system is to estimate either the length li
or the walking speed vi during each step, based on inertial
data recorded by each smartphone. We used exactly the same
architecture for both estimations (li and vi), and compared
results using similar metrics.

Following [9], we used a 1-layer LSTM network [22], with
64 hidden units, followed by four fully connected layers with
ReLU activation (see Fig. 3 (a)). A recurrent network appears
to be the most natural choice for this type of quasi-periodic
signal. The input to the network at each time is the vector
formed by the 3 accelerometer and 3 gyro measurements.
Inspired by [5], we normalize the orientation of these vectors

P1 P3

P4 P7

P9 P12
Fig. 2. Step period vs. step length for six participants in our study. Loci of
constant walking speed (0.5 m/s, 1 m/s, and 1.5 m/s) are shown by gray lines.
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Fig. 3. (a) The architecture of the network predicting step length li or walking
speed vi. (b),(c): Black line: Output of the network predicting step length (b)
or walking speed (c). Vertical lines: Detected heel strikes. Red segments:
ground-truth values. Blue dashed segments: Average output values in a step
period. Note that the participant was taking a turn in the path, resulting in
significantly reduced walking speed during the second and third steps.
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by pre-multiplying them by the inverse of the attitude matrix
(which is provided by the iPhone API). Heel strike times
(signaling the beginning and end of each step) are detected
by another LSTM network [23], which is the uni-directional
version of the one proposed in [24]. Unlike [9], we don’t reset
the state of the LSTM at the beginning of each step, but let
it run continuously. Arguably, this may allow the network
to better adapt to the periodic variation of the input data.
During training, we fed the LSTM with segments of fixed
length of 240 samples. Unlike [9], we don’t restrict these
segments to be contained within individual strides (which
may require zero-padding for short stride periods), but sample
these segments from anywhere in the signal. Specifically, we
segment the input signal into intervals of 240 samples with
overlap of 120 samples. For each segment, a quadratic loss
is defined on the difference between the last output value
produced by the network, and the ground-truth step length l̂i
or walking speed v̂i associated with the step that contains the
end point of the input segment. We found that this approach
provides consistently better results than by selecting input
segments only from within individual step periods. Training
was performed in Keras, with batch size of 128 over a total
of 500 epochs. To prevent overfitting, training was stopped if
no loss reduction was measured over 50 epochs.

At deployment, the network produces one output sample
per input sample. Fig. 3 shows examples of the output of
the network computing step length (b) and walking speed (c),
along with detected heel strike times. The plots also show
the ground-truth values. Note from the figure that the network
output has large variations from sample to sample. Rather than
picking one value from the output (e.g., at heel strike times),
we compute the average value over each step period to produce
the quantity of interest (step length or walking speed, as shown
by blue dashed segments in Fig. 3).

IV. RESULTS

We ran experiments using the leave-one-person-out modality:
for each participant being tested, the network was trained with
data from the other 11 participants. In order to evaluate the role
of phone placement, we considered four scenarios: (1) train
and test with data from in-hand phone (H → H); (2) train
and test with data from in-pocket phone (P → P ); (3) train
with data from both phone placements, test with data from in-
hand phone (HP → H); (4) train with data from both phone
placements, test with data from in-pocket phone (HP → P ).
In each case, we trained two networks: one to estimate step
lengths {li}, and one to estimate walking speeds {vi} at each
step. The step periods Ti are computed by an LSTM step
counter [23], and are identical for the two measurements.

A. Error Metrics

Remember that l̂i represents the ground-truth length of the i-
th step in the test set for a certain participant. We define the
following error metrics for the estimated step lengths (where
the first and third metrics are from [9]):

• Ed =
|
∑N

i=1 li−
∑N

i=1 l̂i|∑N
i=1 l̂i

• Es =
1
N

∑N
i=1 |li − l̂i|

• Esr = 1
N

∑N
i=1

|li−l̂i|
l̂i

• R2 = 1 − RMSE2

σ2 , where RMSE =

√∑N
i=1(li−l̂i)2

N and
σ2 is the variance of the set of ground-truth step lengths
{l̂i}.

Ed, the relative distance error, is relevant for long paths,
where step-to-step error fluctuations cancel out. Es is the
average absolute error at each step, while Esr normalizes
errors with the ground-truth step length. R2, the coefficient
of determination, is a number that is ≤ 1 (it reaches 1 only in
case of zero error). A negative R2 means that using a constant
value, equal to the average step length, would yield a lower
RMSE error than the predictions {li}.

Tab. I shows the errors measured for the network predicting
step lengths li. For these and other measurements, each error
metric is computed for each participant, then averaged over
all participants. We also report standard deviations computed
across participants. The lowest errors are obtained for the
H → H phone placement configuration. Errors increase for
the P → P configuration. Training the network with data
from both phones (HP → H and HP → P ) is shown to
decrease performance further. Importantly, the coefficient of
determination R2 is always positive, and reaches a value of
0.76 for the H → H configuration.

TABLE I
ERROR METRICS COMPUTED FOR ALL PHONE PLACEMENT

CONFIGURATIONS FOR THE NETWORK PREDICTING STEP LENGTHS li .

Step Length
Ed Es (m) Esr R2

H → H 0.02± 0.02 0.06± 0.01 0.10± 0.02 0.76± 0.12

P → P 0.05± 0.06 0.07± 0.03 0.12± 0.04 0.61± 0.32

HP → H 0.05± 0.03 0.07± 0.02 0.12± 0.03 0.68± 0.19

HP → P 0.06± 0.06 0.08± 0.03 0.13± 0.04 0.59± 0.31

TABLE II
ERROR METRICS COMPUTED FOR ALL PHONE PLACEMENT

CONFIGURATIONS FOR THE NETWORK PREDICTING WALKING SPEED vi .

Equivalent Step Length From Walking Speed Walking Speed
Ed Es (m) Esr R2 Es (m/s) R2

H → H 0.04± 0.02 0.11± 0.02 0.20± 0.03 0.05± 0.39 0.25± 0.12 0.24± 0.27

P → P 0.09± 0.05 0.13± 0.04 0.22± 0.08 −0.38± 1.22 0.23± 0.05 0.22± 0.26

HP → H 0.09± 0.04 0.12± 0.02 0.22± 0.04 −0.14± 0.71 0.27± 0.12 0.14± 0.29

HP → P 0.08± 0.07 0.13± 0.04 0.23± 0.06 −0.50± 1.22 0.26± 0.10 0.12± 0.25

For the network predicting walking speed vi, we report in
Tab. II error measures computed on equivalent step lengths
li = vi · Ti (where Ti is computed by the step counting
network). In other words, equivalent step lengths are obtained
by integrating the predicted walking speed over a step period.
In addition, we report error metrics Es and R2 for the
walking speed vi itself when compared against the ground-
truth v̂i = l̂i/T̂i. The results are substantially worse than
when predicting step length directly. For example, the relative
distance error Ed for equivalent step length increased by 80%
(HP → H), compared to predicting step length directly. The
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coefficient of determination R2 for equivalent step length is
in most cases negative, implying that taking the mean value
would give a better prediction in terms of mean square error.
Paired t-tests revealed that, for all metrics considered, there
was a significant difference in error between predicted step
length and equivalent step length (p < 0.02).

Since equivalent step lengths are computed by integrating
predicted walking speed over measured step period (which is
computed by an LSTM step counter [23]), it is possible, in
principle, that errors in equivalent step length may be due, at
least in part, to inaccurate step period computation, rather than
inaccurate walking speed prediction. To test this hypothesis,
we re-computed the equivalent step lengths by integrating
the predicted walking speed over ground-truth step period
(as determined by the foot sensors). The corresponding error
values were not significantly different from those obtained
using step periods from the LSTM step counter.

Examples of step length predictions are shown in the scatter-
plots of Fig. 4 for different participants and phone placement
configurations. Fig. 5 shows, for the same input data, results
of walking speed estimation vi.

P8: H → H (Esr = 0.09) P4: HP → H (Esr = 0.10)

P9: P → P (Esr = 0.16) P1: HP → P (Esr = 0.22)

Fig. 4. Examples of step length prediction, plotted against their ground-truth
values.

B. Comparison with RoNIN

In order to assess the quality of our LSTM-based algo-
rithm, we compared its result against those obtained using
RoNIN [5], a state-of-the-art pedestrian odometry system,
when applied to the same iPhone sensor data. RoNIN is
designed to compute the user’s walking speed with respect to
a fixed reference frame. We integrated the walking speed data
from RoNIN over each step period as measured by our LSTM
step counter model [23]. We then extracted the length of the
resulting vector, and compared it with the ground-truth length
from the foot sensor. We utilized the authors’ open-source
implementation (https://github.com/Sachini/ronin) and opted

P8: H → H (Esr = 0.17) P4: HP → H (Esr = 0.15)

P9: P → P (Esr = 0.39) P1: HP → P (Esr = 0.23)

Fig. 5. Examples of walking speed predictions, plotted against their ground-
truth values.

for the RoNIN resnet18 architecture. Data was up-sampled
from the original acquisition rate of 120 Hz to 200 Hz (the
sampling rate used for RoNIN design). Following [23], we
regressed a scale factor α by minimizing the mean squared
error between the step length from RoNIN, multiplied by α,
and the ground-truth step length (α = 1.15 and 1.24 for in-
hand and in-pocket phones data, respectively). As shown in
Tab. III, our system produced comparable errors to RoNIN
for walking speed. Predicted step length from our system had
substantially lower error when compared with equivalent step
length from RoNIN.

TABLE III
ERROR METRICS COMPUTED FOR TWO PHONE PLACEMENT

CONFIGURATIONS USING RONIN

Equivalent Step Length From Walking Speed Walking Speed
Ed Es (m) Esr R2 Es (m/s) R2

H 0.08± 0.06 0.12± 0.03 0.23± 0.08 −0.05± 0.37 0.27± 0.14 0.16± 0.31

P 0.08± 0.06 0.11± 0.05 0.19± 0.07 −0.27± 1.06 0.23± 0.11 0.22± 0.31

C. Model Performance on a Different Data Set

For comparative assessment, we re-trained and tested our step
length prediction algorithm on the data set of [9], using 10-fold
cross-validation. We obtained almost identical results to [9]
for what concerns the mean Esr error rate, and a substantial
reduction in the mean Ed error for both models considered
in [9] (LSTM and LSTM-DAE). Specifically, our system led
to a reduction of Ed from 0.05 to 0.01 when compared to
their LSTM model, and from 0.04 to 0.01 when compared to
LSTM-DAE.

V. DISCUSSION AND CONCLUSIONS

PDR systems for the reconstruction of odometry from inertial
data from a smartphone measure the distance traversed in a
path by detecting individual steps and estimating the length

https://github.com/Sachini/ronin
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of each step. Assuming that steps can be detected reliably,
one may choose to predict, for each step, the actual step
length, or the average walking speed. In the literature, these
two tasks have been investigated using different approaches:
step length prediction is typically performed with data from
individual steps, while velocity prediction (e.g. [5]) is normally
computed at a higher rate, then integrated over time to obtain
position. In this contribution, we use the same computational
architecture to measure step length and average walking speed
over each step. We created a carefully annotated data set from
participants walking with a wide variety of stride lengths,
then trained and tested the system using a leave-one-person-
out strategy. Our results strongly suggest that predicting step
length provides more reliable results than predicting average
walking speed.

More research is needed to provide a clear explanation of
this phenomenon. One may argue that the body dynamics
involved in walking (as measured by the inertial sensors of
the smartphone) may have a stronger dependence on the
length of strides than on the pace rate. The distribution of
step length and step period may also have a role in the
prediction results. Some insight can be obtained by analyzing
the coefficient of variation (CV), that is, the standard deviation
divided by the mean, for the quantities considered (step length,
step period, and their ratio, that is, the average walking
speed in each step). We computed values of CV for each
participant and for each prescribed stride length, then averaged
them over participants. Note that we only considered ground-
truth data for this analysis. We found that the CV values
for step lengths (equal to 0.12, 0.09, and 0.08 for short,
natural, and long strides, respectively) are substantially lower
than those obtained for step periods (0.35, 0.42, 0.29) and,
consequently, for walking speed (0.46, 0.54, 0.25). Note that
the CV values for step length are slightly higher than those
reported in [18], probably owing to the different experimental
settings. Arguably, a recurrent network tasked with tracking
a quantity that is locally “stable” (step length) may have an
easier job than one predicting a quantity that varies more
widely from step to step (walking speed).

Our results also showed (Tab. I) that better prediction is
obtained when training and testing on data from a phone
placed in the same location on one’s body. This information
could be useful when a mechanism to detect the phone’s
placement (or context) is implemented (e.g. [25]). Knowledge
of the phone’s current placement could be used to select the
appropriate step length predictor at each time.

We should stress that our analysis has only considered
the length, not the direction, of steps taken while walking.
Existing learning-based approaches (e.g., [4]–[6]) can be used
to robustly estimate heading direction.
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